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É bem conhecido que as formas convencionais de capturar a luz ao nosso re-

dor são limitadas e, portanto, fornecem uma experiência limitada em termos de

percepção de paralaxe. Como isso tem impedido que os sistemas 3D explodam no

mercado, avanços significativos estão surgindo em termos de tecnologias de captura

de luz, entre as quais é relevante destacar as chamadas câmeras de campos de luz

que capturam uma representação mais rica da cena visual medindo a intensidade da

luz para cada direção e para cada posição de pixel. Considerando a enorme quanti-

dade de dados de intensidade de luz envolvidos, uma compressão eficiente torna-se

uma obrigação. Neste contexto, a dissertação aborda o desafio da codificação do

campo de luz propondo uma solução de codificação baseada em transformada de

cosseno discreta quadridimensional. A DCT é uma candidata natural para este tipo

de processamento, considerando a sua ampla adoção nos padrões convencionais de

codificação de imagem e v́ıdeo.

v



Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Master of Science (M.Sc.)

A 4-D DISCRETE COSINE TRANSFORM-BASED LIGHT FIELD CODING

SOLUTION

Gustavo de Oliveira e Alves

March/2019

Advisors: Eduardo Antônio Barros da Silva
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It is well known that the conventional ways to capture the light around us are

limited and thus provide a limited user experience, notably in terms of parallax

capabilities. As this has been preventing 3D systems to explode in the market,

significant advances are emerging in terms of light capturing technologies among

which is relevant to highlight the so-called light field cameras which capture a richer

representation of the visual scene by measuring the light intensity for each direc-

tion and for each pixel position. Considering the huge amount of light intensity

data involved, e�cient compression becomes a must. In this context, this disser-

tation addresses the light field coding challenge by proposing a 4D discrete cosine

transform-based coding solution. The DCT is an natural candidate to this kind of

processing considering its wide adoption in conventional image and video coding

standards.
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Chapter 1

Introduction

Light field photography is a new technology that adds outstanding features and

functionalities to conventional (digital) photography trying to bring the users more

realistic, immersive and interactive experiences. Among the main added function-

alities are the possibilities of a posteriori varying the focus and changing the per-

spective of the rendered images after the light field image is captured; this added

value for the user justifies the recent growth in popularity of this emerging imaging

technology/modality.

Light field imaging captures not only information about the intensity of light on

an image plane but also information about the direction of the light rays in space.

These are acquired with a light field camera, typically consisting of an array of

micro-lenses placed in front of an otherwise conventional image sensor; or acquired

with a two-dimensional array of densely placed cameras. Both acquisition tech-

niques generate large raw uncompressed files, since information about the direction

of the light rays is also captured. The large amount of data corresponding to this

richer form of visual representation needs to be e�ciently compressed, notably when

transmission and storage applications are targeted.

While light fields may be coded by adapting/extending available standard image

or video coding solutions [1], these solutions are not able to exploit the new type of

redundancy in the light field data. This drives the development of specific coding

solutions which started to appear in the literature in the last few years, and are able

to better exploit the redundancy of this new type of data.

As part of its standardization activities, the Joint Photographic Experts Group

(JPEG) has initiated a new work item called JPEG Pleno, which aims at developing

a next generation image coding standard to support light field imaging, among other

plenoptic modalities. Recently, JPEG has issued a call for proposals on light field

coding technologies [2], requesting contributions for coding solutions in the area

of light fields encompassing, among other things, both lenslet-generated light field

images, that are generated with light field cameras, and light field images obtained

1



using high density 2D camera arrays.

In this context, the work presented in this thesis intends to propose a novel coding

solution for light fields. The proposed codec has a simple architecture, employing

the 4D discrete cosine transform (4D-DCT), novel 4D scanning patterns and run-

length coding, in an analogous way as it is done in 2D in the classic JPEG image

coding standard [3].

The remaining part of this work is structured as follows: Chapter 2 presents an

introduction to light field imaging, describing the acquisition techniques, represen-

tation models and existing coding approaches, together with a brief introduction to

JPEG Pleno. As a prior step to the light field coding solution design, Chapter 3

presents a study which aims at characterizing the redundancy of available light field

test material using as main tool the 4D-DCT. In Chapter 4 the design of scanning

modes for the coe�cients of 4D-DCT is addressed, while the complete proposed

light field coding solution is described in Chapter 5. Finally, Chapter 6 presents the

conclusions and suggestions for future work.
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Chapter 2

Light fields basics

This chapter presents a brief introduction to light fields, the object of study in

this work. Section 2.1 introduces the plenoptic function, a background concept

essential to understanding the definition of a light field. Section 2.2 describes the

light field acquisition methods, while Section 2.3 presents the main approaches to

code light field data. Finally, Section 2.4 briefly describes the JPEG Pleno, a work

item initiated by JPEG Committee which aims at developing a light field coding

standard.

2.1 The plenoptic function

Adelson and Bergen pointed out what actually can be seen by an observer by de-

scribing the visual information contained in a single point of the space [4]. This

visual information is composed by a set of infinite light rays of several wavelengths,

coming at every direction, at any instant of time. The angle of incidence of a ray can

be parameterized with two spherical coordinates (✓,�). The color of the rays may be

represented by the wavelength �, while the time instant, by variable t. So, to fully

describe the visual information on a point of the 3D space, four variables would be

required. By adding the three cartesian coordinates (x, y, z), the function would be

able to define such information for every point in 3D space, totalling seven variables.

Therefore, a function intended to completely describe the visual information in the

space, the so-called plenoptic function, has the form

P = P (✓,�,�, t, x, y, z). (2.1)

The high dimensionality of the plenoptic function indicates that a huge amount

of information is involved. Some simplifications are required in order to reduce the

original information amount and achieve a handleable amount of data. By removing

the variable t, P = P (✓,�,�, x, y, z) represents the static visual information, which
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is analogous to recording an “image” rather than a “video”. By replacing � by three

color components as it is usually done in image capturing systems, the dimension-

ality is further reduced to five variables (✓,�, x, y, z). Actually, the remaining five

dimensions can be reduced to four, if the light rays are parameterized when using

the two-plane parameterization, as shown in Figure 2.1 [5]. This approach takes

advantage to the fact that light rays do not change direction when propagating in

free space. Following this premise, the position and angle of a light ray can be fully

described by the coordinates (u, v) and (s, t), representing the points of intersection

of the light ray with two parallel planes. Such reduction the dimensionality of the

plenoptic function to a 4D subset is know as light field [5].

s

t

u

v light ray

Figure 2.1: Two-plane parameterizations of light rays.

The (s, t) plane can be considered as a two dimensional array of cameras, col-

lecting the light rays leaving the (u, v) plane, closer to the scene. Therefore, each

point on the (s, t) plane collects a set of rays that constitute a viewpoint. When the

four dimensions of the light field are organized as a two-dimensional (s, t) array of

u⇥ v slices, such slices are called sub-aperture images, or simply light field views.

2.2 Acquisition methods

This section describes the main light field imaging acquistion methods: cameras

with micro-lenses arrays and or high density camera arrays.

2.2.1 Cameras with micro-lenses arrays

The first light field acquisition method presented consists in using plenoptic cam-

eras, which are cameras equipped with an array of micro-lenses placed in front of

the otherwise conventional image sensor. Such micro-lenses are usually referred as

lenslets, and the light fields acquired using this method are called lenslet light fields.
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Figure 2.2 depicts two plenoptic cameras available in the consumer market. The

main advantages of this acquisition mode are the use of a single camera, which re-

sults in a reduced cost, and the high density of generated views, which is desirable

for many applications. One drawback of this acquisition method is the reduced res-

olution of the acquired light filed, which is limited by the resolution of the single

camera sensor involved.

(a) Lytro Illum (b) Raytrix R47

Figure 2.2: Examples of plenoptic cameras used for light field acquisition.

The views of a lenslet light field are subject to the vignetting e↵ect, is caused by

the darkened regions created by micro-lenses. This e↵ect causes views to become

darker according to the distance to the central view. Figure 2.3 depicts a mosaic

made of a lenslet light field views showing the lighter central view and the darkened

peripheral views.

Figure 2.3: Mosaic of lenslet light field views revealing the vignetting e↵ect.

2.2.2 High density camera arrays

Other method for light field acquisition consists in using a two-dimensional array

of densely-placed cameras, as depicted in Figure 2.4. This acquisition method is

usually referred as High Density Camera Array (HDCA). A drawback of this type

5



of acquisition is the high associated cost, since it requires a large number of cameras

and sophisticated peripheral equipments. HDCAs are able to generate high resolu-

tion light fields, since the final resolution is the sum of individual camera sensors

resolutions.

A characteristic of the light field content acquired with HDCAs is that views are

not so dense as the ones acquired with a plenoptic camera, since the spacing between

adjacent cameras is limited by the cameras own dimensions. In order to overcome

this limitation, a single robotized camera can be used. This acquisition setup has

the advantage of producing large number of high density views, and present the

drawback of capturing only static scenes.

Figure 2.4: Camera array used for light field acquisition.

2.3 Coding

There are four main approaches to code light field data, notably:

• Direct usage of available coding standards: This is the simplest approach

as it only implies directly applying the available image coding standards [6],

thus also providing full compatibility; naturally, the redundancy among micro-

images or sub-aperture images cannot be exploited.

• Usage of available coding standards after some data restructuring:

This approach still implies using available image and vide coding standards,

but the light field data is first rearranged to better exploit the available redun-

dancy. For example, the multiple views may be first extracted to create a 2D
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puzzle of views which are after coded as a video sequence using some scanning,

e.g. top-down or spiral, to exploit the redundancy between the views as if it

was some ‘temporal’ redundancy [7] [8].

• Extension of available coding standards: This approach involves extend-

ing the available coding standards, e.g. with additional coding modes specif-

ically targeting the exploitation of the inter view redundancy which they are

not ready to exploit [1].

• Development of novel coding solutions: This approach involves develop-

ing novel coding solutions [2][9][10] which go beyond the simple extension of

available coding standard, more specifically adapted to the characteristics of

light field imaging data.

2.4 JPEG Pleno

The JPEG Pleno is a new work item initiated by Joint Photographic Experts Group

(JPEG) Committee which aims at developing a next image coding standard that

moves beyond coding of 2D conventional image content by addressing plenoptic rep-

resentations, including the emerging light fields technology. During the past decades,

JPEG has o↵ered a series of successful and widely adopted image coding solutions

such as JPEG [3] and JPEG 2000 [11]. However, digital photography market now

experiences a paradigm shift in the consumption of digital photographic content,

moving from a planar world towards imaging in volumetric modalities such as om-

nidirectional, depth-enhanced, and light field imaging which will require specific

coding tools and, consequently, new coding standards are required for this new kind

of content.

JPEG Pleno intends to provide an e�cient coding format that will guarantee

the highest quality content representation with reasonable resource requirements

in terms of data rates and computational complexity. In addition to features that

are described next, supported functionalities will include some degree of backward

compatibility with legacy JPEG formats, scalability, random access, error resilience,

distributed processing and data sharing between displays or display elements. The

associated file format will be compliant with JPEG Systems specifications.

Such need for e�cient light field coding schemes is driving JPEG Pleno stan-

dardization activities, that has issued the JPEG Pleno Call for Proposals on Light

Field Coding in January 2017 [2]. It requests contributions for coding solutions in

the area of light fields encompassing both lenslet-generated and light fields obtained

using high density 2D camera arrays.
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2.4.1 Datasets

The light fields used in this study are described in the document JPEG Pleno Light

Field Coding Common Test Conditions [12] and are the same used in JPEG Pleno

standardization activities such as exploration studies and core experiments. The

JPEG Pleno light fields include two datasets acquired by di↵erent devices and setups:

lenslet-based plenoptic cameras and high-density array of conventional cameras. A

third dataset comprises synthetically generated content.

Lenslet-based light field dataset

Figure 2.5 shows the central views of the light fields acquired with a lenslet based

camera, Lytro Illum B01 (10-bit) [13]. Each light field consists of a 13⇥ 13 array of

views, with spatial resolution of 626⇥434 pixels each. The images selected from this

dataset are natural outdoor images presenting di↵erent levels of spatial information,

with objects at di↵erent depths and repetitive patterns [14].

(a) Bikes (b) Danger de Mort

(c) Stone Pillars Outside (d) Fountain & Vincent 2

(e) Friends 1

Figure 2.5: lenslet light fields (central views) in JPEG Pleno dataset.
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HDCA light field dataset

The central views of the HDCA light fields are depicted in Figure 2.6 They were ac-

quired at Fraunhofer Institute using a high resolution camera attached to a moving

robot [15]. All images portray rather similar indoor (studio) scenes and show dif-

ferent levels of detail, specularities, regular patterns and objects at di↵erent depths.

Each light field has 101 ⇥ 21 views each with a 3840 ⇥ 2160 spatial resolution.

This study also uses the view-subsampled version of the HDCA dataset, notably

33⇥ 11 views, with the same spatial resolution, as defined in the JPEG Pleno core

experiments [16]. While this view-sampled version of the HDCA content has less

inter-view redundancy, its usage within JPEG Pleno resulted from the need to limit

the computational complexity associated to HDCA content coding.

Currently, the JPEG Pleno test set includes only one light field image from the

four initially provided, being Set2 the single one currently adopted for computational

complexity reasons. Moreover, as even a single full set was very heavy to encode, the

selected view-subsampled Set2 light field had each view cropped in terms of spatial

resolution to 1920⇥ 1080; this light field is referred as Set2 2K sub.

(a) Set 2 (b) Set 6

(c) Set 9 (d) Set 10

Figure 2.6: Fraunhofer HDCA light fields (central views) in JPEG Pleno dataset.

The JPEG Pleno test set also includes a light field from Poznan University of

Technology called Laboratory 1, shown in Figure 2.7 (a) [17]. It has been acquired

with a 2D parallel array of cameras. The light field presents 31 ⇥ 31 views with

spatial resolution 1936 ⇥ 1288. JPEG Pleno test set includes one light field image

in the Stanford HDCA data set, named Tarot Cards, shown in Figure 2.7 (b) [18].

This light field presents 17⇥ 17 views with spatial resolution 1024⇥ 1024.
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(a) Laboratory 1 (b) Tarot Cards

Figure 2.7: Poznan and Stanford HDCA light fields (central views) in JPEG Pleno
dataset.

Synthetically created dataset

Greek and Sideboard are the two synthetically created light fields included in the

JPEG Pleno dataset, made available by the Heidelberg Collaboratory for Image

Processing (HCI) [19]. The central views are depicted in Figure 2.8. The light fields

have 9⇥ 9 views each with a 512⇥ 512 spatial resolution.

(a) Greek (b) Sideboard

Figure 2.8: Synthetic light fields (central views) in JPEG Pleno dataset.

