
A SUPERVISORY CONTROL-BASED NAVIGATION ARCHITECTURE FOR

AUTONOMOUS ROBOTS IN INDUSTRY 4.0 ENVIRONMENTS

Antonio Galiza Cerdeira Gonzalez

Dissertação de Mestrado apresentada ao

Programa de Pós-graduação em Engenharia

Elétrica, COPPE, da Universidade Federal do

Rio de Janeiro, como parte dos requisitos

necessários à obtenção do t́ıtulo de Mestre em

Engenharia Elétrica.

Orientadores: João Carlos dos Santos Basilio

Lilian Kawakami Carvalho

Rio de Janeiro

Abril de 2019

A SUPERVISORY CONTROL-BASED NAVIGATION ARCHITECTURE FOR

AUTONOMOUS ROBOTS IN INDUSTRY 4.0 ENVIRONMENTS

Antonio Galiza Cerdeira Gonzalez

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO

ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE

ENGENHARIA (COPPE) DA UNIVERSIDADE FEDERAL DO RIO DE

JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A

OBTENÇÃO DO GRAU DE MESTRE EM CIÊNCIAS EM ENGENHARIA

ELÉTRICA.

Examinada por:

Prof. João Carlos dos Santos Basilio, Ph.D.

Prof. Lilian Kawakami Carvalho, D.Sc.

Prof. Antônio Eduardo Carrilho da Cunha, D.Eng.

Prof. André Bittencourt Leal, D.Eng.

RIO DE JANEIRO, RJ – BRASIL

ABRIL DE 2019

Gonzalez, Antonio Galiza Cerdeira

A Supervisory Control-Based Navigation

Architecture for Autonomous Robots in Industry 4.0

Environments/Antonio Galiza Cerdeira Gonzalez. – Rio

de Janeiro: UFRJ/COPPE, 2019.

XVIII, 81 p.: il.; 29, 7cm.

Orientadores: João Carlos dos Santos Basilio

Lilian Kawakami Carvalho

Dissertação (mestrado) – UFRJ/COPPE/Programa de

Engenharia Elétrica, 2019.

Referências Bibliográficas: p. 74 – 77.

1. Sistemas a Eventos Discretos. 2. Autômatos. 3.

Controle supervisório modular. 4. Robótica móvel. 5.

Indústria 4.0. 6. Véıculo guiado automaticamente. 7.

Navegação de um robô. 8. Navegação de múltiplos robôs.

9. Discrete event systems. 10. Automaton. 11. Modular

supervisory control. 12. Mobile robotics. 13. Industry

4.0. 14. Automated guided vehicle. 15. Single robot

navigation. 16. Multiple robot navigation. I. Basilio,

João Carlos dos Santos et al. II. Universidade Federal do

Rio de Janeiro, COPPE, Programa de Engenharia Elétrica.

III. T́ıtulo.

iii

Non nobis Domine, non nobis,

sed nomini tuo da gloriam.

iv

Acknowledgements

First, I thank God Almighty, who in His infinite love created me and enabled me

to elaborate and complete this dissertation. I also thank Our Lady, Mother of God

and Saint Joseph, her husband, for praying for me in the most difficult moments.

No words are enough to thank my parents, José and Elisiane, for all their love,

care, patience, dedication and support throughout my life. Not only did they bring

me into the world as they taught most of the things that make me who I am.

Without all the support and their teachings, this dissertation would never exist.

To my brother Lucas, for all friendship and companionship throughout our lives;

so many adventures lived together! Thanks for the patience in my moments of bad

mood and for all the support throughout this Masters course.

To my grandparents, Maria (in memoriam), José, Elizabeth, and Antônio; for

all love and life lessons given; and many good moments that I will never forget.

To José Gomes Pinto, my dear Dedé, whom I consider a third grandfather, for

all the affection and dedication dedicated me and to our family.

To my uncles and aunts, Marcarmem, Gentill, Christine, Antônio and Vera, for

all the affection and support throughout life; as well as to my cousins Felipe, Daniela,

André, Ĺılian, Tiago and Bárbara for their friendship.

To my dog, Loup, for cheering me on when things got tough with his silent

company and devotion.

To all my teachers, who taught me most of what I know; whose teachings were

essential to the conception of this work.

To my advisers, João Carlos dos Santos Basilio and Lilian Kawakami Carvalho,

who for so long have dedicated themselves to supporting me and motivating me with

their attention and friendship; besides contributing enormously to the accomplish-

ment of this work.

To my colleagues and friends of the Laboratory of Control and Automation,

Marcos Vińıcius and Gustavo Vianna; whose assistance was indispensable to the

conclusion of this dissertation, Raphael Barcelos, Thiago Tuxi, Weslley Silva, Públio

Macedo, José Villardi, Ricardo Macedo, Juliano Freire and Jéssica Vieira; whose

friendship and knowledge helped me a lot.

To my colleagues of the masters course, Victor Hugo, Pamela Siekmann, Gabriel

v

Solino, Maria Zeneide, Ricardo Halfed, Ignácio Ricart, Paulo Padrão, Thales Silva,

Marcel Mendes, Marcus Couto, Vińıcius Ramos and Guilherme Avelino, for all

friendship and companionship during the course.

To the great friends I met in college, all the companionship and support during

my graduation and master’s course; Henrique Maia, Rafael Prallon, Gabriel De

Jong, Juliana Christina, Erick Gama, Yangye He and Karina Passos.

To my great friends Gustavo Amaral, Marcos Paulo, João Pedro, João Vitor,

Vitor Silveira, Victoria Porto, Caio Julio, Eddie Nery and Ana Luiz; companions of

so many adventures, trips and animated conversations.

Finally, I would like to thank all the brazilian people, whose collective efforts

finance the institution of excellence that is UFRJ.

vi

Agradecimentos

Agradeço primeiro a Deus Pai Todo Poderoso, que em Seu infinito amor, criou-

me e me capacitou a elaborar e concluir esta dissertação. Agradeço também a Nossa

Senhora, Mãe de Deus e a São José, seu esposo, por rogarem por mim nos momentos

mais dif́ıceis.

Faltam-me palavras para agradecer a meus pais, José e Elisiane, por todo amor,

carinho, paciência, dedicação e apoio durante toda a minha vida. Não só me troux-

eram ao mundo como ensinaram a maioria das coisas que me fazem ser quem sou.

Sem todo o apoio e sem seus ensinamentos, esta dissertação jamais existiria.

A meu irmão Lucas, por toda amizade e todo companheirismo ao longo de nossas

vidas; tantas aventuras vivemos juntos! Agradeço ainda pela paciência nos meus

momentos de mau humor e por todo o apoio ao longo deste mestrado.

Aos meus avós, Maria (in memoriam), José, Elizabeth e Antônio; por todo

carinho, lições de vida e tantos bons momentos que jamais hei de esquecer.

A José Gomes Pinto, nosso tão querido Dedé, a quem considero em grande

estima por todo o carinho e dedicação dedicados à nossa famı́lia; que fazem os dias

que passamos em Fortaleza mais felizes.

Aos meus tios e tias, Maricarmem, Gentil, Christine, Antônio e Vera, por todo

carinho e apoio ao longo da vida; bem como aos meus primos e primas Felipe,

Daniela, André, Lilian, Tiago e Bárbara por toda amizade.

Ao meu cachorro, Loup, por me animar quando as coisas ficavam dif́ıceis, com

sua companhia e sua devoção silenciosas.

A todos os meus professores, que ensinaram, cada um, uma parte de tu quanto

sei; sem os quais esta dissertação jamais teria sido feita.

Aos meus orientadores, Lilian Kawakami Carvalho e João Carlos dos Santos

Basilio, que por tanto tempo se dedicaram a me apoiar e a motivar com sua atenção

e amizade; além de contribúırem enormemente para a realização deste trabalho.

Aos colegas e amigos do Laboratório de Controle e Automação, Marcos Vińıcius e

Gustavo Vianna; cuja ajuda foi indispensável à conclusão desta dissertação, Raphael

Barcelos, Thiago Tuxi, Weslley Silva, Públio Macedo, José Villardi, Ricardo Macedo,

Juliano Freire e Jéssica Vieira.

Aos colegas do mestrado, Victor Hugo, Pâmela Siekmann, Gabriel Solino, Maria

vii

Zeneide, Ricardo Halfed, Ignácio Ricart, Paulo Padrão, Thales Silva, Marcel Mendes,

Marcus Couto, Vińıcius Ramos e Guilherme Avelino, por toda amizade e compan-

heirismo durante o curso.

Aos grandes amigos que fiz na faculdade, por toda a companhia e apoio durante

a graduação e o mestrado; Henrique Maia, Rafael Prallon, Gabriel De Jong, Juliana

Christina, Erick Gama, Yangye He e Karina Passos.

Aos bons amigos Gustavo Amaral, Marcos Paulo, João Pedro, João Vitor, Vitor

Silveira, Victória Porto, Caio Julio, Eddie Nery e Ana Luiz; companheiros de tantas

aventuras, viagens e conversas animadas.

Por fim, gostaria de agradecer a todo o povo brasileiro, cujos esforços coletivos

custeiam a instituição de excelência que é a UFRJ.

viii

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos

necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

UMA ARQUITETURA DE NAVEGAÇÃO BASEADA EM CONTROLE

SUPERVISÓRIO PARA ROBÔS EM AMBIENTES DA INDÚSTRIA 4.0

Antonio Galiza Cerdeira Gonzalez

Abril/2019

Orientadores: João Carlos dos Santos Basilio

Lilian Kawakami Carvalho

Programa: Engenharia Elétrica

Esta dissertação apresenta uma nova arquitetura geral para a navegação de

robôs móveis em ambientes da Indústria 4.0, na qual o comportamento em malha

aberta do robô e as especificações para o sistema são baseadas em autômatos. Um

supervisor modular, que é a conjunção de dois supervisores é proposto: o primeiro,

que garante que o robô siga o caminho definido por um planejador e o segundo,

que assegura que as especificações, tais como prevenção de colisões, cumprimento

de tarefas e gerenciamento de movimentos. A arquitetura de navegação proposta

permite uma implementação descentralizada, na qual o supervisor modular é

embarcado no robô móvel, enquanto o planejador pode ser executado em um agente

externo. Tal caracteŕıstica torna mais fácil a adaptação da arquitetura proposta para

diversos ambientes. O funcionamento da arquitetura proposta nesta dissertação

é demonstrado por meio de uma simulação em um ambiente hipotético com as

caracteŕısticas de uma fábrica inteligente. Além disso, é também apresentada uma

adaptação da arquitetura para a operação de múltiplos robôs, tendo sido realizadas

também neste caso simulações.

ix

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Master of Science (M.Sc.)

A SUPERVISORY CONTROL-BASED NAVIGATION ARCHITECTURE FOR

AUTONOMOUS ROBOTS IN INDUSTRY 4.0 ENVIRONMENTS

Antonio Galiza Cerdeira Gonzalez

April/2019

Advisors: João Carlos dos Santos Basilio

Lilian Kawakami Carvalho

Department: Electrical Engineering

In this dissertation, a general architecture for mobile robot navigation in Industry

4.0 environments in which the open-loop behavior of the robot and the specifications

are based on automata is presented. A modular supervisory control structure,

which is the conjunction of two supervisors is proposed: the first one, that enforces

the robot to follow the path defined by a planner, and the second one that

guarantees the satisfaction of the specifications such as prevention of collisions,

task and movement management. The proposed navigation architecture allows

decentralized implementation, in which the modular supervisor is embedded in the

mobile robot, whereas the planner can run in external agent. Such a feature makes

the adaptation of the proposed navigation architecture to different environments

easy. The navigation architecture proposed in this dissertation is illustrated by

means of a simulation in a hypothetical environment that resembles a smart factory.

An adaptation for multiple robots is also presented, also validated by simulations.

x

Contents

List of Figures xiii

List of Tables xvi

List of Symbols xvii

1 Introduction 1

1.1 Objective . 2

1.2 Related Works . 2

1.3 Structure of the dissertation . 3

2 Theoretical Background 4

2.1 Discrete events models . 4

2.2 Languages . 5

2.2.1 Language operations . 6

2.2.2 Language representations . 9

2.3 Automata . 9

2.3.1 Languages represented by automata 10

2.4 Operations with automata . 11

2.4.1 Unary operations . 12

2.4.2 Composition operations . 13

2.5 Supervisory Control of Discrete Event Systems with partial control-

lability and full observation . 17

2.5.1 Supervisory control problem 19

2.5.2 Control with partial controllability and full observation 20

2.5.3 Obtaining a supervisor . 23

2.6 Supervisory control with modular specifications 25

2.7 Dijkstra’s algorithm . 29

3 A New Supervisory-control-based-framework for Robot Naviga-

tion 34

3.1 Introduction . 34

xi

3.2 System models . 35

3.2.1 The environment automaton model Ge 35

3.2.2 The robot model Gr . 36

3.3 A DES-based robot navigation architecture 38

3.3.1 The navigation architecture 39

3.3.2 Path planning procedure . 41

3.3.3 Design of modular supervisor Sr1 ∧ Sr2 41

3.4 Performance analysis of the planner algorithm 47

3.4.1 Scalability Analysis . 47

3.4.2 Time complexity analysis . 49

3.5 Experimental results for a single robot 51

3.5.1 Simulation Results . 51

3.6 Navigation of multiple robots . 57

3.6.1 Motivating examples . 58

3.6.2 A new navigation architecture for multiple robots 62

4 Conclusions and Future Works 70

Bibliographic References 74

A Tables of Example 2.12 Automata 78

xii

List of Figures

2.1 State transition diagram of the automanton G. 10

2.2 State transition diagram of the automanton G. 11

2.3 State transition diagram of the automata G1 e G2. 14

2.4 State transition diagram of the automaton G1 ×G2. 15

2.5 State transition diagram of the automaton G1||G2. 17

2.6 Event set Σ of an automaton G, with its observable, unobservable,

controllable and uncontrollable subsets Σo, Σuo, Σc and Σuc; respec-

tively. 18

2.7 The feedback loop structure of supervisory control. 18

2.9 Automaton Hspec that models the given specifications. 20

2.10 Automaton Ha that models the desired behavior of the compensated

system. 20

2.11 Automaton Ha that models the behavior of the compensated system,

with the transition that supervisor S tries to disable displayed in red. 22

2.12 The standard realization automatonR for the supervisor S of example

2.7. 24

2.13 A possible non-reduced realization for supervisor S. 24

2.14 A reduced-state realization for the supervisor S 25

2.15 Modular control architecture with two supervisors. 26

2.16 A simple processing plant, consisting of a machine M1, two robot

arms Arm 1 and Arm 2. 26

2.17 Automaton M1 that models the behavior of processing machine M1. . 27

2.18 Automaton Arm1 that models the behavior of robot arm Arm 1. . . 27

2.19 Automaton Arm2 that models the behavior of robot arm Arm 2. . . 28

2.20 Automaton Hspec that models the specification that forbids collisions

between the robot arms. 28

2.21 Automaton HspecBuffer that models the buffer specifications for the

system. 28

2.22 Graph G. 30

xiii

2.23 Step by step solution of a shortest path problem with Dijkstra’s al-

gorithm . 31

3.1 The robot movement module Grm . Dashed lines represent transitions

labeled with uncontrollable events. 37

3.2 The robot sensing module Grs . Dashed lines represent transitions

labeled with uncontrollable events. 37

3.3 The robot task manager module Grtm . Dashed lines represent transi-

tions labeled with uncontrollable events. 38

3.4 The proposed navigation architecture. 40

3.5 Automaton Hspec,1 used to synthesize supervisor Sr1 42

3.6 Automaton Hspec,2 used to synthesize supervisor Sr2 . Dashed lines

represent transitions labeled with uncontrollable events. 44

3.7 Automaton Hspec,3 used to synthesize supervisor Sr2 . Dashed lines

represent transitions labeled with uncontrollable events. 45

3.8 Closed-loop behavior for robot trajectory σ1σ2 . . . σf ∈ L(Ge).

Dashed lines represent transition labeled with uncontrollable events. . 48

3.9 Times taken to perform the path planning versus the size of the en-

vironment state space for Groups 2 and 3 51

3.10 Times taken to perform the path planning versus the number of target

states for Groups 4 and 5 . 52

3.11 Map of the environment. The arrows represent the possible robot

poses (states of automaton Ge): the tail indicates the positional co-

ordinate and the direction corresponds to the robot pose. 53

3.12 Simulation results: Type 1 task from pose M2 to Xgoal = {M5,M6}
without obstacle (a), and with obstacle (b), and, Type 2 task from

pose M1 to Xgoal = {M3,M6} without obstacle (c), and with obstacle

(d). 56

3.13 Problems that may arise when automaton Ge that models the envi-

ronment has states that are reached by a single transition: when a

robot tries to reach M1 while another robot is using it, (a), and when

a robot tries to reach M1 while another tries to leave it(b) 59

3.14 Map of the environment. The arrows represent the possible robot

poses (states of automaton Ge): the tail indicates the positional co-

ordinate and the direction corresponds to the robot pose. 60

3.15 Another problem that may arise when the automatonGe has corridors

that allow robots to pass in both directions by its corridors. 61

3.16 The modified architecture, adapted for the navigation of n robots. . . 63

xiv

3.17 The modified robot sensing module Grs,i. Dashed lines represent tran-

sitions labeled with uncontrollable events. 64

3.18 Automaton Hspec,3,i used to synthesize supervisor Sr2 for the navi-

gation of multiple robots. Dashed lines represent transitions labeled

with uncontrollable events. 64

3.19 Results of the test with two robots.. 66

3.20 Results of the test with three robots. 67

3.21 Results of the test with four robots. 68

xv

List of Tables

3.1 Robot movement module events. 37

3.2 Robot sensing module events. 38

3.3 Robot task manager module events. 39

3.4 Summary of the results for time complexity analysis. 50

3.5 Parameters of the test groups. 50

3.6 Environment automaton events Σe. 54

3.7 Active events of the states of Ge. 55

3.8 Environment automaton events Σe. 59

3.9 Active events of the states of Ge. 61

3.10 Events that are modified. 63

A.1 Transition function of Gsystem . 78

A.2 Transition function of supervisor S1 79

A.3 Transition function of supervisor S2 80

xvi

List of Symbols

(.)∗ Kleene-closure operator, p. 6

(.)C Complement of a set operator, p. 6

Ac(G) Accessible part operation over automaton G, p. 12

CoAc(G) Coaccessible part operation over automaton G, p. 12

G1 ×G2 Product composition between automata G1 and G2, p. 13

L(G) Generated language of automaton G, p. 11

Lm(G) Marked language of automaton G, p. 11

P Natural projection operation, p. 8

P−1 Inverse projection operation, p. 8

S/G Supervisor S controlling system G, p. 18

Trim(G) Trim operation over automaton G, p. 13

X Set of states of an automaton, p. 10

Xm Set of marked states of an automaton, p. 10

Γ(x) Active event function of an automaton, p. 10

Σ Event set of a discrete event system, p. 5

Σc Controllable event set of a DES, p. 17

Σo Observable event set of a DES, p. 17

Σuc Uncontrollable event set of a DES, p. 17

Σuo Unbservable event set of a DES, p. 17

\ Subtraction of sets operator, p. 6

xvii

∩ Intersection of sets operator, p. 6

∪ Union of sets operator, p. 6

∪̇ Partition, p. 17

(.) Prefix-closure operator, p. 7

ε Empty string, p. 6

∧ Logic operator and, p. 26

f(x, s) Transition function of an automaton, p. 10

x0 Initial state of an automaton, p. 10

xviii

Chapter 1

Introduction

In recent years, new challenges to make production processes more efficient,

autonomous and customizable have led to a new industrial revolution. A new con-

cept of industry, called Industry 4.0 [1], has emerged and is currently adopted to

denominate the current trend of automation and data exchange in manufacturing

technologies by creating a “smart factory” [2]. The fundamentals of Industry 4.0

are Cyber-Physical systems [3], Internet of things [1, 4], cloud computing, big data

[5], and mobile robots [6].

In this dissertation, we consider factories with smart machines that are part of a

distributed production line that requires a mobile robot in order to carry the parts

they produce either to store or to take them to another machine for further process-

ing. The robot is connected remotely to computer systems. Our work focuses on

providing intelligence to the mobile robot so it can correctly establish the connection

between the machines. To this end, we propose a navigation architecture based on

modular supervisory control that, besides establishing the connection between the

machines, also performs the supervision of the robot navigation.

Autonomous mobile robot navigation consists of four stages: mapping, localiza-

tion, planning and execution [7]. We consider industrial environments where the

structure rarely undergoes major modification, and thus it is reasonable to assume

that the environment map is known a priori. Since there exist several techniques

to deal with the robot localization, we will not address this issue in this disserta-

tion, focusing only on planning and execution. Finally, regarding the navigation

architecture classification usually deployed in the literature [8], we mention that the

architecture used in this dissertation can be regarded as hybrid, being predominantly

deliberative with reactive elements to deal with obstacles and sudden changes in the

environment where robot navigation takes place.

1

1.1 Objective

The objective of this dissertation is to propose a supervisory control approach for

mobile robot navigation in industrial environments, such as warehouses and smart

factories. We model the environment, the planning structure, and the robot as

automata and use modular supervisory control theory [9] to develop a navigation

system for mobile robots. The modular supervisory controller ensures the correct

navigation of the robot in the presence of unpredictable obstacles and is obtained by

the conjunction of two supervisors: a first one that enforces the robot to follow the

path defined by the planner and a second one that imposes other specifications such

as prevention of collisions, task and movement management, and distinction between

permanent and intermittent obstacles. The idea is to develop a general approach

that allows the implementation of specifications by means of modules that depend on

the task the robot will perform and on the industrial environment. As will become

clear, when the environment is changed, the only modifications needed to adapt the

previous supervisor design are those related to the new event set associated with

the new environment. The main results of this dissertation were published in [10].

1.2 Related Works

Discrete Event Systems (DES) are dynamical systems whose behaviors are de-

termined by the asynchronous occurrence of certain events [11]. Several important

practical problems have been addressed using DES theory, ranging from theoretical

issues, such as fault diagnosis [12] and supervisory control theory [13], to real sys-

tems applications [14–16]. The DES formalism has also been proved suitable to deal

with mobile robot navigation [17–23]. In [17], a DES-based supervisory controller

that ensures collision and deadlock avoidance for a group of robots that work in or-

der to concurrently accomplish their missions in a 2D space is proposed. However,

it is not clear in [17] how to plan and execute the movements necessary to reach the

goal location. In [18], the path planning problem to decentralized systems — not

necessarily robot path planning — with action costs was addressed by using sev-

eral weighted automata. Although such an approach could be adapted to compute

robot trajectories for the case of several cooperative robots, it is not suitable when

only one robot is being considered, since the parameters are assumed to be dis-

tributed. The proposed approach also does not apply to the adaptation of the single

robot navigation architecture, as their actions are not cooperative. In [19], a formal

method based on Linear Temporal Logic (LTL) has been employed to describe and

model specifications in mobile robot navigation. However, the disadvantage of that

approach is the computational effort to convert such logics into Büchi automata,

2

which is not required in our work. In [20], the authors outlined an integration be-

tween graph theory, automata, and Z notation in order to propose a supervisory

control design framework for robot navigation systems. Structures for representing

the environment and some specifications were presented, but further investigation

is still needed in order to use the proposed approach to trajectory planning and

execution. In [21], automaton-based models for mobile robot navigation were used

to show the viability of using DES theory in the modeling, analysis, and synthe-

sis of behaviors applied to the navigation of a mobile robot using visually guided

navigation in an unknown or partially known environment. Since the focus was on

execution rather than on planning, the optimal path to reach the goal location was

not computed. A formal synthesis of supervisory control software for multiple robot

systems was developed in [22] and subsequently in [23], where scalability was im-

proved. Since the main goal was to manage task planning, the problem considered

in [22] and [23] is different from one addressed here.

