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Aos meus orientadores, agradeço imensamente por cada momento de atenção.

Aprendi muito nesses anos e o contato com vocês foi o principal motivo de eu ter
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foi para mim.
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ACERCA DE TÉCNICAS DE AUMENTO DE DADOS PARA A DETECÇÃO
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Eduardo Antônio Barros da Silva
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Esta dissertação discute sobre técnicas de aumento de dados para detectar poten-

ciais focos de mosquito usando v́ıdeos gravados por um drone. Primeiramente, um

estudo sobre doenças transmitidas por mosquitos é apresentado para propor um sis-

tema de visão computacional capaz de automaticamente detectar objetos associados

a criadouros. Uma base de dados composta por seis v́ıdeos aéreos contendo objetos

como caixas d’água, pneus e garrafas é desenvolvida, desde a etapa de planejamento

até a de execução (gravação e anotação). Entretando, devido a dificuldade de obter

uma base extensiva de cenários reais, técnicas de aumento artificial de dados são ap-

resentadas. Esse trabalho contempla três métodos para inserir imagens de objetos

em v́ıdeos a fim de aumentar o número de objetos do conjunto de treino. Por fim,

uma rede neural convolucional é proposta para avaliar essas técnicas, indicando que

o aumento artificial de dados reduz o sobreajuste, melhorando a capacidade da rede

de detectar os objetos de interesse.
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This work discusses data augmentation techniques for detecting mosquito breed-

ing grounds using videos recorded by a drone. Firstly, a study regarding mosquito-

related diseases is presented in order to propose a computer vision system capable

of automatically detecting disease-related objects, such as water tanks, tires, and

bottles. A database composed of six aerial videos containing breeding-related ob-

jects is devised, including its planning and execution (recording and annotation)

stages. However, due to the difficulty of obtaining extensive records of real sce-

narios, artificial data augmentation techniques are presented. This work addresses

three methods of inserting images of the objects into videos in order to increase the

number of objects in the training set. Finally, a convolutional neural network detec-

tor is used to evaluate these techniques, indicating that artificial data augmentation

reduces overfitting, improving the overall detection performance by the proposed

network.
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Chapter 1

Introduction

1.1 Motivation

Dengue, chikungunya, and zika altogether affect millions of people each year and

are considered a threat for people living in tropical countries like Brazil. The main

vector of these diseases is a mosquito called Aedes aegypti, which reproduces mostly

in man made containers with accumulated clean water. Therefore, as a control

method, health agents conduct searches for mosquito breeding grounds.

In order to assist these agents, this dissertation proposes a system for automati-

cally detecting objects associated with diseases transmitted by mosquitoes. By using

a drone to map an area and computer-vision techniques to detect critical objects,

the system tends to accelerate and make the agents’ work more effective.

1.2 Contributions

The contributions of this dissertation are five-fold:

• An investigation of the practical problem and a complete solution proposal.

• The construction of a video database containing objects associated with high

mosquito breeding potential, such as tires, bottles, and water tanks.

• The construction of an image database of tires to apply artificial data aug-

mentation techniques on the recorded video database.

• Development and application of data warping and merging methods to gener-

ate additional training video samples.

• Use of a state-of-the-art neural network object detector to perform tire classi-

fication using the constructed databases.

1



1.3 Dissertation organization

This dissertation is organized as follows: Chapter 2 describes the awareness situation

regarding mosquito-borne diseases and discusses the current prevention and control

strategies. Also, Chapter 2 shows how computer vision can be used in this context

by providing a literature review and proposing a new system to automatically detect

mosquito breeding-related objects.

In Chapter 3, a database containing mosquito breeding grounds, such as water

tanks, tires, and bottles, is constructed by using a drone to record the videos. The

current database version comprises six aerial videos three of which are annotated

frame-by-frame using bounding boxes.

In Chapter 4, artificial data augmentation techniques are presented to increase

the number of objects in the database. In Chapter 5, the components of a con-

volutional neural network are explained and the architecture of the YOLO neural

network is described. This network is then used to evaluate the data augmentation

techniques of Chapter 4.

Finally, Chapter 6 presents conclusions and potential future works.

2



Chapter 2

The fight against mosquitoes

According to the World Health Organization (WHO), mosquitoes spread diseases

that affect 700 million people and cause about one million deaths every year [8]. The

mosquitoes adaptability to a large range of environments and their spread velocity

are worryingly fascinating. Therefore, to understand their behavior and highlight

the importance of control strategies constitute the main objectives of this chapter.

Section 2.1 shows the characteristics of the mosquitoes and the burden of as-

sociated diseases. Section 2.2 presents the current control methods of the health

authority of the city of Rio de Janeiro, Brazil. Finally, Section 2.3 shows how com-

puter vision can be used to combat mosquito-borne diseases, reviewing the literature

and also proposing a new system.

2.1 Characteristics and threats of the mosquitoes

The mosquito life cycle includes four stages: egg, larva, pupa, and adult. Depending

on the species and the climate, the duration of each stage varies widely, but an entire

cycle usually takes two weeks.