2.4.2 Custom light field dataset

Many of the experiments performed during this research require several cod-

ing/decoding operations and computation of quality metrics such as the peak signal-

to-noise ratio (PSNR). The process is very time consuming, since some light fields

from the JPEG Pleno dataset have high resolution views, such as Set2 2k Sub with

1920 ⇥ 1080 and Laboratory 1 with 1936 ⇥ 1288. Aiming at the reduction of the

computational complexity to encode the content, low-resolution versions of the some

light fields were created, using only the luminance information. The new light fields

were created by extracting 4D blocks of size t⇥s⇥v⇥u = 10⇥10⇥384⇥512 from the

original light fields from the JPEG Pleno dataset and horizontally stacking them,

creating a collage. The resulting resolution is t⇥ s⇥ v ⇥ u = 10⇥ 10⇥ 384⇥ 2048.

Figure 2.9 shows one view for each mosaic light field created. The creation process

for each dataset follows:
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• Mosaic Lenslets : The central region of resolution u⇥ v = 512⇥ 384 of the

10 ⇥ 10 central views of the light fields Bikes, Danger de Mort, Stone Pillars

Outside and Fountain & Vincent were extracted and horizontally stacked to

create a light field of dimensions t⇥ s⇥ v⇥ u = 10⇥ 10⇥ 384⇥ 2048. A view

of the created light field is shown in Figure 2.9 (a).

• Mosaic Set2 2K Sub and Mosaic Laboratory1 : Rectangular regions

of resolution u ⇥ v = 512 ⇥ 384 of the s ⇥ t = 10 ⇥ 10 central views were

extracted from random positions and horizontally stacked to create a light

field of dimensions t ⇥ s ⇥ v ⇥ u = 10 ⇥ 10 ⇥ 384 ⇥ 2048. Views of the light

fields Mosaic Set2 2K Sub and Laboratory1 can be seen in Figure 2.9 (b) and

(c), respectively.

• Tarot Cards: Regions of size u⇥v = 512⇥384 were extracted from positions

(u, v) equal to (0, 0), (512, 0), (0, 384) and (512, 384) from the s⇥ t = 10⇥ 10

central views. The 4D blocks were horizontally stacked to create a light field

of dimensions t⇥s⇥v⇥u = 10⇥10⇥384⇥2048. The central view is depicted

in Figure 2.9 (d).

(a) Lenslets

(b) Set2 2k Sub

(c) Laboratory 1
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(d) Tarot Cards

Figure 2.9: Mosaic light fields used in experiments.
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Chapter 3

Characterizing light fields

redundancy

In image and video coding, several techniques exploit spatial and temporal redun-

dancy targeting bitrate reduction. In this context, transform coding plays a funda-

mental role. Transforming the data consists in decomposing spatial image sample

values into basis functions and respective coe�cient values, a process in which no in-

formation is lost. An important property of the transforms is energy compaction, in

which most of the information is retained in low frequency coe�cients while almost

no information is carried by the high frequency ones. Many image coding solutions

developed in last decades, among which it is worthwhile to highlight the JPEG stan-

dard, apply transforms directly to image samples. Transforms are also employed in

modern image coding solutions such as H.264/AVC Intra and HEVC Intra, in which

a block intra prediction scheme uses previously encoded block samples from its

causal spatial neighborhood blocks to predict its block samples. In both standards,

transform coding is used as subsequent step aiming at further decorrelating the pre-

diction residue. Due to the fact that, in general, the similarity (correlation) among

samples within a small neighborhood tends to be high, image compression schemes

use large blocks to exploit redundancy in regions presenting a low degree of texture

(spatial complexity), whereas smaller blocks are employed in regions exhibiting high

spatial complexity.

As shown in Chapter 2, the light field data can be organized as a two-dimensional

array of sub-aperture images which tend to present a strong degree of correlation

among neighboring views. Hence, besides the already mentioned redundancy within

each view, additional redundancy associated with the geometry of lenslet-based cam-

eras and HDCA systems can be exploited for image coding purposes. Among other

ways, the light field data compression can be achieved by jointly exploiting the light

field’s intra-view and inter-view redundancies. A straightforward way to do this is by

employing four-dimensional (4D) transforms, with the 4D discrete cosine transform
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(DCT) being a natural candidate for this type of processing considering the wide

adoption of its two-dimensional version in several image and video coding standards

[3] [20] [21]. This chapter is inserted within this context, aiming at studying 4D

light fields redundancy. This is achieved by using a 4D transform (the 4D-DCT), in

order to investigate the 4D sparsity of the light fields. The sparsity is related to how

much of the energy of the signal is concentrated, for a given s, in the s% transform

coe�cients with largest variances.

3.1 4D-DCT definition

In the context of image and video transform coding, the DCT is an important

tool. It has been adopted by the most popular image and video coding standards

such as JPEG [3], H.264/AVC [20] and HEVC [22]. Its name comes from the fact

that its basis functions are formed by cosines. Like other transforms, the DCT

attempts to decorrelate the image data and generate a better representation suited

for quantization and entropy coding.

An important DCT property is its ability to compact the energy of the image

samples into a few coe�cients. In this aspect, this transform has a near optimal

performance, as it is derived as an approximation to the Karhunen-Loève (KL)

transform which is the optimal solution in terms of energy compactness. A common

definition of the DCT of a 1D sequence x(u) of length U is

X(k) =
U�1X

u=0

x(u) cos


k⇡

2U
(2u+ 1)

�
. (3.1)

In image and video coding, one uses the separable 2D DCT. For light field coding,

the 4D-DCT of a signal x(u, v, s, t) can thus be written as a direct extension of the

1D case:

X(k, l,m, n) =
U�1X

u=0

V�1X

v=0

S�1X

s=0

T�1X

t=0

x(u, v, s, t) cos


k⇡

2U
(2u+ 1)

�

cos


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cos
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(2s+ 1)
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(2t+ 1)
i
.

(3.2)

Equation 3.2 can also be written as

X(k, l,m, n) =
U�1X

u=0

cos


k⇡

2U
(2u+ 1)

� V�1X

v=0

cos


l⇡

2V
(2v + 1)

�

S�1X

s=0

cos
hm⇡

2S
(2s+ 1)

i T�1X

t=0

x(u, v, s, t) cos
hn⇡
2T

(2t+ 1)
i
.

(3.3)
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Equation 3.3 has the advantage that X(k, l,m, n) can be computed in four steps

by successive 1D operations on each dimension of the light field. This idea is graph-

ically illustrated in Figure 3.1. In this work the 4D-DCT is computed as depicted in

the flow, applying the DCT successively to t, s, v and u dimensions. The argument

presented for the direct transform can be identically applied for the inverse 4D-DCT

computation, therefore the inverse transform is computed by successively applying

the IDCT to u, v, s and t dimensions, respectively.

DCT
t

DCT
s

DCT
u

DCT
v

DCT
coefficients

Light field
color component

Figure 3.1: 4D-DCT processing pipeline.

3.2 Experimental framework

The light fields sparsity study is based on a simple experimental framework corre-

sponding to the processing pipeline depicted in Figure 3.2. As a first step, a 4D

data block is extracted from the luminance channel of the input light field, which is

organized as a 2D array of views (e.g., for the lenslet light field images, these views

are the sub-aperture images). In this work, the variables s and t represent the view

coordinates while u and v represent the image coordinates within each (s, t) view.

Next, a separable 4D-DCT (Figure 3.1) is applied to each 4D data block followed

by a thresholding operation on the 4D-DCT coe�cients, which basically performs a

selection of the coe�cients based on their energy. The 4D-DCT coe�cients with val-

ues higher than a pre-defined threshold are retained, while the others are discarded.

Naturally, the lower this threshold, the more coe�cients are selected. The retained

coe�cients are used to reconstruct the 4D data blocks by using the inverse 4D-DCT.

Finally, the full light field image is (lossy) recovered by appropriately combining the

reconstructed blocks. The more coe�cients are retained, the higher the quality of

the recovered light field.
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coefficients
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Transform 
coefficients

Reconstructed 
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Figure 3.2: Experimental framework processing pipeline for the study of 4D sparsity
of light fields.

Figure 3.1 illustrates the 4D-DCT processing pipeline. In this study, 4D-DCT

sizes (t⇥s⇥v⇥u) are 8⇥8⇥8⇥8 (4D), 1⇥1⇥8⇥8 (2D intra-view) and 8⇥8⇥1⇥1
(2D inter-view). While the 8⇥ 8⇥ 8⇥ 8 block size allows to jointly exploit the 4D

redundancy, the same does not happen for the 1⇥ 1⇥ 8⇥ 8 and 8⇥ 8⇥ 1⇥ 1 block

sizes which exploit only the intra or only the inter-view redundancies, respectively.

In order to not mix di↵erent block sizes in one experiment, both inter-view and

intra-view dimensions were truncated to the nearest multiple of 8. For lenslets light

fields described in Section 2.4.1 only the central 624 ⇥ 432 portion is used out of

original 625⇥434 resolution, for the central 8⇥8 sub-aperture views. This choice of

sub-aperture views had the desirable consequence of avoiding to use their darkened

views associated to the vignetting e↵ect, explained in Section 2.2.1.

For the HDCA dataset described in Section 2.4.1, only Set2, Set6, Set9 and

Set2 light fields and respective subsampled versions are analyzed. The use of both

original and subsampled versions of HDCA light fields aims at understanding the

impact of view subsampling on the light field redundancy. The same 4D-DCT sizes

used for lenslets light fields are employed, with the addition of the 8⇥ 8⇥ 64⇥ 64

4D-DCT (8 ⇥ 8 inter-view and 64 ⇥ 64 intra-view). The arrays of views are also

truncated to the nearest multiple of 8, thus resulting in the choice of the central

96⇥16 views for the HDCA light fields out of the original 101⇥21 views and 32⇥8

out of the original 33⇥ 11views for the subsampled versions of the HDCA dataset.

To further validate the experimental results and conclusions, the analysis includes

a comparison with the Geometric Space-View Redundancy (GSVR) [23] descriptor

results. The GSVR characterizes light fields in terms of space-view redundancy.

Although it does not take into account the intra-view redundancy, it may bring

interesting insights into the results of the experiment. The GSVR definition and

results for the JPEG Pleno dataset are presented in Appendix C.
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3.3 JPEG Pleno light field datasets sparsity: re-

sults and analysis

This section presents the results and conclusions of the sparsity study performed in

both lenslets and HDCA JPEG Pleno datasets. The peak signal-to-noise ratio of

the luminance information (PSNR-Y) between original and reconstructed views is

averaged and plotted against the percentage of retained transform coe�cients. The

reconstruction quality expressed by the PSNR-Y represents the amount of energy

carried out by the retained coe�cients: high reconstruction qualities indicate that

most of the energy is retained while low reconstruction qualities indicate that most

of the energy was lost with the coe�cients discarded in the thresholding process. By

analyzing the relationship between energy concentration and the relative number of

retained coe�cients, it is possible to assess the light fields sparsity when a specific

transform is applied.

3.3.1 Lenslet light field datasets

Figure 3.3 shows the sparsity results as expressed by the average PSNR-Y versus the

average percentage of retained coe�cients per block for the 8⇥ 8⇥ 8⇥ 8 4D-DCT,

8⇥8 2D-DCT intra-view and 8⇥8 2D-DCT inter-view, for all the lenslets light fields

selected for this experiment. The charts show that, for a same number of retained

coe�cients, the light field Friends has a higher reconstruction quality, which means

that for this light field more energy is retained in the same number of coe�cients.

The conclusion is that Friends has higher 4D sparsity than the other ones.

(a) 8⇥ 8⇥ 8⇥ 8 4D-DCT. (b) 8⇥ 8 2D-DCT intra-view.
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(c) 8⇥ 8 2D-DCT inter-view.

Figure 3.3: Average PSNR-Y versus average percentage of retained coe�cients per
block for 4D-DCT, 2D-DCT intra-view and 2D-DCT inter-view: comparison among
lenslets light fields.

Figure 3.4 shows the same type of sparsity analysis but now comparing results

for di↵erent block sizes for each lenslets light fields, thus able to exploit di↵erent

types and amounts of redundancy. The 4D-DCT presents a higher reconstruction

quality for a same number of average retained coe�cients, leading to the conclusion

that, for this transform, more energy is concentrated than for its 2D counterparts.

This result implies that it is worthy to exploit the 4D redundancy in a DCT-based

coding scheme for lenslets. In addition, the inter-view sparsity is larger than the

intra-view one, indicating that for the lenslets it is more e↵ective to use an inter-view

transform than an intra-view one. As can be seen, the same behavior is observed

for all analyzed lenslet light fields.

(a) Bikes. (b) Danger de Mort.
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(c) Stone Pillars Outside. (d) Fountain & Vincent 2.

(e) Friends 1.

Figure 3.4: Average PSNR-Y versus average percentage of retained coe�cients per
block for lenslets datasets: comparison of 8 ⇥ 8 ⇥ 8 ⇥ 8 4D-DCT, inter-view 8 ⇥ 8
2D-DCT and intra-view 8⇥ 8 2D-DCT.

The presented results are confirmed by the GSVR [23] descriptor results analysis.

The GSVR is a quantitative descriptor which aims at characterizing the light fields

defining the largest region in the 4D space that presents four-dimensional geometric

redundancy worthy to be exploited for encoding purposes. It does so by measuring

the probability that the image of a point in 3D space to remain in the space block in

all views, for each space block size and range of views. The GSVR descriptor gives

the relation between the intra-view and inter-view block dimensions guaranteeing,

with a given probability, the existence of such 4D space-view redundancy. Lower

values of GSVR(p) indicate that large amount of 4D redundancy is present on a

light field. The derivation process and definition of the GSVR descriptor, as well as

the corresponding analysis of the JPEG Pleno light field datasets may be found in

Appendix C. The GSVR results in Figure C.5 (a) for the lenslets light fields show

that for a permanence probability of 80%, GSVR(p) assumes values around 0.4,

which means that the inter-view block-sizes of the 4D block should be 2.5 times the

intra-view sizes. This confirms that the inter-view redundancy is indeed larger than
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the intra-view one for the lenslet light fields since one should have a larger inter-view

block dimension for the given permanence probability.

3.3.2 HDCA light field datasets

Figure 3.5 shows the sparsity results as expressed by the average PSNR-Y versus the

average percentage of retained coe�cients per block for the 8⇥ 8⇥ 8⇥ 8 4D-DCT,

8 ⇥ 8 2D-DCT intra-view and 8 ⇥ 8 2D-DCT inter-view for all original (101 ⇥ 21)

HDCA datasets. For a same number of retained coe�cients, the reconstruction

quality for Set6 is smaller than the obtained for other light fields and, therefore, less

energy is retained. The results thus show that the Set2, Set9 and Set10 datasets

are approximately equivalent regarding the 4D-DCT sparsity, while the sparsity of

Set6 is smaller.

(a) 8⇥ 8⇥ 8⇥ 8 4D-DCT. (b) 8⇥ 8 2D-DCT intra-view.