More recently, an online supervisory control approach based on limited lookahead

policy was presented for the control of multi-agent discrete-event systems. The

proposed online control architecture is also applied to model and control a warehouse

automation system served by multiple mobile robots; validating its effectiveness with

a case study and with an experiment with multiple robots. This work is similar to

ours regarding the use of automata models and supervisory control, although it is

online and it is not modular. All path planing is done externally, i.e, in a server,

instead of leaving it to the robots, and it is not cooperative. It is not clear which

algorithm was used to calculate the shortest path, as it yields multiple best pathes,

although it apparently does not take the robot turns into account. In addition,

the possibility of unknown obstacles is not considered in [24]; and it also does not

guarantee that the resulting behavior is nonblocking,

1.3 Structure of the dissertation

In Chapter 2, we review some basic concepts on DES, such as language, automata

and supervisory control. Chapter 3 is the main part of this dissertation, where we

present Dijkstra’s algorithm for optimal pathfinding , automaton-based models for

the environment, planning structures and robot motion. We present a formulation

for the robot navigation problem, and propose a navigation architecture that is based

on modular supervisory control, and on a planner algoritm. We carry a performance

analysis of the proposed planner algorithm and the work results by means of a

simulation. We also present an adaptation of the developed architecture to multiple

robots navigation, and the result of a few simulations. Finally, in Chapter 4 we

draw some conclusions and outline future research works.

3

Chapter 2

Theoretical Background

This chapter presents a brief review of the basic concepts of discrete event system

theory. Section 2.1, presents the concept of discrete event systems. Next, Section 2.2

presents some concepts on language theory, with the objective of appplying that

theory in the description of the logical behavior of discrete event systems. Sections

2.3 and 2.4 are dedicated to the description of automata theory, essential to the

understanding of this dissertation. Section 2.5 presents the theory behind monolithic

supervisory control, addressing various cases when all events are controllable and

observable and when that is not the case. The procedure for obtaining an observer

automaton is also described. Section 2.6 presents the theory of supervisory control,

and Section 2.7 describes Dijkstra’s Algorithm, which will be necessary to obtain

the shortest path for the robot navigation.

2.1 Discrete events models

From the earliest days, humanity has developed several models to explain the

most varied range of phenomena encountered along history, rangin from legends to

complex mathematical system of equations. One of the most basic and essential

concepts to describe phenomena is the concept of systems, in which the scope of the

model is limited to a certain space of interest. The concept of system can be defined

in several ways, like the intuitive definition given in [25], which describes systems as

a combination of parts that act together and perform objectives, physical or not.

In Engineering, when studying systems, a model intends to capture the rela-

tionship between a set of measurable variables, which may be classified as input

variables or output variables. Input variables are, in general, grouped in a column

vector u(t) = [u1(t), u2(t), . . . , un(t)]T , and may be directly manipulated. Output

variables may also be grouped in a column vector y(t) = [y1(t), y2(t), . . . , yn(t)]T ,

but they can’t be manipulated, only measured.

A system whose output variables y(t) at an instant t depends only on input u(t)

4

is called static, while those systems whose outputs y(t) depend both on input u(t)

and on input values before t are called dynamic systems. The information of the past

behavior of a system necessary to determine its output at every instant is represented

by the concept of state. A more precise definition of state of a dynamic system is the

minimum set of variables xn(t), n = 1, 2, . . ., whose knowledge, together with the

knowledge of the input u(t),∀t ≥ t0 is known, determine the behavior of the system

for all t ≥ t0. The space of all possibles states x(t) = [x1(t), x2(t), . . . , xn(t)] that a

system can assume is denoted by X, and is called the state space of the system.

Another way to classify systems is based on the characteristics of the space state

X. If X is a continuous n-dimensional vector of either real or complex numbers,

the system is a continuous-state system. If X is a discrete set, than the system

is a discrete-state system. In addition, the model of a system can be classified as

continuous-time, if the state variables of the system are continuous-time functions,

or as discrete-time, if the state variables of the system are discrete-time functions,

meaning they are defined only at discrete instants in time.

Some discrete-state systems have their state transitions associated with events,

which occur asynchronously in time. An event may be seen as an instantaneous

occurrence that makes the system transition from a state value to another. They

are associated with some sort of occurrence, be it an specific action, like the pressing

of a switch, or some spontaneous occurrence, like the detection of an object by a

sensor. That type of system, whose transitions are driven by the occurrence of

events is called discrete event systems.

Definition 2.1 (Discrete Event System [11]) A discrete event system (DES) is

a dynamic system whose state space is discrete; and whose state evolution is driven

by the occurrence of asynchronous events.

2.2 Languages

The state evolution of discrete event systems is driven by the occurrence of

events; so, every discrete event systems has a set Σ of events that may occur. The

event set Σ may be thought of as an alphabet; thus, sequences of events are thought

of as words. A collection of finite-length words is called a language. Thus, the

behavior of a system may be described by the states visited by the system and the

sequence of events that induced those transitions. The set of all words, also called

strings, generated by a system defines its language, which is formally defined as

Definition 2.2 (Language [11]) A language defined over a finite event set Σ is a

set of finite-length strings formed with events in Σ.

5

The basic operation on events is concatenation, which links events in a series,

forming strings. It also joins strings, creating strings of larger length. Thus, con-

catenation is essential to the creation of languages. For example, the string s = bat

is formed by the concatenation of the string ba with event t; while string ba is formed

by the concatenation of events b and a. The identity element of concatenation is

ε, which is called the empty string; so, any string concatenated with ε is the string

itself, i.e, sε = εs = s.

The set of all finite length strings that can be created from an event

set Σ is denoted by Σ∗, including the empty string ε. The (.)∗ opera-

tion is called the Kleene-closure. For example, if Σ = {a, e}, then Σ∗ =

{ε, a, e, aa, ae, ee, ea, aae, aaa, aea, aee, eea, eae, eaa, . . .}
In order to adequately present operations on languages, some concepts and termi-

nologies about strings must be known. First, for a string s = abc, where a, b, c ∈ Σ,

we say that a, b, c, ab and bc are substrings of s. Substrings a and ab are prefixes of

s, while c and bc are sufixes of s. Also, ε and s itself are prefixes and suffixes of s.

The length of a string s is denoted by ||s||. It must be noted that the empty string

ε has length equal to 0.

2.2.1 Language operations

Languages are sets of strings, and so, all set operations such as union, intersec-

tion, difference and complement can be applied to languages in a straightforward

way, as in the following example.

Example 2.1 Given an event set Σ = {a, e, i, o, u}, and the languages L1 =

{a, aaa, e, eio, o, au, eu, iu} and L2 = {ε, aaa, eio, iu, aeiou, aio} defined over Σ, the

union, the intersection, the difference and the complement with respect to Σ∗ are:

L1 ∪ L2 = {ε, a, aaa, e, eio, o, au, eu, iu, aeiou, aio},

L1 ∩ L2 = {aaa, eio, iu},

L1\L2 = {a, e, o, au, eu},

LC1 = Σ∗\L1,

There are several other operations on languages, which are frequently used in

DES theory. Those of utmost interest are: concatenation, Kleene-closure, prefix-

closure, natural projection and inverse projection.

6

Concatenation

Concatenation is not only defined for events and strings, but also for languages.

The idea is to concatenate every string of a language to every string of the other. A

more formal definition of the concatenation between two languages L1 and L2 is:

L1L2 = {s ∈ Σ∗ : (∃(s1, s2) ∈ L1 × L2)[s = s1s2]}. (2.1)

Kleene-closure

Let L ⊆ Σ∗; the Kleene-closure of L is given by the language

L∗ = {ε} ∪ L ∪ LL ∪ LLL ∪ . . . (2.2)

Prefix-closure

Let L ⊆ Σ∗, then, the prefix-closure of L is defined as:

L̄ = {s ∈ Σ∗ : (∃t ∈ Σ∗)[st ∈ L]}. (2.3)

Notice that ε ∈ L̄, because for any string s in L, εs = s.

A language L such that L = L is said to be prefix-closed.

Example 2.2 Consider an event set Σ = {a, b, c}, and languages L1 = {ε, a, b, c},
L2 = {bc, aa, cb} and L3 = {a, bb, ca} defined over Σ. The concatenation L1L2 is:

L1L2 = {bc, aa, cb, abc, aaa, acb, bbc, baa, bcb, cbc, caa, ccb}.

The Kleene-closure of L3 is given by:

L∗3 = {ε, a, bb, ca, aa, abb, aca, bba, bbbb, bbca, caa, cabb, caca, . . .},

and the prefix-closure of L2 and L3 are

L2 = {ε, b, bc, a, aa, c, cb},

L3 = {ε, a, b, bb, c, ca}.

Natural Projection

Natural projection, sometimes referred just as projection, is an operation per-

formed on strings and languages, projecting them from a set of events Σl into a

smaller set of events Σs, where Σs ⊆ Σl. An intuitive definition of projection is that

7

it is the operation through which we remove from a string events that are in Σl,but

not in Σs. For languages, it is just a matter of applying the operation to every string

in the language. A more precise definition, for strings, is given by:

P : Σ∗l → Σ∗s.

where

P (ε) := ε,

P (σ) :=

σ, if σ ∈ Σs,

ε, if σ ∈ Σl\Σs,

P (sσ) := P (s)P (σ) for s ∈ Σ∗l , σ ∈ Σl.

The natural projection, can be extended to languages by applying P to all strings

in a language L, that is:

P (L) := {t ∈ Σ∗s : (∃s ∈ L)[P (s) = t]}.

Inverse Projection

The inverse projection is the inverse map defined by the natural projection:

P−1 : Σ∗s → 2Σ∗
l .

The inverse projection is defined both for strings and languages; and can be

intuitively described as the operation that fills a string with all possible strings that

were possibly removed during a projection between the events of the string. For

languages, it is just a matter of applying such operation to all strings in it. A more

precise definition is given by:

for L ⊆ Σ∗s

P−1(L) := {t ∈ Σ∗l : (∃t ∈ L)[P (s) = t]}.

Example 2.3 Given an event set Σl = {a, b, c} and a smaller event set Σs = {a, b},
and the language L1 = {a, bab, cab} defined over Σ, the natural projection P : Σ∗l →
Σ∗s when applied to L1 is given by:

P (L1) = {a, bab, ab}

And the inverse projection of L1s is given by:

8

P−1(L1s) = {{c}∗a{c}∗, {c}∗b{c}∗a{c}∗b{c}∗, {c}∗a{c}∗b{c}∗}.

From the above example, we can see that, for any given language L, L ⊆
P−1(P (L)).

2.2.2 Language representations

As previously mentioned, languages are a formal way of describing the be-

havior of discrete event systems, i.e., languages make possible to register all se-

quences of events a DES can generate. Nonetheless, languages are sometimes

difficult to work with. For example, given Σ = {b, c, d} and the languages

L1 = {ε, b, bcc}, L2 = {all possible strings of length 2 that begin with b} and L3 =

{all finite length strings that start with c}, it is possible to see that L1 is quite easy

to work with, since it contains only three strings. L2, on the other hand, is described

only to make it more concise, but is still possible to list all of its elements. However,

L3 is impossible to be fully enumerated, limiting its representation to a description.

Obtaining a concise and easy way to work with some representation of a language

is a hard task and, sometimes, even impossible. So, to better work with languages,

a set of more compact structures that define a language and which can be manipu-

lated by well-defined mathematical operations is needed. Such structures and their

operations already exist; and some of the most popular ones are Automata [11] and

Petri Nets [26]. As for the scope of this dissertation, automata are the only for-

malism of interest. The next section will be dedicated to presenting some topics of

automata theory.

2.3 Automata

Automata are devices capable of representing a language according to well de-

fined rules, being capable of representing the behavior of a discrete event system.

As an example, consider a DES whose event set is Σ = {a, b} and whose state space

is x0 and x1. State x0 is also the initial state of the system, that is, the state where

the system is after being turned on. State x1 is the only marked state of the sys-

tem, being, therefore a state of interest. When the state of the system is x0, the

occurrence of event a makes the system state change to x1. When the state of the

system is x1, the occurrence of event b makes the system state change to x0. A

simple way to present all this information about the automaton is by considering

its state transition diagram, as presented on Figure 2.1.

It is possible to see all information that is needed to create an automaton. Thus,

it is possible to give a formal definition of deterministic automata, as follows.

9

G

x0 x1

a

b

Figure 2.1: State transition diagram of the automanton G.

Definition 2.3 (Deterministic Automaton[11]) A deterministic automaton,

denoted by G, is a six-tuple

G = (X,Σ, f,Γ, x0, Xm),

where X is the set of states, Σ is the set of events, f : X ×Σ→ X is the transition

function, i.e., f(x, σ) = y, means that there exists a transition from state x to state

y triggered by event σ, Γ : X → 2E is the active event function, i.e., Γ(x) is the

set that contains all events σ for which f(x, σ) is defined, x0 is the initial state and

Xm ⊆ X is the set of marked states.

Some remarks must be made about Definition 2.3, so as to clarify a few points:

1. The deterministic automaton is said to be so because the transition function of

the automaton is deterministic, in the sense that, for a certain x and a certain

σ, f(x, σ) is equal to a unique y. Automata where this is not the case, that

is, f(x, σ) ⊆ X, are called non-deterministic,

2. The set of statesX is, in general, finite. When this is the case, the deterministic

automaton is called a deterministic finite-state automaton, DFA,

3. The inclusion of Γ in the definition of G is done because Γ makes it easier to

define some operations, but it is redundant, i.e, all information about active

events for a given state can be obtained directly from the transition function

f(x, σ),

4. The set of marked states Xm contains all states of some special interest for

an automaton, but it may be empty, if all states are of same relevance. Also,

it may be the case where Xm = X, which generally occur not to change the

marking of another automaton.

2.3.1 Languages represented by automata

According to the previous subsection, automata are a more convenient way of

representing language, as the languages they generate can be obtained directly from

10

G

0 2

1

a

b
ab

Figure 2.2: State transition diagram of the automanton G.

their state transition diagrams. The language generated by an automaton G, de-

noted as L(G) can be obtained by verifying all directed paths that can be followed in

the state transition diagram, beginning from the initial state. There is also another

type of language generated by an automaton G: the marked language of G, denoted

by Lm(G). The generated language L(G) contains all possible behaviors of the dis-

crete event system modeled by G, whereas the marked language Lm(G) represents

all strings of L(G) that leads the automaton from its initial state to marked states.

Definition 2.4 (Generated and marked languages [11]) The language gener-

ated by an automaton G = (X,Σ, f,Γ, x0, Xm) is:

L(G) = {s ∈ Σ∗ : f(x0, s) is defined },

The marked language of G is:

Lm(G) = {s ∈ L(G) : f(x0, s) ∈ Xm}.

Example 2.4 For automaton G, whose state transition diagram is represented on

Figure 2.2, the generated language of G is L(G) = {a}{ba}∗ ∪ {b}{ab}∗, and the

marked language of G is Lm(G) = {a, ba}{ba}∗.

2.4 Operations with automata

There are several operations on automata that modify their generated and

marked languages and, accordingly, their state transition diagram. In addition,

there are operations to combine automata, in such a way that the model of a com-

plete system can be built from the models of its individual parts. This section is

devoted to describing only the operations on automata that are of interest to this

dissertation; more operations can be found on [11].

11

2.4.1 Unary operations

Unary operations are those operations that alter the state transition diagram of

a single automaton, without changing its event set Σ.

Accessible Part

The Accessible part of an automaton is the set of states that can be reached

from its initial state x0 by some string in L(G). The Accessible Part operation,

denoted by Ac(G), removes all unaccessible states from the automaton G, therefore,

its generated and marked languages are not affected. When an unaccessible state

is removed, all transitions attached to that state are also removed. Formally, the

definition of Ac(G) is as follows:

Ac(G) := (Xac,Σ, fac, x0, Xac,m),

where,

Xac = {x ∈ X : (∃s ∈ Σ∗)[f(x0, s) = x]},

Xac,m = Xm ∩Xac,

fac = f |Xac×Σ→Xac .

The notation f |Xac×Σ→Xac means the domain of f is being restricted to a smaller

domain, the accessible states Xac. If Ac(G) = G, the automaton G is said to be

accessible.

Co-accessible Part

A state x of an automatonG is said to be co-accessible toXm if there exists a path

in the state transition diagram from the state x to any marked state. The operation

which removes from G all states that are not co-accessible is the Co-accessible part,

denoted by CoAc(G). To obtain the co-accessible part of an automaton G it is

necessary to build the following automaton:

CoAc(G) := (Xcoac,Σ, fcoac, x0,coac, Xm),

where

12

Xcoac = {x ∈ X : (∃s ∈ Σ∗)[f(x, s) ∈ Xm]}

x0,coac =

x0, if x0 ∈ Xcoac,

undefined, otherwise,

fcoac = f |Xcoac×Σ→Xcoac .

It is worth noting that the co-accessible part operation can shrink the generated

language of an automaton because an accessible state may not be co-accessible.

Regarding the marked language, it is not affected by the co-accessible part, because

all strings that belong to the marked language reach at least one marked state. If

CoAc(G) = G, the automaton G is said to be co-accessible and has L(G) = Lm(G).

Note that if Xm = ∅ for a given automaton G, CoAc(G) will yield the empty

automaton.

Trim Operation

A Trim automaton is both accessible and co-accessible; thus, the trim operation

is:

Trim(G) = CoAc[Ac(G)] = Ac[CoAc(G)].

2.4.2 Composition operations

Composition operations involve two or more automata. For the scope of this

work, the only ones that we need to define are the product and the parallel compo-

sitions.

Product

The product of two automata G1 and G2 is the automaton

G1 ×G2 := Ac(X1 ×X2,Σ1 ∪ Σ2, f1×2,Γ1×2, (x01, x02), Xm1 ×Xm2),

where

f1×2((x1, x2), σ) :=

(f1(x1, σ), f2(x2, σ)) if σ ∈ Γ1(x1) ∩ Γ2(x2),

undefined, otherwise;

thus,

Γ1×2(x1, x2) = Γ1(x1) ∩ Γ1(x2)

13

G1 Σ1 = {a, b}

x0

x1

x2

a

b

a

b

a

b

G2 Σ2 = {a, b, c}

y0 y1

y2y3

a

b

c

c

aba

Figure 2.3: State transition diagram of the automata G1 e G2.

The Product composition completly synchronizes the behavior of both automata

involved, whose state transitions are triggered by the events in Γ1(Σ1)∩Γ2(Σ2). For

this reason, the product is also called the completely synchronous composition. The

states of the resulting automata are denoted by tuples of the form (x1, x2), where

xn, n = 1, 2, is the current state of automaton Gn. The generated and marked

languages of G1 ×G2 are given by:

L(G1 ×G2) = L(G1) ∩ L(G2),

Lm(G1 ×G2) = Lm(G1) ∩ Lm(G2).

Notice that when Σ1∩Σ2 = ∅, G1×G2 yields the empty automaton. The product

between two automata may be extended to several automata as follows:

G1 ×G2 × . . .×Gn = G1 × (G2 × (. . .× (Gn−1 ×Gn)));

because the product operation is associative. Also, the product operation is com-

mutative, that is

G1 ×G2 ×G3 = G1 × (G2 ×G3) = G2 × (G1 ×G3);

Example 2.5 In order to compute the product between automata G1 and G2, shown

in Figure 2.3,

We start by computing the initial state of automaton G1 ×G2, which is done by

joining the initial states of G1 and G2 in a tuple, giving the initial state (x0, y0).

Next, we need to check which events are in Γ1(x0) ∩ Γ2(y0). As event a is the

only event in Γ1(x0) ∩ Γ2(y0), the next state is given by (f1(x0, a), f2(y0, a)) =

(x1, y1). Continuing the process, as Γ1(x1) ∩ Γ2(y1) = {b}, the next state we ob-

tain is (f1(x0, b), f2(y0, b)) = (x0, y2). Now, as Γ1(x0) ∩ Γ2(y2) = {a, b}, states

(f1(x0, a), f2(y2, a)) = (x1, y1) and (f1(x0, b), f2(y2, b)) = (x2, y0) are reached. We

continue this procedure until no new states can be createded, leading to automaton

G1 ×G2, shown in Figure 2.4.

14

G1 ×G2 Σ1×2 = Σ1 ∪ Σ2 = {a, b, c}

x0, y0 x1, y1 x0, y2

x2, y0x1, y2x2, y1

x1, y0 x2, y2 x0, y1

a b

b

a

a

bb

a

a

b

b

a

Figure 2.4: State transition diagram of the automaton G1 ×G2.

Parallel Composition

While the product between two automata is quite restrictive, i.e., it blocks the

occurrence of events that are not common to the set of current active events of the

automata, the Parallel composition is less restrictive, since it allows the occurrence

of private events, i.e., events that belong exclusively to one automaton, and only

permits the occurrence of common events when they are both active in the current

states of all involved automata. Therefore, the parallel composition of two automata

G1 and G2 is defined as follows:

G1||G2 := Ac(X1 ×X2,Σ1 ∪ Σ2, f1||2,Γ1||2, (x01, x02), Xm1 ×Xm2),

where

f1||2((x1, x2), σ) :=



(f1(x1, σ), f2(x2, σ)), if σ ∈ Γ1(x1) ∩ Γ2(x2),

(f1(x1, σ), x2), if σ ∈ Γ1(x1)\Σ2,

(x1, f2(x2, σ)), if σ ∈ Γ2(x2)\Σ1,

undefined, otherwise,

thus,

Γ1||2(x1, x2) = [Γ1(x1) ∩ Γ2(x2)] ∪ [Γ1(x1)\Σ2] ∪ [Γ2(x2)\Σ1].

.

Notice that, once again, an event σ ∈ Σ1 ∩ Σ2 can be executed in the state

(x1, x2) if and only if σ ∈ Γ1(x1) and σ ∈ Γ2(x2). Thus, the resulting automata is

15

synchronized on the events that are common to the automata, while private events

σ ∈ (Σ1\Σ2) ∪ (Σ2\Σ1) may occur if either σ ∈ Γ1(x1) or σ ∈ Γ2(x2). It is worth

remarking that, if Σ1 = Σ2, the parallel composition yields the same result as the

product, since there are no private events.

The generated language L(G1||G2) and the marked language Lm(G1||G2), are

defined using projection from the larger set Σ1 ∪ Σ2 into a smaller set Σ1 or Σ2.

Thus, the two needed projections are

P1 : (Σ1 ∪ Σ2)∗ → Σ∗1;

P2 : (Σ1 ∪ Σ2)∗ → Σ∗2.

Using these projections, the generated and marked languages of G1||G2 are given

by

L(G1||G2) = P−1
1 [L(G1)] ∩ P−1

2 [L(G2)];

Lm(G1||G2) = P−1
1 [Lm(G1)] ∩ P−1

2 [Lm(G2)].

As it was the case for the product, the parallel composition of more than two

automata can be thought of as:

G1||G2|| . . . ||Gn−1||Gn = G1||(G2||(. . . ||(Gn−1||Gn));

since the paralel composition is associative. It is also comutative, that is

G1||G2||G3 = G1||(G2||G3) = G2||(G1||G3) = G3||(G1||G2);

Example 2.6 We want now to compute the parallel composition of automata G1

and G2, shown on Figure 2.3, we first compute the initial state of G1||G2, which is

obtained by coupling the initial states of G1 and G2 in a tuple, giving us (x0, y0).

Next, we need to find the events that are in [Γ1(x0) ∩ Γ2(y0)] ∪ [Γ1 ∩ (Σ1(x0)/Σ2)] ∪
[Γ2(y0) ∩ (Σ2/Σ1)], that is, which events are either active common events or active

particular events. For (x0, y0), there is only one active event, a, and thus, the next

state is (f1(x0, a), f2(y0, a)) = (x1, y1).

For (x1, y1), [Γ1(x1) ∩ Γ2(y1)] ∪ [Γ1 ∩ (Σ1(x1)\Σ2)] ∪ [Γ2(y1) ∩ (Σ2\Σ1)] = {b}.
The next state is, then, (x0, y2), whose active event set is [Γ1(x1) ∩ Γ2(y1)] ∪ [Γ1 ∩
(Σ1(x1)/Σ2)]∪[Γ2(y1)∩(Σ2\Σ1)] = {a, b, c}. The transitions triggered by these events

reach reach states (f1(x0, a), f2(y2, a)) = (x1, y1), (f1(x0, b), f2(y2, b)) = (x2, y0) and

(f1(x0, c), f2(y2, c)) = (x0, y3).