The main reason mosquitoes survived for millions of years is their ability to

reproduce: a female lays up to 500 eggs spread over a distance of up to 10 km

and a very small puddle on natural or manmade containers is enough to serve as

breeding ground. In the words of the famous entomologist Harold Oldroyd, “It

is the mosquitoes that breed in temporary water that show the real ingenuity in

making the most of what they can find”. Mosquitoes deposit their eggs directly on

or adequately above stagnant water surfaces. Consequently, rainfalls increase the

chance of a mosquito finding breeding grounds and if the water level rises where the

eggs were deposited, they can rapidly hatch into larvae.

Although the climate interferes on the mosquito habits and reproduction, the

studies in [9] reveal that it has rarely been the main factor of an epidemic. That

source indicates that human activities, such as the rapid population and urbaniza-

3



tion increase, the movement of infected people, and the degradation of the health

infrastructure, among others, have generally been much more significant for disease

outbreaks. In this way, the investment in basic sanitation facilities, the vector con-

trol, and population awareness to eliminate natural and manmade containers across

the cities are extremely important to combat mosquito-borne diseases.

The adult mosquitoes typically feed from nectar and plant juices. However, the

female is responsible for reproduction and most urban species require specific pro-

teins encountered in vertebrate blood, preferably human blood, in order to develop

their eggs [10]. In this feeding process, if the person (or animal) is infected with

a mosquito-borne illness, the female can contract the disease pathogen and trans-

mit it to other people during subsequent bites through its saliva, which also has an

anesthetic so the person does not feel the bite. Therefore, the use of insect repel-

lent is important to avoid infecting other mosquitoes as much as to not contracting

illnesses.

There are about 3,500 mosquito species, but only the females of about a hun-

dred species can carry viruses that are transmitted to humans. Some species of

genus Anopheles are vectors of malaria, responsible for half of the deaths caused by

mosquitoes. The genus Aedes, especially the Aedes aegypti, is the one that affects

more people each year, causing dengue, chikungunya, zika, and recently also yellow

fever.

Table 2.1: Comparison of symptoms for dengue, chikungunya, zika, and yellow
fever. The symbol “+” represents the presence of the symptom and its quantity
shows the symptom severity. The symbol “−” appears when the symptom is highly
uncommon to that disease. Adapted from [5] also including the symptoms of yellow
fever from [6].

Disease Dengue Chikungunya Zika Yellow fever
Fever ++++ +++ +++ ++++
Myalgia/arthralgia +++ ++++ ++ ++
Oedema in limbs − − ++ −
Maculopapular exanthema ++ ++ +++ −
Head/retro-orbital pain ++ + ++ ++
Conjunctivitis − + +++ +
Lymphadenopathy ++ ++ + ++
Hepatomegaly − +++ − ++
Bleeding + − − ++
Jaundice − − − +++

Dengue, chikungunya, zika, and yellow fever have many common symptoms. A

comparison for these diseases is presented in Table 2.1 using [5, 6] as references.

The dengue has been the most common arboviruse in the world for years and its

treatment was estimated to cost 2.1 billion dollars per year in the Americas [11]. Its

4



virus is divided into five types, which have similar symptoms, but can vary on their

severity, a second contraction of the disease increasing the chance of severe compli-

cations. While dengue and yellow fever can cause death through bleeding or liver

failure, respectively, people who contract chikungunya commonly feel arthralgia,

a strong joint pain, for years, and the zika virus is highly associated with micro-

cephaly in babies infected during pregnancy [12]. Currently, yellow fever is the only

Aedes-related disease with an effective vaccine.

There are also a few isolated cases that one person is coinfected, for example by

dengue and chikungunya [13], and even though mosquito coinfections are known to

be very rare, [14] shows that Aedes aegypti triple infection and transmission (dengue,

chikungunya, and zika) is possible. The chances of this resulting in a multiple disease

outbreak are still estimated as insignificant, but investigation beyond current threats

are important to prevent devastating epidemics.

2.2 Current prevention and control strategies

This section focus on the current mosquito control strategies of the health authority

of the Rio de Janeiro city, Brazil. They follow an international protocol to combat

arboviruses which includes routine actions, such as daily visits and emergency ac-

tions, when a case is reported. The department goal is to keep vector control below

1%, i.e., if more than 1 out of 100 searched houses of a location have the presence

of infected mosquitoes, control actions should be prioritized and personalized in the

nearby region.

One health agent visits an average of 25 properties per day. In a visitation,

the agent looks for possible breeding grounds to be removed or to have insecticides

applied; collects samples of found mosquitoes traces, as eggs and larvae; and orients

the people on how to combat the mosquito-borne diseases with simple actions. Also,

if the place has a persistent alarming breeding ground, it is marked as a strategic

location and then visitations are made every 15 days.

When a case of mosquito-borne disease is reported and the conditions of an

epidemic are favorable, emergency action is taken. Up to a maximum of 48 hours

after the reported case, the health agents try to block the spread of the infected

mosquitoes by setting a radius of about 300 m around the infected patient home and

work neighborhoods, which requires an action duration of 2 to 3 hours. Visitations

on the surrounding properties are organized from outside in, looking for the disease

sources. If there are many reported cases in the region, fog is used as the last option.