(c) 8⇥ 8 2D-DCT inter-view.

Figure 3.5: Average PSNR-Y versus average percentage of retained coe�cients per
block for 4D-DCT, 2D-DCT intra-view and 2D-DCT inter-view: comparison among
original HDCA datasets.

Figure 3.6 compares the average PSNR-Y versus the average percentage of re-

tained coe�cients per block results for three di↵erent block sizes, for each selected
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HDCA light field. For the majority of average percentages of retained coe�cients

tested, there is more energy concentration in the intra-view coe�cients than in the

other transforms. Thus, unlike the lenslets datasets where the 4D sparsity is signifi-

cantly larger than the 2D sparsities, for the HDCA datasets the sparsity is dominated

by the intra-view redundancy. As can be seen, the same behavior is observed for all

analyzed HDCA light fields.

(a) Set2. (b) Set6.

(c) Set9. (d) Set10.

Figure 3.6: Average PSNR-Y versus average percentage of retained coe�cients per
block for light fields in HDCA dataset: comparison of 8⇥ 8⇥ 8⇥ 8 4D-DCT, inter-
view 8⇥ 8 2D-DCT and intra-view 8⇥ 8 2D-DCT.

Figure 3.7 shows the average PSNR-Y versus the average percentage of retained

coe�cients per block results for the 8 ⇥ 8 ⇥ 8 ⇥ 8 4D-DCT, 8 ⇥ 8 2D-DCT intra-

view and 8 ⇥ 8 2D-DCT inter-view transforms for selected subsampled light fields

from the HDCA dataset, while Figure 3.8 compares the 4D-DCT sparsity to the 2D

inter-view (8⇥8⇥1⇥1) and 2D intra-view (1⇥1⇥8⇥8) sparsities for the same test

material. The behavior is very similar as for the corresponding original HDCA light

fields (Figures 3.5 and 3.6) thus implying that, for the subsampled HDCA light
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fields, the sparsity is also dominated by the intra-view redundancy, with a much

smaller inter-view redundancy.

(a) 8⇥ 8⇥ 8⇥ 8 4D-DCT. (b) 8⇥ 8 2D-DCT intra-view.

(c) 8⇥ 8 2D-DCT inter-view.

Figure 3.7: Average PSNR-Y versus average percentage of retained coe�cients per
block for 4D-DCT, 2D-DCT intra-view and 2D-DCT inter-view: comparison among
subsampled HDCA light fields.

(a) Set2. (b) Set6.
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(c) Set9. (d) Set10.

Figure 3.8: Average PSNR-Y versus average percentage of retained coe�cients per
block for subsampled HDCA light fields: comparison of 8 ⇥ 8 ⇥ 8 ⇥ 8 4D-DCT,
inter-view 8⇥ 8 2D-DCT and intra-view 8⇥ 8 2D-DCT.

In the sequel, to understand the e↵ects of subsampling the HDCA light fields,

the results for both the original and subsampled datasets are compared. Figures

3.9 (a), (b) and (c) compare the 4D-DCT, 2D intra-view DCT and 2D inter-view

DCT sparsity results, respectively, for the original and subsampled HDCA Set2.

As expected, the intra-view sparsities of both datasets are nearly same, since the

intra-view redundancy is loosely a↵ected by the process of discarding views. The

results in Figure 3.9 (b) comparing the inter-view sparsities are also expected, since

the view subsampling process results into a sparser and less redundant set of views

which results in a reduction of the sparsity. Since there is a decrease in the inter-

view sparsity, and the intra-view sparsity remains unchanged, it is natural that the

4D sparsity also decreases for the subsampled HDCA dataset, as shown in Figure

3.9 (c).

(a) 8⇥ 8⇥ 8⇥ 8 4D-DCT. (b) 8⇥ 8 2D-DCT intra-view.
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(c) 8⇥ 8 2D-DCT inter-view.

Figure 3.9: Average PSNR-Y versus average percentage of retained coe�cients per
block for HDCA Set2 : comparison between original and subsampled datasets.

Finally, the last comparison between original and subsampled HDCA datasets

is shown in Figure 3.10. It compares the sparsity of the 8 ⇥ 8 ⇥ 8 ⇥ 8 and the

8⇥ 8⇥ 64⇥ 64 4D-DCT for both datasets. The di↵erence between these two DCT

sizes is only on the intra-view dimensions (8 ⇥ 8 and 64 ⇥ 64). It is possible to

observe that, for the same average percentage of retained coe�cients, the di↵erence

in PSNR values between the two 4D-DCT sizes is higher for the original dataset.

Since the di↵erence between the two datasets is only on the inter-view redundancy,

this allows concluding that the intra-view block size impacts on the exploitation of

the inter-view redundancy, with larger intra-view dimensions being better. This is

in accordance with the results displayed in Figure C.5 (b) showing the GSVR curves

for the original and subsampled HDCA datasets. For a permanence probability of

0.8, an intra-view dimension around 8 times larger than the inter-view’s one should

be used for the original HDCA dataset, which, for 8 ⇥ 8 inter-view dimensions

requires intra-view dimensions of around 64⇥ 64. On the other hand, an intra-view

dimension around 20 times larger than the inter-view dimension should be used

for the subsampled HDCA dataset, which would require intra-view dimensions of

around 160⇥160 for the 8⇥8 inter-view dimensions. Then, an 8⇥8⇥64⇥64 block

would be adequate for exploring the 4D redundancy in the original HDCA dataset,

while it would not be su�cient for the subsampled HDCA, that would require an

8⇥8⇥160⇥160 4D-DCT size. This explains the fact that the sparsity increases from

8⇥8⇥8⇥8 to 8⇥8⇥64⇥64 is much larger for the original than for the subsampled

HDCA dataset. In addition, one should note that, if the intra-view dimensions are

too large, the intra-view redundancy across the block becomes smaller and cannot

be well exploited.
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(a) Set2. (b) Set6.

(c) Set9. (d) Set10.

Figure 3.10: Average PSNR-Y versus average percentage of retained coe�cients per
block for HDCA datasets, original and subsampled: comparison of 8⇥ 8⇥ 8⇥ 8 and
8⇥ 8⇥ 64⇥ 64 4D-DCT.

3.4 Conclusions

From the above results, it is possible to conclude that lenslets dataset has a sig-

nificant amount of 4D sparsity, the inter-view redundancy being significantly larger

than the intra-view redundancy. For the HDCA dataset, the opposite is observed:

the intra-view sparsity is much larger than the inter-view sparsity. In addition,

the HDCA dataset has a much smaller amount of 4D redundancy than the lenslet

dataset. Thus, it is likely that the most e�cient coding solutions for the lenslet

datasets are not the most e�cient for the HDCA datasets.

The presented study of the 4D sparsity of the JPEG Pleno light field images

shows that both the lenslet and HDCA datasets have a great amount of 4D redun-

dancy that can be explored, notably for coding purposes. As a consequence, the

results also suggest that not exploiting the 4D redundancy as a whole may be a

severe limitation to the design of emerging light field codecs, notably the one cur-

rently under development in JPEG Pleno. The presented results also suggest that
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the lenslet and HDCA datasets may require distinct coding solutions due to the

di↵erent nature of their 4D redundancy. One should bear in mind that these con-

clusions are restricted to the JPEG Pleno datasets, whereas a more extensive study

needs to be carried out to characterize the inter-view and intra-view redundancies

of more general light field data.

Another important information towards the development of a 4D-DCT based

codec is the energy distribution among transform coe�cients. In the next chapter,

an experiment aiming at characterizing the energy distribution over the 4D-DCT

coe�cients and defining e�cient coe�cients scanning patterns for coding purposes

is performed.
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Chapter 4

4D-DCT coe�cients scanning

modes

For 2D-DCT based image codecs, a key step consists in scanning the DCT block co-

e�cients according to a certain pattern such that the coe�cients with larger energy

are scanned earlier, targeting maximum energy compaction. As transforms applied

to redundant information tend to generate sparse representations [24], the result-

ing coe�cients should be appropriately ordered so that those with larger energy

are scanned before those with smaller energy enabling the obtained sparsity to be

e↵ectively exploited for compression purposes using run-length coding [25]. Many

scanning solutions of 2D transform coe�cients have been developed and are part of

image and video coding standards. However, due to the richer 4D space structure

of the light fields as compared to that of 2D conventional images, the extension of

such scanning patterns from 2D to 4D is not trivial. In this context, this chap-

ter investigates, proposes and assesses 4D scanning modes for light field 4D-DCT

coe�cients, targeting e�cient coding using the run-length technique. The energy

compactness power of the proposed 4D-DCT scanning modes is evaluated using a

proposed metric called the integral of cumulative energy.

4.1 Run-length coding

Run-length encoding is a simple lossless data compression technique in which a

sequence formed by the consecutive occurrence of a symbol is encoded as a pair

(value, run) rather than as the original sequence [25], where the token value iden-

tifies the given symbol and run informs the number/length of its repetitions. The

compression e�ciency of this technique is improved by the increase of the length

and frequency of occurrence of such runs.

Variations of the run-length coding method are usually employed in transform-
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based lossy image and video codecs in order to save bits with the representation

of frequent zero-valued quantized transform coe�cients. One example is the JPEG

standard, in which each nonzero coe�cient (except the top-left DC coe�cient) is

represented in combination with the consecutive number of zero-valued coe�cients

which precede it in the scanning order [3]. Two symbols are used to represent

each nonzero coe�cient: the first symbol has the form (run, size), where run is

the number of zero-valued coe�cients preceding the nonzero coe�cient and size is

number of bits used to represent its amplitude. The second symbol contains the

amplitude of the coe�cient itself using size bits [3].

Figure 4.1 illustrates a run-length coding process similar to the one performed

in JPEG standard. A 4⇥ 4 matrix of coe�cients with the nonzero coe�cients con-

centrated towards the top-left corner is scanned using three di↵erent patterns: (a)

vertical, (b) horizontal and (c) diagonal. The tables below the scanning patterns

include a line for each nonzero coe�cient. The first column contains the coe�cient

amplitude while the second one contains the run of zeros before the respective co-

e�cient. The symbols (run, level) resulting from the encoding using the horizontal

scanning pattern (a) contain run values equal to zero or equal to two. For the verti-

cal scanning pattern (b), four di↵erent run values of run are obtained. Finally, for

the diagonal scanning pattern (c), just runs equal to zero are generated.

Among the tested patterns, the best result is obtained by the diagonal scanning,

because the respective ordering, that tends to place low-frequency coe�cients be-

fore high-frequency ones, facilitates entropy coding by concentrating the run values

around zero.

30 -6 1 -1

5 1 0 0

-1 0 0 0

0 0 0 0

Matrix of
coefficients

Scanning
patterns

encoded
(run, level) symbols

(a) (b) (c)

level run
-6 0
1 0
-1 0
5 0
1 0
-1 2

level run
5 0
-1 0
-6 1
1 0
1 2
-1 3

level run
-6 0
5 0
1 0
1 0
-1 0
-1 0

Figure 4.1: Example of run-length coding of a matrix of coe�cients using three
distinct scanning patterns.
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The example shown in Figure 4.1 allows concluding that an appropriate ordering

of the values before applying run-length coding impacts the final compression per-

formance. The next section presents some of the scanning solutions used in several

image and video coding standards.

4.2 DCT coe�cients scanning in available stan-

dards

As far as the 2D case is concerned, e↵ective scanning modes exist and have been

largely used in several image and video coding standards. The JPEG image coding

standard employs the classic zig-zag scanning of the 2D-DCT coe�cients of 8 ⇥ 8

blocks [3]. This scanning pattern consists in scanning the coe�cients in a direction

perpendicular to the diagonal of the block starting from the lowest frequency coe�-

cient at the top left and finishing at the highest frequency coe�cient in the bottom

right, alternating the orientation at every iteration. This so-called zig-zag scanning

pattern is shown in Figure 4.2.

Figure 4.2: Classic zig-zag scanning pattern used in JPEG standard.

MPEG-2 Video [26] also employs 2D-DCT and uses the same zig-zag scanning

pattern for progressive video frames. However, for the fields of interlaced frames or

the fields of progressive frames converted from interlaced content, vertical frequencies

tend to have higher energies than the horizontal ones, since the field is vertically

sub-sampled from the original content. This means that non-zero coe�cients tend

to be concentrated at the top and towards the left side of the block. In order to

visit the coe�cients with larger energies first, such block should be scanned with a

variation of the classic zig-zag pattern, depicted in Figure 4.3.
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Figure 4.3: Zig-zag pattern variation for field scanning used in MPEG-2 Video
coding standard.

In H.264/AVC [20] standard, currently the most popular video coding solution,

the same MPEG-2 Video standard scanning patterns are still used for the 8 ⇥ 8

DCT. However, H.264/AVC also employs 4 ⇥ 4 transforms, the scanning patterns

shown in Figure 4.4 are also used.

(a) Progressive scan (b) Field scan

Figure 4.4: Zig-zag pattern variation for field scanning used in H.264/AVC standard.

HEVC [21] is the successor of H.264/AVC and one of the most e�cient video

codecs nowadays. HEVC employs transforms in square regions called transform

blocks (TB) whose sizes ranging from 4 ⇥ 4 to 32 ⇥ 32, varying in powers of two.

However, the coe�cients scanning in larger TBs is performed in 4 ⇥ 4 by 4 ⇥ 4

transform sub-blocks (TSBs), originated from the non-overlapping decomposition of

the TB [27]. Such a decomposition is possible since the TB sizes are always multiple

of four. The three scanning patterns used are depicted in Figure 4.5. Di↵erently

from previous standards, the scanning starts at the bottom-right coe�cient and ends

in the top left coe�cient. The first possibility is a horizontal pattern which scans

the rows of the block from the bottom to the top, as depicted in Figure 4.5 (a).

The second possibility is the vertical pattern shown in Figure 4.5 (b) which scans

the columns of the block from the bottom to the top. The last possibility is the
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diagonal scan illustrated in 4.5 (c), which scans the blocks coe�cients in diagonal

direction from the right to the left. For inter coded blocks, a diagonal scan is used

for all block sizes. For intra coded blocks of size 4⇥ 4 or 8⇥ 8, the three scanning

patterns diagonal, horizontal, and vertical are available. The applicable scanning

pattern depends on the direction of the intra prediction mode. For blocks of size

16⇥ 16 and 32⇥ 32, only the diagonal scan is applied.

(a) Horizontal (b) Vertical (c) Diagonal

Figure 4.5: Scanning patterns used in HEVC standard.

The several scanning modes for 2D-DCT presented in this section should serve

as inspiration for the design of novel scanning modes to be used with the 4D-DCT.

However, the extension of 2D scanning patterns to 4D is far from obvious, since the

4D space allows for a much richer set of scanning patterns.