Since (x2, y0) and (x0, y3) are new states, the procedure performed described must

be done again, until no new states can be created. Proceeding in this way we obtain

16

G1||G2

x0, y0 x1, y1 x0, y2 x2, y0 x0, y1 x2, y2

x2, y3

x1, y0 x0, y3

x2, y1 x1, y3x1, y2

a b

c
a c

b a b

c

c

ca

ba

ab

a

c

b

c a

Figure 2.5: State transition diagram of the automaton G1||G2.

automaton G1||G2, shown in Figure 2.5.

With all previously described operations known, it is now possible to study and

understand supervisory control theory.

2.5 Supervisory Control of Discrete Event Sys-

tems with partial controllability and full ob-

servation

Although some systems may behave exactly as desired just by themselves, that

does not happen for most of them, so, feedback is needed to modify the behavior

of systems. For example, a robot arm cannot move itself in a desired trajectory

without a controller commanding the actuators of the arm.

Supervisory control has the same idea, i.e, to modify the behavior of a system

modeled by an automaton G. To this end, the event set of G is partitioned as

Σ = Σc∪̇Σuc, where Σc and Σuc are the sets of controllable and of uncontrollable

events, respectively. We say that a controllable event is an event whose occurrence

may be disabled by the supervisor S, as opposed to uncontrollable events, which

cannot be disabled.

The event set of G can also be partitioned as Σ = Σo∪̇Σuo, where Σo and Σuo

are the sets of observable and unobservable events, respectively. Observable events

are those events whose occurrences are detected by the supervisor S, while the

occurrence of unobservable events are not.

17

Σ

Σo

Σuo

Σc

Σuc

Figure 2.6: Event set Σ of an automaton G, with its observable, unobservable,
controllable and uncontrollable subsets Σo, Σuo, Σc and Σuc; respectively.

System G

Supervisor S

S(s) s

Figure 2.7: The feedback loop structure of supervisory control.

Controllable and Uncontrollable events may be either observable or unobservable.

This way, the partition of the event set Σ of an automaton G can be performed as

illustrated by Figure 2.6.

The specifications which the supervisor will try to enforce on the system are

represented by an admissible language La. To conform the behavior of G, which is

represented by the generated and marked languages of G, the supervisor S disables

controllable events. Thus, the objective of the supervisor S is to make the language

of the controlled system S/G (we say S controlling G) equal to La, or as closely

as possible, in case the specifications cannot be met. Figure 2.7 presents the block

diagram of a feedback DES.

In order to accomplish such task, supervisor S analyzes the sequences of ob-

servable events generated by G, represented by s and sends a control action S(s),

disabling the occurrence of certain controllable events in order to prevent unwanted

behaviors, such as deadlocks, livelocks and unacceptable states, e.g., the state that

represents the overflow of a buffer. The configuration of S/G is the feedback control

shown in Figure 2.7. It must be noted that S(s) can only enable or disable feasible

events, that is, events in Γ(f(x0, s)).

18

(a) A printer with an automatic guillotine

Gprinter

Idle Busy

print

cut cut

finish

(b) Automaton Gprinter that models the
printer-guillotine system.

2.5.1 Supervisory control problem

Assume that L is the language generated by an automaton G, that is, L =

L(G). As roughly described on the previous section, the supervisory control problem

consists of designing a supervisor S that interacts with G in a feedback control

manner that is shown in Figure 2.7, and enforces the safety of the system S/G, that

is, L(S/G) = La ⊆ L(G).

Formally, a supervisor is a function S : L(G) → 2Σ that relates the language

generated by G to the power set of Σ. That way, the new set of active events of

S/G, ΓN [f(x0, s)] is equal to Γ[f(x0, s)] ∩ S(s). Again, ΓN [f(x0, s)] ⊆ Γ[f(x0, s)],

that is, S cannot enable events that do not belong to Γ[f(x0, s)].

The compensated system S/G is a DES, whose generated language can be re-

cursively defined as:

1. ε ∈ L(S/G),

2. ∀s ∈ Σ∗ and ∀σ ∈ Σ, sσ ∈ L(S/G)⇔ (s ∈ L(S/G))∧(sσ ∈ L(G))∧(σ ∈ S(s)).

As it is the case that Lm(G) ⊆ L(G), the marked language of S/G is defined as:

Lm(S/G) = Lm(G) ∩ L(S/G).

Example 2.7 Consider a printer with an automatic cutting system, displayed in

Figure 2.8a; whose guillotine operates independently of the printer, cutting the paper

whenever it receives a cut signal. The uncompensated behavior of the printer is

modeled by the automaton Gprinter, also displayed in Figure 2.8b. The event set of

Gprinter is Σ = {print, cut, finish}, which can be partitiioned as Σc = {print, cut}
and Σuc = {finish}, corresponding to the controllable and uncontrollable event sets,

respectively. Notice that all events of Σ are observable, thus Σ = Σo.

Notice that the uncompensated behavior of the printer allows the guillotine to

operate when either there is no sheet of paper to cut, risking to break the blade or to

cut during a printing job, thus wasting material. In order to prevent such undesired

19

Hspec

0 1 2
print finish

cut

Figure 2.9: Automaton Hspec that models the given specifications.

Ha

Idle, 0 Busy, 1 Idle, 2
print finish

cut

Figure 2.10: Automaton Ha that models the desired behavior of the compensated
system.

behaviors, a supervisor must be designed so as to allow the guillotine to cut the paper

only after a printing job is finished, and after the end of every single printing job.

Such specifications can be modeled by the automaton Hspec, shown in Figure 2.9

The desired behavior of the controlled system is obtained by computing automaton

Ha = Gprinter||Hspec which is displayed in Figure 2.10. Notice that event cut can only

occur after event finish has happened, which shows that the specifications have been

met.

The next section, will present a supervisory control problem that can deal with

systems like the one addressed in Example 2.7.

2.5.2 Control with partial controllability and full observa-

tion

When the event set of an automaton G that models a DES is partitioned as

Σc and Σuc, not all specifications modeled as a language K, may be enforced by a

supervisor S, if it needs to disable an event that is uncontrollable in order to enforce

the desired behavior.

Thus, it becomes necessary to know if the language K that represents the desired

behavior can be achieved by S/G, i.e., if it is possible to design a supervisor S

such that L(S/G) = K. Such a desired behavior will be achieved if the language

K is controllable with respect to L(G) = M and event set Σuc of G, i.e, if an

uncontrollable event must occur, it cannot take the controlled system outside K.

This leads to the concept of language controllability, which is formally defined as

follows.

20

Definition 2.5 (Controllability) Let L = L and K be languages defined over

Σ = Σc∪̇Σuc, such that K ⊆ L. We say that K is controllable with respect to L and

Σuc if

K̄Σuc ∩ L ⊆ K̄ (2.4)

.

Example 2.8 Let us consider the same printer with an automatic cutting system

and the same uncompensated model Gprinter of the Example 2.7, and assume that the

same specifications must be enforced. Since Σc = {print, cut} and Σuc = {finish},
we show that L(Ha) is controllable with respect to L(G) and Σuc.

We have that:

L(G) = {{cut}∗{print}{cut}∗{finish}}∗

and that

L(Ha) = {print.finish.cut}∗

For every string s ∈ L(Ha), we have to check if {s}Σuc ∩ L(G) ⊆ L(Ha). In

the first case, we have that s = ε. As εΣuc = Σuc; and no uncontrollable event may

occur at state Idle of G, the first case doesn’t violate the controllability condition.

Now, with s = print, sΣuc ∩ L(G) = printfinish, which is in L(Ha), thus, does

not violate the controllability condition.

Next case is s = print.finish, which leaves us with sΣuc = print.finish.finish;

and as sΣuc ∩ L(G) = ∅ is contained by L(Ha), the controllability condition holds.

Lastly, when s = print.finish.cut, the situation is the same when s = ε, because

this string leads the automaton back to its initial state. Thus, we can see that Ha is

admissible because no violation to the controllability condition can happen.

Thus, by studying Example 2.8, it becomes possible to intuitively understand

what makes the language that models the specification controllable with respect

to L(G) and Σuc;i.e, not disabling any uncontrollable events. The existence of a

supervisor S that ensures that L(S/G) = K when K is controllable is ensured by

the followin theorem.

Theorem 2.1 (Controllability theorem) Given a DES G = (X,Σ, f,Γ, x0) and

a non-empty language K, such that K ⊆ L(G), then, there exists a supervisor S

such that L(S/G) = K if, and only if, K is controllable, i.e, if and only if

21

Ha

Idle, 0 Busy, 1 Idle, 2
print finish

cut

print

Figure 2.11: Automaton Ha that models the behavior of the compensated system,
with the transition that supervisor S tries to disable displayed in red.

KΣuc ∩ L(G) ⊆ K (2.5)

This condition is called the controllability condition.

Example 2.9 Let us consider the same printer with an automatic cutting system,

whose uncompensated model is Gprinter. Assume also the same specifications as in

Examples 2.7 and 2.8, but with events print and finish both uncontrollable, that is,

Σc = {cut} and Σuc = {print, finish}.
We now need to check if the desired behavior L(Ha) of the compensated system

is controllable with respect to the new uncontrollable events set Σuc. In order to

do so, we need to verify if any string s ∈ K, violate the controllability condition.

We begin examining the case when s = ε. Notice that εΣuc = {print, finish}, and

so, {print, finish} ∩ L(G) = {print}, which is a subset of L(Ha). Therefore, the

controllability condition is not violated.

The next string to be checked is s = print, for which we have that {print}Σuc ∩
L(G) = {printfinish}, which is a subset of L(Ha), thus, not violating the control-

lability condition.

However, for s = printfinish, {printfinish}Σuc ∩L(G) = {printfinishprint},
which is not a subset of L(Ha), thus, violating the Controllability Theorem. We

can see that the supervisor we are trying to design tries to disable an uncontrollable

event, as we can see in Figure 2.11.

In order to deal with such problems in supervisory control, when no admissible

supervisor can be obtained for a desired behavior modeled by a language K, compro-

mises must be made. One way of addressing this concern is by disabling controllable

events before the system reaches states where the control condition is violated, in

such a way that the largest sublanguage of K, called supremal sublanguage of K and

denoted by K↑C is achieved. It must be noted that K↑C ⊆ K, where K↑C = K if

language K is controllable. Another way is by allowing the least possible number of

uncontrollable events to happen, in order to achieve admissibility. Such a solution,

which extrapolates K is usually referred as the infimal prefix-closed controllable su-

22

perlanguage, that is, the smallest prefix-closed admissible language K↓C. It must be

noted that K↓C ⊇ K, where K↓C = K if language K is controllable.

2.5.3 Obtaining a supervisor

Lets assume that a DES is modeled by an automaton G, whose events are all

controllable and observable, for the sake of simplicity. The uncompensated behavior

of G may lead to undesirable states, such as failures, overflows, wrong operations

and deadlocks. Assume that the uncompensated behavior and the desired behavior

of the system can be modeled by languages L(G) and K, respectively. In order

to obtain a supervisor S such that L(S/G) = K, the first step is to construct an

automaton that represents the specifications for the system, called Hspec. There are

several techniques for representing various specifications as automata, some of them

can be found on [11]. The second step is to verify the behavior of the system when

the specifications are being enforced. In order to do so, automaton Ha must be

obtained, which can be done either by a parallel composition between Hspec and G

or by a product composition between the same automata; depending on how Hspec

was structured. The generated language of Ha, L(Ha) = La, must be equal to K.

If there are multiple specifications, instead of building a single Hspec, some-

times it is more practical to build several automata, Hspec,1, Hspec,2, . . ., Hspec,n,

which must be all composed with G in order to obtain Ha, that is, Ha =

Hspec,1||Hspec,2|| . . . ||Hspec,n||G or Ha = Hspec,1×Hspec,2× . . .×Hspec,n×G, depending

on how the specification automata were generated.

Finally, to obtain a realization of the supervisor S, it is just a matter of building

an automaton R such that:

R := (Y,Σ, g,ΓR, y0, Y),

where R is trim and

Lm(R) = L(R) = La.

Notice that language L(Ha) must be maximally permissive, i.e, only strings as-

sociated with the specifications must be disabled. The following example illustrates

how to obtain a realization automaton R.

Example 2.10 Let us obtain a realization for the supervisor S of Example 2.7.

Analyzing Ha, displaying in Figure 2.10, it is possible to see that cut events may only

occur after a finish event has happened, thus, the specifications given have been met.

As there are neither uncontrollable nor unobservable events, the controlability and

observability theorem cannot be violated. So, it becomes just a matter of obtaining a

23

R

0 1 2
print finish

cut

Figure 2.12: The standard realization automaton R for the supervisor S of example
2.7.

R1

Idle, 0 Busy, 1 Idle, 2
print finish

cut

print

Figure 2.13: A possible non-reduced realization for supervisor S.

realization for the desired supervisor S. Automaton Ha itself, albeit with all states

marked, could be a realization R for supervisor S:

If the event set Σ of G has uncontrollable events, but all of them are observable,

an additional step is necessary to the procedure described before, as follows: after

obtaining automaton Ha, we must check if no uncontrollable events were disabled.

That is done by comparing each state of Ha, with the corresponding state of G. If

no uncontrollable event was disabled, Ha is controllable with respect to La, L(G)

and Σuc.

Example 2.11 We are now interested in obtaining a realization for supervisor S

of Example 2.9. The analysis of the controlled behavior, modeled by automaton

Ha, which is displayed in Figure 2.11 has shown that there is no violation of the

controllability theorem and it satisfies all specifications. Thus, it is possible to obtain

a realization R1 from Ha, with all states marked, as shown in Figure 2.13.

Realization automaton R1 displayed in Figure 2.13 is a viable realization, as its

generated language is La, but it is not the smallest realization possible. Sometimes,

it is possible to obtain a reduced-state realization. If we relax the requirement that

L(R) = La, to the weaker condition L(R) ⊇ La, i.e, at some states of R, extra events

may be enabled. Although, if those events are not feasable in the corresponding states

of G, the generated language L(R||G) does not changes. A reduced-state realization

R2 is shown in Figure 2.14

24

R2

0 1

print

finish

cut, print

Figure 2.14: A reduced-state realization for the supervisor S

2.6 Supervisory control with modular specifica-

tions

The number of states and transitions increase exponentially with the complexity

of the system and the control specifications. In example, if there are 10 specifications,

each one modeled by an automaton with three states and three transitions, the

resulting specification automaton Hspec = H1
spec||H2

spec|| . . . ||H10
spec may have up to

310 states and up to 10 × 310 transitions. It becomes easy to understand that for

large and complex systems, a vast quantity of memory is needed to implement a

monolithic supervisory control, making that implementation either too expensive or

even impossible.

In order to deal with such a problem, a modular approach was sugested in [9],

which can be seen as a in according to the “divide and conquer” approach. This

form of modular supervisory control architecture exploits the structure of the spec-

ifications, instead of the architecture of the system. The safety specifications for

the system are modeled by a language La that may be decomposed in prefix closed-

languages, as follows:

La = La,1 ∩ La,2 ∩ . . . ∩ La,n.

For example, fot the modular architecture of Figure 2.15, language La consists of

the intersection of two languages La,1 and La,2, and supervisor S1 is synthesized in

order to enforce the specifications modeled by La,1, while supervisor S2 is synthesized

to enforce the specifications modeled by La,2. The joint supervisor, with admissible

modular supervisors S1 and S2, is defined as:

Smod12(s) := S1(s) ∩ S2(s)

Thus, in order for an event to be enabled by Smod12, it must be enabled by both

supervisors S1 and S2. Thus, if a single supervisor disables an event, such an event

will be disabled by Smod12. So, the generated and the marked languages of the joint

supervisor are given by

25

G

S1

S2

∧

Smod12(s)

s

S1(s)

S2(s)

Figure 2.15: Modular control architecture with two supervisors.

M1
Buffer

rampArm 1 Arm 2

Figure 2.16: A simple processing plant, consisting of a machine M1, two robot arms
Arm 1 and Arm 2.

L(Smod12) := L(S1) ∩ L(S2)

Lm(Smod12) := Lm(S1) ∩ Lm(S2)

In order to obtain an automaton representation of Smod12 for analysis, it is only

necessary to compute the product between supervisors S1 and S2, given they are

admissible, i.e, the automaton representation of Smod12/G is Smod12 = S1 × S2||G.

When the system model automaton G has marked states, i.e, Xm 6= ∅, the re-

sulting closed-loop behavior may be blockin, that is, Lm(Smod12)/G ⊂ L(Smod12)/G,

even if supervisors S1 and S2 are indivudally non-blocking. This means that it is nec-

essary to ensure that the resulting closed-loop behaviour Smod12)/G is non-blocking.

This happens if Lm(S1/G) and Lm(S2/G) are non-conflicting, i.e

Lm(S1/G) ∩ Lm(S2/G) = Lm(S1/G) ∩ Lm(S2/G).

The following example illustrates the modular supervisory control technique.

Example 2.12 The manufacturing system shown in Figure 2.16 consists of a pro-

cessing machine M1, two arms (Arm 1 and Arm 2), a buffer with capacity for a

single processed part and a ramp, where processed parts are driven to the packaging

process. The raw materials for M1 are considered infinite and the ramp has infinite

capacity, that is, countless processed parts can be sent down the ramp.

26

M1

Idle Busy Full
pull finish

pick1

Figure 2.17: Automaton M1 that models the behavior of processing machine M1.

Arm1

Free Full FullB FreeB
pick1 gobuffer1 drop1

goM1

Figure 2.18: Automaton Arm1 that models the behavior of robot arm Arm 1.

The Arms and processing machine M1 are represented by automata M1, Arm1

and Arm2, shown in Figures 2.17, 2.18 and 2.19, respectively. The processing ma-

chine M1 has three states: Idle, where the machine is waiting for raw materials to

be processed, Busy, when the machine is processing a raw material and the Full

state, when the machine has finished processing the raw material and is awating for

Arm 1 to pick the processed piece. The only uncontrollable event of M1 is finish.

The automaton model for Arm 1 has four states: Free, when the robot arm

rests above M1, but has not picked a processed part from the machine; Full, that,

represents the state when the robot arm has picked a processed part from M1, but is

still above it, FullB, that accounts for the fact that the arm has moved to the buffer,

but is still holding the processed part, and FreeB, that, represents that the robot arm

is still over the buffer, but has placed the processed part on the buffer. Automaton

Arm2 has the same states, with the difference that Free and Full states mean that

Arm 2 rests above the ramp.

As for the specifications, it is possible to note that the uncontrolled behavior

of the system allows lets robot arms access the buffer simultaneously, which may

cause collisions. In addition, the buffer may receive processed parts indefinitely,

which would cause an overflow; thus, the supervisory control system must prevent

additional placement of parts when the Buffer is full.

To meet the first specification, we build automaton HspecArms, displayed in Fig-

ure 2.20. After gotobuffer1 occurs, gotobuffer2 may only occur after the occurrence

27

Arm2

Free FreeB FullB Full
gobuffer2 pick2 goramp

drop2

Figure 2.19: Automaton Arm2 that models the behavior of robot arm Arm 2.

Hspec,Arms

0

1

2

gobuffer1

goM1

gobuffer2

goramp

Figure 2.20: Automaton Hspec that models the specification that forbids collisions
between the robot arms.

of event goM1 and if event gotobuffer2 occurs, gotobuffer1 may only happen after

event goramp occurs. This way, there will be no collisions over the buffer.

In order to avoid both overflows and underflows in the buffer, we must create

automaton HspecBuffer, depicted in Figure 2.21, whose states represent the number

of processed parts currently in the buffer. At state 0, HspecBuffer forbids Arm

2 from picking up parts, and at state 2, the automaton forbids the placement of

additional pieces by Arm 1, thus, preventing overflows.

Now it becomes necessary to analyze the controlled behavior of the system. First,

Hspec,Buffer

0 1
drop1

pick2

Figure 2.21: Automaton HspecBuffer that models the buffer specifications for the
system.

28

we must obtain automaton Gsystem = M1||Arm1||Arm2, which models the complete

system behavior and has 48 states and 120 transitions. Its state transition function

is represented in Table A.1 in Appendix A.

After that, it is necessary to verify if the specifications violate the controlla-

bility theorem. So, we need to obtain the parallel composition between automata

HspecArms and Gsystem, and between HspecBuffer and Gsystem, the former has 36

states and 76 transitions, whereas the later has 96 states and 216 transitions Those

compositions generate, respectively, automata Harms and Hbuffer. It can be veri-

fied with the assistance of DESLAB [27] that no uncontrollable events are disabled,

thus, the specifications do not violate the Controllability Theorem. Now, we must

obtain the realization for the supervisors, which can be done directly from Harms and

Hbuffer. We, now, obtain supervisors S1 and S2, whose state transition functions

are represented by tables A.2 and A.3 in Appendix A, respectively.

In addition, it can be verified with the assistance of DESLAB that languages

Lm(S1/G) and Lm(S2/G) are non-conflicting; thus, the resulting behavior of

Smod12/G is non-blocking.

2.7 Dijkstra’s algorithm

Dijkstra’s algorithm solves the shortest path problem for graphs, oriented or not,

whose edges have non-negative weights. It is a greedy algorithm, but, nevertheless,

guarantees the shortest path from an initial node to every node in the graph. Being

of easy implementation and of low computational cost, it is one of the most used

path-finding algorithms. This algorithm always obtains the shortest path because it

is based on the principle that the sum of the shortest pathes will give the shortest

path possible [28].

Dijkstra’s algorithm idea consists of computing the shortest distance between the

nodes, one by one. The algorithm starts at a given initial node, and runs through

every edges that originate from it, assigning every node those edges reach with the

weight associated with those edges. At the end, the node with the smallest assigned

weight is chosen. This same procedure is now repeated for the chosen node. It

is worth noticing that for subsequent non-visited edges, the value assigned to the

next achieved node is the sum of the weigh associated with the edge that reaches it

with the weight assigned to the previous node. If a node has already been visited,

therefore having an assigned weight, it must be checked if it is smaller than the

value already assigned. If this is so, the previously assigned value must be replaced

with the new and smaller weight; otherwise, nothing must be done. This process

must be repeated until all nodes have been reached. The next example illustrates

29

a d e

c

b

1

3

10

5
7

1

9

Figure 2.22: Graph G.

Dijkstra’s algorithm.

Example 2.13

Let’s compute the shortest path between nodes a and e of graph G, represented in

Figure 2.22, using Dijkstra’s algorithm.

Initializing the algorithm, weight 0 is assigned to node a, since it is the initial

node, and atribute infinity weight to nodes that have not been reached yet by any

edge.

The algorithm iterates as follows. In the first step, nodes b, c and d are reached,

and to each one, it is assigned the weight of the edges that reached them, since the

weight assigned to node a is 0. For the next iteration, node b is chosen, as it has

the smallest assigned weight between b, c and d, which are 1, 3 and 10, respectively.

The second step follows the same principles as the first. Node b is the origin of

a single edge, of weight 9, that reaches node d. As node d already has an assigned

weight of 10, it is necessary to check if the total weight from b is smaller. Since the

result is equal to 10, the previous weight is kept.

The third step has d as the origin node. This node has a unique edge linking it

to node e. Since this edge has weight 1 and the weight atributed to d is 10, a total

weight of 11 is assigned to e.

The fourth iteration returns to node a, since not every possible path was obtained.

Since the edge with the smallest weight has already benn chosen, the one with the

smallest weight among the remaining edges must be selected. Since the edge with the

second smallest weight is the one that links node a to node c, it iss necessary to go

to node c and repeat the same procedure as the previous steps. Two edges originate

from node c, one with weight 7, that leads to node e, and another that leads to node

d, with weight 5. Computing the new distances, it is possiblle to see that the total

weight to reach node d is 3+5=8 d, which is smaller than the previous attributed

weight of 10. Thus, the weight assigned to d must be changed. As for node e, the

obtained weight is still 10, thus, keeping the old weight. Now, it is necessary to

30

a d e

c

b

0 ∞

∞

∞

∞

1

3

10

5
7

1

9

(a) Initialization.

a d e

c

b

0 10

1

3

∞

1

3

10

5
7

1

9

(b) First step.

a d e

c

b

0 10

1

3

∞

1

3

10

5
7

1

9

(c) Second step.

a d e

c

b

0 10

1

3

11

1

3

10

5
7

1

9

(d) Third step.

a d e

c

b

0 8

1

3

10

1

3

10

5
7

1

9

(e) Fourth step.

a d e

c

b

0

1

3

8 9

1

3

10

5
7

1

9

(f) Fifth step.

a d e

c

b

0

1

3

8 9

1

3

10

5
7

1

9

(g) Shortest path from node a to node e of
graph G.