Fogging of insecticides was widely used a decade ago in Brazil, but nowadays the

specialists alert about the ravages of their continuous use: mosquitoes can develop

resistance to the insecticides contained in the fog. Also, since they feed from human
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blood, usually 90% of the female adults are inside the houses when they are not

depositing eggs, making it difficult for the fog to reach all flying mosquitoes.

A relative recent technique is the use of the bacteria wolbachia as a biological

instrument of Aedes aegypti control. In this approach, scientists infect hundreds of

mosquitoes with the bacteria, which creates dengue immunology, and release them

into a region in order to compete with the infected insects. Many tests were put

into practice and this technique seems effective in reducing the index of infected

mosquitoes [15–17].

To sum up and complement, the health department strategies are divided into

five control methods:

• Mechanical: displacement of objects which can serve as breeding grounds to

covered places, protected from rainfalls; sealing of water tanks, among others.

• Chemical: use of larvicide and insecticide/fog to kill the aquatic and flying

stages of the mosquitoes, respectively.

• Biological: use of larvae that eat the eggs deposited on the water and use of

the bacteria wolbachia to block the infection on mosquitoes.

• Legal: support of justice to visit abandoned or blocked property with suspi-

cions of containing mosquito breeding grounds.

• Integrated: involvement of other departments to provide social mobilization.

In the absence of an efficient vaccine, almost all control methods involve the

detection of mosquito breeding grounds. The guidelines of WHO or any other health

organization always warn about the risks of letting objects with accumulated water.

Table 2.3 shows, from [7], the most crucial objects that the agents of the health

department of Rio look for when visiting a property. The objects of interest are

divided into five groups detailed in Table 2.2 and, except for the natural deposits

(group E), all items are manmade containers.

Table 2.2: Description of mosquito breeding ground groups and subgroups.
Source: [7].

Group Group description Subgroup Subgroup description
A Water deposits for A1 Connected to the grid

human consumption A2 Deposits at ground level
B Mobile containers - -
C Fixed deposits - -
D Containers capable D1 Rolling materials

of being removed D2 Garbage
E Natural deposits - -
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Table 2.3: Objects that can serve as mosquito breeding grounds. Source: [7]. Codes
are detailed in Table 2.2.

Code Objects
A1 High tanks
A2 Barrel, tub, drum, tank, well
B Vases/jars, plates, drippings, drinking fountains
C Tanks, gutters, slabs
D1 Tires and other rolling materials
D2 Plastic containers, bottles, cans, scraps
E Bromeliads, bark, tree holes

It is known through a local study that it is possible to identify containers of

higher mosquito incidence, and treating only them is almost as effective as treating

all existing ones [18], drastically reducing the potential for epidemic development. In

the case of Nova Iguaçu, a town located in the state of Rio de Janeiro, the containers

listed with high potential for an emergency are, according to [19], water tanks, glass

and plastic bottles, buckets, discarded tires, and external drains.

Lastly, as all monitoring and control actions, the mosquito control can benefit

from the growth and development of technology, as discussed in the next section.

2.3 Computer vision meets mosquito control

2.3.1 Related works

As mosquitoes reproduce in stagnant water, water-detecting systems, which are al-

ready common in other applications, can be used to detect breeding grounds [2,

3, 20]. The authors of both [2, 3], through community-sourced geotagged images,

propose systems that generate a geographical heat map, showing where their sys-

tems indicate potential breeding sites, as illustrated in Figure 2.1, generated from

the web-site in [1]. This information could be used by the population and health

organizations to take preventive actions.

The dataset of [3] is composed of Google images containing water puddles, flowing

water, open tires, tires attached to a vehicle, among others. Figure 2.2 shows a few

examples. Their method first uses SIFT (scale-invariant feature transform) [21]

to extract key points and 128-vector descriptors of all images. Then, it creates a

codebook of visual words by using K-means to cluster the descriptors, as illustrated

in Figure 2.3. The feature vector of each image is composed of a histogram indicating

the frequency of features belonging to the clusters. Lastly, an SVM (support-vector

machine) algorithm is trained to indicate the probability of an image containing a

mosquito breeding site, resulting in 82% of classification accuracy.
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Figure 2.1: Heat map indicating regions with potential breeding sites. Source: [1, 2].

(a) Stagnant water. (b) Running water. (c) Open tires.

Figure 2.2: Images used in [3], captured from Google images.

In [2], the use of RGB and thermal images together, as illustrated in Figure 2.4,

results in water puddle average classification accuracy of 90%. The feature ex-

traction follows a similar bag-of-words approach as reference [3]. However, instead

of using SIFT, key-points and descriptors are extracted using SURF (speeded-up

robust features) [22] and dimensionality is halved by PCA (principal component

analysis) [23]. Also, clustering is not performed; instead, the vectors are reduced

into one by calculating the components average through key points, resulting in a

64-bit vector for each image.

Still in [2], an ensemble of Bayesian classifiers is used to identify if the image

contains a puddle or not. Also, to improve classification results, a boosting step

is added to the classification procedure using the Adaboost algorithm. These final

steps improved accuracy from 82% to 90% when compared to using a single SVM

classifier.