As discussed in this section, the definition of the scanning patterns should be

driven by the distribution of energy among the transform coe�cients. The typical

2D-DCT coe�cients energy distributions for images and video are well known and

have been widely discussed in the literature [28]. However, very few information

can be found about the energy distribution of 4D-DCT coe�cients when applied to

light fields. In the next section, an analysis of the energy distribution of 4D-DCT

coe�cients for light fields from the JPEG Pleno dataset is performed, whose results

will enable the future design and proposal of scanning patterns for the 4D-DCT

coe�cients.

4.3 4D-DCT coe�cients energy distribution anal-

ysis

The objective of the transform coe�cients scanning process is to generate an or-

dered list of coe�cients such that the coe�cients with higher energy are placed be-

fore those with lower energy as this helps improving the final rate-distortion (RD)

performance. To make a proper design of the 4D scanning modes for light field

4D-DCT coe�cients, it is important to first understand the nature of the light field
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data to be 4D-DCT compressed. In this section, this goal is targeted by analyzing

the energy distribution of the 4D-DCT coe�cients of representative light fields.

The light fields in the JPEG Pleno dataset described in Section 2.4.1 may be

divided in tree types: the lenslet dataset, the HDCA dataset and the synthetic

dataset. As observed in Chapter 3, light fields acquired with lenslets light field

cameras tend to have an inter-view redundancy much larger than the intra-view

one, with the opposite happening for the HDCA light fields which tend to have an

intra-view redundancy much larger than the inter-view one; on the other hand, the

synthetic light fields from JPEG Pleno dataset tend to have equivalent intra and

inter-view redundancies. Therefore, the 4D-DCT scanning patterns that are most

e�cient for lenslets light fields may be di↵erent from the ones most e�cient for the

HDCA and synthetic light fields.

In this section, the energy distribution of the 4D-DCT coe�cients for one lenslet

light field (Bikes), one HDCA light field (Set2 2K Sub) and one synthetic light field

(Greek) are analyzed. Appendix B presents more extensive results of energy distri-

bution for the remaining light fields in JPEG Pleno dataset. The energy distribution

computation is carried out as the following steps, presented in Figure 4.6:

1. Block extraction: 4D blocks of size 8⇥8⇥8⇥8 are extracted from the input

light field (while this size has been chosen because its DCT can be e�ciently

computed, the specific block size should not a↵ect the overall conclusions);

2. 4D-DCT: A separable 4D-DCT as described in Section 3.1 is applied to each

4D block of luminance samples;

3. Coe�cient energy estimation: The energy of each 4D-DCT coe�cient is

estimated as the variance computed over all the blocks in a light field for each

4D-DCT coe�cient position [28].

Block 
extraction

4D-DCT
Coefficient

energy
estimation

Light
field

Energy
distribution

Figure 4.6: 4D-DCT coe�cients energy distribution estimation pipeline.

Figure 4.7 shows the energy distribution of the 4D-DCT coe�cients for the lenslet

(Bikes), HDCA (Set2 2K sub) and synthetic (Greek) light fields. The coordinates

(s, t) correspond, respectively, to the horizontal and vertical coordinates of a view

in the array and the coordinates (u, v) to the horizontal and vertical coordinates of

a sample within a view. In Figure 4.7 (left), the 4D structure is represented as a

2D array of s⇥ t slices, each slice indexed by the coordinates (u, v), while in Figure
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4.7 (right) it is represented as a 2D array of u⇥ v slices, each slide indexed by the

coordinates (s, t).
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(a) Light field Bikes.
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(b) Light field Set2 2k Sub.
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(c) Light field Greek.

Figure 4.7: Energy distribution estimation for the 4D-DCT coe�cients of three
types of light fields.

The analysis of Figure 4.7 (a) leads to the conclusion that, for the lenslet light

field Bikes, the energy decay is much slower along the (u, v) coordinates than along

the (s, t) coordinates, which is coherent with the already mentioned fact that, for
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the lenslet light fields, the inter-view redundancy is larger than the intra-view redun-

dancy. Thus, in order to boost the probability of having the larger energy coe�cients

scanned before the lower energy ones, the scanning must be performed according to

the representation in Figure 4.7 (a, right), that is, by scanning the coe�cients (u, v)

within each view in an inner loop, and scanning each view (s, t) in an outer loop;

this is the consequence of a larger inter- than intra-view redundancy.

In Figure 4.7 (b), it is possible to observe that, for the HDCA light field Set2

2K sub, the roles of dimensions (s, t) and (u, v) are reversed, and thus the scanning

should be performed di↵erently and according to the configuration in Figure 4.7 (b,

left), the inner scanning loop being on the dimensions (s, t); this is the consequence

of a larger intra- than inter-view redundancy.

Finally, Figure 4.7(c) shows that, for the light field Greek, the 4D-DCT coe�-

cients show equivalent energy decay patterns along the (u, v) and (s, t) coordinates,

and thus a good scanning pattern for the light field Greek, i.e., one in which the

larger energy coe�cients are visited earlier, is one where the coe�cients are scanned

within hyperplanes perpendicular to the diagonal of the hyper-parallelepiped. The

complete set of results, also including the other light fields in JPEG Pleno dataset,

are available in Appendix B. In the sequel, di↵erent 4D-DCT scanning modes are

proposed to be selected as appropriate to maximize the RD performance of 4D-

DCT-based light field codecs using run-length coding.

4.4 4D-DCT coe�cients scanning modes design

This section presents the proposed scanning modes for the 4D-DCT coe�cients,

which are extensions to 4D of the scanning modes used by image and video coding

standards presented in Section 4.2. The energy distributions presented in Section 4.3

play a fundamental role in the design process, as the main scanning process objective

is reordering the coe�cients in a decreasing order according to their energy.

The design of the 4D-DCT scanning modes follows a hierarchical approach. The

starting point is the 4D hyperparallelepiped, as shown in Figure 4.8. This 4D

hyperparallelepiped can be scanned using a pattern called 4D diagonal or it can be

partitioned into lower dimensional structures. One possibility is the decomposition

into a linear array of 3D parallelepipeds, as shown on the left of Figure 4.8. Other

possibility is the decomposition into a two-dimensional array of 2D rectangles, as

depicted on the right of Figure 4.8.
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4D 
hyperparallelepiped

(t×s×v×u)

4D
diagonal

Scan as 1D array
of 3D parallelepipeds

u 
 (t×s×v)

v
(t×s×u)

s
(t×v×u)

Scan as 2D array
of 2D rectangles

t 
(s×v×u)

(t×s)
(v×u)

(t×v)
(s×u)

(t×u)
(s×v)

Figure 4.8: Three scanning possibilities for a 4D hyperparallelepiped: 4D diagonal,
1D array of 3D parallelepipeds or 2D array of 2D rectangles.

Next, the process proceeds to its second level. The 3D parallelepipeds generated

in the previous level can be scanned using a pattern called 3D diagonal or can be

further partitioned into lower dimensional structures, as shown in Figure 4.9. The

only possibility of decomposition is into a linear array of 2D rectangles. At the

same level, each 2D rectangle in the two-dimensional array can be scanned using

a pattern called 2D diagonal or can be further partitioned into one-dimensional

structures, corresponding to scanning its lines or columns. The patterns used in a

rectangle are similar to the ones depicted in Figure 4.5, just changing the orientation

of the scan to start in the top-left and end in the bottom-right coe�cients.

3D 
parallelepiped

(t×s×v)

3D
diagonal

Scan as 1D array
 of 2D rectangles 

t 
 (s×v)

s
(t×v)

v
(t×s)

Figure 4.9: Two scanning possibilities for a 3D parallelepiped: 3D diagonal or linear
array of rectangles.

In the third and last level, the rectangles generated from the decomposition

of a parallelepiped can be scanned using the same vertical, horizontal or diagonal

patterns employed in the scanning of the rectangles generated in level 2. Thus, all

possibilities of scanning the 4D hyperparallelepiped are covered. In the sequel, each

scanning pattern is described and implementations using pseudocode are presented.
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4.4.1 4D diagonal scanning mode

Following the previous demonstration that di↵erent scanning patterns are needed,

a set of 4D-DCT scanning modes to be used for light field coding is here proposed,

starting with the 4D diagonal scanning, regarded as an extension to 4D of the 3D

diagonal scanning, which is itself an extension of the 2D diagonal/zig-zag scanning.

The non-diagonal 4D patterns are defined as combinations of the 3D diagonal, 2D

horizontal, 2D vertical and 2D diagonal patterns.

In the 2D diagonal scanning mode, the coe�cients are scanned along a direction

perpendicular to the main diagonal of the coe�cients’ matrix, that is, the direction

along which the sum of the coordinates of each coe�cient is equal to a constant, as

depicted in Figure 4.5 (c) for a 4⇥ 4 block.

The 3D diagonal scanning mode of a parallelepiped of coe�cients is an extension

of the 2D diagonal scanning mode to 3D where the coe�cients are scanned along

planes perpendicular to the main diagonal of the 3D parallelepiped. Such planes

are characterized by the constraint x + y + z = c on the coe�cients coordinates

(x, y, z). Figure 4.10 (a) depicts a section of the 3D diagonal scanning mode for a

4 ⇥ 4 ⇥ 4 block of coe�cients, where the highlighted blocks respect the constraint

x+ y + z = 4, while Figure 4.10 (b) shows the full scanning order for the block.
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(a) Diagonal plane for x+ y + z = 4 and respective scanning order within the plane.

64
18

15 16

11 12 13 14

17

19

20

x
y

z 24

28

31 32

25

21 22 23

26

29 30

27

10

8

5 6 7

94

2 31

62 63

61

58

56

59 60

57

55

38

42

35

39

43

36

33 34

37

40

44

41 51 52 53

48

46

49 50

47

45

54

(b) All diagonal planes and respective scanning order.

Figure 4.10: 3D diagonal scanning of a 4⇥ 4⇥ 4 parallelepiped.

Likewise, the 4D diagonal scanning mode may be derived from the 3D one by

scanning the coe�cients along hyperplanes orthogonal to the main diagonal of the

4D hyperparallepiped. These hyperplanes are characterized by a t + s + v + u =

c constraint on the coe�cients coordinates (t, s, v, u). Algorithm 1 generates the
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ordered list of 4D-DCT coe�cients corresponding to the 4D diagonal scanning mode.

It does so by scanning each coordinate independently (in the order u, v, s, t) while

adding to the list only the coordinates satisfying the restriction of belonging to the

hyperplane characterized by t + s + v + u = sum (line 9 of Algorithm 1). The

value sum varies from 0 to (sizet + sizes + sizev + sizeu), where size<k> is the

size of the block in the dimension k. Although each coe�cient has to be visited

(size t + size s + size v + size u) times to create the list (line 2 of Algorithm 1),

this does not impact the coding execution time adopting this scanning mode as the

positions scanning sequence can be generated o✏ine (this means in advance before

the real coding). In addition, Algorithm 1 has the advantage to be easily adapted

for scanning surfaces other than hyperplanes. For example, if scanning along a

hyperspherical surface is desired, it su�ces to change the conditional statement in

line 9 of Algorithm 1 to x2 + y2 + z2 = sum2.

Algorithm 1 4D diagonal scanning mode

1: procedure 4DDiagonalScanning(size t, size s, size v, size u)
2: max sum size t+ size s+ size v + size u
3: scanning order  []
4: for sum in [0,max sum] do
5: for t in [0, size t] do
6: for s in [0, size s] do
7: for v in [0, size v] do
8: for u in [0, size u] do
9: if (t+ s+ v + u) = sum then

10: scanning order.append( {t, s, v, u} )
11: end if
12: end for
13: end for
14: end for
15: end for
16: end for
17: return scanning order

18: end procedure

4.4.2 Double 2D diagonal scanning modes

As pointed out previously, the analysis of Figure 4.7 (a) suggests that good scanning

modes for the lenslet light fields are those where the inner loop is a diagonal scan

on the (u, v) dimensions and the outer loop a diagonal scan on the (s, t) dimensions,

with the reverse happening for HDCA light fields. Modes performing such type of

scanning are referred here as Double 2D diagonal modes, with the dimensions of the

inner and outer loops selected from the six possible dimension permutations. Figure
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4.11 illustrates a Double 2D diagonal scanning mode with the inner diagonal in the

(v, u) coordinates and the outer diagonal in the (t, s) coordinates for a hypercube of

size (t, s, v, u) = (3, 3, 3, 3). Algorithm 2 contains an implementation of the scanning

mode with same choice of dimensions for the inner and outer diagonals. Besides the

four loops used to scan the dimensions of the 4D block, the algorithm requires other

two loops to perform the inner and outer diagonals. The conditional statement

found in line 11 of Algorithm 2 verifies that the sum (t + s) is equal to the outer

sum and the sum (v + u) is equal to the inner sum, ensuring the double diagonal

scan.

There are six possibilities of arranging the four dimensions of the block into two

groups of two, since the order of the dimensions in the diagonal scanning is not

relevant, corresponding to 4!/[(4 � 2)! · 2!] = 6 possibilities. The other Double 2D

diagonal modes are created by simply interchanging the dimensions in Algorithm 2.

The Double 2D diagonal scanning modes are listed in Table 4.5.

t=0, s=1

t=1, s=0

t=0, s=0

u

v

u
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t=2, s=0

u

v

t=0, s=2

u

v

t=1, s=2

t=2, s=2

t=2, s=1

Figure 4.11: Example of double 2D diagonal scanning mode for a (t, s, v, u) =
(3, 3, 3, 3) hypercube: inner diagonal in (v, u) and outer diagonal in (t, s).

4.4.3 1D Directional with 3D diagonal scanning modes

In Figure 4.11, the 4D block is represented as a 2D array of rectangles. The four di-

mensions can be also represented as an one-dimensional array of 3D parallelepipeds.

The scanning mode referred as 1D Directional with 3D diagonal consists in splitting

the 4D block into parallelepipeds and performing a 3D diagonal scan into them.

Figure 4.12 shows the 3D diagonal scan in s, u and v dimensions and a directional

scan in the t dimension for a 4D block of size (t, s, v, u) = (3, 4, 4, 4). For t = 0,

38



Algorithm 2 Double 2D diagonal scanning mode

1: procedure Double2DDiagonalScanning(size t, size s, size v, size u)
2: outer max sum size t+ size s
3: inner max sum size v + size u
4: scanning order  []
5: for outer sum in [0, outer max sum] do
6: for inner sum in [0, inner max sum] do
7: for t in [0, size t] do
8: for s in [0, size s] do
9: for v in [0, size v] do

10: for u in [0, size u] do
11: if (t+ s) = outer sum and (v + u) = inner sum then
12: scanning order.append( {t, s, v, u} )
13: end if
14: end for
15: end for
16: end for
17: end for
18: end for
19: end for
20: return scanning order

21: end procedure

the cube is depicted sliced into planes that are perpendicular to its space diagonal

and the numbers indicate the respective scanning order within the cube. There are

four distinct ways to arrange the dimensions of a 4D hyperparallelepiped into sets

of three diagonally scanned dimensions with one directionally scanned. Algorithm

3 contains an implementation in pseudocode of a scanning mode performing a 3D

diagonal scan in (s, v, u) and a directional scan in t. The other three scanning modes

are generated by interchanging any of s, u, or v dimensions and t. The scanning

modes are listed in Table 4.3.
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Figure 4.12: Example of diagonal 3D plus directional scanning mode for a 4D block
of size (t, s, v, u) = (3, 4, 4, 4): 3D diagonal in (s, v, u) and directional in t.