Figure 2.23: Step by step solution of a shortest path problem with Dijkstra’s algo-
rithm

31

follow the edge with the smallest weight, that is, into node d.

The fifth and final step will assign a total weight of 9 to node e, because node d

has a total weight of 8 and the edge that leads to e has weight 1. Since all nodes

that have edges originating from them have been searched, the algorithm can finally

be stop, yielding the result displayed in Figure 2.23g.

Example 2.13 shows the efficiency of Dijkstra’s Algorithm. The pseudo-code

presented in Algorithm 1 summarizes the steps for the implementation of Dijkstra’s

Algorithm.

Algorithm 1: Dijkstra’s Algorithm
input : Graph and initial node

output: Distances from every node to a designated initial node

begin
Q=[]

for every node n of Graph do
dist[n] ← ∞ #unknown distances

prev[n] ← UNDEFINED #previous node in the path

adds n to Q #non-visited nodes
end
dist[initial node] ← 0

while Q is non-empty do
u← node in Q with smallest dist[u] # begins with the initial

node

removes u from Q

for every neighbor node n’ of u do
alt ← dist[u] + weight(u, n’)

if alt < dist[n’] then
dist[n’] ← alt

prev[n’] ← u

end

end

end
return dist[],prev[]

end

The simplest version of Dijkstra’s Algorithm has a computational cost of order

O(N2), where N is the number of nodes of a graph, beingm therefore, polinomial.

A smarter way to implement Dijkstra’s Algorithm is by arranging the list of nodes Q

after receiving all nodes of the graph, in a binary heap1. With such a modification,

the computation cost of the algorithm drops to O(E + N log(N)), where E is the

number of edges of graph G [28]. It is worth mentioning that the obtained cost is for

1A binary heap is a data structure in which a list is represent by a binary tree. The value of a
child node cannot be larger than the value of the parent, for max-heaps. For min-heaps, it is the
oposite [28].

32

a single initial node, i.e, if we desire to obtain the shortest distance from all nodes

to every other node, it is necessary to multiply that cost by N .

33

Chapter 3

A New Supervisory-control-based-

framework for Robot

Navigation

3.1 Introduction

This chapter presents the main part of this dissertation, the development of a

general methodology for mobile robot navigation in industrial environments in which

the open-loop behavior of the robot and the specifications are based on automata.

This methodology consists of a modular supervisor which is the conjunction of two

supervisors: the first one that enforces the robot to follow the path defined by a

planner and the second one that guarantees the satisfaction of the specifications

such as prevention of collisions, task completion and movement management.

The proposed navigation architecture allows decentralized implementation, in

which the modular supervisor is embedded in the mobile robot, whereas the planner

may run either locally or in an external agent. Such a feature makes the adaptation

of the proposed navigation architecture to different environments easy.

We begin by describing the system models Section 3.2, which consists of the en-

vironment model Ge (Subsection 3.2.1), and the robot model Gr (Subsection 3.2.2).

These models are essential for the technique developed in this dissertation, but are

easily interchangeable with other automaton models in case is some need to represent

changes in the environment or in the robot operation in the plant is required.

The navigation architecture itself is presented in Section, 3.3, which describes

how the architecture is structured, in Subsection 3.3.1, the path planning procedure,

in Subsection 3.3.2, and the process of designing the modular supervisor Sr1 and Sr2 ,

in Subsection 3.3.3.

The next section, Section 3.4, is dedicated to a performance analysis of the

34

algorithms proposed in this dissertation, presenting first a scalability analysis in

Subsection 3.4.1 and then, in Subsection 3.4.2, a time complexity analysis of the

proposed algorithms.

After that, in Section 3.5.1, we present the results of some simulations in a virtual

smart-factory-like environment for a single robot.

Finally, in Section 3.6, we adapt the architecture developed for the navigation of

a single robot for multiple robots, while noting the difficulties of non-collaborative

multi robot navigation in industrial environments.

3.2 System models

3.2.1 The environment automaton model Ge

Our work deals with the mobile robot navigation problem in industrial envi-

ronments where the structure rarely undergoes major modifications and, thus, it

is reasonable to assume a priori knowledge of the environment and, also, that

the visitable places do not change; for example, in a warehouse, the visitable

places correspond to those places associated with all possible shelves the robot

must access. We leverage this feature to model the environment by an automaton

Ge = (Xe,Σe, fe,Γe, x0e , Xme), where the states in Xe are all possible robot poses

(visitable places together with robot orientation in the navigation environment), Σe

is the set of command events that correspond to those movements that connect the

poses in Xe, the transition function fe and the set of active events Γe are defined

according to the environment connectivity. Finally, in order to compute a path to be

followed by the mobile robot, x0e is defined as the robot pose at the beginning of the

task and Xme is defined as the set of states that represent the complete execution

of the task.

Notice that, although automaton Ge models the environment, its states represent

the possible robot poses (positional coordinates and orientation) in the navigation

environment, i.e., those poses the robot can visit when executes a string of command

events formed from Σ∗e. Notice that, since the robot must transport products, parts

and raw materials around the plant, the positioning of the possible robot poses is

dictated by both the environment structure and the places where machinery is laid

in the plant. Automaton Ge can be constructed by using some roadmap construction

technique, e.g., vertical cell decomposition [29], reduced visibility graphs [30] and

generalized Voronoi diagrams [31, 32].

Let x1, xn+1 ∈ Xe. A path in automaton Ge that takes the robot from state

x1 to state xn+1 has the form x1σ1x2σ2x3 . . . σnxn+1, where, ∀k ∈ {1, . . . , n}, xk ∈
Xe, σk ∈ Σe and fe(xk, σk) = xk+1. Notice that there may exist several different

35

paths that connect state x1 to state xn+1, and each of them is characterized by

its corresponding string of command events σ1σ2 . . . σn ∈ Σ∗e. In order to compare

different paths, we define the weight function

w : Σe → R,
σ 7→ w(σ) = c,

(3.1)

where c ∈ R+ represents the cost of executing the robot movement corresponding to

command event σ. We, then, define the cost of executing a string s = σ1σ2 . . . σn ∈
Σ∗e as follows:

J(s) =
n∑
i=1

w(σi). (3.2)

3.2.2 The robot model Gr

In order to construct a discrete event model for the robot, the features that

are important for the correct planning and execution of the navigation task are

separately modeled by using automata. In this dissertation, we propose a robot

automaton model, denoted by Gr, which is obtained by performing the following

parallel composition:

Gr = Grm‖Grs‖Grtm , (3.3)

where Grm , Grs and Grtm model the robot movement, sensing and task manager

modules, respectively.

• Robot movement module. Automaton Grm , depicted in Figure 3.1, models the

robot movement resources. The events of Grm are listed in Table 3.1. In order to

navigate in a given industrial environment, the robot must be able to execute the

events in Σe, which is the set of events of automaton Ge that models the industrial

environment. In addition, it also requires other command events to deal with unpre-

dictable obstacles. When an obstacle is detected, command event sr is used to stop

the robot in order to prevent a collision. Command events ret and go are used to

return the robot to the last visited state and, to complete the movement interrupted

by the obstacle, respectively. Automaton Grm has also the uncontrollable event rs,

which is due to sensor readings, and represents the transition from state M , where

the robot is moving, to state S, where the robot is stopped.

It is assumed that the robot has low level controllers that are able to execute the

movement commands presented in Table 3.1 and, if the robot is performing some

movement and receives a new movement command, it cancels the current movement

command and executes the new one. Nevertheless, the events belonging to Σe remain

controllable since the supervisors are able to prevent their occurrences.

• Robot sensing module. Automaton Grs , depicted in Figure 3.2, models the

36

S M
Σe, go, ret

rs
Σe, go, ret, sr

Figure 3.1: The robot movement module Grm . Dashed lines represent transitions
labeled with uncontrollable events.

Table 3.1: Robot movement module events.

Event Description Controllable
Σe set of environment automaton events X
sr stop the robot X
ret return to the last visited state X
go complete the last movement X
rs robot stopped ×

robot sensing resources. It is assumed that the robot has wheel encoders and at least

one sensing system that is able to detect obstacles, such as sonars, laser rangefinders

or vision-based systems. The wheel encoders are used to determine when event rs

occurs, that is, when the robot stops after finishing the last movement command.

The obstacle detection sensors are used to monitor the presence of unpredictable

obstacles, that block the robot path, by means of command events msr and ssr.

Command event msr is used when the robot is moving to request the execution of a

sensing routine, which, then, returns event od, od or rs (active event set of state Sm).

Event od (resp od) indicates that an obstacle is detected (resp. no obstacle detected),

and event rs indicates that the robot stopped and, consequently, the sensor reading

is no longer necessary. Command event ssr is used, when the robot is stopped, to

start a sensing routine that keeps Grs in state Ss until either a timeout event t or

no obstacle detection represented by event od occurs. The complete list of events

of Gr2 is presented in Table 3.2. Notice that events msr and ssr are controllable,

whereas events rs, od, od and t are uncontrollable.

• Robot task manager module. Automaton Grtm , depicted in Figure 3.3, mod-

I Ss

rs

Sm

msr

od, od, rs

ssr

od, t

Figure 3.2: The robot sensing module Grs . Dashed lines represent transitions
labeled with uncontrollable events.

37

Table 3.2: Robot sensing module events.

Event Description Controllable
rs robot stopped ×
msr obstacle sensor information request

X
while the robot is moving

ssr obstacle sensor information request
X

when the robot has stopped
od obstacle detected ×
od no obstacle detected ×
t timeout ×

A

BP
p

W

nt tc

pe

ru

pf
Figure 3.3: The robot task manager moduleGrtm . Dashed lines represent transitions
labeled with uncontrollable events.

els the robot resources associated with the management of the robot task. It has

four states which represent the current robot status regarding task management, as

follows: (i) robot idle (I), (ii) planning the robot trajectory (P), (iii) executing

the task (W), and (iv) waiting for the removal of an obstacle (B). The events of

Grtm are listed in Table 3.3. Event nt is issued by an external agent requesting the

execution of a new task by the robot. Command event p is used to start the path

planning procedure. After that, the planner starts to execute the path planning and

when it is completed, the planner sends to the robot a signal, which corresponds to

the occurrence of event pe. Command event ru (request for unblocking the path)

is a robot request to an external agent to remove the obstacle between the current

robot position and the last visited state. When the external agent removes the ob-

stacle, it issues event pf , meaning that the path is free. Thus, events tc, p and ru

are controllable, and events nt, pe and pf are uncontrollable.

3.3 A DES-based robot navigation architecture

A Robot Navigation Architecture is an structure composed by the modules that

constitute a mobile robot navigation system (e.g., path planning, obstacle avoidance,

38

Table 3.3: Robot task manager module events.

Event Description Controllable
nt new task received ×
tc robot reports task completion X
p execute the planning X
pe planning concluded ×
ru request for unblocking the last path X
pf the last path is free ×

etc.) and the framework used to combine them [7]. In this dissertation, we address

the problem of the navigation of a mobile robot modeled by an automaton Gr, that

navigates in an industrial environment modeled by an automaton Ge together with

a cost function (function J , defined in Equation (3.2)). We assume that there may

exist a priori unknown permanent or intermittent obstacles in the environment, so

that some transitions of the environment automaton are not allowed to fire either

temporarily or definitely. We refer to such transitions as blocked transitions.

The following robot tasks are considered:

• Task 1. This task is completed when the robot reaches some state (pose)

belonging to a set Xgoal ⊆ Xe;

• Task 2. This task is completed after the robot visits all states (pose) belonging

to a set Xgoal ⊆ Xe.

Since the robot is required to visit only one state in Xgoal when it executes Task 1,

it is necessary to determine the path starting at the current state of the robot and

ending at one of the states in Xgoal that minimizes the cost function J . On the other

hand, when the robot executes Task 2, it needs to visit all states in Xgoal, regardless

of the ordering, by following a path that minimizes the cost function J .

3.3.1 The navigation architecture

The navigation architecture proposed in this dissertation is formed by a planner

and a modular supervisory control structure, as shown in Figure 3.4. An advantage

of this structure is that it allows a decentralized implementation, where the modular

supervisor is embedded in the mobile robot, whereas the planner runs in an external

agent, which suits very well to the design problem addressed here suitable, since it

makes easier to adapt the proposed navigation architecture to other environments.

The navigation process starts when the robot is available and an external agent

assigns a new task to the robot. This assignment is modeled by the occurrence of

event nt of automaton Grmt of Figure 3.3. Then, robot Gr generates event p (execute

planning), which carries the following information:

39

event pe

Planner Modular Supervisor

Sr1

∩

External Agents

Sr2

(Ge,w,J)

Gr

Algorithm 2

Dijkstra's
Algorithm

Gp

 σ
1
,
σ

2
,
..
.

,
σ

f ∈
 L

(G
e
)

events
tc e ru

events
nt e pf

event p

Figure 3.4: The proposed navigation architecture.

• The robot current state;

• The last task assigned to the robot and its respective set of target states Xgoal;

• Set Tb, which is formed with those transitions identified as blocked, being

initialized as an empty set and modified by the robot when event t occurs in

Grs , i.e., the blocked transition of Ge is added to Tb when the robot detects a

permanent obstacle. The blocked transition is determined from the last state

of Ge visited by the robot and the command event in Σe whose execution was

interrupted by the obstacle detection. It is worth remarking that we can limit

the time interval in which a transition stays in Tb with a view to checking if

this transition is still blocked during the execution of a future robot task.

According to the diagram depicted in Figure 3.4, when the planner receives event p,

it runs a computer application to determine the path to be followed by the robot.

Notice that the planner is composed by:

• Environment automaton Ge;

• Weight function w and cost function J , defined in accordance with Equa-

tions (3.1) and (3.2), respectively.

After the planning is finished, the planner sends event pe to automaton Gr to inform

that the planning has been concluded. The planner also sends the string of command

40

events that corresponds to the computed path to be used to design supervisor Sr1 ;

thus, a new supervisor Sr1 is computed after each new path planning completion.

The modular supervisory control Sr1 ∧ Sr2 ensures the correct navigation of the

robot in the presence of unpredictable permanent or intermittent obstacles; Sr1 acts

so as to enforce the robot to follow the path computed by the planner, whereas Sr2

ensures that design specifications SP1–SP7 (to be presented in Section 3.3.3), are

achieved.

3.3.2 Path planning procedure

The first step in the path planning procedure is to compute, using Algorithm 2, a

refined automaton Gp so that the language marked by Gp is formed by those strings

of command events that can be executed by the robot with a view to completing the

robot task. Algorithm 2 starts by setting up as initial and marked states of Ge the

robot current pose and Xgoal, respectively, and, after that, Ge is assigned to Gp. If

Tb 6= ∅, then we remove from Gp the transitions in Tb, and set Gp as CoAc[Ac(Gp)].

When Task 1 is assigned, automaton Gp must be nonempty. In this case, Lm(Gp)

will be formed by strings of command events that can be used to complete Task 1.

When Task 2 is assigned, automaton Gp must be modified to form a new automaton

whose marked language is formed by those strings in Lm(Gp) that correspond to

paths containing all of the states in Xgoal. This can be done as follows. Let us assume

that Xgoal = {x1, . . . , xn}. Then, for each xi ∈ Xgoal, automaton Gxi , whose marked

language contains all strings of Lm(Gp) that correspond to paths that visit state xi,

is constructed. Subsequently, automaton Gp is redefined as Gp ← Gp‖Gx1‖ . . . ‖Gxn .

As a consequence, the language marked by the new automaton Gp will be formed

by those strings that correspond to the paths that contain all of the states in Xgoal,

since it is equal to the intersection of the languages marked by the initial Gp and

by automata Gxi , for every xi ∈ Xgoal.

Finally, by applying Dijkstra’s algorithm [28] using, as input, Gp and its initial

state, we determine the marked state of Gp that is nearest the initial state, and

the string σ1 . . . σf ∈ Σ∗e that corresponds to the feasible path that minimizes the

cost function J , being, therefore, the solution to the path planning for the robot

navigation problem.

3.3.3 Design of modular supervisor Sr1 ∧ Sr2
In order to design supervisors Sr1 and Sr2 , we initially construct simple automata

that capture the essence of the specifications we want to ensure by using these su-

pervisors. We, then, combine these automata with Gr using the parallel composition

to obtain the system desired behavior.

41

x0
σ1

ret,tc

ret

x1

ret

. . . xf−1

σf xf
ret

σ2 σf−1

Figure 3.5: Automaton Hspec,1 used to synthesize supervisor Sr1 .

Let us first consider the design of Sr1 . According to the diagram of Figure 3.4,

we intend to synthesize a supervisor Sr1 that enforces the robot to follow the path

computed by the planner. Let s = σ1 . . . σiσi+1 . . . σf ∈ L(Ge) be the string of

command events computed by the planner. Notice that σi ∈ Σe ⊂ Σr, for i =

1, . . . , f , and thus, the behavior of Gr must be restricted to ensure that sequence

s is executed. This can be done by creating the specification automaton Hspec,1

depicted in Figure 3.5, which is formally defined as Hspec,1 = (X1,Σ1, f1,Γ1, x0, X1),

where X1 = {x0, x1, . . . , xf}, Σ1 = {ret, tc} ∪ Σe, and f1 is defined, as follows:

f1(xi, σ) =


xi+1, if σ = σi+1

x0, if (σ = ret) ∨ ((σ = tc) ∧ (xi = xf))

undefined, otherwise.

Notice that events ret and tc have been included in Hspec,1 in order to account

for possible obstacle detection, which makes the robot abort the execution of the

planned trajectory, and to report that the task has been completed, respectively.

Automaton H1 that marks the applicable language requirement K1 is computed

by performing the parallel composition between automaton Gr, obtained in accor-

dance with Equation (3.3), and Hspec,1, as follows:

H1 = Gr‖Hspec,1.

It is worth remarking that the set of events of automaton Gr is Σr = Σe ∪
{sr, ret, go, rs,msr, ssr, od, od, t, nt, tc, p, pe, ru, pf}. Thus, if P1 : Σ∗r → Σ∗1, we

can state that:

K1 = P−1
1 [Lm(Hspec,1)] ∩ Lm(Gr). (3.4)

Notice that, to achieve the requirement imposed by language K1, only events

in Σ1 may be disabled. Since all events in Σ1 are controllable, it is not difficult

to conclude that K1 is controllable. In addition, because all states of Hspec,1 are

marked, K1 is, by construction, Lm(Gr)-closed. Then, an automaton realization

of a nonblocking supervisor Sr1 such that Lm(Sr1/Gr) = K1 can be obtained from

Hspec,1 by adding self-loops labeled by the events in Σr \ Σ1 to all of its states.

42

Let us now consider the synthesis of supervisor Sr2 , which deals, among other

requirements, with permanent and intermittent obstacles. In practice, the robot

classifies a previously detected obstacle as permanent or intermittent by using the

sensing routine started by command event ssr, that is, when this sensing routine

returns timeout event t, the obstacle is said to be permanent, and, when it returns

event od, the obstacle is said to be intermittent. In order to achieve the desired

behavior, the following specifications are enforced:

• SP1. The robot can perform the command events in Σe ∪ {ret, go} only after

it receives a new task and the trajectory has already been planned.

• SP2. After the execution of command event ret, which, according to spec-

ification SP6, will only be executed after a permanent obstacle is detected,

the robot cannot perform movement commands in Σe ∪ {go} before a new

trajectory is computed by the planner.

• SP3. In order to prevent the wrong functioning of low level controllers that

execute the robot movements, a command event in Σe ∪ {ret, go} cannot be

sent before the execution of the previous movement has been either completed

or aborted by command sr (stop the robot).

• SP4. In order to prevent collisions, the robot continuously checks the existence

of obstacles in the trajectory, and, when an obstacle is detected, it must stop.

• SP5. After the robot stops due to an obstacle detection, it must distinguish

between intermittent and permanent obstacles in order to avoid unnecessary

computations of new trajectories. In addition, if the obstacle is intermittent,

the robot must try to complete the interrupted movement when the obstacle

is no longer detected.

• SP6. When the robot detects a permanent obstacle, it must return to the

last visited state in Ge, which corresponds to the last pose visited in the

environment, by using command event ret.

• SP7. When the robot detects a permanent obstacle while it executes the move-

ments associated with command event ret, it must request an external agent

to remove this obstacle by means of event ru.

We will now construct specification automata that capture the essence of spec-

ifications SPi, i = 1, . . . , 7. We first construct automaton Hspec,2 depicted in

Figure 3.6, that accounts for specifications SP1 and SP2 whose set of events is

Σ2 = Σe ∪ {nt, p, pe, tc, ret, go}. From Figure 3.6, we can see that: (i) events in

Σe ∪ {ret, go} can only be executed at state 3 of Hspec,2, which is reached only after

43

Σe,go
nt

0 1 2 3

4

p pe

tc

p
ret

ret

Figure 3.6: Automaton Hspec,2 used to synthesize supervisor Sr2 . Dashed lines
represent transitions labeled with uncontrollable events.

the occurrence of pe (planning executed), and; (ii) after the occurrence of event ret,

all events in Σe ∪{go} remain disabled until the conclusion of a new path planning.

We added a self-loop labeled by event ret at state 4, because it may be necessary

to perform several occurrences of this event until the robot reaches the last visited

state after the detection of a permanent obstacle. This is so because a new obstacle

can be detected while the robot is returning to the last visited state. This issue is

addressed in the next specification automaton.

Automaton Hspec,3, depicted in Figure 3.7, accounts for specifications SP3—

SP7. Its set of events is Σ3 = Σr \ {nt, pe}. The states of Hspec,3 correspond to

the following situations: (i) state 0 represents the case when the robot has stopped

without detecting obstacles; (ii) states 1 and 2 correspond to the case when the

robot is executing the movements associated with the command events in Σe; and

(iii) states 3 to 16 are associated with the procedure to handle obstacles.

After the robot executes an event in Σe, leading back to state 1 of Hspec,3, it

must request obstacle sensor information by means of event msr, therefore moving

to state 2. If no obstacle is detected, event od occurs; this procedure is, then,

repeated until the completion of the current movement, which is indicated by the

occurrence of event rs, therefore leading to state 0. If an obstacle is detected, Hspec,3

evolves to state 3 through the transition labeled by event od. The transition from

state 3 to 0 labeled by event rs models the case when, after an obstacle detection,

the robot stops before the command event sr is issued. In this case, we assume

that the detected obstacle did not prevent the execution of the previous movement,

and thus, it can be disregarded. On the other hand, the transition from state 3 to

4 labeled by event sr represents the control action that enforces the robot to stop,

whose completion is confirmed by the occurrence of event rs (robot stopped) at state

4. At state 5 of Hspec,3, the robot requests obstacle sensor information by means

of event ssr in order to determine whether the detected obstacle is permanent or

intermittent. Then, Hspec,3 remains in state 6 until the occurrence of either od or

t. The occurrence of od means that the previously detected obstacle is intermittent

and no longer blocks the path; thus, the robot can complete the movement stopped

44

0

1 2 3

Σe

4

10

7

12 11

p, tc

rs

sr

rs

sr

ssr

odt

ret

msr

od

go

rs

rs

9

6 5

t
ru

pf
od

rs

od

13
rs

14
ssr

15

16

8

rs

rs

msr

od

od

Figure 3.7: Automaton Hspec,3 used to synthesize supervisor Sr2 . Dashed lines
represent transitions labeled with uncontrollable events.

due to the obstacle, which is done by means of command event go. On the other

hand, if the timeout event t occurs, it can be inferred that the previously detected

obstacle is permanent, and, so, the robot needs to return to the last visited state in

Ge in order to compute a new trajectory, which is done by executing event ret. If

the robot detects a permanent obstacle while it is returning to the last visited state,

that is, if event t occurs at state 15 of Hspec,3, then, it executes event ru by sending

a request to unblock the path, and remains at state 16 until the occurrence of event

pf , which means that the path has been unblocked. After the occurrence of event

pf , the robot executes event ret again to return to the last visited state of Ge.