Unlike [2, 3], [20] proposes the use of a drone to inspect areas of difficult access in
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Figure 2.3: Feature extraction using bag of visual words model. The keypoint
descriptors are the 128-vector extracted from images using SIFT. Based on: [3].

(a) Standard RGB. (b) Thermal image.

Figure 2.4: Illustration of the advantage of using thermal images for detecting water.
In (a) both objects are reflecting and the water is as not evident as in (b).

order to automatically detect stagnant water patches in videos. As the final problem

is to identify if the area contains or not water puddles, the authors are concerned

about detecting at least a part of the puddles and avoiding false positives.
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The detector used in [20] is a combination of (i) the score of an SVM-based

method using saturation and intensity as features; (ii) the magnitude of a modi-

fied optical flow, that captures the water mirroring property. More precisely, the

optical flow measures the apparent motion of objects from subsequent frames. As

stagnant water reflects other objects, the puddles seem at a greater depth than the

surroundings and, consequently, in a slower motion.

As one can easily note, the literature on this subject is not extensive. This

indicates that the application of computer vision for detecting mosquito breeding

grounds is still in the beginning and therefore there is a lot to be explored.

2.3.2 System proposal

This dissertation presents a system inspired mostly on the control actions of the

Rio de Janeiro health department described in Section 2.2, but also by the related

works of Subsection 2.3.1. This proposal is the result of a collaboration with the

Federal Center for Technological Education of Rio de Janeiro (CEFET-RJ) and is

an extension of the works presented in [24, 25].

The desired system should be capable of, by scanning a predefined area with a

drone, generating a map that indicates the geographic positions of possible mosquito

breeding grounds, following the object coding displayed in Table 2.3. The goal is

to provide the health agents a decision support system, that can speed up their

preventive actions. The main advantages for the health department are in the daily

visits and emergency actions, where it can prioritize the houses to be checked.

Unlike the related works in the literature, the proposed system uses aerial images

where the breeding grounds are usually very small. Although the authors of [20]

also use drones, they normally fly at low heights and, as a consequence, the water

puddles of the database are mostly large. Also, the proposed system focuses on

detecting objects, i.e., instead of just classifying an image as containing or not a

breeding ground, the object is detected with a tight bounding box. Moreover, like

the one in [3], the proposed system aims at detecting all object types associated

with mosquito-borne diseases and not directly water puddles. Since mosquitoes can

reproduce in very small puddles that form inside objects, detecting just water may

not cover a wide range of breeding grounds.

Figure 2.5 shows how the desired system works. The block diagram is divided

into three parts: data preparation, system development, and system usage. With

the GPS coordinates of an area as input, the first step of the data preparation

is to record videos of the defined area using a drone. Then camera calibration is

performed to remove distortions on the video frames and finally the bounding boxes

are annotated indicating the mosquito breeding grounds. The data preparation
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should be processed for many different areas to result in a diverse database. In this

dissertation, the video database is fully described on Chapter 3.

Figure 2.5: Block diagram of the desired system.

The system development stage receives the processed videos and bounding boxes

from the data-preparation stage and performs data augmentation, feature learning,

and object detection. Data augmentation is a technique for increasing the database

in order to achieve lower generalization error. It usually involves only transforma-

tions of the original database, but data augmentation can also comprise the use of

a complementary database, as done in Chapter 4. Feature learning and detection

are performed by a convolutional neural network detector, described in Chapter 5.

Finally, the system usage shows how to locate the possible mosquito breeding

grounds of a searching area. The same first steps of data preparation are performed:

drone trajectory design, video capturing, and camera calibration. After that, using

the estimated parameters of the system development, the model is evaluated and

a map is constructed containing the locations of potential breeding grounds, called

positives. The desired output of the system usage stage is similar to the heat map

illustrated in Figure 2.1 but with higher location precision.

To sum up, this system is designed to search for breeding sites in predefined

areas, resulting in maps that serve as a decision support system regarding mosquito

control. The next chapters discuss more about requirements and functionalities of

the system.

11



Chapter 3

Video database

This chapter presents a complete description of the “Mosquito Breeding Grounds”

(MBG) video database devised for detecting mosquito breeding grounds in aerial

videos captured by a drone. There are many databases to work with stagnant

water detection, like in [2, 3, 20]. However, to the best of our knowledge, [3] is

the only that works with the detection of objects associated with mosquito-borne

diseases. The MBG video database contributes with more extensive types of objects

and includes the bounding-boxes of these objects and the telemetry of the drone,

allowing the localization of each object of interest.

The main goal of this work is to support health agents, helping them to work

more efficiently in the fight against mosquito-borne diseases. As reported in Chap-

ter 2, mosquitoes reproduce in clean stagnant water, so objects such as water tanks,

abandoned tires, and bottles are commonly found by the health agents containing

larvae. In this way, a proper database for the problem of supervised learning to

detect and classify objects in aerial videos should have (i) control of the maximum

number of parameters or at least their measurement; (ii) an expressive number of

samples and representativeness of each object class; (iii) variability of the back-

ground, objects, luminosity, and height; (iv) no camera distortions; and (v) reliable

annotation.