Algorithm 3 3D diagonal plus directional scanning mode

1: procedure 3D Diagonal+DirectionalScanning(size t, size s, size v, size u)

2: max sum size s+ size v + size u

3: scanning order  []

4: for t in [0, size t] do

5: for sum in [0,max sum] do

6: for s in [0, size s] do

7: for v in [0, size v] do

8: for u in [0, size u] do

9: if (s+ v + u) = sum then

10: scanning order.append( {t, s, v, u} )

11: end if

12: end for

13: end for

14: end for

15: end for

16: end for

17: return scanning order

18: end procedure
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4.4.4 2D Directional with 2D diagonal scanning modes

The 2D directional with 2D diagonal scanning pattern consists in performing a 2D

diagonal scan in two dimensions and a directional scan in the remaining two. Figure

4.13 shows an example of a 2D diagonal scan in (u, v) and the directional scan first in

t and then in s. Algorithm 4 contains an implementation of such scanning mode in

pseudocode. The 12 di↵erent ways to scan the 4D block following the 2D Directional

with 2D diagonal pattern are listed in Table 4.2.

t=0, s=1

t=1, s=0

t=0, s=0

u

v

t=2, s=0

t=0, s=2

t=1, s=2

t=2, s=2

t=2, s=1

Figure 4.13: Example of 2D Diagonal 2D plus directional scanning mode for a 4D
block of size (t, s, v, u) = (3, 3, 3, 3): diagonal in (u, v) dimensions and directional
first in t and after in s.
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Algorithm 4 2D diagonal plus directional scanning mode

1: procedure 2DDiagonal+DirectionalScanning(size t, size s, size v, size u)

2: max sum size v + size u

3: scanning order  []

4: for s in [0, size s] do

5: for t in [0, size t] do

6: for sum in [0,max sum] do

7: for v in [0, size v] do

8: for u in [0, size u] do

9: if (v + u) = sum then

10: scanning order.append( {t, s, v, u} )

11: end if

12: end for

13: end for

14: end for

15: end for

16: end for

17: return scanning order

18: end procedure

4.4.5 Directional scanning modes

The last scanning modes proposed are the Directional, in which the 4D block dimen-

sions are scanned sequentially. Figure 4.14 shows the scanning order defined by the

directional scanning u! s! v ! t for a 3⇥ 3⇥ 3⇥ 3 block. First, the coe�cients

along the u dimension are scanned. When the end of a line is reached, the line at

same position in the next (u, v) rectangle is scanned, incrementing the s dimension.

When all first lines in (u, v) rectangles for s = 0 are scanned, the second line of the

same views are scanned, which corresponds to incrementing the v dimension. At the

point the first line of (u, v) rectangles are fully scanned, the process is repeated for

the second line of (u, v) rectangles, corresponding to incrementing the t dimension.

The process is similar for all directional modes derived from the directional pattern,

only the scanning order of the dimensions is changed.

Algorithm 5 shows an implementation in pseudocode of the directional scanning

mode u ! s ! v ! t. There are four nested for loops scanning each block’s

dimension. The inner loops must contain the dimensions that are scanned earlier.

There are 24 di↵erent ways of scanning the dimensions a 4D block, corresponding to

the permutation 4P4 = 4! = 24. Table 4.1 lists all the directional scanning modes.
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Figure 4.14: Example of directional scanning mode for a (t, s, v, u) = (3, 3, 3, 3) 4D
block: scanning order u! s! v ! t.

Algorithm 5 Directional scanning mode u! s! v ! t

1: procedure DirectionalScanning(size t, size s, size v, size u)

2: scanning order  [ ]

3: for t in [0, size t] do

4: for v in [0, size v] do

5: for s in [0, size s] do

6: for u in [0, size u] do

7: scanning order.append( {t, s, v, u} )

8: end for

9: end for

10: end for

11: end for

12: return scanning order

13: end procedure

4.4.6 Full set of scanning modes

The full set of proposed scanning modes is described in Tables 4.1 to 4.5. The 12

scanning modes composed by combinations of a 2D directional and a 2D diagonal

scanning patterns, numbered from 24 to 35, as shown in Table 4.2. The four modes

formed by combining a 1D directional and a 3D diagonal pattern are given numbers
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from 36 to 39 and are shown in Table 4.3. The index 40 is reserved to the 4D diagonal

scanning mode (Table 4.4) while the remaining indexes up to 46 are assigned to the

double 2D diagonal modes, identified in Table 4.5. The 24 directional scanning

modes and indexed from 0 to 23, as shown in Table 4.1.

Table 4.1: Directional scanning modes and respective assigned indexes.

Mode Scanning Order

– 1st 2nd 3rd 4th

0 T S V U

1 T S U V

2 T V S U

3 T U S V

4 T V U S

5 T U V S

6 S T V U

7 S T U V

8 V T S U

9 U T S V

10 V T U S

11 U T V S

Mode Scanning Order

– 1st 2nd 3rd 4th

12 S V T U

13 S U T V

14 V S T U

15 U S T V

16 V U T S

17 U V T S

18 S V U T

19 S U V T

20 V S U T

21 U S V T

22 V U S T

23 U V S T

Table 4.2: 2D Directional with 2D diagonal scanning modes and respective assigned
indexes.

Mode Scanning Order

– Diagonal 2D 3rd 4th

24 VU T S

25 SU T V

26 SV T U

27 TU S V

28 TV S U

29 TS V U

Mode Scanning Order

– Diagonal 2D 3rd 4th

30 VU S T

31 SU V T

32 SV U T

33 TU V S

34 TV U S

35 TS U V
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Table 4.3: 1D Directional with 3D diagonal scanning modes and respective assigned
indexes.

Mode Scanning Order

– Diagonal 3D 4th

36 SVU T

37 TVU S

38 TSU V

39 TSV U

Table 4.4: Diagonal 4D scanning mode assigned index.

Mode Scanning Order

– Diagonal 4D

40 TSVU

Table 4.5: Double 2D diagonal scanning modes and respective assigned indexes.

Mode Scanning Order

– Inner diagonal 2D Outer diagonal 2D

41 TS VU

42 TV SU

43 SV TU

44 TU SV

45 SU TV

46 VU TS

4.5 4D-DCT scanning modes assessment

The proposed 4D-DCT scanning modes are assessed by comparing their energy

compactness capabilities, this means how fast the energy accumulates as the scan-

ning proceeds. Starting from the coe�cients energy estimation procedure shown in

Section 4.3, the assessment of each scanning mode is based on the following steps

(Figure 4.15):

1. Scanning: The 4D-DCT coe�cients are ordered according to each proposed

scanning mode;
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2. Cumulative energy (CE) computation: The ordered 4D-DCT coe�cients

are visited in scanning sequence, creating a curve of the cumulative energy.

Energy values are expressed in percentage.

3. Integral of cumulative energy (ICE) computation: The percent cu-

mulative energies along the scanning path are added, what is equivalent to

computing the integral/area under the cumulative energy curve. Since the

first cumulative energy has only the contribution of the first coe�cient, the

second contributions of the first and second coe�cients, and so on, then the

cumulative energy CEk for the k-th scanned coe�cient contributes N � k + 1

times for the ICE computation, according to the expression

ICE =

PN
k=1(N � k + 1)CEkPN

k=1 CEk

(4.1)

Therefore, the scanning modes with the larger energies CEk being scanned

earlier (smaller k), will create a CE curve growing faster and, finally, yielding

larger ICE values.

Scanning
Cumulative

sum
IntegrationEnergy

distribution

Integral of 
Cumulative 

energy (ICE)

Ordered
energy

Cumulative 
energy (CE)

Figure 4.15: Energy compactness performance assessment pipeline.

Figure 4.16 (left) shows the CE curve (%) for all the proposed scanning modes

and Figure 4.16(right) shows the corresponding ICE for the various scanning modes

for the light fields Bikes (a), Set2 2k Sub (b) and Greek (c). More extensive CE

results for the light fields in the JPEG Pleno dataset can be found in Appendix B. As

expected from Figure 4.7 (a), the results for Bikes show that the directional scanning

modes with inner loop in the (u, v) dimensions achieve higher ICE values than the

modes with inner loop in the (s, t) dimensions. Indeed, for this light field, the best

mode is the one with index 46, corresponding to the double 2D diagonal mode with

inner loop in (u, v) and outer loop in (t, s). The 4D diagonal mode, identified by

index 40 and shown as a black dot in the plot, presents a near-optimal performance.

Among the 24 directional modes with indexes ranging from 0 to 23, those which scan

first (u, v) dimensions presented better performance than the others. This confirms

the results shown in Chapter 3: lenslets light fields have more inter-view than intra-

view redundancy; consequently the energy will be more distributed along intra view
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(u, v) dimensions. These dimensions should, therefore, be scanned before than the

dimensions (s, t).
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Figure 4.16: Left: Cumulative energy curve versus the order in the scanning list.
Right: Integral of cumulative energy (ICE) for the 47 scanning modes – light fields
Bikes, Set2 2k Sub and Greek.

The results for Set2 2k Sub are also those expected according to Figure 4.7 (b).

The directional scanning modes with inner loop in the (s, t) dimensions achieve ICE
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values larger than the modes with inner loop in the (u, v) dimensions. Indeed, for

this light field, the best mode is the one with index 41, corresponding to the double

2D diagonal mode with inner loop in (s, t) and outer loop in (u, v). Among the 24

directional modes with indexes ranging from 0 to 23, those scanning firstthe (s, t)

dimensions presented better performance than tho others. This also confirms the

results shown in Chapter 3: HDCA light fields have more intra-view than inter-view

redundancy; consequently the energy will be more distributed along inter view (s, t)

dimensions. These dimensions should, therefore, be scanned before than (u, v).

Finally, Figure 4.16 (c) depicts the results for Greek. The best scanning mode

according to ICE is the one with index 40, the 4D diagonal mode. As for Bikes and

Set2 2K Sub, this result is consistent with the energy distribution shown in Figure

4.7. Since the energy decays along the (u, v) and (s, t) dimensions are equivalent,

the 4D diagonal mode is able to visit the higher energy coe�cients earlier than the

lower energy ones.

Next chapter proposes a simple light field codec based on 4D-DCT, run-length

coding and arithmetic coding. An experiment will be performed by integrating the

designed scanning modes into the proposed codec. Results are expected to show that

the RD performance improves when the scanning modes corresponding to larger ICE

values are used.
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Chapter 5

Proposing a 4D-DCT based light

field coding solution

As discussed in Chapter 2, the light field coding can be performed in di↵erent

ways such as using available image or video coding standards after restructuring

the light field data or extending available coding solutions, adding the capability

of exploiting the new kind of redundancy. However, the best light field coding

performance is expected to be achieved by novel coding solutions, which are more

specifically adapted to the unique characteristics of light field imaging data. Chapter

3 has shown that light fields present a significant amount of 4D redundancy, formed

jointly by inter-view and intra-view portions which are likely to result in better

coding performance if exploited as a whole rather than separately.

In this context, this chapter proposes a light field coding solution, which is called

Multidimensional Light field encoder with Transform and Diagonal scanning (MuLE-

TD). First, an overview of the proposed coding architecture is presented in Section

5.1 whereas Section 5.2 describes each framework coding tool in detail. In the sequel,

Section 5.3 presents the RD-based assessment of the scanning modes proposed in

Chapter 4. Finally, Section 5.4 presents MuLE-TD assessment conditions, results

and analysis.

5.1 Architecture overview

This section presents an overview of the architecture of the proposed MuLE-TD

light field codec which combines 4D-DCT computation, coe�cient scanning and run-

length encoding. The proposed coding solution has a pipeline similar to the classic

JPEG image coding standard. In brief, JPEG extracts 8⇥ 8 blocks of image pixels

and applies a 2D-DCT of same size. The AC transform coe�cients are quantized

using a quantization matrix and then are scanned using the zig-zag scanning depicted
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if Figure 4.2. In the sequel, the non-zero AC coe�cients are encoded using run-length

encoding while DPCM is used in DC coe�cients. The run-length symbols are coded

using Hu↵man codes [3].

Likewise the JPEG standard, the proposed light field coding solution follows a

block based approach, coding independently each channel of the input light field.

In MuLE-TD, 4D blocks are extracted from the input light field and the 4D-DCT

is applied. The transform coe�cients are quantized using linear quantization and

scanned with one of the modes presented in Section 4.4. In the sequel, transform

coe�cients are encoded using run-length coding and the resulting symbols are coded

using arithmetic coding. A block diagram of the proposed light field coding solution

is shown in Figure 5.1

Trasmission/storage
Input

light field
Light field 
encoder

Light field 
decoder Decoded

light field

Arithmetic
encoding

Run-length
encoding

ScanningQuantization4D-DCT

Arithmetic
decoding

Run-length
decoding

Inverse
scanning

Reconstruction 4D-IDCT

4D block 
extraction

Block 
insertion

Figure 5.1: Block diagram of the proposed light field coding solution.

5.1.1 Encoding

• 4D block extraction: As a first step, 4D blocks of fixed size are read from

the input light field data. The codec input consists in several 10-bit PGM raw

image files, corresponding to the Y, Cb and Cr channels of the sub-aperture

views. MuLE-TD encodes each light field channel independently. The extrac-

tion of a 4D block at position (t, s, v, u) of size (st, ss, sv, su) requires extracting

a rectangular region of size (sv, su) from st ⇥ ss views. This is the first chal-

lenging step, since the number of simultaneous open files may become greater

than the limit stablished for most operational systems. Constantly opening,

closing and performing seek operations within input files results in delays and
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poor computing performance. The proposed encoder implements a sequential

reading of the input files using a circular bu↵er scheme. Only the view files

currently in use are maintained open and 4D block extraction module reads

the images lines to the end and keep them in memory, for fast posterior access.

• 4D-DCT: The 4D discrete cosine transform of the data is computed. A

separable transform is used so the 4D transform is achieved by sequentially

applying an one-dimensional transform in each dimension, as described in

Section 3.1. This step is the most computationally complex of the framework.

The 4D transform for several blocks is performed in parallel, to take advantage

of the multi-core architecture present in most modern computer systems.

• Quantization: The transform coe�cients are quantized using linear quanti-

zation. The process introduces irreversible losses as it maps values that have

a wide dynamic range to a narrower one. As the transform applied in previ-

ous step has the property of energy compaction, most of the high frequency

quantized coe�cients have values equal to zero.