Automaton H2 that marks the applicable language requirement K2 is computed

by performing the parallel composition between Gr, Hspec,2 and Hspec,3, as follows:

H2 = Gr‖Hspec,2‖Hspec,3.

If P2 : Σ∗r → Σ∗2 and P3 : Σ∗r → Σ∗3 denote projections, then,

K2 = Lm(Gr) ∩ P−1
2 [Lm(Hspec,2)] ∩ P−1

3 [Lm(Hspec,3)]. (3.5)

It can be check that K2 is controllable and Lm(Gr)-closed.

An automaton realization of a nonblocking supervisor Sr2 such that

Lm(Sr2/Gr) = K2 can be obtained by calculating the parallel composition

Hspec,2‖Hspec,3. Notice that the set of events of Hspec,2‖Hspec,3 is equal to Σr,

and, thus, we do not need to add self-loops to it in order to obtain a realization

45

Algorithm 2: Computation of automaton Gp

Inputs:
• Ge = (Xe,Σe, fe,Γe, x0e , Xme): environment automaton
• The robot current pose
• Xgoal: the set of target states
• task type ∈ {Task 1,Task 2};
• Tb: set of blocked transitions of Ge.
Output: Automaton Gp = (Xp,Σp, fp,Γp, x0p , Xmp).
begin

Set the robot current pose and Xgoal as the initial and marked states of Ge,
respectively;
Gp ← Ge;
if Tb 6= ∅ then

for every transition x
σ→ y ∈ Tb do

fp(x, σ)← undefined;
Γp(x)← Γp(x) \ {σ};

end

end
Gp ← CoAc[Ac(Gp)];
if task type = Task 1 then

if the set of states of Gp is empty then
return “Error: impossible task, request path unblocking”

else
return Gp;

end

else if task type = Task 2 then
if the set of states of Gp does not contain Xgoal then

return “Error: impossible task, request path unblocking”
else

Gtemp ← Gp;
for every state x ∈ Xgoal do

Gx = (Xx,Σx, fx,Γx, x0x , Xmx)← Gp;
for every event σ ∈ Σe do

fx(x, σ)← x;
end
Γx(x)← Σe;
Redefine the set of marked states of Gx as {x};
Gtemp ← Gtemp‖Gx
if the set of marked states of Gtemp is empty then

return “Error: impossible task, request path unblocking”
end

end
Gp ← CoAc(Gtemp);
return Gp

end

end

end

46

of supervisor Sr2 .

According to modular supervisory control theory presented in Section 2.6, the

modular supervisory architecture constructed by the conjunction of Sr1 and Sr2 is

such that Lm(Sr1 ∧ Sr2/Gr) = K1 ∩ K2, where K1 and K2 are defined in Equa-

tions (3.4) and (3.5), respectively. In addition, it can be verified that the admissible

languages K1 and K2 are nonconflicting, which ensures that the conjunctive modular

supervisor Sr1 ∧ Sr2 is nonblocking, i.e., L(Sr1 ∧ Sr2/G) = K1 ∩K2.

Figure 3.8 shows automaton Sr1∧Sr2/Gr that models the closed-loop behavior in

the case that the robot trajectory computed by the planner is equal to σ1σ2 . . . σf ∈
L(Ge). Such an automaton can be obtained by performing the following parallel

composition:

Sr1 ∧ Sr2/Gr = Gr‖Hspec,1‖Hspec,2‖Hspec,3. (3.6)

Notice that, although the automaton shown in Figure 3.8 grows linearly with the

length of the robot trajectory (the colored part), the parallel computation presented

in Equation (3.6) is not required to implement the modular architecture proposed

here, since the designs of Sr1 and Sr2 are based on different automaton specifications,

Hspec,1 and Hspec,2‖Hspec,3, respectively.

3.4 Performance analysis of the planner algo-

rithm

We present, in this section, a performance analysis of the algorithm proposed

here. In the planner, we firstly present the space complexity analysis and, in the

sequel, a time complexity analysis.

3.4.1 Scalability Analysis

In the DES-based robot navigation architecture proposed here, the number of

transitions of the environment automaton model Ge is O(|Xe| |Σe|), where |Xe| and

|Σe| are the number of the robot poses of interest and command events that are nec-

essary to the robot navigation, respectively. On the other hand, the robot model Gr,

obtained in accordance with Equation (3.3), has 24 states and 132+ |Σe| transitions,

and, thus, the robot model is O(|Σe|).
The computational complexity of the planning procedure presented in Sec-

tion 3.3.2 depends on the type of the robot task. When the robot performs

Task 1, Algorithm 2 is executed in time O(|Tb| + |Xe| |Σe| + |Xgoal|) and gener-

ates an automaton Gp whose number of states |Xp| is O(|Xe|). Assuming that the

priority queue used in Dijkstra’s algorithm is implemented as a Fibonacci heap,

47

0 21

3132 41

61 8171

91111 101

1413

1620 15

19 1718

nt p

pe

σ1rs

rs
od
od
− msr

tc

sr rs

ssrod
−

go

tret

rs

msr
rs

p

od
rs

rsssrt
od
−

ret

pf

rs

9f10f
ssr

rs

od
−

sr

11f

6f 8fod7f

rs od
− msrrs

3f5 4f
σfrs

go

sr

od
−

22

21

ru

σ2

121

12f

t
ret

Figure 3.8: Closed-loop behavior for robot trajectory σ1σ2 . . . σf ∈ L(Ge). Dashed
lines represent transition labeled with uncontrollable events.

48

the shortest path in automaton Gp is found in time O(|Xp| log|Xp| + |Xp| |Σe|).
Therefore, the path planning procedure in the case of Task 1 is executed in time

O(|Tb| + |Xe|(|Σe| + log|Xe|) + |Xgoal|). When the robot performs Task 2, Algo-

rithm 2 is executed in time O(|Tb| + 2|Xgoal| |Xe| |Σe|) and the number of states of

automaton Gp, |Xp|, is O(2|Xgoal| |Xe|). As a consequence, in the case of Task 2, the

path planning procedure is O(|Tb|+ 2|Xgoal| |Xe|(|Σe|+ log|Xe|+ |Xgoal|)).
Regarding the complexity of the design of modular supervisor Sr1 ∧ Sr2 , it can

be seen that the number of states and transitions of automaton Hspec,1 are both

O(‖path‖), where ‖path‖ denotes the number of command events whose robot must

execute to complete the task and was obtained in the path planning procedure.

As a consequence, supervisor Sr1 is O(‖path‖). In addition, it can be seen that

automaton Hspec,2‖Hspec,3 has 22 states and 32 + |Σe| transitions and, consequently,

supervisor Sr2 is O(|Σe|).
Based on the computational complexities presented above, it can be concluded

that the proposed DES-based navigation architecture scales well with respect to

the size of the environment since the aforementioned computational complexities

increase with a factor less than |Xe|2 and |Σe| when either |Xe| or |Σe| increases,

and |Xe|(|Xe| + |Σe|), when both |Xe| and |Σe| increase. On the other hand, when

the robot performs Task 2, the approach may not scale well with respect to the

number of target states since the computational effort to compute the robot path

increases exponentially with the number of target states (|Xgoal|).

3.4.2 Time complexity analysis

The results obtained from a series of numerical experiments carried out on a

laptop with an Intel Core i5-4210U Processor, 8Gb DDR3 RAM, are shown in

Table 3.4. It is divided in five groups, as displayed in Table 3.5, where Group 1,

consists in running Tasks 1 cases in an environment modeled by an automaton Ge

with 273 states and 1000 transitions, all having the same target state but different

initial robot positions; Groups 2 and 3 that show the influence of changes in the

environment size in the execution times of Tasks 1 and 2, respectively; and Groups 4

and 5, that show the performance results for Tasks 1 and 2, respectively, as the

number of target states in Xgoal increases. Notice that the times taken to perform

the path planning are approximately the same for all simulations of Group 1. This

result has already been expected since, as shown in Section 3.4.1, the computational

effort of the path planning procedure for cases of Task 1 is predominantly determined

by input parameters |Xe|, |Σe|, |Tb| and |Xgoal|. As far as Groups 2 and 3 are

concerned, the time taken to perform the path planning grows almost linearly with

the increase in the environment state space, as we can seen from the plots depicted

49

Table 3.4: Summary of the results for time complexity analysis.

Group Ge Parameters Planning
|Xe|/|Te| Task x0e |Xgoal| |obst| (seconds)

1

273/1000 1 1 1 0 0.024
273/1000 1 M1 1 0 0.016
273/1000 1 29 1 0 0.025
273/1000 1 M6 1 0 0.016
273/1000 1 M4 1 0 0.016
273/1000 1 M2 1 0 0.016

2

39/140 1 1 1 0 0.003
78/284 1 1 1 0 0.007
117/428 1 1 1 0 0.008
156/57 1 1 1 0 0.017
195/714 1 1 1 0 0.018
234/857 1 1 1 0 0.020
273/1000 1 1 1 0 0.023

3

39/140 2 1 2 0 0.364
78/284 2 1 2 0 0.424
117/428 2 1 2 0 1.085
156/57 2 1 2 0 1.401
195/714 2 1 2 0 1.922
234/857 2 1 2 0 2.001
273/1000 2 1 2 0 2.564

4

273/1000 1 1 2 0 0.022
273/1000 1 1 3 0 0.024
273/1000 1 1 4 0 0.024
273/1000 1 1 5 0 0.023
273/1000 1 1 6 0 0.024
273/1000 1 1 7 0 0.024

5

39/140 2 1 2 0 0.364
39/140 2 1 3 0 0.572
39/140 2 1 4 0 1.148
39/140 2 1 5 0 2.024
39/140 2 1 6 0 5.440
39/140 2 1 7 0 19.473

Table 3.5: Parameters of the test groups.

Group Task type Modified parameter
1 1 x0

2 1 ||Xe||, transições
3 2 ||Xe||, transições
4 1 ||Xgoal||
5 2 ||Xgoal||

50

50 100 150 200 250

|X
e
|

0.005

0.01

0.015

0.02

0.025

0.03

P
la

nn
in

g
du

ra
tio

ns
 o

f G
ro

up
 2

 (
se

co
nd

s)

0

0.5

1

1.5

2

2.5

P
la

nn
in

g
du

ra
tio

ns
 o

f G
ro

up
 3

 (
se

co
nd

s)

Figure 3.9: Times taken to perform the path planning versus the size of the envi-
ronment state space for Groups 2 and 3 .

in Figure 3.9. Regarding Groups 4 and 5, as shown in Figure 3.10, the time for path

planning is approximately the same in all cases of Group 4 whereas the state size of

Gp grows exponentially with the number of target states in tasks of type 2. Notice

that these results are in accordance with the the theoretical ones of Section 3.4.1

since automaton Gp is as large as Ge in type 1 tasks but grows exponentially with

the number of target states for type 2 tasks.

3.5 Experimental results for a single robot

3.5.1 Simulation Results

Consider the hypothetical industrial environment depicted in Figure 3.11, which

resembles a smart factory composed by a conveyor belt 1 , which is a loading and

unloading terminal, shelves 5 and 6 that are used to store raw materials and parts

processed either by the computer numerically controlled (CNC) milling machine 7

or the painting machines 2 and 3 . The robot arm 4 is used either to transfer parts

from one paint machine to the other, or to reject those painted parts that do not

meet some quality standard to the orange rectangle. Notice that mobile robot 0

must be at pose Mi to interact with element i , i = 1, . . . , 7.

The automaton that models this environment is Ge = (Xe,Σe,Γe, x0e , Xme),

where (i) Xe = Xint∪̇Xps with Xint = {1, 2, 3, . . . , 32} and Xps =

{M1,M2,M3, . . . ,M7} are formed with those poses that correspond to the corridor

intersections and those poses that allow the robot to pick and store parts, respec-

51

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

|X
goal

|

0

0.005

0.01

0.015

0.02

0.025

0.03

P
la

n
n

in
g

 d
u

ra
ti
o

n
s
 o

f
G

ro
u

p
 4

 (
s
e

c
o

n
d

s
)

0

2

4

6

8

10

12

14

16

18

20

P
la

n
n

in
g

 d
u

ra
ti
o

n
s
 o

f
G

ro
u

p
 5

 (
s
e

c
o

n
d

s
)

Figure 3.10: Times taken to perform the path planning versus the number of target
states for Groups 4 and 5 .

tively, (ii) Σe, formed by the events listed in Table 3.6, (iii) Γe : Xe → 2Σe , presented

in Table 3.7 for all x ∈ Xe; (iv) fe, defined, for each state x ∈ Xe, according to the

active events presented in Table 3.7 — for example, for x = 1, transition function

fe is defined for events m4.5, t180, t90 and t90−, and, as it can be seen, with the

help of Figure 3.11, fe(1,m4.5) = 9, since command event m4.5 models a 4.5m for-

ward movement, fe(1, t180) = 3, since command event t180 corresponds to a 180◦

rotational movement, and fe(1, t90) = 2 (resp. fe(1, t90−) = 4) since command

event t90 (resp. t90−) is associated with a 90◦ counterclockwise (resp. clockwise)

rotational movement, and; (v) x0e and Xme , respectively, which are defined by the

planner at each task assigned to the robot, as described in Section 3.3.2. Notice

that events smi, i = 1, 2, . . . , 13 are composed by a sequence of translational and

rotational movements, where the translational movements do not necessarily cor-

respond to some event md. The composed events were created in order to reduce

the number of states of Ge. For instance, if event sm5 was not created, 5 states

would be added to Xe, 4 between states 9 and 21, just at left of the position of state

M5 and 1 at the position of M5, in order to allow for the robot to turn 180◦. The

same would have to be done to states M2, M3, M5 and M6, adding 20 more states.

For states M1, M4 and M7, a single state would have to be added, adding 23 new

statesin total.

The values of the weight function w are listed in the third column of Table 3.6,

being defined as follows: (i) w(md) = d + 0.01, where d ∈ {0.75, 4.5, 9.0} is the

distance to be traveled; (ii) w(tθ) = |θ|/200 + 0.01, where θ ∈ {90, 180} is the

rotation angle, and; (iii) w(smk) =
∑

i(|θi|/200 + 0.01) +
∑

j(dj + 0.01), k =

52

Figure 3.11: Map of the environment. The arrows represent the possible robot
poses (states of automaton Ge): the tail indicates the positional coordinate and the
direction corresponds to the robot pose.

53

Table 3.6: Environment automaton events Σe.

Event Description w(.)

m0.75 move robot 0.75m 0.76
m4.5 move robot 4.5m 4.51
m9.0 move robot 9.0m 9.01
t90 turn robot 90◦ (counterclockwise) 0.46
t90− turn robot −90◦ (clockwise) 0.46
t180 turn robot 180◦ 0.91
sm1 turn robot 180◦ and move 0.75m 1.67
sm2 move 1.5m, turn 90◦ and move 0.75m 2.73
sm3 move 1.5m, turn −90◦ and move 0.75m 2.73
sm4 move 2.25m, turn 90◦ and move 0.75m 3.48
sm5 move 2.25m, turn −90◦ and move 0.75m 3.48
sm6 move 3.00m, turn 90◦ and move 0.75m 4.23
sm7 move 3.00m, turn −90◦ and move 0.75m 4.23
sm8 turn 180◦, move 0.75m, turn 90◦ and move 1.5m 3.64
sm9 turn 180◦, move 0.75m, turn −90◦ and move 1.5m 3.64
sm10 turn 180◦, move 0.75m, turn 90◦ and move 2.25m 4.39
sm11 turn 180◦, move 0.75m, turn −90◦ and move 2.25m 4.39
sm12 turn 180◦, move 0.75m, turn 90◦ and move 3.00m 5.14
sm13 turn 180◦, move 0.75m, turn −90◦ and move 3.00m 5.14

1, 2, . . . , 13, where θi (resp. dj) are all rotational (resp. translational) movements

present in smk.

In order to illustrate the results presented in this section, we will perform two

pairs of simulation, corresponding to two different tasks assigned to the robot, as-

suming, initially, no obstacle and, then, with some obstacle in the robot trajectory.

The simulations were performed using MobileSim 0.7.5 software for a virtual Pioneer

P3DX mobile robot.

For the first simulation, we assume that the robot is initially at pose M2 and has

just picked up a processed part in painting machine 2 when it receives a request to

store the part in shelf 5 or 6 , which is the closest. Since this is a Type 1 task, the

mobile robot must determine which shelf is the nearest, compute the shortest path

to there, and perform the computed string of command movements. According to

Figure 3.8, after event nt is issued, the robot sends event p to the planner, which

starts the computation of the optimal path taking into account automaton Ge, the

set of target states Xgoal = {M5,M6}, and the set of blocked transitions Tb = ∅ (no

obstacle is initially assumed to exist). As a consequence, automaton Gp, computed

by applying Algorithm 2, is equal to Ge with initial and marked states defined

as M2 and {M5,M6}, respectively. After automaton Gp is computed, Dijkstra’s

algorithm is applied to find the path from the initial state to one of the marked

states of Gp that minimizes cost function J given in Equation (3.2), yielding string

54

Table 3.7: Active events of the states of Ge.

Xe Γe Xe Γe

1 {t90, t90−, t180,m4.5} 21 {t90, t90−, t180}
2 {t90, t90−, t180} 22 {t90, t90−, t180}
3 {t90, t90−, t180} 23 {t90, t90−, t180,m4.5,
4 {t90, t90−, t180,m9.0} sm4}
5 {t90, t90−, t180,m4.5} 24 {t90, t90−, t180,m4.5}
6 {t90, t90−, t180,m9.0} 25 {t90, t90−, t180}
7 {t90, t90−, t180,m0.75} 26 {t90, t90−, t180,m4.5}
8 {t90, t90−, t180} 27 {t90, t90−, t180,m4.5,
9 {t90, t90−, t180,m4.5, sm5} sm5}
10 {t90, t90−, t180} 28 {t90, t90−, t180,m4.5}
11 {t90, t90−, t180,m4.5} 29 {t90, t90−, t180}
12 {t90, t90−, t180,m4.5, sm3} 30 {t90, t90−, t180,m4.5}
13 {t90, t90−, t180,m4.5, sm4} 31 {t90, t90−, t180,m4.5}
14 {t90, t90−, t180,m4.5, sm6} 32 {t90, t90−, t180}
15 {t90, t90−, t180,m0.75} M1 {sm1}
16 {t90, t90−, t180,m4.5, M2 {sm8, sm11}

sm6, sm7} M3 {sm1}
17 {t90, t90−, t180,m4.5} M4 {sm9, sm12}
18 {t90, t90−, t180,m4.5, M5 {sm10, sm11}

sm2, sm3} M6 {sm10, sm11}
19 {t90, t90−, t180,m4.5} M7 {sm8, sm13}
20 {t90, t90−, t180}

55

(a) (b)

(c) (d)

Figure 3.12: Simulation results: Type 1 task from pose M2 to Xgoal = {M5,M6}
without obstacle (a), and with obstacle (b), and, Type 2 task from pose M1 to
Xgoal = {M3,M6} without obstacle (c), and with obstacle (d).

56

s1 = sm8 t90−sm5. Once the planning has been concluded, event pe is issued, and

so, the robot executes string s1 under the control action of supervisor Sr1 ∧ Sr2 ,
designed according to Section 3.3.3, performing the path shown in Figure 3.12(a).

For the second simulation, we assume that the robot must execute the same

task as before but now we added obstacle between the poses of states 9 and M5, as

highlighted in orange in Figure 3.12(b). Since, initially, the robot does not know the

obstacle, the string of command events obtained by the path planning procedure is

equal to string s1 = sm8 t90−sm5 computed in the first simulation. However, while

the robot is executing the movements associated with command sm5, it executes

command event msr and, thus, its sonars detects the obstacle that is blocking the

path, which makes event od occur. As a consequence, the robot stops immediately

after that (event sr). Thus, since the obstacle is permanent, the robot waits until

the occurrence of timeout t (defined, empirically, as five seconds), and, in the sequel,

executes event ret to reach state 9, which is the last visited state before command

event sm5 has been executed. The planner then computes a new path adding

the blocked transitions to Tb, i.e, Tb = {(9, sm5,M5)}, where (x, σ, y) denotes a

transition of Ge from state x to state y labeled by σ. The new string computed

by the planner is equal to s2 = t90−m4.5 t90 sm4, which corresponds to the path

depicted in Figure 3.12(c). Since this new trajectory is free of obstacles, the robot

is then able to arrive at state M6.

For the third and fourth simulations, we assume that the robot is initially at

pose M1 when it receives a request to pick up some amount of paint at the conveyor

belt 1 and to deliver part of this paint to machine 3 and to store the remainder

in shelf 6 , which corresponds to a Type 2 task. When there is no obstacle in the

environment, the robot performs the path depicted in Figure 3.12(c)by executing

the string of command events s3 = t180m4.5 t90 sm2 sm12 t90−sm4 obtained by

the planner for Tb = ∅, x0e = M1, and Xme = {M3,M6}. When an obstacle is

added to the environment between the poses of states 5 and 17, the robot starts

executing s3, as before, because it is not, at first, aware of the existence of the

obstacle, but detects the obstacle while executing the movement corresponding to

event m4.5. As a consequence, the robot returns to pose 5 and new command

string s4 = t90m9.0 t90−m4.5 t90−m4.5 t90 sm4 sm11 t90 sm13 is computed by the

planner for Tb = {(5,m4.5, 17)}, x0e = 5, and Xme = {M3,M6}, which allows the

robot to successfully complete the task.

3.6 Navigation of multiple robots

The new navigation architecture presented in this chapter has been developed

for the operation of a single robot. Nonetheless, it may be used to control the

57

navigation of several robots in the same environment, with some restrictions.

3.6.1 Motivating examples

Since a robot does not know the position of other robots, it must see the other

robots as mobile obstacles. This solution may work smoothly for some environments,

but may lead to problems in others, such as deadlocks when, for example, two robots

have to acces the same resource, or when two robots meet facing each other, etc.

We will now illustrate these two situations.

Let us consider the same hypothetical industrial environment of Figure 3.11.

Notice that there is a single transition that reaches state M1. If one robot (robot

R1) is at the position M1, and another robot (robot R2) tries to move to position

M1 to also access the conveyor belt, either one of the following two situations may

occur(Figures 3.13(a, b))

1. If robot R1 is still finishing its task at M1, then robot R2 will assume that the

access to M1 is blocked and will not be able to complete its task, as illustrated

by Figure 3.13(a), and will request “path unblock”

2. If robot R1 is trying to leave while robot R2 is trying to access M1, robot R1

will assume that it is trapped and request the unblocking of the path, whereas

robot R2 will assume the access to M1 is blocked and will treat the task as

impossible, as illustrated by Figure 3.13(b).

Both situations described above may happen in environments whose automaton

models have states that are reached by a single transition. Without some modifica-

tions, the architecture developed in this dissertation may fail when multiple robots

are being used simultaneously.

Another problem that may occur when multiple robots are used in this environ-

ment is due to each corridor being traveled in both directions. In this regard, if two

robots meet facing each other, they will, then, wait for the obstacle to move and,

since both are waiting, they will consider each other as static obstacles and will try

a different route. It is possible that this sort of encounter may repeat itself in all

corridors, turning feasible tasks into impossible ones. To illustrate this situation, let

us consider the hypothetical industrial warehouse depicted in Figure 3.14, which is

modeled by automaton Ge = (Xe,Σe,Γe, x0e , Xme), where Xe = {1, 2, 3, . . . , 38}, Σe

is formed by the events listed in Table 3.8, Γe : Xe → 2Σe , is presented in Table 3.9

for all x ∈ Xe, fe is defined for each state x ∈ Xe, according to the active events

presented in Table 3.9 — for example, for x = 1, transition function fe is defined

for events m2.0 and t180, and, as it can be seen, with the help of Figure 3.14,

fe(2,m2.0) = 5, since command event m2.0 models a 2.0m forward movement and

58

(a) (b)

Figure 3.13: Problems that may arise when automaton Ge that models the envi-
ronment has states that are reached by a single transition: when a robot tries to
reach M1 while another robot is using it, (a), and when a robot tries to reach M1
while another tries to leave it(b) .