Since drones have many flight restrictions, the main difficulty to construct such a

database is to obtain access to extensive types of real scenarios. Even if drone access

is available to several locations, it is also necessary to know where the disease-related

objects are. In this way, the solution adopted in this work is to alter manually the

locations where foot access is available, inserting objects in the scene. Although the

first recordings are not yet perfectly representing a real urban scenario, they are an

adequate proxy. In addition, the developed methodology allows one to construct an

adequate database.

To introduce the MBG video database, this chapter is organized as follows: Sec-

tion 3.1 presents details about the drone employed in this work. The design and
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recording process of the proposed database are described in Section 3.2. Section 3.3

presents the camera calibration process used to remove distortions, as well as the

annotation process of the objects of interest that allows a supervised learning ap-

proach. Finally, a description of the MBG video database in its version 1.0 (as of

January 2019) is presented in Section 3.5.

3.1 Phantom 4 Pro details

To detail the database development methodology, this section describes the drone

model used to generate the “Mosquito Breeding Grounds” video database. Since

almost all parameters cited in this section are common to any drone, one can adapt

them to any model.

The Phantom 4 Pro (P4P) is a top-2018-market drone, which has a high-quality

4K camera, a gimble that makes pitch and roll axis (see Figure 3.1) rotational

movements imperceptible on video records, and good aircraft stability and relative

location, even with moderate wind and low GPS signal. From the DJI website

page [26], one can find the P4P specifications as given in Table 3.1.

Table 3.1: Phantom 4 Pro specifications.

Aircraft Weight 1388 g
Diagonal size 350 mm
Max speed From 50 to 72 km/h
Max wind speed resistance 10 m/s
Max flight time Approx. 30 minutes
Vertical hover accuracy range ±0.1 m (with vision positioning)

±0.5 m (with GPS positioning)
Horizontal hover accuracy range ±0.3 m (with vision positioning)

±1.5 m (with GPS Positioning)

Camera Lens FOV 84◦ 8.8 mm/24 mm
(35 mm format equivalent)
f/2.8 - f/11
Auto focus at 1 m - inf

Image size 3:2 aspect ratio: 5472 × 3648
4:3 aspect ratio: 4864 × 3648
16:9 aspect ratio: 5472 × 3078

Video recording modes H.265 4K 24/25/30 p
H.264 4K 24/25/30/48/50/60 p

Max video bitrate 100 Mbps

Gimbal Stabilization 3-axis (pitch, roll, yaw) Figure 3.1
Controllable range Pitch: -90◦ to +30◦
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Figure 3.1: Drone pitch, roll, and yaw axis. Drone’s front is pointed to the roll axis.

3.1.1 Camera lens field of view

The so-called field of view (FOV) measures the maximum diagonal of the image

in the projection plan. In this drone’s specifications, it is associated with the 3:2

aspect ratio (5472 × 3648). For this work, the 16:9 aspect ratio (5472 × 3078) is

adopted.

Let image length, image width, where image length ≥ image width, be the

dimensions in pixels of the image in the camera projection plane. Figure 3.2 shows

the geometry when projecting the camera focal length and lens FOV, FOVdiagonal,

FOVleft,right, and FOVfront,rear.

In terms of the aspect ratio image length : image width, the resolution rate is

resolution rate =
image length

image width
. (3.1)

From Figure 3.2

tan
FOVleft,right

2
=

image length

2.focal length
, (3.2)

tan
FOVfront,rear

2
=

image width

2.focal length
, (3.3)

tan
FOVdiagonal

2
=

√
image length2 + image width2

2.focal length
. (3.4)

Therefore, dividing Equations (3.2) and (3.3) by (3.4) and substituting in (3.1)

tan
FOVleft,right

2
= tan

FOVdiagonal

2

image length√
image length2 + image width2

= tan
FOVdiagonal

2

1√
1 + resolution rate2

(3.5)
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and

tan
FOVfront,rear

2
= tan

FOVdiagonal

2

image width√
image length2 + image width2

= tan
FOVdiagonal

2

1√
1 + resolution rate−2

. (3.6)

Substituting maximum FOVdiagonal = 84◦ and the related aspect ratio 3:2 in

Equations (3.5) and (3.6)

maximum FOVleft,right ≈ 73.68◦ and maximum FOVfront,rear ≈ 53.08◦.

Considering the 4K (3.840 × 2.160) resolution that has an aspect ratio of 16:9,

the entire length (left-right) of sensor area is used, but not the width (front-rear).

Thus the used FOV angles are

FOVleft,right ≈ 73.68◦ and FOVfront,rear ≈ 45.70◦. (3.7)

Figure 3.2: Projections of the camera center showing the relationship over the FOV
angles.

These calculation results are important to understand the amplitude of the drone

view in Section 3.2.
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3.2 Recording setup

In order to reduce the time spent in each recording and to have more control over

the drone trajectory and its associated parameters, a methodology for planning an

automatic flight was designed as a mission of the Litchi app [27]. The official DJI

app for the P4P drone does not provide the telemetry of the drone, neither allows

one to design an automatic flight. Therefore, the Litchi app was considered, which

provides almost all our needs.

First, the drone trajectory is designed as a function of several important pa-

rameters, such as the points of interest and drone height and speed. After some

tests to define a range of the height and speed of the drone and include the aircraft

positioning error in the model are presented.