• Scanning: The quantized transform coe�cients are scanned to give raise to

a linear array. The scan order is intended to group together non-significant

coe�cients generating longs runs of zeros, which can be e�ciently represented

using run-length coding. The proposed coding solution implements novel scan-

ning patterns for 4D-DCT coe�cients described in Section 4.4.

• Run-length encoding: The quantized coe�cients reordered according to the

4D scanning modes are encoded using run-length technique. Each symbol is

formed by a pair (run, length) in which run represents the number of zeros

that precede the non-zero coe�cient, and length is the number of bits required

to represent the quantized amplitude.

• Arithmetic coding: Finally, in the last step of the encoder pipeline, the en-

tropy coding of the run-length symbols is performed using an adaptive arith-

metic encoder. The arithmetic coding is a lossless compression process which

targets to e�ciently represent the symbols and code them into the bitstream,

which can be stored in a file or transmitted.

5.1.2 Decoding

The steps of the decoding pipeline can be seen in Figure 5.1, in the right. The

decoding process basically applies inverse operations used in the encoding pipeline,

in reverse order. In brief, codewords are extracted from the bitstream and run-

length symbols are recovered. The run-length decoding gives raise a linear array of
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quantized transform coe�cients. The inverse scanning reorganizes the coe�cients

in a 4D block and the inverse quantization is performed. In the sequel, the inverse

4D-DCT is applied, resulting in a 4D block of samples which is inserted into the

output decoded light field. In next section, the MuLE-TD coding tools are described

in more detail.

5.2 Coding tools

5.2.1 4D-DCT transform

The 4D-DCT transform is performed as described in Section 3.1, by applying sepa-

rable one-dimensional transforms successively in t, s, v and u dimensions, following

the flow depicted in Figure 3.1. No fixed-point DCT approximations or fast imple-

mentations are used, since the choice of transform size is completely free. Rather,

the transforms are computed in double precision floating arithmetic, from the defi-

nition shown in Equation 3.1. The four DCT matrices to be used in t, s, v and u

dimensions are computed once at the beginning of the encoding process, to avoid

recurrent and complex double precision cosine computations. Thus, transforming

operations come down to matrix multiplications.

5.2.2 Transform coe�cients Scanning

The transform coe�cients are scanned using one of the 47 modes described in Chap-

ter 4 and identified in Tables 4.1 to 4.5. As for DCT matrices, the scanning order

is computed once at the beginning of the codec execution, prior to encoding pro-

cess, aiming at reducing complexity. The codec receives the index of the scanning

mode to be used via configuration file. The default value is 40, corresponding to 4D

diagonal scanning mode, as shown in Table 4.4.

5.2.3 Run-length coding

The linear array of quantized coe�cients are submitted to the next step in codec

pipeline which is the run-length encoding. To facilitate the graphic representation,

Figure 5.2 illustrates the run-length encoding process for a 2D block of quantized

transform coe�cients. The process for a 4D block is analogous. The input of the

run-length encoder is the quantized transform coe�cients, previously rearranged

in a one dimensional array according to a given scanning mode. The run-length

encoder scans this linear array and counts the number of zeros before each nonzero

coe�cient, generating a pair (run, length) in which the run represents the count of

zeros before the nonzero coe�cient and length is the number of bits necessary to
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represent the amplitude of respective quantized coe�cient, as shown in the table in

the bottom os Figure 5.2. Each symbol is composed by two tokens: the first is the

(run, length) pair and the second is the amplitude of the coe�cient [3]:

token-1 token-2

(run, length) (amplitude)

538 340 0

54 5 0 0

3

0

1 0

2

1 0 0

Scanning
Pattern

Quantized
 coefficients

538 5434 3 5 0

2

0 00 11 00 00

Scanned quantized
 coefficients

Run-length encoded 
quantized coefficients

LengthRun of zeros Amplitude bits

130 1000011010

100 110110

90 10010

20 11

30 101

21 10

13 1

10 1

Coefficient

538

54

34

3

5

2

1

1

Figure 5.2: Example of run-length encoding.

The number of possible run-length pairs will be the product of the maximum

possible length lengthmax and the maximum possible run of zeros runmax. The

runmax is limited by the total number of coe�cients in the 4D block, e.g. for a

block of dimensions (St, Ss, Sv, Su) an upper limit for the run of zeros is runmax =

St · Ss · Sv · Su. In MuLE-TD the runmax is specified as an input parameter of the

encoder. By limiting the possible run of zeros, the final number of possible symbols

is consequently reduced which improves the performance of the arithmetic coder,

the next step in the encoding pipeline.

The maximum value of length depends on the quantization step qstep and the

dynamic range of the transform coe�cients which, in turn, depends on the dynamic

range of the pixels in the input light field and the size of the transform. If the bit

depth of the input light field is Bd, the maximum value of a pixel is given by:

pmax = 2Bd � 1. (5.1)
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The transform coe�cients, in absolute value, are not expected to exceed the value

of the DC coe�cient of a transformed matrix resulted from the application of the

4D-DCT in the 4D matrix

Mmax = pmax Jt⇥s⇥v⇥u (5.2)

where Jt⇥s⇥v⇥u is the 4D all-ones matrix. So the maximum absolute value of a

transform coe�cient is DCmax given by

DCmax = DC(T4D(Mmax)) (5.3)

whereT4D operator corresponds to applying the separable 4D-DCT and the operator

DC means selecting the coe�cient at position (0, 0, 0, 0) of the 4D matrix. So the

maximum length, in bits, of a quantized transform coe�cient is given by:

lengthmax = log2(1 + DCmax/qstep) bits. (5.4)

Observing the third column of the table in the bottom of Figure 5.2 which

corresponds to the amplitude of quantized coe�cient in bits, one should note that

all values start with bit “1”. This is a rule, since if a value v is represented with n

bits, the (n� 1)th digit must be “1”, otherwise v can be represented with less than

n bits. Since the last bit is always equal to “1” it does not need to be transmitted.

MuLE-TD uses this bit to store the signal of the quantized coe�cient. The bit “1”

is used for positive values and “0” otherwise.

An extra symbol used in the run-length encoding is the EOB, which means “End

Of Block”. The symbol is inserted after the last nonzero coe�cient encoded, indicat-

ing to the decoder that there is no more significant coe�cients and the remaining

values are all equal to zero. In the case the last coe�cient in scanning order is

nonzero-valued, the EOB is not included since the decoder can infer that it has

reached the end of the block by counting the decoded coe�cients. The total number

of run-length symbols is therefore

nsym = lengthmax(runmax + 1) + 1, (5.5)

since possible values for the run of zeros rely in the interval [0, runmax] and one extra

symbol EOB is added.

The choice of runmax does not interfere in the quality of the decoded light field,

but a↵ects the final rate obtained by the codec. In order to reduce the number of free

input parameters of the codec an experiment was conduced aiming at defining the

optimal runmax as a function of transform size and qstep. The following configuration

was used in the experiment:
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• Light field data: The mosaic light fields of size t ⇥ s ⇥ v ⇥ u = 10 ⇥ 10 ⇥
384⇥ 2048 described in section 2.4.1.

• Quantization steps: The values of qstep used are [0.02, 0.035, 0.08, 0.1, 0.5,

1.3]. These values are known to produce reconstruction quality in the range

25-45 dB.

• Transform lengths: The quantity transform length is defined as the product

of the four dimensions of the transform size. The transform sizes used are

obtained by combining the three t⇥s inter-view block sizes shown in Table 5.1

with six v⇥u intra-view sizes shown in same table. The resulting 18 transform

sizes t⇥s⇥v⇥u range from 2⇥2⇥4⇥4 to 10⇥10⇥128⇥128 and the respective

transform lengths range from 2 · 2 · 4 · 4 = 64 to 10 · 10 · 128 · 128 = 1, 638, 400.

Table 5.1: Transform sizes used in the runmax determination experiment.

Inter-view

transform size

(t⇥ s)

Intra-view

transform size

(v ⇥ u)

2⇥ 2 4⇥ 4

5⇥ 5 8⇥ 8

10⇥ 10 16⇥ 16

– 32⇥ 32

– 64⇥ 64

– 128⇥ 128

• Maximum run of zeros (runmax): The values are powers of four between

4 and 16384: [4, 16, 64, 256, 1024, 4096, 16384]. The verification runmax <

transform length is made, since does not make sense to use a maximum run of

zeros greater than the transform length.

• Arithmetic encoder model: The adaptive model is used to encode run-

length symbols (see Section 5.2.4).

The first step of the experiment consists in coding the selected light field data

using all combinations of transform lengths, qstep and maximum run of zeros and

finding which maximum run of zeros result in the minimal rate for a given transform

length and qstep . The second step consists in finding a heuristic to determine the

values of runmax which will result in the minimum rate with a certain tolerance,

chosen as being of 5%. This experiment is conduced for HDCA and lenslets datasets.
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For both datasets, it is possible to define the desired runmax as a function transform

length, valid for all qstep tested.

Figure 5.3 shows plots log10(runmax) vs log10(transform length) for each qstep

tested, for Set2 2k Sub mosaic light field. The plots contain several colored horizontal

lines, one for each transform length, representing the interval of runmax values which

result in the minimal rate with a tolerance of 5%. In the graph legend box, Tuv and

Tst refer, respectively, to the transform size used in (u, v) and (s, t) dimensions. The

desired curve runmax = f(qstep, transform length) which defines the optimal runmax

as a function of qstep and transform length should cross all horizontal lines in all plots.

The slanted lines depicted in Figure 5.3 represent an example of linear function which

creates a relationship between the transform length and the maximum run of zeros

so that the codec achieves the minimum rate with the desired tolerance. The same

function is used for all qstep values, indicating that the heuristic can be a function

of transform length exclusively.

(a) qstep 0.02 (b) qstep 0.035

(c) qstep 0.08 (d) qstep 0.1
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(e) qstep 0.5 (f) qstep 1.3

Figure 5.3: Graphic representation showing runmax values for light field Set2 2K

Sub.

For the HDCA dataset, the function

log10(runmax) = 0.47 · log10(transform length) + 0.34 (5.6)

is used to define runmax as a function of transform length in order to obtain the

minimum achievable rate with a tolerance of 5%. The same experiment is performed

for lenslets dataset, resulting in the following the relationship between runmax and

transform length:

log10(runmax) = 0.41 · log10(transform length) + 0.46. (5.7)

5.2.4 Arithmetic coding

The entropy coding in MuLE-TD is performed using an arithmetic encoder [29].

The algorithm implemented is based on the mechanism presented in [30]. The

arithmetic encoder can operate in two modes regarding the probability model: fixed

or adaptive. In the adaptive mode, the model containing the symbol probabilities

is updated after encoding a symbol. The adaptive approach is able to learn the

probability distribution and reduce the overall rate by assigning shorter codewords

to more frequent symbols. The other possibility is the fixed mode, in which the

probabilities in the model remain the same during the entire encoding process.

MuLE-TD uses two probability models, one for each token generated by the

run-length encoding. The first model is used to code the (run, length) token and

the second is used to code the (amplitude) token. The pair (run, length) is indexed

jointly, using

index = run+ length · runmax. (5.8)

The option of using an adaptive model is only valid for encoding (run, length)
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tokens. The model used to encode the bits of (amplitude) token is binary with fixed

equiprobable distribution. The MuLE-TD has the following features regarding its

arithmetic coding module:

• Choice of adaptive arithmetic coding : Defines if the codec will adapt

the probability model used to code (run, length) tokens. Using an adaptive

model results in significative savings in bitrate.

• Saving arithmetic encoder model to a file : The codec has the option

of saving the final state of the probability model used to code (run, length)

tokens in a file. Saved probability models can be used for future encoding

processes.

• Use of initial arithmetic encoder model : The codec can use an initial

probability model read from an input file to code (run, length) tokens.

The choice of using a fixed or adaptive model in the arithmetic coding impacts

the random access capability of the codec. If an adaptive model is used to encode

run-length symbols for all 4D blocks, it is not possible to decode blocks in a random

order in the decoder side, since the probability distribution used to encode such block

is unknown and depends on the blocks previously encoded. If a fixed model is used,

such random access becomes feasible with the addition of some extra information

such as the position of the encoded block in the bitstream. One possibility to

obtain some degree of random access using adaptive arithmetic coding is reseting

the probability model to an initial state after encoding a group of blocks (GOB).

Hence, GOBs becomes independent to each other and the random access becomes

possible. MuLE-TD has the feature of grouping symbols from sets of 4D blocks

and defining GOBs that will be encoded using the initial model configured via

configuration file. If no GOB size configuration is informed, the entire light field is

considered one single GOB and no random access is possible if adaptive arithmetic

coding is used.
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Table 5.2: MuLE-TD settings used in GOBs performance assessment experiment.

Parameters Value

Light fields

Mosaic Bikes

Mosaic Set2 2k Sub,

Mosaic Tarot Cards

Mosaic Laboratory1

Transform size 10⇥ 10⇥ 128⇥ 128

Arithmetic encoder model Adaptive

Scanning mode 40 (4D diagonal)

Quantization steps 0.02, 0.035, 0.08, 0.1, 0.5, 1.3

GOB sizes

1⇥ 1⇥ 1⇥ 1

1⇥ 1⇥ 3⇥ 1

1⇥ 1⇥ 3⇥ 4

1⇥ 1⇥ 3⇥ 16

Figure 5.4 contains RD performance rate (bpp) vs PSNR-Y (dB) for the mosaic

light fields Lenslets, Set2 2k Sub, Tarot Cards and Laboratory1 of size t⇥s⇥v⇥u =

10 ⇥ 10 ⇥ 384 ⇥ 2048 each, as described in Section 2.4.2. The test conditions are

shown in Table 5.2. Since the transform size is 10 ⇥ 10 ⇥ 128 ⇥ 128, during the

encoding process the input light field is segmented in a 1⇥1⇥3⇥16 array of blocks.

The GOB sizes tested 1⇥1⇥1⇥1, 1⇥1⇥3⇥1, 1⇥1⇥3⇥4 and 1⇥1⇥3⇥16 result

in 48, 16, 4 and 1 GOBs, respectively. As expected, same reconstruction quality is

obtained for every point obtained by varying just the GOB sizes. Regarding the

rate, the compression becomes worse as the size of the GOBs decreases. The best

compression is obtained for the GOB size 1⇥ 1⇥ 3⇥ 16, when all light field blocks

are grouped together into a single GOB and the arithmetic encoder model is never

reset to initial state during the encoding process. For higher rates, the compression

performance is nearly the same but di↵erences increase for lower rates. The results

are similar for all light fields tested.
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(a) Mosaic Lenslets. (b) Mosaic Set2 2k Sub.

(c) Mosaic Laboratory1. (d) Mosaic Tarot Cards.

Figure 5.4: RD performance for several GOB sizes.