Table 3.8: Environment automaton events Σe.

Event Description w(.)

m2.0 move robot 2.0m 2.01
m2.5 move robot 2.5m 2.51
m3.0 move robot 3.0m 3.01
t90 turn robot 90◦ (counterclockwise) 0.46
t90− turn robot −90◦ (clockwise) 0.46
t180 turn robot 180◦ 0.91

59

Figure 3.14: Map of the environment. The arrows represent the possible robot
poses (states of automaton Ge): the tail indicates the positional coordinate and the
direction corresponds to the robot pose.

fe(1, t180) = 2, since command event t180 corresponds to a 180◦ rotational move-

ment, and, finally, x0e and Xme , are respectively defined by the planner at each task

assigned to the robot, as described in Section 3.3.2.

Assume that there are two robots R1 and R2 operating in the environment of

Figure 3.15a, whose initial poses are at the positions of states 5 and state 9, respec-

tively, as shown in Figure 3.15a. Now, suppose that robot R1 receives a task to go

to the position corresponding to state 9 and robot R2 receives a task that demands

it to go to the position corresponding to state 5. Without modifications to the ar-

chitecture presented before, the planner for robot R1 calculate sthe shortest path

and obtains t90m3.0t90−, while the planner for robot R2 obtains t90− m3.0 t90.

Both robots will try to follow the planned shortest paths, and will meet facing

each other somewhere in the top horizontal corridor, detecting each other and stop-

ping. As both robots wait for each other to move away, they both consider the other

robot as a static obstacle. The robots will return to their previous states, state 6

for R1 and state 8 for robot R2. They will then remove the blocked transitions

and will recalculate the shortest path; which will lead again and again to similar

encounters between the two robots. Thus, both tasks will be deemed impossible to

finish, when, in fact, both were feasible. The final result of such a conundrum can

be seen in Figure 3.15b.

60

Table 3.9: Active events of the states of Ge.

Xe Γe Xe Γe

1 {t180} 20 {t90, t90−, t180,m3.0}
2 {t180,m2.0} 21 {t90, t90−, t180m2.5}
3 {t90, t90−, t180m2.0} 22 {t90, t90−, t180,m3.0}
4 {t90, t90−, t180} 23 {t90, t90−, t180,m2.5}
5 {t90, t90−, t180,m2.5} 24 {t90, t90−, t180,m3.0}
6 {t90, t90−, t180,m3.0} 25 {t90, t90−, t180,m2.5}
7 {t90, t90−, t180} 26 {t90, t90−, t180}
8 {t90, t90−, t180,m3.0} 27 {t90, t90−, t180,m2.5}
9 {t90, t90−, t180,m2.5} 28 {t90, t90−, t180}
10 {t90, t90−, t180,m3.0} 29 {t90, t90−, t180}
11 {t90, t90−, t180} 30 {t90, t90−, t180,m3.0}
12 {t90, t90−, t180,m3.0} 31 {t90, t90−, t180,m2.5}
13 {t90, t90−, t180,m2.5} 32 {t90, t90−, t180,m3.0}
14 {t90, t90−, t180} 33 {t90, t90−, t180}
15 {t90, t90−, t180,m2.5} 34 {t90, t90−, t180,m3.0}
16 {t90, t90−, t180} 35 {t90, t90−, t180,m2.5}
17 {t90, t90−, t180,m2.5} 36 {t90, t90−, t180,m3.0}
18 {t90, t90−, t180,m3.0} 37 {t90, t90−, t180}
19 {t90, t90−, t180,m2.5} 38 {t90, t90−, t180}

(a) (b)

Figure 3.15: Another problem that may arise when the automaton Ge has corridors
that allow robots to pass in both directions by its corridors.

61

We will now suggest how the problem of two robots that met facing each other can

be solved . Notice that without a way for the robots to infer that they encountered

another robot and a way to decide collectively which robot will follow the already

calculated path and which will take another route, the solution may incur into

other problems. A first approach would be to distribute the tasks in such a way to

not ask multiple robots to move through the same places at the same time. This

solution would require greater changes, as it would require either collective trajectory

planning or a collective scheduling method.

A second and more straightforward approach is to create a method to decide

which robot must recalculate its trajectory and which one should wait until the path

is free to resume its previously calculated path. This can be done either by a local

decision made between the robots themselves or by another agent, such as a master

robot or a server. Since it is already assumed that there are external agents that

assign tasks to the robots, we will assume that a server receives obstacle detection

signals from all robots together with the information of their current positions and

their distances to their task goals. If they are at states whose poses imply they

have met head-on, the server will identify that the robots have met each other and

will ask for the robot that is further away from its goal to recalculate its path,

while the other robot will be allowed to continue following the previously planned

trajectory. This solution is easier in terms of adapting the architecture developed in

previous sections, since we only need to change a few states, events and transitions

of automata Grs and Hspec,3. The new Grs and Hspec,3, now named Grs,i and Hspec,3,i,

are shown in Figures 3.17 and 3.18, respectively.

3.6.2 A new navigation architecture for multiple robots

The architecture proposed in previous sections, displayed in Figure 3.4, does not

reflects the changes necessary for the navigation of multiple robots. We, then, pro-

pose the adapted architecture for the navigation of n robots shown in Figure 3.16.

Notice that the robots share the external agents, but the Planner modules are par-

ticular to each robot, even if they are run externally. The new and updated events

are shown in Table 3.10.

Comparing Figures 3.2 and 3.17, we can see that events rs, msr and ssr remain,

but event t has been removed, since it is now an event issued by the server. Event

odi means that i-th robot has detected an obstacle and sent a message to the server,

together with its current pose and its distance to its objective. Event odi is a signal

sent by the i-th robot to the server after it stops detecting obstacles. Comparing

now Figures 3.7 and 3.18, we see that the event set Σe of the environment automaton

event set has not changed, and that event t has been split in two different events,

62

Table 3.10: Events that are modified.

Event Description Controllable
Σe set of environment automaton events X
sr stop robot signal X
nti new task received by the i-th robot ×
tci the i-th robot reports task completion X
rui the i-th robot requests for unblocking the last path X
pfi the last path of the i-th robot is free ×
rs robot stopped ×
msr obstacle sensor information request

X
while the robot is moving

ssr obstacle sensor information request
X

when the robot has stopped
odi The i-th robot detects an obstacle and sends a message ×

to the server with the its pose and its distance from the
task objective

odi message sent by the i-th robot to the server, to inform it ×
does not detect obstacles

tw,i signal sent by the server, allowing the i-th robot to return ×
to its previous state pose

td,i signal sent by the server to the i-th robot, telling it to ×
resume the previously calculated trajectory

event pe

Planner 1 Modular Supervisor 1

Sr1,1

∩

External Agents

Sr2,1

(Ge,w,J)

Gr,1

Algorithm 2

Dijkstra's
Algorithm

Gp

 σ
1
,
σ

2
,

..
.

,
σ

f ∈
 L

(G
e
)

events
tc1, ru1,

events
nt1, pf1, tw,1 e td,1

event p

event pe

Planner n Modular Supervisor n

Sr1,n

∩
Sr2,n

(Ge,w,J)

Gr,n

Algorithm 2

Gp

 σ
1
,
σ

2
,

..
.

,
σ

f ∈
 L

(G
e
)

event p

......

od1

e od1

events

ntn, pfn, tw,n e td,n

events
tcn, run, odn

e odn

Dijkstra's
Algorithm

Figure 3.16: The modified architecture, adapted for the navigation of n robots.

63

I Ss

rs

Sm

msr

odi, odi, rs

ssr

odi

msr

Figure 3.17: The modified robot sensing module Grs,i. Dashed lines represent
transitions labeled with uncontrollable events.

0

1 2 3

Σe

4

10

7

12 11

p, tci

rs

sr

rs

sr

ssr

odi
tw,i

ret

msr

odi

go

rs

rs

9

6 5

tw,i
rui pfi

odi

rs

odi

13
rs

14
ssr

15

16

8

rs

rs

msr

odi

odi

17
td,i

18 td,i

Figure 3.18: Automaton Hspec,3,i used to synthesize supervisor Sr2 for the navigation
of multiple robots. Dashed lines represent transitions labeled with uncontrollable
events.

tw,i and td,i; event tw,i is a signal sent by the server, allowing the i-th robot to return

to its previous state pose since it is no longer necessary to wait for the obstacle in

front of it to move away, and event td,i is a signal sent by the server to the i-th

robot, telling it to resume the previously calculated trajectory. Events nti, tci, rui

and pfi are now labeled to indicate the event either was sent by the i-th robot or it

is destined to it.

Notice that since events tw,i and td,i, which replace event t, are issued by the

server and so, the removal of event t from the event set of Grs with all associated

transitions may cause a deadlock in state Ss. Thus, in order to avoid such an issue,

a transition from state Ss to state Sm, labelled by ssr, is added, as one can see in

Figure 3.17.

That way, every robot will have its own Modular Supervisor. Regarding the

Planning, it can be done locally or by the server; in the former, each robot must

have its own Planner Module, an so, for clarity, although automata Grm Grtm and

64

Hspec,2 do not change, they will be renamed as Grm,i Grtm,i and Hspec,2,i. Together

with automata Grs,i and Hspec,3,i, they will from the modular supervisor. It is worth

mentioning that Hspec,1,i defines the best trajectory that will be computed by the

planner.

Notice that two new states, 17 and 18 have been added to Hspec,3,i. To understand

the idea behind their introduction, assume now that robots, i and j, have detected

each other, sending events odi and odj to the server. Their respective automata

Hspec,3,i and Hspec,3,j will be both at state 3. Then, after the occurrence of events

sr and rs, both robots will have stopped and, with the occurrence of event ssr, will

read their sonars, reaching state 6. Assume that the j-th robot is further away from

its task objective than the i-th robot. Then, the server will send a tw,j signal, telling

the j-th robot to stop waiting, and thus, Hspec,3,j will reach state 8, from which it

will return to its previous pose. The i-th robot, on the other hand, will wait for

the j-th to move away and, when this happens, it will receive an event td,i from the

server, and Hspec,3,i moves to state 17, from which it resumes the navigation of the

previously calculated trajectory.

There are several possible methods for the server to know when the j-th robot

is at a safe distance from the i-th robot in order to send a td,i event. A first solution

would be the server estimating the largest time for the j-th robot to move away from

the path of the i-th robot based on the information sent by the j-th robot when it

detected the i-th robot and on the weight of the active events of previously reached

state of the environment automaton. Another solution, which is the one adopted

in this work, is to assume that the server always knows the position of every robot.

This way, the server just needs to keep a set of “unsafe” states for the j-th robot

for a given state x of the i-th robot. At least a single state of Ge must be “safe”,

so the maximum number of “unsafe” states must be equal to ||Xe|| − 2 in order for

the i-th to be able to resume its previously calculated path. Since a non-redundant

path may consist of at most of ||Xe|| − 1 steps, the total cost of checking if the j-th

robot has left the set of “unsafe” states is, at most, of (||Xe||− 1) ∗ (||Xe||− 2), thus

having a complexity of O(||Xe||2).

Now assume that, while the i-th robot awaits, the j-th robot tries to return to

the previously reached environment pose, but it detects another robot: say the k-th

robot. The j-th and the k-th robots will send, respectively, odj and odk signals to

the server, which will infer they encountered each other head-on. State 11 is the

current state of Hspec,3,j after it detects the k-th and after the occurrence of sr and

rs, it will reach state 13, meaning that it has stopped. The current state of Hspec,3,k

after the occurrence of odk sr and rs is state 5. Thus, both robots will activate their

sonars to detect if the other has moved away. Since the j-th robot is already trying

to return to its previously reached pose in the environment, it cannot return and

65

(a) Initial configuration for the first test,
with robot R2 at state M7 and robot R1 at
M1.

(b) Final configuration of the experiment,
with the robots trajectories highlighted in
red.

Figure 3.19: Results of the test with two robots..

recalculate is trajectory, so, regardless of the proximity of the k-th of its objective,

the server will send a tw,k signal, ordering the k-th robot ot stop waiting and to

recalculate its trajectory. The j-th robot, on the other hand will wait for the k-th

robot to move away, and, when its sonars stop detecting it, will send a odj signal to

the server, reaching state 18. When the k-th robot has moved away from the j-th

robot, the server will send a td,j signal, so that the j-th robot stops waiting and

returns to its previously reached environment pose.

In order to validate this new architecture, we will run in the sequel, tests for

multiple robots.

Test with two robots

The first test consists of two robots R1, marked with a yellow dot, and R2,

marked with a blue dot. Robot R1 task is to receive raw materials from the conveyor

belt at M1, that need to be processed by the CNC machine at M7, as shown in

Figure 3.19(a). Robot R2 task, on its turn, is to receive a processed part from the

CNC machine at M7 and to deliver it to the conveyor belt for packaging, as shown

in Figure 3.19(b).

Immediately after receiving the task, robot R2 begins the planning for the short-

est path from M7 to M1, obtaining string s2 = sm8 t90− m4.5 m0.75. It starts

following the calculated trajectory, but robot R1 finishes receivig the raw materi-

als and calculates the shortest path from M1 to M7, which is given by the string

s1 = sm1 m4.5 t90 sm3.

66

(a) Initial configuration for the second
test, with robot R1 at state 9, robot R2

at 21 and robot R3 at state 29.

(b) Final configuration of the experi-
ment, with the robots trajectories high-
lighted in red.

Figure 3.20: Results of the test with three robots.

As shown in Figure 3.19(b), robot R2 executes the movements associated with

events sm8 t90− without any problems, but when it is about to finish executing the

movement associated with m4.5, it encounters R1. The server, then, determines that

R1 and R2 have encountered each other, and, since R2 is closer to its goal, it will

wait for a timeout signal from the server, for it to move away. Meanwhile, robot R1

will, turn 180◦, move to state 5, turn 180◦ again and recalculate the shortest path,

now considering the previous path blocked by R2. This way, the new trajectory

obtained is given by string s3 = t90 m9.0 t90− m4.5 t90− m4.5 sm2.

After robot R1 turns 90◦ and moves 9m, robot R2 receives a timeout signal from

the server and finishes the previously calculated path, moving the remainder of the

4.5m and, then, the 0.75m to reach M1. Since no other robots or obstacles are not

present in this test, R1 finishes the second calculated trajectory and reaches M7

without further problems, as shown in Figure 3.19(b).

Test with three robots

The second test consists of three robots: R1, marked with a yellow dot, R2,

marked with a blue dot and R3, marked with a green dot; all of them are shown

at their initial positions in Figure 3.20(a), states 9, 21 and 29, respectively. Robot

R1 must go to the disposal area of the robot arm at M4 to clear it, while robot R2

must go to the shelf at M6 and pick its stored materials. Robot R3 too must pick

its stored materials, but at M5. After receiving their tasks, they all calculate the

shortest paths, which are t90 m4.5 t180 m0, 75 for R1, t90− m4.5 t90−sm7 for R2,

67

(a) Initial configuration for the second
test, with robot R1 at state 21, robot R2

at 5, robot R3 at state 1 and robot R4

at state 17.

(b) Final configuration of the experi-
ment, with the robots trajectories high-
lighted in red.

Figure 3.21: Results of the test with four robots.

and t90 m4.5 m4.5 t90 sm6 for R3.

All robots start to follow the calculated paths. Robot R1 reaches M4 without

problem, but robots R2 and R3 encounter each other while trying to reach the

position of states 28 and 26, respectively. They detect each other and the server

infers that the two robots have met head-on. Since robot R2 is closer to its ob-

jective, robot R3 has to recalculate its path while R2 waits for it to move away.

R3 return to the position of state 30 and recalculates the shortest path, obtaining

t90−1 m4.5 t90− m4.5 m4.5 t90− sm7. Robot R2 moves after robot R3 executes t90

and m4.5, reaching M6 without further problems. Since all the other robots are at

their objectives and there are no static obstacles, robot R3 reaches M5, as shown in

the left image of Figure 3.20.

Test with four robots

The third and final test consists of robots R1, R2, R3 and R4, marked with yellow,

blue, green and white dots, respectively. The initial positions are those of states 21,

5, 1 and 17, respectively, for robots R1, R2, R3 and R4, as shown in Figure 3.21(a).

Robot R1 must reach state M4 , robot R2 must move to state M2, robot R3 must

reach state M3 and robot 4 must go to M1. After receiving the tasks, each robot

calculates the shortest path to its objective, which are t90− m4.5 t90− m4.5 m0.75,

m4.5 t90 m4.5 sm6, m4.5 t90− m4.5 sm7 and t180 m4.5 m0.75, for robots R1, R2,

R3 and R4, respectively. After that, all robots begin to move, trying to reach their

68

destinations, but robots R2 and R4 will meet facing each other, while trying to reach

states 17 and 7, respectively. Since robot R4 is closer to its objective, R2 returns

to state 5 and recalculates the best path, obtaining t90 m9.0 t90− m4.5 t90− sm3.

While R4 and R2 encountered each other, robots R3 detects robot R1, but since

robot R1 was fast enough, moving into M4 before the timeout happened, R3 detects

a free path and resumes its path, reaching M3 without further encounters. Robots

R2 and R4 too reach their goals without further hassles.

69

Chapter 4

Conclusions and Future Works

In this dissertation, a new automaton-based method for mobile robot navigation

in Industry 4.0 environments was proposed. All components of the architecture were

made to be modular, making easier to modify them when needed. The free behavior

of robots, the environment and all specifications were modeled by automata, and the

theory of supervisory control of discrete event systems was used to obtain a modular

supervisory controller that ensures the correct navigation of the robot in the presence

of unpredictable obstacles, including other robots.The proposed approach provides a

general modeling framework that allows the implementation of several specifications

by means of modules that depend solely on the type of task the robots will perform

and on the environment; thus, making easier to modify the specification automata,

the Planner Algorithm and the environment automaton model, without changing

all other components. The results obtained for the navigation of a single robot have

shown the efficiency of the presented architecture, always obtaining the shortest

path not only for tasks with a single objective, but also for tasks with multiple

objectives even in the presence of unknown obstacles.

Comparing the results obtained in this dissertation with [17, 19–23], we can see

that none of the later present a thorough computational analysis of the algorithms

and architectures proposed; only [23] provides a computing time analysis. This

dissertation, on the other hand, provides both analyses: Big O asymptotic growth

order and computing time. In addition, none of those works addresses the problem

of obtaining the shortest path for multiple objectives with no specific order, which

is addressed in this dissertation as Type 2 tasks, where a Big O asymptotic growth

order analysis has been performed for the proposed algorithm. It is worth mentioning

that HILL and LAFORTUNE [23] addressed a similar problem to that considered

here, but it has an automaton that acts like a specification for the tasks precedence,

and uses Dijkstra’s algorithm to obtain the smallest total cost.

The results of the experiments with multiple robots navigation demonstrated

that the architecture developed for the navigation of a single robot could be suc-

70

cessfully adapted for the navigation of multiple robots, with just minor changes. It

also scales very well, although additional compositions must be made in order to ob-

tain a trajectory for all robots. Nonetheless, this computational efficiency comes at

the cost of robots not cooperating, which may frequently meet other robots head-on

and having to solve that problem. When that happens, one robot returns to its pre-

viously reached pose in the environment, recalculates a new trajectory and executes

a probably longer route, while the other robot keeps waiting for its path to be free,

thus wasting time and battery life. In this regard, the results of the navigation itself

are somewhat similar to those results obtained in [33], where robots individually

plan their own trajectories and, when they eventually encounter other robots, they

decide, based on a dynamic priority attribution, which route the conflicting robots

shall take. The main differences between this solution and the one proposed in this

dissertation, are that there are no servers involved, the robots decide themselves

their priorities and what routes they will take in order to solve the conflict. In ad-

dition, they consider the possibility of a conflict between several robots, while this

dissertation considers encounters between two robots only; if more robots detect the

two conflicting robots, they will treat them as unknown obstacles.

The architecture proposed in [22] and subsequently in [23], differs a lot from the

adaptation of the single to multiple robot navigation architecture proposed in this

dissertation, since the planning is performed in two different levels: (i) a global one,

carried out offline, that determines the order at which the tasks should be performed

using an abstraction of the global model and (ii) a local high-level controller that

tracks the state of all modular supervisor as the robot progresses through the chosen

global plan, updating the states each time a command is given or a task finished

event is observed. If all supervisors allow the next start event in high-level plan, it

becomes the next command. If that is no the case, the local planner has to generate

a limited horizon plan that reaches the next start event for every robot. Since the

plant model itself does not allow robot to try entering a region occupied by another

robot, such conflicts do not happen, and the main focus is not to violate the safety

specifications while reaching vivacity, i.e, always obtaining at least one path to goal

states.

The architecture presented in [24] is somewhat simpler than the one presented

in [23] and also employs a global online supervisory control with a limited hori-

zon, whereas our work generate all models, supervisors and trajectories offline, only

changing the environment automaton and the calculated trajectory in the face of

unknown obstacles. It also tries to avoid deadlocks, which in [24] are defined as

robot encounters, but it does not provide a formal proof for the minimal number

of steps for the truncation of the automata of the robots necessary to ensure the

liveness of the system; it is assumed that deadlocks are avoided for a large enough

71

number of steps, which holds in the experiments, since no robot encounters another

robot head-on. Nonetheless, although effective, the architecture proposed does not

take unknown obstacles into account and does not scale well as the number of robots

in the environment increases, since the complexity of the proposed architecture is

O(k2n), where k is the largest number of states of the robot models automata and

n is the number of robots.

Analyzing all present results, one can see that the adaptation of the single robot

navigation framework will not yield the best results regarding the time of task com-

pletion, since robots can interrupt other robots trajectories. This problem only

gets worse as the quantity of robots operating in the environment increase, making

clear that some type of coordination is necessary. On the other hand, the results of

the other works have shown that global supervisory control architectures are more

computationally expensive than decentralized ones, which may become prohibitive

as the number of robots increases. Thus, future research must seek to develop an

architecture that incorporates the advantages from centralized and decentralized

approaches, while reaching a compromise with the disadvantages, such as the solu-

tion developed in [34]. Although, in [34], neither supervisory control nor automata

models are developed, it incorporates the best of decentralized and centralized ap-

proaches. First, robots calculate the optimal trajectories from a given starting points

to their respective objective points. After all optimal trajectories are computed, a

global scheduler use CPSM (Critical Path Schedule Method) to schedule the robot

actions, creating dummy tasks so that a robot can wait in order to not interfere

with other robot navigations. This approach seems quite promising, although it

does not allow modification on the calculated schedule, i.e, it does not account for

new tasks arriving after a schedule is obtained, namely, if we employed this method

without modifications, robots that finished their tasks earlier would have to wait for

the completion of all scheduled tasks before being able to execute new ones.

Another future research direction is to deal with real robot cooperation, since in

this dissertation robots simply operate concurrently in the same environment com-

peting for a limited resource – the poses of the states of the environment automaton

– while carrying out isolated tasks. This way, adding cooperation between the robots

to carry out a task would make the architecture developed here more flexible and

powerful. The theory developed in [18] treats the planning problem as a reachability

problem in a network of automata, where agents are modeled by one automaton,

whose events are subsets of all possible action event set, representing which action

an agent can perform. The work then uses formal language theory, distributed con-

straint solving, distributed optimization and weighted automata calculus to solve

the best plan problem. However, the most important contributions that could be

added to the architecture developed here are the distributed planning and the in-

72

teraction graph, that ensure that the local plans are compatible by synchronizing

actions shared by the robots.

So, everything considered, the single robot navigation architecture developed

in this dissertation is very efficient, although could be better extended to multiple

robots, having a lot of room to improve.

73

Bibliographic References

[1] GILCHRIST, A. Industry 4.0: the industrial internet of things. 1st ed. Berkeley,

Apress, 2016.