3.2.1 Drone trajectory

The design of the drone trajectory prior to the flight has many benefits. First,

it prevents wasting time before and during the flight. Without such design, each

recording session takes about ten minutes of setting parameters and another ten

minutes of recording, supposing everything goes right at first, what seldom happens.

With a proper flight plan, however, the same area can be covered in about two

minutes by reducing the overlap between successive drone laps.

When setting the flight plan manually, common mistakes are to overlap areas

more than the ideal or to do not overlap them at all, especially when changing the

height of each flight. In this work, the drone trajectory depends on the drone height,

so one can easily calculate the trajectories for various heights and save profiles to

decide later which one to use, given the conditions of the area, like trees height for

example.

Moreover, using a flight plan, the drone tends to be more stable regarding speed,

changes in movement directions, and flying in straight lines. Improving these con-

ditions facilitates the last step of labeling the database.

Due to the nature of our problem, the downward vision system is used, which

means the camera always points directly to the floor. In this way, the videos have

the lowest projection distortion and minimum occlusion effects. Also, the drone

height and speed are set as constant during a flight.

For the flight planning strategy, we consider the points of interest, like the cor-

ners of an area, the drone height and speed, and some drone parameters that only

depends on the drone model. The trajectory (i) covers a rectangular area, defined as

the rectangle with minimum area that surrounds the given points; (ii) maps the rect-

angular area in an inverted “boustrophedon” way, i.e., from bottom to top and from

top to bottom in parallel lines of alternate directions; and (iii) has an overlap that
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allows all objects of interest with size smaller than a maximum to be represented in

its entirety in at least one pass, as shown in Figure 3.3.

Figure 3.3: Structure of the designed drone trajectory.

Let the given n points of interest be Pi = (lati, loni), i = 1, . . . , n in GPS coor-

dinates, where lati, loni denote the latitude and longitude of point i, respectively.

The initial step is to convert these values to the Universal Transverse Mercator

(UTM) [28] coordinates, pi = (xi, yi, zni, zli), i = 1, . . . , n, where xi, yi are the east-

ing and northing coordinates and zni, zli the zone number and letter of the point

i. Zone’s number and letter appear because UTM divides the globe into six zones

and needs these references to disambiguate the geolocation position between zones.

Since UTM is a conformal projection formed with planar coordinates, the calcula-

tions can be performed using Euclidean geometry, which is not possible with the

GPS coordinates.

To calculate the minimum-area rectangle, a mathematical entity called convex

hull is used. The convex hull of a finite set of points (xi, yi), i = 1, . . . , n is de-

fined by the intersection of all convex sets containing all points, where a convex

set is a subset of the space that is closed under convex combinations. We use the

algorithm described in [29] to find the convex hull. The algorithm sorts the points

lexicographically in O(n log n) time and then builds the upper and lower hulls (see

Figure 3.4) by using two monotone chains in O(n) time. Thus, the time complexity

of this algorithm is O(n log n). Since finding the convex hull is the most consuming
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step, the mission flight plan algorithm has also O(n log n) complexity.

Figure 3.4: Upper hull (dashed line) and lower hull (dotted line) forming the convex
hull of a set of points.

Let A ⊂ {(xi, yi), i = 1, . . . , n} be a sorted subset that represents the convex

hull of the given points. Two consecutive points of the convex hull define an edge.

So and so [30] proves that the minimum-area rectangle contains at least one of the

edges of the convex hull A. So one can consider only the rectangles that have an

edge coincident with the convex hull and thus the minimum-area rectangle problem

becomes simple from here. One should use just find the farthest point from the line

that contains the coincident edge to define the opposite edge support line. Find

also the projections of all points into both of these lines, so the farthest combining

projections in each line are the rectangle’s vertices.

With a defined rectangle one can easily design the trajectory. Let field length,

field width, where field length ≥ field width, be the measures of the ground that

is covered by the drone. Therefore, the starting point is set as a point inside the

rectangle at a distance, parallel to the sides of the rectangle, of
(
field length

2
, field length

2

)
from the rectangle vertex closest to the home point (see Figure 3.3).

Let area length, area width, where area length ≥ area width, be the rectangle

side measures. Thus

displacementfront,rear = area length− field width

and

displacementleft,right =
area width− field length

passes

with

passes =

⌈
area width− field length

field length− overlap

⌉
,

where ⌈x⌉ denotes the minimum integer greater than or equal to x.

Defining the first way-point of the drone trajectory as the starting point, the
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remaining way-points are calculated by a number of iterations consisting of al-

ternate vector additions. One adds a vector of module displacementfront,rear and

front-rear direction to the last way-point. The other adds a vector of module

displacementleft,right and left-right direction. Both directions are directly calculated

using the rectangle vertices.

3.2.2 Drone height and speed

In the proposed setup, drone height and speed are fixed for each flight. With a

constant height, one does not have to deal with resolution or depth changes inside

each video, and both constant height and speed accelerate the annotating process.

By reducing the drone height, the resolution of objects on the floor increases.