Some additional experiments have been performed regarding the arithmetic en-

coder, using fixed models. One of these experiments consisted in encoding a given

light field using a fixed model obtained from encoding other light field, using the

adaptive approach. In such experiment, the mosaic dataset described in Section

2.4.2 is split into two sets labeled as development and testing sets. The light fields

in development set are encoded using adaptive arithmetic encoder in a sort of “train-

ing” process and the resulting model is used to encode the light fields in testing set.

The green curve in Figure 5.5 shows the results for mosaic light field Lenslets, using

a model trained by coding the mosaic light fields Laboratory1, Tarot Cards and Set2

2K Sub. The performance obtained when using the pre-trained model is a little

worse than the performance obtained using an adaptive model. The conclusion is

that a fixed pre-trained model could be used without significant penalties in the

resulting rate. The little impact in rate can be justified by the random access ca-

pability which is acquired when a fixed arithmetic encoder model is used. A major

drawback of this approach is the need of several pre-trained models, since the num-

ber of symbols in a model depends on the transform size used, which is a free input

parameter of MuLE-TD.
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In order to overcome the need of several pre-trained models to account several

transform size choices, other experiment was conduced. It consisted in obtaining an

arithmetic encoder model m1 with N1 symbols from a pre-trained model m2 with

N2 symbols, where N2 > N1, by discarding the extra unused symbols. The model

m1 is obtained by encoding the light fields in the development set using a large

transform size, and the encoding of light fields in the testing set is performed using

a smaller transform size, which requires a model with fewer symbols. The codec RD

performance achieved in this experiment is worse than the one obtained when using

a pre-trained model for respective transform size, as shown in Figure 5.5, in red.

From this result, we conclude that the approach using GOBs is preferable since it

provides reasonable degree of random access with less penalty in the rate.

The final experiment regarding the arithmetic encoder was the encoding of a

given light field using a fixed equiprobable model. This experiment resulted in

RD performance far worse than previous experiments, suggesting that there is a

significant di↵erence in run-length symbols probabilities that should be exploited

for reducing the average bitrate. The results are shown in Figure 5.5 for mosaic

light field Lenslets.

Figure 5.5: MuLE-TD RD performance using several arithmetic encoder models for
mosaic light field Lenslets.
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5.3 RD performance-based scanning modes as-

sessment

In Chapter 4, the scanning modes are assessed according to their capability of scan-

ning the 4D coe�cients in decreasing order of energy. Now, with a complete codec

implementing such scanning modes, they can be assessed according to their capa-

bility of reducing the final rate in a real coding scenario. An experiment aiming at

assessing the e�ciency of the scanning modes based on RD performance consists

in encoding light fields employing the scanning modes and comparing the resulting

bitrate. The codec settings used in the experiment are shown in table 5.3:

Table 5.3: MuLE-TD settings used in scanning modes performance assessment ex-
periment.

Light fields

Parameters Bikes Set2 2k Sub Greek

Transform size 13⇥ 13⇥ 21⇥ 25 11⇥ 11⇥ 108⇥ 128 9⇥ 9⇥ 128⇥ 128

Arithmetic encoder model Adaptive Adaptive Adaptive

Scanning modes 0, 17, 35,

40, 41, 46

0, 23, 30,

39, 40, 41, 46

0, 23, 30,

39, 40, 41, 46

Quantization steps 0.01, 0.02, 0.04,

0.13, 0.3, 1.4, 5

0.01, 0.02, 0.04,

0.13, 0.3, 1.4, 5

0.01, 0.02, 0.04, 0.13,

0.3, 1.4, 5

GOB size 1⇥ 1⇥ 14⇥ 25 1⇥ 1⇥ 10⇥ 15 1⇥ 1⇥ 4⇥ 4

Figure 5.6 shows the RD results expressed as PSNR-Y (dB) versus rate (bpp)

for selected scanning modes for light fields Bikes, Set2 2k Sub and Greek. Figure 5.6

(a) shows the RD performance for selected scanning patterns: mode 0 (directional

t! s! v ! u), mode 17 (directional u! v ! t! s), mode 35 (2D directional in

u! v with diagonal in (t, s)), mode 40 (4D diagonal), mode 41 (double 2D diagonal

with inner diagonal in (t, s) and outer diagonal in(v, u)) and mode 46 (double 2D

diagonal with inner diagonal in (v, u) and outer diagonal in (t, s)) for the light field

Bikes. Figure 5.6 (b) depicts the same results in detail for PSNR values around 39.5

dB and highlights the di↵erences in the codec performance applying the selected

scanning modes. The results show that the codec tends to perform better when the

scanning patterns corresponding to higher integral values, as depicted in Figure 4.16

(b), are used, which is also consistent with the energy distribution shown on Figure

4.16 (a). As expected from results presented in Section 4.3, the worst performance

is obtained for directional scanning mode 0, which scans the block dimensions in the

order t! s! v ! u. The best result is obtained for mode 46 which performs the

double 2D diagonal scanning with inner loop in (v, u) and outer loop in (t, s) the
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best performances.

Figure 5.6 (c) shows the RD performance for selected scanning patterns: mode

0 (directional t! s! v ! u), mode 23 (directional u! v ! s! t), mode 39 (3D

diagonal in (t, s.v) with directional in u), mode 40 (4D diagonal), mode 41 (double

diagonal 2D with inner diagonal in (t, s) and outer diagonal in(v, u)) and mode 46

(double diagonal 2D with inner diagonal in (v, u) and outer diagonal in (t, s)) for

the light field Set2 2k Sub, while Figure 5.6 (d) depicts the same results in detail for

PSNR values around 31 dB. The results also agree with the ones shown in Figure

5.6 (d). As expected, modes 0 and 30 have the best performances, while the worst

are achieved by modes 23 and 46.
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Figure 5.6: MuLE-TD RD performance using selected scanning modes for light fields
Bikes, Set2 2k Sub and Greek.

Figure 5.6 (e) shows the RD performance Greek, using same scanning patterns

as for Set2 2k Sub. Figure 5.6 (f) depicts the same results in detail for PSNR values

around 26 dB. The results also agree with the ones shown in Figure 5.6 (f). As

expected, the directional modes 0 and 23 have the worst performances, while the

remaining modes produce smaller bitrates.

5.4 Coding solution performance assessment

In this section, the overall RD performance of MuLE-TD is assessed. Subsection

5.4.1 describe performance metrics and benchmarks while subsection 5.4.4 describes

the test material and coding conditions used in the assessment of the proposed coding

solution. This information is made public through the document JPEG Pleno: light

field coding common test conditions [12].

5.4.1 Performance metrics and benchmarks

Rate metrics

The rate used for coding light fields is defined as the number of bits used to represent

the compressed light field by the total number of pixels in the light field [12]:

bpp =
N total bits

N total pixels
(5.9)

For example, for HDCA Set 2 2k Sub which has 33 ⇥ 11 views with resolution

1920⇥ 1080 each, the total number pixels is 33⇥ 11⇥ 1920⇥ 1080 = 752, 716, 800.

PSNR quality metric

A common definition for the PSNR is
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PSNR = 10 · log10
✓
2n � 1

MSE

◆
(5.10)

where MSE is the mean square error, defined between two images I and I 0 of reso-

lution M ⇥N as

MSE =
1

M ·N

MX

i=0

NX

j=0

(I(i, j)� I 0(i, j))2. (5.11)

Once the PSNR is calculated for each one of the channels Y, Cb and Cr, the overall

PSNRY CbCr is computed for a single view as follows [12]:

PSNRY CbCr =
6 · PSNRY + PSNRCb + PSNRCr

8
. (5.12)

The PSNRs for the whole light field are computed by averaging the PSNRs of the

individual views.

SSIM quality metric

The SSIM quality metric is computed according according to [31], using

SSIM Y(I1, I2) =
(2µ1µ2 + c1)(2�1,2 + c2)

(µ2
1 + µ2

2 + c1)(�2
1 + �2

2 + c2)
(5.13)

in various windows of the images, where µ<X> is the average of image X, �2
<X> is

the variance of image X and c<X> is a variable which depends on image X dynamic

range. The SSIM for the whole light field is computed by averaging the SSIM values

of the individual views.

5.4.2 Benchmarks

In JPEG Pleno activities, the coding solutions candidates to integrate the novel

standard have their RD performance compared with an anchor. The anchor selected

by JPEG Pleno is the HEVC standard. Next, the anchor generation process is

described.

HEVC anchor

The HEVC anchor generation process is summarized in Figure 5.7. [12]:
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Serpentine 
scanning
ordering

RGB to YUV
conversion

16-bit to 10-bit
conversion

HEVC
encodingReconstructed

10-bit PPM
views 

10-bit PPM
views 

HEVC
decoding

Pseudo-temporal sequence generation

Figure 5.7: HEVC anchor generation encoding/decoding pipeline.

The light field represented as multiple 10-bit PPM files are scanned according

to a pattern defined as Serpentine, depicted in Figure 5.8. Then, the conversion

from RGB to YUV is preformed and the pseudo-temporal sequence is encoded and

decoded using x265 implementation of HEVC, configured to use profile MAIN (10-

bit). The conversion between color spaces uses the ITU-R Recommendation BT.

709-6 [32]. After the decoding process, the light field views are converted back

to 10-bit PPM files and are ready to be evaluated using PSNR-YUV and SSIM-Y

quality metrics.

Figure 5.8: Serpentine scanning used for pseudo temporal sequence generation from
light field views.

5.4.3 Test material and conditions

Test material

The light fields specified by JPEG Pleno are the ones described in Section 2.4.1.

Table 5.4 summarizes the light fields used in JPEG Pleno core and exploration

experiments [12].
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Table 5.4: Summary of JPEG Pleno test material.

Type Name Number of views

Spatial resolution

(pixels)

Lenslets

Bikes

Danger de Mort

Stone Pillars Outside

Fountain & Vincent

13⇥ 13 625⇥ 434

HDCA Set2 2K Sub 33⇥ 11 1920⇥ 1080

HDCA Laboratory1 31⇥ 31 1936⇥ 1288

HDCA Tarot Cards 17⇥ 17 1024⇥ 1024

Synthetic

Greek

Sideboard 13⇥ 13 625⇥ 434

Coding conditions

Table 5.5 contains the target bitrates for the experiments performed with the light

fields in JPEG Pleno dataset [12].

Table 5.5: Target bitrates for the JPEG Pleno light field datasets.

Light field Target bitrate (bpp)

All lenslets - 0.001 0.005 0.021 0.1 0.75

Greek and Sideboard - 0.001 0.005 0.02 0.1 0.75

Tarot - 0.001 0.005 0.021 0.1 0.75

Set2 2k Sub 0.0005 0.001 0.005 0.01 0.05 0.1

Laboratory1 0.0005 0.001 0.005 0.01 0.05 0.1

5.4.4 Overall MuLE-TD RD performance

Figure 5.9 compares the MuLE-TD performance with HEVC anchor and other two

coding solutions which are participating to the standardization process, MuLE-MTH

and WaSP [9]. The RD performance expressed as PSNR-YUV (dB) versus bitrate

(bpp) and is obtained for selected lenslet light fields of JPEG Pleno dataset. The

PSNR and bitrate values are calculated following the specification found in Sections

5.4.1 and 5.4.1, respectively. The MuLE-TD codec configurations used to generate

such results are:

• Transform size: The 4D-DCT size used is (t, s, v, u) = (13, 13, 25, 31). If the

input light field size in a given dimension is not multiple of the transform size

67



in the respective dimension, the light field should be extended to fulfil this

requirement. Since lenslet light field size is (t, s, v, u) = (13, 13, 625, 434), by

choosing the given transform size no rate is spent by extending the light field.

• Arithmetic encoder model: The adaptive encoder model is chosen for

encoding (run, length) symbols, which is known to be more e�cient choice, as

shown in results presented in Section 5.2.4;

• GOB size: The GOB size configured is (t, s, v, u) = (1, 1, 25, 14), which is

the result of the division of lenslet light field size by the transform size. With

this choice of GOB size, the adaptive model of the arithmetic encoder is never

reset, which results in the reduction of the final rate, as shown in Section 5.2.4;

• Quantization steps: The quantization steps used are [0.02, 0.035, 0.08, 0.1,

0.5, 1.3], in order to produce bitrates in the range specified by the JPEG Pleno

coding conditions, described in Section ;

• Maximum run of zeros: The runmax values are obtained using transform

length = 13⇥ 13⇥ 25⇥ 31 = 130, 975 in Equation 5.7, resulting in runmax =

362.

The results for light field Bikes shown in 5.9 (a) show MuLE-TD performance

around 2 dB below MuLE-MTH and WaSP, and around 1 dB below HEVC anchor.

The PSNR and bitrate values are calculated following the specification found in

Sections 5.4.1 and 5.4.1, respectively. For bitrates lower than 0.01 bpp, MuLE-

TD outperforms HEVC anchor. For light fields Danger de Mort and Stone Pillars

Outside (Figures 5.9 (b) and (c), respectively) MuLE-TD curve is around 1 dB below

WaSP curve for a wide range of target bitrates.
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Figure 5.9: RD performance expressed as PSNR-YUV (dB) versus rate (bpp) for
lenslets light fields

Similar results are obtained when analyzing the RD performance expressed as

SSIM-Y versus bitrate (bpp), as show in Figure 5.9, for the same codecs and light

fields.
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Figure 5.10: RD performance expressed as SSIM-Y versus rate (bpp) for lenslets
light fields
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As seen in RD results for both PSNR-YUV and SSIM-Y quality metrics, MuLE-

TD is not able to achieve same performance level as the coding solutions currently

under evaluation in JPEG Pleno and only outperforms HEVC anchor for bitrates

lower than 0.01 bpp. The overall conclusion is that a simple and naive coding solu-

tion such as MuLE-TD is not competitive when compared with more sophisticated

coding solutions.

The MuLE-MTH is light field coding solution similar to MuLE-TD. MuLE-MTH

employs the same 4D-DCT transform described in this work, but with variable

block sizes. Instead of using scanning and run-length coding, in MuLE-MTH the

transform coe�cients are grouped using hexadeca-trees and the subsequent encoding

is performed in a bitplane-by-bitplane basis [10]. The generated stream is encoded

using an adaptive arithmetic encoder in a similar way as it is done in MuLE-TD.

Currently, MuLE-MTH coding solution is part of JPEG Pleno Verification Model

(VM) 2.0, and it is likely to become part of future JPEG Pleno light field coding

standard.

The codec described in [10] is called MuLE-TH and the only di↵erence between

it and its near homonymous MuLE-MTH is the variable transform size. MuLE-TH

employs fixed block sizes as it is done in MuLE-TD. The RD performances obtained

for MuLE-TH and MuLE-MTH are practically the same, thus we conclude that

MuLE-TH outperforms MuLE-TD as shown in Figures 5.9 and 5.10. The overall

conclusion is that the hexadeca-tree bitplane decomposition is more e�cient than

the combination of diagonal scanning with run-length coding.

This section presented results only for lenslets light fields in JPEG Pleno dataset.