[2] WANG, S., WAN, J., ZHANG, D., LI, D., ZHANG, C. “Towards smart factory

for industry 4.0: a self-organized multi-agent system with big data based

feedback and coordination”, Computer Networks, v. 101, pp. 158–168,

2016.

[3] JIRKOVSKY, V., OBITKO, M., MARIK, V. “Understanding Data Hetero-

geneity in the Context of Cyber-Physical Systems Integration”, IEEE

Transactions on Industrial Informatics, v. 13, n. 2, pp. 660–667, 2017.

[4] DA XU, L., HE, W., LI, S. “Internet of things in industries: A survey”, IEEE

Transactions on Industrial Informatics, v. 10, n. 4, pp. 2233–2243, 2014.

[5] WAN, J., TANG, S., LI, D., WANG, S., LIU, C., ABBAS, H., VASILAKOS,

A. V. “A Manufacturing Big Data Solution for Active Preventive Main-

tenance”, IEEE Transactions on Industrial Informatics, v. 13, n. 4,

pp. 2039–2047, 2017.

[6] KEHOE, B., PATIL, S., ABBEEL, P., GOLDBERG, K. “A survey of research

on cloud robotics and automation”, IEEE Transactions on Automation

Science and Engineering, v. 12, n. 2, pp. 398–409, 2015.

[7] SIEGWART, R., NOURBAKHSH, I. R. Introduction to Autonomous Mobile

Robots. London, England, Bradford Book, 2004. ISBN: 026219502X.

[8] NAKHAEINIA, D., TANG, S., NOOR, S. M., MOTLAGH, O. “A review of

control architectures for autonomous navigation of mobile robots”, Inter-

national Journal of Physical Sciences, v. 6, n. 2, pp. 169–174, 2011.

[9] WONHAM, W. M., RAMADGE, P. J. “Modular supervisory control of discrete-

event systems”, Mathematics of Control, Signals, and Systems (MCSS),

v. 1, n. 1, pp. 13–30, 1988.

74

[10] GONZALEZ, A. G. C., ALVES, M. V. S., VIANA, G. S., CARVALHO, L. K.,

BASILIO, J. C. “Supervisory Control-Based Navigation Architecture: A

New Framework for Autonomous Robots in Industry 4.0 Environments”,

IEEE Transactions on Industrial Informatics, v. 14, n. 4, pp. 1732–1743,

April 2018.

[11] CASSANDRAS, C. G., LAFORTUNE, S. Introduction to Discrete Event Sys-

tems. 2nd ed. New York, Springer, 2008.

[12] SAMPATH, M., SENGUPTA, R., LAFORTUNE, S., SINNAMOHIDEEN, K.,

TENEKETZIS, D. “Diagnosability of discrete-event systems”, IEEE

Transactions on Automatic Control, v. 40, n. 9, pp. 1555–1575, 1995.

[13] RAMADGE, P. J. G., WONHAM, W. M. “The control of discrete event sys-

tems”, Proceedings of the IEEE, v. 77, n. 1, pp. 81–98, 1989.

[14] MOREIRA, M. V., BASILIO, J. C. “Bridging the gap between design and

implementation of discrete-event controllers”, IEEE Transactions on Au-

tomation Science and Engineering, v. 11, n. 1, pp. 48–65, 2014.

[15] ANTUNES, I., CARVALHO, L. K., BASILIO, J. C. “A stochastic Petri net

model for simulation-based performance analysis of public bicycle sharing

systems”. In: Proc. International Conference on Automation Science and

Engineering (CASE), Fort Worth, TX, USA, pp. 433–439, 2016.

[16] LIU, B., GHAZEL, M., TOGUYÉNI, A. “Model-Based Diagnosis of Multi-

Track Level Crossing Plants”, IEEE Transactions on Intelligent Trans-

portation Systems, v. 17, n. 2, pp. 546–556, 2016.

[17] ROSZKOWSKA, E. “Supervisory control for multiple mobile robots in 2D

space”. In: Proc. of the International Workshop on Robot Motion and

Control, (RoMoCo), Bukowy Dworek, Poland, pp. 187–192, 2002.

[18] FABRE, E., JEZEQUEL, L. “Distributed optimal planning: an approach by

weighted automata calculus”. In: Proc. of the 48th IEEE Conference on

Decision and Control held jointly with the 28th Chinese Control Confer-

ence (CDC/CCC), Shanghai, China, pp. 211–216, 2009.

[19] KLOETZER, M., MAHULEA, C. “Multi-robot path planning for syntactically

co-safe LTL specifications”. In: Proc. of the International Workshop on

Discrete Event Systems (WODES), Xi’an, China, pp. 452–458, 2016.

75

[20] IQBAL, J., KHAN, S., ZAFAR, N., AHMAD, F. “Modeling Supervisory Con-

trol of Autonomous Mobile Robots using Graph Theory, Automata and

Z Notation”, Journal of American Science, v. 8, n. 12, pp. 799–804, 2012.

[21] KOŠECKÁ, J., BAJCSY, R. “Discrete Event Systems for autonomous mobile

agents”, Robotics and Autonomous Systems, v. 12, pp. 187–198, 1994.

[22] GORYCA, J., HILL, R. “Formal synthesis of supervisory control software for

multiple robot systems”. In: Proc. of the American Control Conference

(ACC), Washington, DC, USA, pp. 125–131, 2013.

[23] HILL, R., LAFORTUNE, S. “Scaling the formal synthesis of supervisory control

software for multiple robot systems”. In: Proc. of the American Control

Conference (ACC), Seattle, WA, USA, pp. 3840–3847, 2017.

[24] TATSUMOTO, Y., SHIRAISHI, M., CAI, K., LIN, Z. “Application of online

supervisory control of discrete-event systems to multi-robot warehouse

automation”, Control Engineering Practice, v. 81, pp. 97 – 104, 2018.

[25] OGATA, K. Engenharia de Controle Moderno. São Paulo, Brasil, Pearson

Prentice Hall, 2010.

[26] MURATA, T. “Petri nets: Properties, analysis and applications”, Proceedings

of the IEEE, v. 77, n. 4, pp. 541–580, Apr 1989.

[27] CLAVIJO, L. B., BASILIO, J. C., CARVALHO, L. K. “DESLAB: A scientific

computing program for analysis and synthesis of discrete-event systems”,

IFAC Proceedings Volumes, v. 45, n. 29, pp. 349–355, 2012.

[28] CORMEN, T. H., STEIN, C., RIVEST, R. L., LEISERSON, C. E. Introduction

to Algorithms. 2nd ed. Massachusetts, MIT press, 2001.

[29] CHAZELLE, B. “Approximation and Decomposition of Shapes”. In: Schwartz,

J. T., Yap, C. K. (Eds.), Algorithmic and Geometric Aspects of Robotics,

Lawrence Erlbaum Associates, pp. 145–185, Hillsdale, NJ, 1987.

[30] GHOSH, S. K., MOUNT, D. M. “An Output Sensitive Algorithm for Comput-

ing Visibility Graphs”, SIAM Journal on Computing, v. 20, pp. 888–910,

1991.

[31] O’DUNLAING, C., YAP, C. K. “A retraction method for planning the motion

of a disc”, Journal of Algorithms, v. 6, pp. 104–111, 1982.

76

[32] SHARIR, M. “Algorithmic Motion Planning”. In: Goodman, J. E., O’Rourke,

J. (Eds.), Handbook of Discrete and Computational Geometry, 2nd Ed.,

Chapman and Hall/CRC Press, pp. 1037–1064, New York, 2004.

[33] AZARM, K., SCHMIDT, G. “Conflict-free motion of multiple mobile robots

based on decentralized motion planning and negotiation”. In: Proceedings

of International Conference on Robotics and Automation, v. 4, pp. 3526–

3533 vol.4, April 1997.

[34] HAN, S., ZHOU, X., CHEN, C. “Path planning for multi-robot systems using

PSO and Critical Path Schedule Method”. In: 2016 IEEE 13th Inter-

national Conference on Networking, Sensing, and Control (ICNSC), pp.

1–6, April 2016.

77

Appendix A

Tables of Example 2.12 Automata

Table A.1: Transition function of Gsystem

Origin state Event Destination state Origin state Event Destination state

{{Idle, Free}, F ree} pull {{Busy, Free}, F ree} {{Idle, Free}, F ree} gobuffer2 {{Idle, Free}, F reeB}
{{Idle, Free}, F reeB} pull {{Busy, Free}, F reeB} {{Idle, Free}, F reeB} pick2 {{Idle, Free}, FullB}
{{Idle, Free}, FullB} goramp {{Idle, Free}, Full} {{Idle, Free}, FullB} pull {{Busy, Free}, FullB}
{{Busy, Free}, FullB} goramp {{Busy, Free}, Full} {{Busy, Free}, FullB} finish {{Full, Free}, FullB}
{{Full, Free}, FullB} goramp {{Full, Free}, Full} {{Full, Free}, FullB} pick1 {{Idle, Full}, FullB}
{{Idle, Full}, FullB} gobuffer1 {{Idle, FullB}, FullB} {{Idle, Full}, FullB} pull {{Busy, Full}, FullB}
{{Idle, Full}, FullB} goramp {{Idle, Full}, Full} {{Idle, Full}, Full} gobuffer1 {{Idle, FullB}, Full}
{{Idle, Full}, Full} pull {{Busy, Full}, Full} {{Idle, Full}, Full} drop2 {{Idle, Full}, F ree}
{{Idle, Full}, F ree} gobuffer1 {{Idle, FullB}, F ree} {{Idle, Full}, F ree} pull {{Busy, Full}, F ree}
{{Idle, Full}, F ree} gobuffer2 {{Idle, Full}, F reeB} {{Idle, Full}, F reeB} gobuffer1 {{Idle, FullB}, F reeB}
{{Idle, Full}, F reeB} pull {{Busy, Full}, F reeB} {{Idle, Full}, F reeB} pick2 {{Idle, Full}, FullB}
{{Busy, Full}, F reeB} gobuffer1 {{Busy, FullB}, F reeB} {{Busy, Full}, F reeB} finish {{Full, Full}, F reeB}
{{Busy, Full}, F reeB} pick2 {{Busy, Full}, FullB} {{Full, Full}, F reeB} gobuffer1 {{Full, FullB}, F reeB}
{{Full, Full}, F reeB} pick2 {{Full, Full}, FullB} {{Full, Full}, FullB} gobuffer1 {{Full, FullB}, FullB}
{{Full, Full}, FullB} goramp {{Full, Full}, Full} {{Full, Full}, Full} gobuffer1 {{Full, FullB}, Full}
{{Full, Full}, Full} drop2 {{Full, Full}, F ree} {{Full, Full}, F ree} gobuffer1 {{Full, FullB}, F ree}
{{Full, Full}, F ree} gobuffer2 {{Full, Full}, F reeB} {{Full, FullB}, F ree} drop1 {{Full, FreeB}, F ree}
{{Full, FullB}, F ree} gobuffer2 {{Full, FullB}, F reeB} {{Full, FreeB}, F ree} gobuffer2 {{Full, FreeB}, F reeB}
{{Full, FreeB}, F ree} goM1 {{Full, Free}, F ree} {{Full, Free}, F ree} gobuffer2 {{Full, Free}, F reeB}
{{Full, Free}, F ree} pick1 {{Idle, Full}, F ree} {{Full, Free}, F reeB} pick1 {{Idle, Full}, F reeB}
{{Full, Free}, F reeB} pick2 {{Full, Free}, FullB} {{Full, FreeB}, F reeB} goM1 {{Full, Free}, F reeB}
{{Full, FreeB}, F reeB} pick2 {{Full, FreeB}, FullB} {{Full, FreeB}, FullB} goramp {{Full, FreeB}, Full}
{{Full, FreeB}, FullB} goM1 {{Full, Free}, FullB} {{Full, FreeB}, Full} drop2 {{Full, FreeB}, F ree}
{{Full, FreeB}, Full} goM1 {{Full, Free}, Full} {{Full, FullB}, Full} drop1 {{Full, FreeB}, Full}
{{Full, FullB}, Full} drop2 {{Full, FullB}, F ree} {{Full, FullB}, FullB} goramp {{Full, FullB}, Full}
{{Full, FullB}, FullB} drop1 {{Full, FreeB}, FullB} {{Full, FullB}, F reeB} drop1 {{Full, FreeB}, F reeB}
{{Full, FullB}, F reeB} pick2 {{Full, FullB}, FullB} {{Busy, FullB}, F reeB} drop1 {{Busy, FreeB}, F reeB}
{{Busy, FullB}, F reeB} finish {{Full, FullB}, F reeB} {{Busy, FullB}, F reeB} pick2 {{Busy, FullB}, FullB}
{{Busy, FullB}, FullB} goramp {{Busy, FullB}, Full} {{Busy, FullB}, FullB} drop1 {{Busy, FreeB}, FullB}
{{Busy, FullB}, FullB} finish {{Full, FullB}, FullB} {{Busy, FreeB}, FullB} goramp {{Busy, FreeB}, Full}
{{Busy, FreeB}, FullB} finish {{Full, FreeB}, FullB} {{Busy, FreeB}, FullB} goM1 {{Busy, Free}, FullB}

78

{{Busy, FreeB}, Full} drop2 {{Busy, FreeB}, F ree} {{Busy, FreeB}, Full} finish {{Full, FreeB}, Full}
{{Busy, FreeB}, Full} goM1 {{Busy, Free}, Full} {{Busy, FreeB}, F ree} finish {{Full, FreeB}, F ree}
{{Busy, FreeB}, F ree} goM1 {{Busy, Free}, F ree} {{Busy, FreeB}, F ree} gobuffer2 {{Busy, FreeB}, F reeB}
{{Busy, FullB}, Full} drop1 {{Busy, FreeB}, Full} {{Busy, FullB}, Full} drop2 {{Busy, FullB}, F ree}
{{Busy, FullB}, Full} finish {{Full, FullB}, Full} {{Busy, FullB}, F ree} drop1 {{Busy, FreeB}, F ree}
{{Busy, FullB}, F ree} finish {{Full, FullB}, F ree} {{Busy, FullB}, F ree} gobuffer2 {{Busy, FullB}, F reeB}
{{Busy, FreeB}, F reeB} finish {{Full, FreeB}, F reeB} {{Busy, FreeB}, F reeB} goM1 {{Busy, Free}, F reeB}
{{Busy, FreeB}, F reeB} pick2 {{Busy, FreeB}, FullB} {{Idle, FullB}, F reeB} drop1 {{Idle, FreeB}, F reeB}
{{Idle, FullB}, F reeB} pick2 {{Idle, FullB}, FullB} {{Idle, FullB}, F reeB} pull {{Busy, FullB}, F reeB}
{{Idle, FreeB}, F reeB} pull {{Busy, FreeB}, F reeB} {{Idle, FreeB}, F reeB} goM1 {{Idle, Free}, F reeB}
{{Idle, FreeB}, F reeB} pick2 {{Idle, FreeB}, FullB} {{Idle, FreeB}, FullB} goramp {{Idle, FreeB}, Full}
{{Idle, FreeB}, FullB} pull {{Busy, FreeB}, FullB} {{Idle, FreeB}, FullB} goM1 {{Idle, Free}, FullB}
{{Idle, FreeB}, Full} pull {{Busy, FreeB}, Full} {{Idle, FreeB}, Full} drop2 {{Idle, FreeB}, F ree}
{{Idle, FreeB}, Full} goM1 {{Idle, Free}, Full} {{Idle, FreeB}, F ree} pull {{Busy, FreeB}, F ree}
{{Idle, FreeB}, F ree} gobuffer2 {{Idle, FreeB}, F reeB} {{Idle, FreeB}, F ree} goM1 {{Idle, Free}, F ree}
{{Busy, Full}, F ree} gobuffer1 {{Busy, FullB}, F ree} {{Busy, Full}, F ree} finish {{Full, Full}, F ree}
{{Busy, Full}, F ree} gobuffer2 {{Busy, Full}, F reeB} {{Idle, FullB}, F ree} drop1 {{Idle, FreeB}, F ree}
{{Idle, FullB}, F ree} gobuffer2 {{Idle, FullB}, F reeB} {{Idle, FullB}, F ree} pull {{Busy, FullB}, F ree}
{{Busy, Full}, Full} gobuffer1 {{Busy, FullB}, Full} {{Busy, Full}, Full} drop2 {{Busy, Full}, F ree}
{{Busy, Full}, Full} finish {{Full, Full}, Full} {{Idle, FullB}, Full} drop1 {{Idle, FreeB}, Full}
{{Idle, FullB}, Full} drop2 {{Idle, FullB}, F ree} {{Idle, FullB}, Full} pull {{Busy, FullB}, Full}
{{Busy, Full}, FullB} gobuffer1 {{Busy, FullB}, FullB} {{Busy, Full}, FullB} goramp {{Busy, Full}, Full}
{{Busy, Full}, FullB} finish {{Full, Full}, FullB} {{Idle, FullB}, FullB} goramp {{Idle, FullB}, Full}
{{Idle, FullB}, FullB} drop1 {{Idle, FreeB}, FullB} {{Idle, FullB}, FullB} pull {{Busy, FullB}, FullB}
{{Full, Free}, Full} drop2 {{Full, Free}, F ree} {{Full, Free}, Full} pick1 {{Idle, Full}, Full}
{{Busy, Free}, Full} drop2 {{Busy, Free}, F ree} {{Busy, Free}, Full} finish {{Full, Free}, Full}
{{Idle, Free}, Full} pull {{Busy, Free}, Full} {{Idle, Free}, Full} drop2 {{Idle, Free}, F ree}
{{Busy, Free}, F reeB} finish {{Full, Free}, F reeB} {{Busy, Free}, F reeB} pick2 {{Busy, Free}, FullB}
{{Busy, Free}, F ree} finish {{Full, Free}, F ree} {{Busy, Free}, F ree} gobuffer2 {{Busy, Free}, F reeB}

Table A.2: Transition function of supervisor S1

Origin state Event Destination state Origin state Event Destination state

{0, {{Idle, Free}, F ree}} pull {0, {{Busy, Free}, F ree}} {0, {{Idle, Free}, F ree}} gobuffer2 {2, {{Idle, Free}, F reeB}}
{2, {{Idle, Free}, F reeB}} pull {2, {{Busy, Free}, F reeB}} {2, {{Idle, Free}, F reeB}} pick2 {2, {{Idle, Free}, FullB}}
{2, {{Idle, Free}, FullB}} goramp {0, {{Idle, Free}, Full}} {2, {{Idle, Free}, FullB}} pull {2, {{Busy, Free}, FullB}}
{2, {{Busy, Free}, FullB}} goramp {0, {{Busy, Free}, Full}} {2, {{Busy, Free}, FullB}} finish {2, {{Full, Free}, FullB}}
{2, {{Full, Free}, FullB}} goramp {0, {{Full, Free}, Full}} {2, {{Full, Free}, FullB}} pick1 {2, {{Idle, Full}, FullB}}
{2, {{Idle, Full}, FullB}} goramp {0, {{Idle, Full}, Full}} {2, {{Idle, Full}, FullB}} pull {2, {{Busy, Full}, FullB}}
{2, {{Busy, Full}, FullB}} goramp {0, {{Busy, Full}, Full}} {2, {{Busy, Full}, FullB}} finish {2, {{Full, Full}, FullB}}
{2, {{Full, Full}, FullB}} goramp {0, {{Full, Full}, Full}} {0, {{Full, Full}, Full}} gobuffer1 {1, {{Full, FullB}, Full}}
{0, {{Full, Full}, Full}} drop2 {0, {{Full, Full}, F ree}} {0, {{Full, Full}, F ree}} gobuffer1 {1, {{Full, FullB}, F ree}}
{0, {{Full, Full}, F ree}} gobuffer2 {2, {{Full, Full}, F reeB}} {2, {{Full, Full}, F reeB}} pick2 {2, {{Full, Full}, FullB}}
{1, {{Full, FullB}, F ree}} drop1 {1, {{Full, FreeB}, F ree}} {1, {{Full, FreeB}, F ree}} goM1 {0, {{Full, Free}, F ree}}
{0, {{Full, Free}, F ree}} gobuffer2 {2, {{Full, Free}, F reeB}} {0, {{Full, Free}, F ree}} pick1 {0, {{Idle, Full}, F ree}}
{0, {{Idle, Full}, F ree}} gobuffer1 {1, {{Idle, FullB}, F ree}} {0, {{Idle, Full}, F ree}} pull {0, {{Busy, Full}, F ree}}
{0, {{Idle, Full}, F ree}} gobuffer2 {2, {{Idle, Full}, F reeB}} {2, {{Idle, Full}, F reeB}} pull {2, {{Busy, Full}, F reeB}}
{2, {{Idle, Full}, F reeB}} pick2 {2, {{Idle, Full}, FullB}} {2, {{Busy, Full}, F reeB}} finish {2, {{Full, Full}, F reeB}}
{2, {{Busy, Full}, F reeB}} pick2 {2, {{Busy, Full}, FullB}} {0, {{Busy, Full}, F ree}} gobuffer1 {1, {{Busy, FullB}, F ree}}
{0, {{Busy, Full}, F ree}} gobuffer2 {2, {{Busy, Full}, F reeB}} {0, {{Busy, Full}, F ree}} finish {0, {{Full, Full}, F ree}}
{1, {{Busy, FullB}, F ree}} drop1 {1, {{Busy, FreeB}, F ree}} {1, {{Busy, FullB}, F ree}} finish {1, {{Full, FullB}, F ree}}
{1, {{Busy, FreeB}, F ree}} finish {1, {{Full, FreeB}, F ree}} {1, {{Busy, FreeB}, F ree}} goM1 {0, {{Busy, Free}, F ree}}
{1, {{Idle, FullB}, F ree}} drop1 {1, {{Idle, FreeB}, F ree}} {1, {{Idle, FullB}, F ree}} pull {1, {{Busy, FullB}, F ree}}
{1, {{Idle, FreeB}, F ree}} pull {1, {{Busy, FreeB}, F ree}} {1, {{Idle, FreeB}, F ree}} goM1 {0, {{Idle, Free}, F ree}}
{2, {{Full, Free}, F reeB}} pick1 {2, {{Idle, Full}, F reeB}} {2, {{Full, Free}, F reeB}} pick2 {2, {{Full, Free}, FullB}}
{1, {{Full, FullB}, Full}} drop1 {1, {{Full, FreeB}, Full}} {1, {{Full, FullB}, Full}} drop2 {1, {{Full, FullB}, F ree}}
{1, {{Full, FreeB}, Full}} drop2 {1, {{Full, FreeB}, F ree}} {1, {{Full, FreeB}, Full}} goM1 {0, {{Full, Free}, Full}}
{0, {{Busy, Full}, Full}} gobuffer1 {1, {{Busy, FullB}, Full}} {0, {{Busy, Full}, Full}} drop2 {0, {{Busy, Full}, F ree}}
{0, {{Busy, Full}, Full}} finish {0, {{Full, Full}, Full}} {1, {{Busy, FullB}, Full}} drop1 {1, {{Busy, FreeB}, Full}}
{1, {{Busy, FullB}, Full}} drop2 {1, {{Busy, FullB}, F ree}} {1, {{Busy, FullB}, Full}} finish {1, {{Full, FullB}, Full}}
{1, {{Busy, FreeB}, Full}} drop2 {1, {{Busy, FreeB}, F ree}} {1, {{Busy, FreeB}, Full}} finish {1, {{Full, FreeB}, Full}}
{1, {{Busy, FreeB}, Full}} goM1 {0, {{Busy, Free}, Full}} {0, {{Idle, Full}, Full}} gobuffer1 {1, {{Idle, FullB}, Full}}
{0, {{Idle, Full}, Full}} pull {0, {{Busy, Full}, Full}} {0, {{Idle, Full}, Full}} drop2 {0, {{Idle, Full}, F ree}}
{1, {{Idle, FullB}, Full}} drop1 {1, {{Idle, FreeB}, Full}} {1, {{Idle, FullB}, Full}} drop2 {1, {{Idle, FullB}, F ree}}
{1, {{Idle, FullB}, Full}} pull {1, {{Busy, FullB}, Full}} {1, {{Idle, FreeB}, Full}} pull {1, {{Busy, FreeB}, Full}}
{1, {{Idle, FreeB}, Full}} drop2 {1, {{Idle, FreeB}, F ree}} {1, {{Idle, FreeB}, Full}} goM1 {0, {{Idle, Free}, Full}}
{0, {{Full, Free}, Full}} drop2 {0, {{Full, Free}, F ree}} {0, {{Full, Free}, Full}} pick1 {0, {{Idle, Full}, Full}}
{0, {{Busy, Free}, Full}} drop2 {0, {{Busy, Free}, F ree}} {0, {{Busy, Free}, Full}} finish {0, {{Full, Free}, Full}}
{0, {{Idle, Free}, Full}} pull {0, {{Busy, Free}, Full}} {0, {{Idle, Free}, Full}} drop2 {0, {{Idle, Free}, F ree}}
{2, {{Busy, Free}, F reeB}} finish {2, {{Full, Free}, F reeB}} {2, {{Busy, Free}, F reeB}} pick2 {2, {{Busy, Free}, FullB}}
{0, {{Busy, Free}, F ree}} gobuffer2 {2, {{Busy, Free}, F reeB}} {0, {{Busy, Free}, F ree}} finish {0, {{Full, Free}, F ree}}