However, by using a lower height one would spend more time covering the same area

and larger objects such as a pool or water tank might not fit in a single frame. In

general, there is a different minimum height restriction for each area due to physical

limitations such as trees, cables, and light poles, besides the flight restrictions by

ANAC Brazilian flight regulation agency [31].

We performed a test to analyze the object resolution as a function of drone height

and the result can be found in Figure 3.5. The goal was to visualize which would

be the higher altitude in which it is still possible to identify the smallest object of

interest, a bottle for instance. Looking through a 4K resolution monitor, the bottle

could be recognized well from up to 10m of height. Once it is the smallest object

in our database, the others could also be identified from this height. Thus, when

possible, the drone height is set to 10 m.

3 m 5 m 7 m 10 m 15 m 20 m

Figure 3.5: Regions of interest showing the same plastic bottle of 600ml recorded at
different heights, indicated in the top of each image.

To prevent an object to appear only in a few frames, which may hinder the

detection, a range for the drone speed was designed based on the number of frames

that contain the largest object of interest. Figure 3.6 shows the problem’s geometry.

One should recall that the drone camera is pointing directly to the floor

and that the drone does not change its orientation, only its direction. Let

field length, field width, where field length ≥ field width, be the measures of
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Figure 3.6: Geometry of a drone displacement at a given height and speed that
covers a whole static object. Drone is moving forward, so the calculations consider
the field width and front-rear FOV angle.

the covered ground. Consider also the constant speed and height of the drone, an

object with size object size, the front-rear field of view FOVfront,rear as calculated in

Equation (3.7), and the frame rate. Therefore the displacement of the drone is

displacement = field width− object size

= 2.height.tan
FOVfront,rear

2
− object size, (3.8)

and the quantity of frames containing the whole object becomes

frames = frame rate.
displacement

speed

=
frame rate

speed

(
2.height.tan

FOVfront,rear

2
− object size

)
(3.9)

When using frame rate equal to 30 fps and object size of 1 m, we have the

results shown in Table 3.2, from which we conclude that from a height of 10 m

it is sufficient to use the maximum speed tested. Speeds higher than 20 km/h are

not recommended and the speed of 15 km/h is suggested as higher values make the

annotation process hard.
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Table 3.2: Number of frames that contain a whole object of size 1 m as a combination
of the drone height and speed, using 30 fps frame rate.

height
3 m 5 m 7 m 10 m 12 m 15 m 20 m

5 km/h 33 69 105 160 196 251 342
6 km/h 27 57 88 133 164 209 285
7 km/h 23 49 75 114 140 179 244
8 km/h 20 43 66 100 123 157 214
9 km/h 18 38 58 89 109 139 190
10 km/h 16 34 52 80 98 125 171

speed
11 km/h 15 31 48 72 89 114 155
12 km/h 13 28 44 66 82 104 142
13 km/h 12 26 40 61 75 96 131
14 km/h 11 24 37 57 70 89 122
15 km/h 11 23 35 53 65 83 114
16 km/h 10 21 33 50 61 78 107
17 km/h 9 20 31 47 57 73 100
18 km/h 9 19 29 44 54 69 95
19 km/h 8 18 27 42 51 66 90
20 km/h 8 17 26 40 49 62 85

3.2.3 Aircraft positioning error

As specified in Table 3.1, the P4P has four types of measures regarding the aircraft

hover accuracy: vertical or horizontal and vision or GPS positioning.

Horizontal GPS positioning accuracy is considered by expanding the rectangular

area in order to be sure it covers all the given points of interest. The expansion

is made like in Figure 3.7. GPS error is considered only in the first vertex, as the

drone has a relative positioning system besides the GPS system.

Figure 3.7: The rectangle with a continuous line represents the area to be covered
by the drone. The dashed circle shows the uncertainty of the horizontal GPS posi-
tioning. The dashed rectangle is the extended rectangle to be used in the trajectory,
ensuring the drone covers all the area.
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We also consider the horizontal and vertical vision positioning accuracy when

calculating the trajectory overlap. With these positioning errors, the overlap be-

comes

overlap = object size+ vision horizontal accuracy

+ 2.vision vertical accuracy.tan

(
FOVleft,right

2

)
.

With these considerations on the drone positioning error, the assumptions of

covering the entire area and of the objects not being cut in at least one drone lap

are guaranteed.

3.3 Camera calibration and data labeling

Although the P4P camera does not seem to have relevant radial distortions, it was

calibrated so as the lens distortion could be removed [25]. A common and accurate

method comes from Zhang [32], where several images of a chessboard in different

positions and angles are used to estimate the intrinsic camera parameters and then

undistort the images, as illustrated in Figure 3.8 with a drone camera different from

the one used.

(a) P2V original frame. (b) P2V undistorted frame.

Figure 3.8: Example of undistorted frame by using Zhang’s method to calibrate the
Phantom 2 Vision drone camera. Radial distortion can be visualized.

The bounding-box frame-by-frame annotation of all recorded videos has been

done by the Bodetronic team at CEFET/RJ using the Zframer system, as illustrated

in Figure 3.9. The Zframer software uses a linear interpolation over the interval of

10 frames, so one does not need to select bounding-boxes in every video frame, that

is very time-consuming.
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Figure 3.9: A print screen of tire annotation examples using the Zframer software.