As shown in Chapter 3, the HDCA datasets present much smaller inter-view redun-

dancy when compared to lenslets datasets. The 4D-DCT is not able to e�ciently

exploit the low degree of 4D redundancy present in HDCA light fields, concluding

that 4D-DCT based light field codecs are competitive only for lenslet light field

coding.
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Chapter 6

Conclusion and future work

As discussed in Chapter 1, the conventional ways to capture the light around us

are limited and thus provide a limited user experience, notably in terms of parallax

capabilities. Recently, significant advances are emerging in terms of light capturing

technologies among which is relevant to highlight the light field imaging which cap-

tures a richer representation of the visual scene by measuring the light intensity for

each direction and for each pixel position. Such richer representation corresponds

to a large amount of data that needs to be e�ciently compressed, notably when

transmission and storage applications are targeted. Among other ways, this can be

achieved by jointly exploiting the light field’s intra-view and inter-view redundan-

cies. A straightforward way to do this is by employing 4D transforms, with the

4D-DCT being a natural candidate for this type of processing. In this context, this

dissertation has presented a study of light field redundancy and has proposed a light

field coding solution based on the 4D DCT.

Chapter 2 started by presenting an introduction to light field imaging, the acqui-

sition techniques and representation models. An introduction to light field coding

approaches was addressed, by directly applying or extending available solutions to

light fields, or developing novel coding solutions. It also presented the JPEG Pleno,

the recent work item initiated by JPEG committee ainming at developing a next

generation image coding standard for emerging plenoptic modalities, such as light

fields. Emphasis was placed in the JPEG Pleno light field dataset, used in this work

as test material.

As a first step towards the design of a light field codec, Chapter 3 has presented

a study which aims at characterizing the redundancy of the light fields in the JPEG

Pleno dataset using as main tool the 4D-DCT. The main conclusion of the study is

that both the lenslet and HDCA JPEG Pleno light field datasets have a great amount

of 4D redundancy that can be explored for coding purposes, even though these two

types of data may require distinct coding solutions due to the di↵erent nature of

their 4D redundancy. For the lenslets light fields, the inter-view redundancy is
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significantly larger than the intra-view redundancy and for the HDCA dataset the

opposite was observed: the intra-view redundancy is much larger than the inter-view

sparsity one.

After better understanding the characteristics of light field redundancy and the

potential of the 4D-DCT in exploiting it, Chapter 4 presented scanning modes for

the 4D-DCT coe�cients. The design process started by listing the scanning patterns

used by image and video coding standards in the scanning of 2D-DCT coe�cients.

Several patterns were identified and served as inspiration for the design of the 4D

scanning modes. The literature review has shown that the design of e�cient scanning

modes depends on previous knowledge of the coe�cients energy distribution, since

the main purpose of such scanning operation is reordering the transform coe�cients

according to their energies. A study of the 4D-DCT coe�cients energy distribution

revealed that lenslet, HDCA and synthetic light fields in JPEG Pleno dataset present

distinct energy distribution, thus require distinct scanning solutions. A total of 47

modes were designed as extension to 4D of two-dimensional scanning modes used

by image and video coding standards. The proposed modes were assessed by their

capability of scanning 4D-DCT coe�cients in decreasing order of energy.

The designed scanning modes are just one coding tool among others used by

MuLE-TD, the light field coding solution proposed in Chapter 5. MuLE-TD has a

pipeline similar to the classic JPEG image coding standard, employing transforms,

coe�cients scanning and run-length coding, in a block based approach. The analysis

of the results has shown that this simple codec can achieve a performance close to

the coding solutions under evaluation by JPEG Pleno.

One of the major drawbacks of the coding solution is the lack of a prediction step.

A suggestion for future work is introducing a 4D prediction of light field samples,

thus applying the 4D-DCT in residual data in a similar way as it is done in the

state-of-the-art image compression standard HEVC Intra. Hence, the choice among

the several designed scanning modes would be function of the selected prediction

mode. This approach is likely to improve the codec RD performance.
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Appendix A

Published and submitted papers

This appendix presents the list of published and submitted papers resulted from the

research work.

A.1 Published papers

C.1 G. Alves, F. Pereira, E. A. B. da Silva. “Light field imaging coding: Per-

formance assessment methodology and standards benchmarking”. In: IEEE

International Conference on Multimedia Expo Workshops (ICMEW), Seattle,

USA, July 2016.

C.2 M. P. Pereira, G. Alves, C. L. Pagliari, M. B. de Carvalho E. A. B. da Silva, F.

Pereira, “A geometric space-view redundancy descriptor for light fields: Pre-

dicting the compression potential of the JPEG Pleno light field datasets”. In:

IEEE 19th International Workshop on Multimedia Signal Processing (MMSP),

Luton, UK.October 2017.

C.3 G. Alves, M. P. Pereira, M. B. de Carvalho, F. Pereira, C. L. Pagliari, V.

Testoni and E. A. B. da Silva. “A Study on the 4D Sparsity of JPEG Pleno

Light Fields Using the Discrete Cosine Transform”. In: 25th IEEE Inter-

national Conference on Image Processing (ICIP), Athens, Greece. October

2018.

C.4 M. B. de Carvalho, M. P. Pereira, G. Alves, E. A. B. da Silva, C. L. Pagliari, F.

Pereira, V. Testoni. “A 4D DCT-Based Lenslet Light Field Codec”. In: 25th

IEEE International Conference on Image Processing (ICIP), Athens, Greece.

October 2018.
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A.2 Submitted papers

C.1 G. Alves, F. Pereira, C. L. Pagliari, M. B. de Carvalho, M. P. Pereira, V.

Testoni, P. Garcia and E. A. B. da Silva. “E�cient 4D-DCT Scanning Modes

For Light Field Coding”. In: 26th IEEE International Conference on Image

Processing (ICIP) Taipei, Taiwan. October 2019.
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Appendix B

Additional results

B.1 4D-DCT coe�cients energy distributions

Figures B.1, B.2 and B.3 show additional results to the ones presented in Section

4.3, for all light fields in the JPEG Pleno dataset.
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Figure B.1: Energy distribution estimation for the 4D-DCT coe�cients for the
lenslet light fields of JPEG Pleno dataset.
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Figure B.2: Energy distribution estimation for the 4D-DCT coe�cients for the
HDCA light fields of JPEG Pleno dataset.
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Figure B.3: Energy distribution estimation for the 4D-DCT coe�cients for the
synthetic light fields of JPEG Pleno dataset.

B.2 Integral of cumulative energy

Figures B.4, B.5 and B.6 show additional results to the ones presented in Section

4.5, for all light fields in the JPEG Pleno dataset.
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Figure B.4: Left: Cumulative energy curve versus the order in the scanning list.
Right: Integral of cumulative energy (ICE) for the 47 scanning modes – lenslets
light fields Bikes, Danger de Mort, Stone Pillars Outside and Fountain & Vincent.
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Figure B.5: Left: Cumulative energy curve versus the order in the scanning list.
Right: Integral of cumulative energy (ICE) for the 47 scanning modes – HDCA
light fields Set2 2k Sub, Tarot Cards and Laboratory1.
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Figure B.6: Left: Cumulative energy curve versus the order in the scanning list.
Right: Integral of cumulative energy (ICE) for the 47 scanning modes – Synthetic
light fields Greek and Sideboard.
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Appendix C

Geometric space-view redundancy

descriptor

This Appendix briefly describes the Geometric Space-View Redundancy (GSVR)

descriptor [23]. The results of the descriptor when applied to JPEG Pleno dataset are

used in the analysis of the sparsity of the four-dimensional discrete cosine transform

coe�cients performed in Chapter 3.

C.1 Space-view redundancy descriptor definition

In block-based image and video coding, the block size defines a region containing

a redundancy level worthy to be exploited. In the adaptive block size approach,

the choice of the block size is driven by the statistical characteristics of the content

to be coded. It is natural that larger block sizes will be chosen for smooth and

near constant regions and smaller blocks will be used in heavily texturized ones.

Nevertheless, if a block based light field coding is considered, the choice of the

dimensions of the four-dimensional block would be far more complicated, due to

the presence of a novel and more complex kind of redundancy. The appropriate

choice of block inter-view dimensions requires a way to characterize the geometric

redundancy of the light fields. In this section, a descriptor devoted to this purpose

is presented.

The GSVR [23] is a descriptor which aims at characterizing the light fields defin-

ing the largest region in the 4D space that presents four-dimensional geometric

redundancy worthy to be exploited for encoding purposes. It does so by measuring

the probability that the image of a point in 3D space to remain in the space block in

all views, for each space block size and range of views. The GSVR descriptor gives

the relation between the intra-view and inter-view block dimensions guaranteeing,

with a given probability, the existence of such 4D space-view redundancy.
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In order to estimate the largest region that presents four-dimensional geometric

redundancy, the method takes 4D light field blocks of L⇥L⇥K⇥K dimensions, with

L ⇥ L being the spatial (intra-view) block size and with K ⇥K being the number

of horizontal and vertical views in the region. Let UV (s, t) be an L ⇥ L square

region in the view of coordinates (s, t). For each 4D block, the method evaluates

the probability that a point in 3D space, with a projection onto UV (s0, t0) will also

have a projection onto another view UV (s1, t1) of the same 4D block.

K

L

Lu
v

s

Figure C.1: A point moving across four 4 ⇥ 4 blocks (gray area) in four horizontal
views.

Figure C.1 illustrates the idea in 3D which means considering a light field with

only horizontal views (i.e., fixing t = 0), for better visualization. There, a point

represented as a black pixel moves across four blocks, of size 4⇥ 4, depicted in gray,

belonging to four di↵erent horizontal views ((u, v) planes) along the s axis. In this

case, L = 4, which corresponds to the gray block size, and K = 4, which is the

number of horizontal views . The first 4 ⇥ 4 block belongs to view of coordinates

(s = 0, t = 0), the second to view (s = 1, t = 0), the third to view (s = 2, t = 0)

and the fourth to view (s = 3, t = 0). The set of gray blocks correspond to the

4⇥4⇥4 space-view 3D block. Note that the black pixel belongs to the 4⇥4 spatial

block in only the first three views from the left to the right, falling outside it in

the fourth view. The desired probability is estimated by computing the number of

views in which a chosen point is still inside the gray area, repeating the process

for each pixel in the block. The position of a chosen point in several views can be

determined by computing the displacements using disparity estimation techniques.

The correspondence method provides the displacement (disparity) values for each

pixel inside a block in the (u, v) plane, belonging to a view in the (s, t) plane.

Therefore, the geometric space-view redundancy (GSVR) descriptor is obtained by

following the steps depicted in Figure C.2.

Using the disparities between adjacent views, calculated for vertical and hori-

zontal directions, probabilities of a pixel stay or leaving a block of size L ⇥ L, in a
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Figure C.2: GSVR descriptor computation pipeline.

views block of size K ⇥ K, are calculated. For example, the test is done for each

pixel in a block (L2 pixels) for the horizontal direction, using horizontal disparities

(relative to K�1 views), for each line of views (K lines of views). The total number

of tests is L ·L ·K · (K�1), quantity used as normalization factor, for the number of

positive tests for permanence of a pixel inside a block. The same concept is used for

vertical disparities. A formalization follows: Let d (u, v, s, t) be the disparity values

at spatial position (u, v) for the s-th horizontal view and the t-th vertical view. The

vertical and horizontal probabilities, respectively Pv and Ph, that a point at any

position (u
0
, v

0
, s

0
, t

0
) inside a block of size L⇥L⇥K ⇥K will have a geometrically

related counterpart inside the same block can be estimated by:

Ph(L,K) =
1

L2K

L�1X

u=0

L�1X

v=0

K�1X

t=0

1

k � 1

K�2X

S=0

�L

 
u+

SX

s=0

dh(u, v, s, t))

!
(C.1)

Pv(L,K) =
1

L2K

L�1X

u=0
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v=0
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s=0

1

k � 1

K�2X

T=0

�L

 
v +

TX

t=0

dv(u, v, s, t))

!
(C.2)

P (L,K) = Ph + Pv � PhPv (C.3)

where �L(x) is an indicator function that equals 1 if (0  x  L � 1), and zero

otherwise. For example, in Equation C.1, the summation from S = 0 to K � 2

increments a counter if a disparity-shifted pixel position is still inside the window.

The probability of a pixel to stay inside a block is the probability of the union of

horizontal and vertical permanence of a pixel inside a block, calculated in Equation

C.3. Figure C.3 shows the probability surfaces for the lenslets light field Bikes (a)

and the HDCA light field Set 2 (b), computed for several values of K and L.
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(a) Bikes. (b) Set 2.

Figure C.3: 4D block permanence probability for selected light fields.

Figure C.3 carries a great amount of information, which can be heavy to pro-

cess. However, when looking at the iso probability contour plots in the same figure,

that are also depicted in Figure C.4, it can be noticed that these curves may be

approximated by straight lines passing through the origin. In addition, it can be

seen that the way that the slopes of these curves (space-view correlation) vary with

the probability, is di↵erent for di↵erent types of datasets. This suggests a compact

way to represent the geometric space-view redundancy using the variation of slope

of those straight lines with the change of probability. A geometric space-view re-

dundancy descriptor (GSVR), for the space-view correlation, based on those slopes

is proposed and will be formally described in what follows.
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Figure C.4: Iso probability contours for selected light fields from JPEG Pleno
dataset.

Let C(L,K, p) = {(L,K)|P (L,K) = p} be the set of points of the contour curve

at probability p. Let L = ↵(C(L,K, p))K be the best fitting line obtained by a

linear regression on the points of C(L,K, p). The geometric space-view redundancy

descriptor, GSVR(p), is defined as the angular coe�cient (↵) of this line, given by

Equation C.4:
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GSVR(p) = ↵(C(L,K, p)). (C.4)

Such angular coe�cient corresponds to the slope of the best fitting line of an iso

probability contour of the 4D block permanence probability surface. It expresses

the correlation between the spatial and view coordinates for a given permanence

probability. Therefore, it measures the space-view correlation within the light field.

C.2 Analyzing JPEG Pleno light field datasets

Figure C.5 displays the GSVR(p) curves for lenslets (a) with p varying from 0.8

to 1 and for HDCA (b) with p varying from 0.1 to 0.9. All curves monotonically

increase, indicating that 3D points with large disparity values move faster across the

di↵erent views and need larger spatial block sizes to remain inside a block across

the views. Likewise, smaller disparity values move slower across the di↵erent views

and need smaller spatial block sizes to remain inside a block across the views. In

addition, a smaller spatial block size tends to be more stationary, therefore with

easier redundancy exploitation. By observing the plots, it is noticed that, for the

lenslets, the inter-view redundancy of a 4D block can be well exploited using spatial

blocks of a much smaller size than in the case of HDCA. Moreover, it is possible to

observe that the HDCA light fields present very close GSVR(p) values, leading to a

conclusion that such light fields may present very little diversity of scene geometries.
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Figure C.5: GSVR(p) plots for JPEG Pleno dataset.
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