79

Table A.3: Transition function of supervisor S2

Origin state Event Destination state Origin state Event Destination state

{0, {{Idle, Free}, F ree}} pull {0, {{Busy, Free}, F ree}} {0, {{Idle, Free}, F ree}} gobuffer2 {0, {{Idle, Free}, F reeB}}
{0, {{Idle, Free}, F reeB}} pull {0, {{Busy, Free}, F reeB}} {0, {{Busy, Free}, F reeB}} finish {0, {{Full, Free}, F reeB}}
{0, {{Full, Free}, F reeB}} pick1 {0, {{Idle, Full}, F reeB}} {0, {{Idle, Full}, F reeB}} gobuffer1 {0, {{Idle, FullB}, F reeB}}
{0, {{Idle, Full}, F reeB}} pull {0, {{Busy, Full}, F reeB}} {0, {{Busy, Full}, F reeB}} gobuffer1 {0, {{Busy, FullB}, F reeB}}
{0, {{Busy, Full}, F reeB}} finish {0, {{Full, Full}, F reeB}} {0, {{Full, Full}, F reeB}} gobuffer1 {0, {{Full, FullB}, F reeB}}
{0, {{Full, FullB}, F reeB}} drop1 {1, {{Full, FreeB}, F reeB}} {1, {{Full, FreeB}, F reeB}} goM1 {1, {{Full, Free}, F reeB}}
{1, {{Full, FreeB}, F reeB}} pick2 {0, {{Full, FreeB}, FullB}} {0, {{Full, FreeB}, FullB}} goramp {0, {{Full, FreeB}, Full}}
{0, {{Full, FreeB}, FullB}} goM1 {0, {{Full, Free}, FullB}} {0, {{Full, Free}, FullB}} goramp {0, {{Full, Free}, Full}}
{0, {{Full, Free}, FullB}} pick1 {0, {{Idle, Full}, FullB}} {0, {{Idle, Full}, FullB}} goramp {0, {{Idle, Full}, Full}}
{0, {{Idle, Full}, FullB}} pull {0, {{Busy, Full}, FullB}} {0, {{Idle, Full}, FullB}} gobuffer1 {0, {{Idle, FullB}, FullB}}
{0, {{Idle, FullB}, FullB}} goramp {0, {{Idle, FullB}, Full}} {0, {{Idle, FullB}, FullB}} drop1 {1, {{Idle, FreeB}, FullB}}
{0, {{Idle, FullB}, FullB}} pull {0, {{Busy, FullB}, FullB}} {0, {{Busy, FullB}, FullB}} goramp {0, {{Busy, FullB}, Full}}
{0, {{Busy, FullB}, FullB}} drop1 {1, {{Busy, FreeB}, FullB}} {0, {{Busy, FullB}, FullB}} finish {0, {{Full, FullB}, FullB}}
{0, {{Full, FullB}, FullB}} goramp {0, {{Full, FullB}, Full}} {0, {{Full, FullB}, FullB}} drop1 {1, {{Full, FreeB}, FullB}}
{1, {{Full, FreeB}, FullB}} goramp {1, {{Full, FreeB}, Full}} {1, {{Full, FreeB}, FullB}} goM1 {1, {{Full, Free}, FullB}}
{1, {{Full, Free}, FullB}} goramp {1, {{Full, Free}, Full}} {1, {{Full, Free}, FullB}} pick1 {1, {{Idle, Full}, FullB}}
{1, {{Idle, Full}, FullB}} goramp {1, {{Idle, Full}, Full}} {1, {{Idle, Full}, FullB}} pull {1, {{Busy, Full}, FullB}}
{1, {{Idle, Full}, FullB}} gobuffer1 {1, {{Idle, FullB}, FullB}} {1, {{Idle, FullB}, FullB}} goramp {1, {{Idle, FullB}, Full}}
{1, {{Idle, FullB}, FullB}} pull {1, {{Busy, FullB}, FullB}} {1, {{Busy, FullB}, FullB}} goramp {1, {{Busy, FullB}, Full}}
{1, {{Busy, FullB}, FullB}} finish {1, {{Full, FullB}, FullB}} {1, {{Full, FullB}, FullB}} goramp {1, {{Full, FullB}, Full}}
{1, {{Full, FullB}, Full}} drop2 {1, {{Full, FullB}, F ree}} {1, {{Full, FullB}, F ree}} gobuffer2 {1, {{Full, FullB}, F reeB}}
{1, {{Full, FullB}, F reeB}} pick2 {0, {{Full, FullB}, FullB}} {1, {{Busy, FullB}, Full}} drop2 {1, {{Busy, FullB}, F ree}}
{1, {{Busy, FullB}, Full}} finish {1, {{Full, FullB}, Full}} {1, {{Busy, FullB}, F ree}} gobuffer2 {1, {{Busy, FullB}, F reeB}}
{1, {{Busy, FullB}, F ree}} finish {1, {{Full, FullB}, F ree}} {1, {{Busy, FullB}, F reeB}} finish {1, {{Full, FullB}, F reeB}}
{1, {{Busy, FullB}, F reeB}} pick2 {0, {{Busy, FullB}, FullB}} {1, {{Idle, FullB}, Full}} pull {1, {{Busy, FullB}, Full}}
{1, {{Idle, FullB}, Full}} drop2 {1, {{Idle, FullB}, F ree}} {1, {{Idle, FullB}, F ree}} pull {1, {{Busy, FullB}, F ree}}
{1, {{Idle, FullB}, F ree}} gobuffer2 {1, {{Idle, FullB}, F reeB}} {1, {{Idle, FullB}, F reeB}} pull {1, {{Busy, FullB}, F reeB}}
{1, {{Idle, FullB}, F reeB}} pick2 {0, {{Idle, FullB}, FullB}} {1, {{Busy, Full}, FullB}} goramp {1, {{Busy, Full}, Full}}
{1, {{Busy, Full}, FullB}} gobuffer1 {1, {{Busy, FullB}, FullB}} {1, {{Busy, Full}, FullB}} finish {1, {{Full, Full}, FullB}}
{1, {{Full, Full}, FullB}} goramp {1, {{Full, Full}, Full}} {1, {{Full, Full}, FullB}} gobuffer1 {1, {{Full, FullB}, FullB}}
{1, {{Full, Full}, Full}} gobuffer1 {1, {{Full, FullB}, Full}} {1, {{Full, Full}, Full}} drop2 {1, {{Full, Full}, F ree}}
{1, {{Full, Full}, F ree}} gobuffer1 {1, {{Full, FullB}, F ree}} {1, {{Full, Full}, F ree}} gobuffer2 {1, {{Full, Full}, F reeB}}
{1, {{Full, Full}, F reeB}} gobuffer1 {1, {{Full, FullB}, F reeB}} {1, {{Full, Full}, F reeB}} pick2 {0, {{Full, Full}, FullB}}
{0, {{Full, Full}, FullB}} goramp {0, {{Full, Full}, Full}} {0, {{Full, Full}, FullB}} gobuffer1 {0, {{Full, FullB}, FullB}}
{0, {{Full, Full}, Full}} gobuffer1 {0, {{Full, FullB}, Full}} {0, {{Full, Full}, Full}} drop2 {0, {{Full, Full}, F ree}}
{0, {{Full, Full}, F ree}} gobuffer1 {0, {{Full, FullB}, F ree}} {0, {{Full, Full}, F ree}} gobuffer2 {0, {{Full, Full}, F reeB}}
{0, {{Full, FullB}, F ree}} drop1 {1, {{Full, FreeB}, F ree}} {0, {{Full, FullB}, F ree}} gobuffer2 {0, {{Full, FullB}, F reeB}}
{1, {{Full, FreeB}, F ree}} gobuffer2 {1, {{Full, FreeB}, F reeB}} {1, {{Full, FreeB}, F ree}} goM1 {1, {{Full, Free}, F ree}}
{1, {{Full, Free}, F ree}} gobuffer2 {1, {{Full, Free}, F reeB}} {1, {{Full, Free}, F ree}} pick1 {1, {{Idle, Full}, F ree}}
{1, {{Idle, Full}, F ree}} gobuffer1 {1, {{Idle, FullB}, F ree}} {1, {{Idle, Full}, F ree}} pull {1, {{Busy, Full}, F ree}}
{1, {{Idle, Full}, F ree}} gobuffer2 {1, {{Idle, Full}, F reeB}} {1, {{Idle, Full}, F reeB}} gobuffer1 {1, {{Idle, FullB}, F reeB}}
{1, {{Idle, Full}, F reeB}} pull {1, {{Busy, Full}, F reeB}} {1, {{Idle, Full}, F reeB}} pick2 {0, {{Idle, Full}, FullB}}
{1, {{Busy, Full}, F reeB}} gobuffer1 {1, {{Busy, FullB}, F reeB}} {1, {{Busy, Full}, F reeB}} finish {1, {{Full, Full}, F reeB}}
{1, {{Busy, Full}, F reeB}} pick2 {0, {{Busy, Full}, FullB}} {1, {{Busy, Full}, F ree}} gobuffer1 {1, {{Busy, FullB}, F ree}}
{1, {{Busy, Full}, F ree}} finish {1, {{Full, Full}, F ree}} {1, {{Busy, Full}, F ree}} gobuffer2 {1, {{Busy, Full}, F reeB}}
{1, {{Busy, Full}, Full}} gobuffer1 {1, {{Busy, FullB}, Full}} {1, {{Busy, Full}, Full}} drop2 {1, {{Busy, Full}, F ree}}
{1, {{Busy, Full}, Full}} finish {1, {{Full, Full}, Full}} {1, {{Idle, Full}, Full}} gobuffer1 {1, {{Idle, FullB}, Full}}
{1, {{Idle, Full}, Full}} pull {1, {{Busy, Full}, Full}} {1, {{Idle, Full}, Full}} drop2 {1, {{Idle, Full}, F ree}}
{1, {{Full, Free}, Full}} drop2 {1, {{Full, Free}, F ree}} {1, {{Full, Free}, Full}} pick1 {1, {{Idle, Full}, Full}}
{1, {{Full, FreeB}, Full}} drop2 {1, {{Full, FreeB}, F ree}} {1, {{Full, FreeB}, Full}} goM1 {1, {{Full, Free}, Full}}
{0, {{Full, FullB}, Full}} drop1 {1, {{Full, FreeB}, Full}} {0, {{Full, FullB}, Full}} drop2 {0, {{Full, FullB}, F ree}}
{1, {{Busy, FreeB}, FullB}} goramp {1, {{Busy, FreeB}, Full}} {1, {{Busy, FreeB}, FullB}} finish {1, {{Full, FreeB}, FullB}}
{1, {{Busy, FreeB}, FullB}} goM1 {1, {{Busy, Free}, FullB}} {1, {{Busy, Free}, FullB}} goramp {1, {{Busy, Free}, Full}}
{1, {{Busy, Free}, FullB}} finish {1, {{Full, Free}, FullB}} {1, {{Busy, Free}, Full}} drop2 {1, {{Busy, Free}, F ree}}
{1, {{Busy, Free}, Full}} finish {1, {{Full, Free}, Full}} {1, {{Busy, Free}, F ree}} gobuffer2 {1, {{Busy, Free}, F reeB}}
{1, {{Busy, Free}, F ree}} finish {1, {{Full, Free}, F ree}} {1, {{Busy, Free}, F reeB}} finish {1, {{Full, Free}, F reeB}}
{1, {{Busy, Free}, F reeB}} pick2 {0, {{Busy, Free}, FullB}} {0, {{Busy, Free}, FullB}} goramp {0, {{Busy, Free}, Full}}
{0, {{Busy, Free}, FullB}} finish {0, {{Full, Free}, FullB}} {0, {{Busy, Free}, Full}} drop2 {0, {{Busy, Free}, F ree}}
{0, {{Busy, Free}, Full}} finish {0, {{Full, Free}, Full}} {1, {{Busy, FreeB}, Full}} drop2 {1, {{Busy, FreeB}, F ree}}
{1, {{Busy, FreeB}, Full}} finish {1, {{Full, FreeB}, Full}} {1, {{Busy, FreeB}, Full}} goM1 {1, {{Busy, Free}, Full}}
{1, {{Busy, FreeB}, F ree}} gobuffer2 {1, {{Busy, FreeB}, F reeB}} {1, {{Busy, FreeB}, F ree}} goM1 {1, {{Busy, Free}, F ree}}
{1, {{Busy, FreeB}, F ree}} finish {1, {{Full, FreeB}, F ree}} {1, {{Busy, FreeB}, F reeB}} finish {1, {{Full, FreeB}, F reeB}}
{1, {{Busy, FreeB}, F reeB}} goM1 {1, {{Busy, Free}, F reeB}} {1, {{Busy, FreeB}, F reeB}} pick2 {0, {{Busy, FreeB}, FullB}}
{0, {{Busy, FreeB}, FullB}} goramp {0, {{Busy, FreeB}, Full}} {0, {{Busy, FreeB}, FullB}} finish {0, {{Full, FreeB}, FullB}}
{0, {{Busy, FreeB}, FullB}} goM1 {0, {{Busy, Free}, FullB}} {0, {{Busy, FreeB}, Full}} drop2 {0, {{Busy, FreeB}, F ree}}
{0, {{Busy, FreeB}, Full}} finish {0, {{Full, FreeB}, Full}} {0, {{Busy, FreeB}, Full}} goM1 {0, {{Busy, Free}, Full}}
{0, {{Busy, FreeB}, F ree}} gobuffer2 {0, {{Busy, FreeB}, F reeB}} {0, {{Busy, FreeB}, F ree}} goM1 {0, {{Busy, Free}, F ree}}
{0, {{Busy, FreeB}, F ree}} finish {0, {{Full, FreeB}, F ree}} {0, {{Full, FreeB}, F ree}} gobuffer2 {0, {{Full, FreeB}, F reeB}}

80

{0, {{Full, FreeB}, F ree}} goM1 {0, {{Full, Free}, F ree}} {0, {{Full, Free}, F ree}} gobuffer2 {0, {{Full, Free}, F reeB}}
{0, {{Full, Free}, F ree}} pick1 {0, {{Idle, Full}, F ree}} {0, {{Idle, Full}, F ree}} gobuffer1 {0, {{Idle, FullB}, F ree}}
{0, {{Idle, Full}, F ree}} pull {0, {{Busy, Full}, F ree}} {0, {{Idle, Full}, F ree}} gobuffer2 {0, {{Idle, Full}, F reeB}}
{0, {{Busy, Full}, F ree}} gobuffer1 {0, {{Busy, FullB}, F ree}} {0, {{Busy, Full}, F ree}} finish {0, {{Full, Full}, F ree}}
{0, {{Busy, Full}, F ree}} gobuffer2 {0, {{Busy, Full}, F reeB}} {0, {{Busy, FullB}, F ree}} drop1 {1, {{Busy, FreeB}, F ree}}
{0, {{Busy, FullB}, F ree}} gobuffer2 {0, {{Busy, FullB}, F reeB}} {0, {{Busy, FullB}, F ree}} finish {0, {{Full, FullB}, F ree}}
{0, {{Idle, FullB}, F ree}} drop1 {1, {{Idle, FreeB}, F ree}} {0, {{Idle, FullB}, F ree}} gobuffer2 {0, {{Idle, FullB}, F reeB}}
{0, {{Idle, FullB}, F ree}} pull {0, {{Busy, FullB}, F ree}} {1, {{Idle, FreeB}, F ree}} pull {1, {{Busy, FreeB}, F ree}}
{1, {{Idle, FreeB}, F ree}} gobuffer2 {1, {{Idle, FreeB}, F reeB}} {1, {{Idle, FreeB}, F ree}} goM1 {1, {{Idle, Free}, F ree}}
{1, {{Idle, Free}, F ree}} pull {1, {{Busy, Free}, F ree}} {1, {{Idle, Free}, F ree}} gobuffer2 {1, {{Idle, Free}, F reeB}}
{1, {{Idle, Free}, F reeB}} pull {1, {{Busy, Free}, F reeB}} {1, {{Idle, Free}, F reeB}} pick2 {0, {{Idle, Free}, FullB}}
{0, {{Idle, Free}, FullB}} goramp {0, {{Idle, Free}, Full}} {0, {{Idle, Free}, FullB}} pull {0, {{Busy, Free}, FullB}}
{0, {{Idle, Free}, Full}} pull {0, {{Busy, Free}, Full}} {0, {{Idle, Free}, Full}} drop2 {0, {{Idle, Free}, F ree}}
{1, {{Idle, FreeB}, F reeB}} pull {1, {{Busy, FreeB}, F reeB}} {1, {{Idle, FreeB}, F reeB}} goM1 {1, {{Idle, Free}, F reeB}}
{1, {{Idle, FreeB}, F reeB}} pick2 {0, {{Idle, FreeB}, FullB}} {0, {{Idle, FreeB}, FullB}} goramp {0, {{Idle, FreeB}, Full}}
{0, {{Idle, FreeB}, FullB}} pull {0, {{Busy, FreeB}, FullB}} {0, {{Idle, FreeB}, FullB}} goM1 {0, {{Idle, Free}, FullB}}
{0, {{Idle, FreeB}, Full}} pull {0, {{Busy, FreeB}, Full}} {0, {{Idle, FreeB}, Full}} drop2 {0, {{Idle, FreeB}, F ree}}
{0, {{Idle, FreeB}, Full}} goM1 {0, {{Idle, Free}, Full}} {0, {{Idle, FreeB}, F ree}} pull {0, {{Busy, FreeB}, F ree}}
{0, {{Idle, FreeB}, F ree}} gobuffer2 {0, {{Idle, FreeB}, F reeB}} {0, {{Idle, FreeB}, F ree}} goM1 {0, {{Idle, Free}, F ree}}
{0, {{Idle, FreeB}, F reeB}} pull {0, {{Busy, FreeB}, F reeB}} {0, {{Idle, FreeB}, F reeB}} goM1 {0, {{Idle, Free}, F reeB}}
{0, {{Full, FreeB}, F reeB}} goM1 {0, {{Full, Free}, F reeB}} {0, {{Busy, FreeB}, F reeB}} finish {0, {{Full, FreeB}, F reeB}}
{0, {{Busy, FreeB}, F reeB}} goM1 {0, {{Busy, Free}, F reeB}} {0, {{Busy, FullB}, Full}} drop1 {1, {{Busy, FreeB}, Full}}
{0, {{Busy, FullB}, Full}} drop2 {0, {{Busy, FullB}, F ree}} {0, {{Busy, FullB}, Full}} finish {0, {{Full, FullB}, Full}}
{1, {{Idle, FreeB}, FullB}} goramp {1, {{Idle, FreeB}, Full}} {1, {{Idle, FreeB}, FullB}} pull {1, {{Busy, FreeB}, FullB}}
{1, {{Idle, FreeB}, FullB}} goM1 {1, {{Idle, Free}, FullB}} {1, {{Idle, Free}, FullB}} goramp {1, {{Idle, Free}, Full}}
{1, {{Idle, Free}, FullB}} pull {1, {{Busy, Free}, FullB}} {1, {{Idle, Free}, Full}} pull {1, {{Busy, Free}, Full}}
{1, {{Idle, Free}, Full}} drop2 {1, {{Idle, Free}, F ree}} {1, {{Idle, FreeB}, Full}} pull {1, {{Busy, FreeB}, Full}}
{1, {{Idle, FreeB}, Full}} drop2 {1, {{Idle, FreeB}, F ree}} {1, {{Idle, FreeB}, Full}} goM1 {1, {{Idle, Free}, Full}}
{0, {{Idle, FullB}, Full}} drop1 {1, {{Idle, FreeB}, Full}} {0, {{Idle, FullB}, Full}} drop2 {0, {{Idle, FullB}, F ree}}
{0, {{Idle, FullB}, Full}} pull {0, {{Busy, FullB}, Full}} {0, {{Busy, Full}, FullB}} goramp {0, {{Busy, Full}, Full}}
{0, {{Busy, Full}, FullB}} gobuffer1 {0, {{Busy, FullB}, FullB}} {0, {{Busy, Full}, FullB}} finish {0, {{Full, Full}, FullB}}
{0, {{Busy, Full}, Full}} gobuffer1 {0, {{Busy, FullB}, Full}} {0, {{Busy, Full}, Full}} drop2 {0, {{Busy, Full}, F ree}}
{0, {{Busy, Full}, Full}} finish {0, {{Full, Full}, Full}} {0, {{Idle, Full}, Full}} gobuffer1 {0, {{Idle, FullB}, Full}}
{0, {{Idle, Full}, Full}} pull {0, {{Busy, Full}, Full}} {0, {{Idle, Full}, Full}} drop2 {0, {{Idle, Full}, F ree}}
{0, {{Full, Free}, Full}} drop2 {0, {{Full, Free}, F ree}} {0, {{Full, Free}, Full}} pick1 {0, {{Idle, Full}, Full}}
{0, {{Full, FreeB}, Full}} drop2 {0, {{Full, FreeB}, F ree}} {0, {{Full, FreeB}, Full}} goM1 {0, {{Full, Free}, Full}}
{1, {{Full, Free}, F reeB}} pick1 {1, {{Idle, Full}, F reeB}} {1, {{Full, Free}, F reeB}} pick2 {0, {{Full, Free}, FullB}}
{0, {{Busy, FullB}, F reeB}} drop1 {1, {{Busy, FreeB}, F reeB}} {0, {{Busy, FullB}, F reeB}} finish {0, {{Full, FullB}, F reeB}}
{0, {{Idle, FullB}, F reeB}} drop1 {1, {{Idle, FreeB}, F reeB}} {0, {{Idle, FullB}, F reeB}} pull {0, {{Busy, FullB}, F reeB}}
{0, {{Busy, Free}, F ree}} gobuffer2 {0, {{Busy, Free}, F reeB}} {0, {{Busy, Free}, F ree}} finish {0, {{Full, Free}, F ree}}

81

	List of Figures
	List of Tables
	List of Symbols
	Introduction
	Objective
	Related Works
	Structure of the dissertation

	Theoretical Background
	Discrete events models
	Languages
	Language operations
	Language representations

	Automata
	Languages represented by automata

	Operations with automata
	Unary operations
	Composition operations

	Supervisory Control of Discrete Event Systems with partial controllability and full observation
	Supervisory control problem
	Control with partial controllability and full observation
	Obtaining a supervisor

	Supervisory control with modular specifications
	Dijkstra's algorithm

	A New Supervisory-control-based-framework for Robot Navigation
	Introduction
	System models
	The environment automaton model Ge
	The robot model Gr

	A DES-based robot navigation architecture
	The navigation architecture
	Path planning procedure
	Design of modular supervisor Sr1 Sr2

	Performance analysis of the planner algorithm
	Scalability Analysis
	Time complexity analysis

	Experimental results for a single robot
	Simulation Results

	Navigation of multiple robots
	Motivating examples
	A new navigation architecture for multiple robots

	Conclusions and Future Works
	Bibliographic References
	 Tables of Example 2.12 Automata