3.4 Recording script

To facilitate the recording process, a recording script is set up as follows:

1. Select the points of interest on Google Maps or Litchi Mission Hub [33].

2. Define drone height (desired 10 m) and speed (suggested 15 km/h).

3. Set the flight plan remotely as described in this section.

4. Import the output of item 3 to Litchi Mission Hub and save it after verifying

general parameters:

• Finish Action: RTH (Return To Home).

• Path Mode: Straight Lines.

• Default Gimbal Pitch Mode: Disabled.

5. Arrange the objects in the area, if necessary.

6. Open the Litchi app and verify other parameters such as:

• Resolution: 4K (3.840 x 2.160).

• Focus at infinity (do it manually by touching the screen on the horizon),

with the care that an unfocused video, that ruins the objects details, is

avoided.

• White balance as sunny or cloudy, depending on the weather.
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• Set ISO, the sensitivity of camera sensors, to manual and change it to

get a reasonable lighting.

7. Record video for camera calibration.

8. Open the saved mission on the Litchi app.

9. Press play.

3.5 “Mosquito Breeding Grounds” video

database

The MBG video database is composed of videos captured by a drone as described

in previous chapters. Each video has an annotation file, containing the bounding

box of the objects of interest for each frame, and a telemetry file, that stores the

values of several drone parameters during the recording. The database comprises an

approximate total of 27 minutes of video divided in 12 parts. Figure 3.10 illustrates

the different sites and Table 3.3 describes the attributes of the respective recording

videos.

Table 3.3: Attributes of the recordings made at each site. BLI3, CCMN, and FAU
had not annotated yet when this dissertation was written. Column object layouts
has the number of arrangements of the objects manually inserted in the scene.

site
name

ground
type

drone
height

marked
objects

video
duration

covered
area

object
layouts

Gremio low grass 10 m 18 212 s 4.7 ×103 m2 3
BLI1 high grass 10 m 14 97 s 2.4 ×103 m2 2

BLI2
street and
low grass

20 m 16 23 s 1.2 ×103 m2 2

BLI3 building 40 m 0 221 s 39.9 ×103 m2 1
CCMN wasteland 15 m 0 75 s 4.0 ×103 m2 2
FAU wasteland 20 m 0 187 s 13.4 ×103 m2 2
Total - - 48 27 min 65.6 × 103 m2 12

The proposed database has more than six types of breeding-related objects, such

as tires, bottles, water tanks, and other containers that can accumulate clean water.

Also, objects not associated with mosquito-borne diseases, called confusion objects,

were used to render the detection task more real. Figures 3.11 and 3.12 illustrate the

variability of these objects in a recorded video at “Gremio” (first row of Table 3.3).

Lastly, this is the first version of the MBG video database, it should and can be

continuously improved.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.10: Frames to illustrate each recording site: (a) Gremio, (b) BLI1, (c)
BLI2, (d) BLI3, (e) CCMN, and (f) FAU.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.11: Examples of objects of interest.

(a) (b) (c) (d) (e)

Figure 3.12: Examples of objects that should not be detected.
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Chapter 4

Artificial data augmentation

State-of-the-art image classification and object detection systems usually require

large training sets. Despite all efforts to construct an extensive and diverse database,

the process of capturing data and manually labeling instances is exhaustive. Hence,

to increase the performance of such systems, artificial data augmentation is being

widely used [34–39].

A successful application of data augmentation for image classification is on digit

recognition by using affine transformations on the input images, such as rotation,

scaling and horizontally flipping, and even elastic deformations to add variability in

the training data [34, 40]. These kinds of transformations are known as traditional

data augmentation and are still widely used combining with other techniques.

Recently, many are embracing neural networks for data augmentation. Works

like [35] synthesize a new image using Generative Adversarial Networks (GANs) [41]

to transfer style between two input images. Other works [39, 42] study Generative

Latent Optimization (GLO) [43] to create synthetic objects. These new samples

can be used to increase the number of instances in the training set of an object

detector. In [39], the authors exploit stingrays detection on aerial videos captured

by a drone and a generative network based on GLO is used for creating images

similar to stingrays under water, enhancing detection.

Reference [36] presents a data augmentation technique that cuts and pastes ob-

ject images on background scenes using traditional transformations, without con-

cerns about realism. The authors measure the performance of their approach in

a database for detecting specific small objects in photos of house rooms and office

environments and the usage of the augmented database improves performance by

21%, going beyond state-of-the-art for instance detection. Following this simple

idea, [37] adds scene context information and extends the framework to databases

with different environments as background scenes.

On the one hand, using neural networks to perform data augmentation usually

yields non-realistic but impressive visually-appealing images with minimum effort.
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On the other hand, a simple approach that just cuts and pastes images produces

remarkable results, where the object is realistic but the way it is integrated in the

scene is not. Although both techniques proved to be promising, for applying data

augmentation on the problem of detecting disease-related objects, this chapter is

inspired by [36], that introduces the “cut-and-paste” framework.

This chapter is organized in four sections as follows. Section 4.1 presents a

tire image database which is further used to apply data augmentation in the MBG

video database. Section 4.2 and Section 4.3 propose methods for transforming and

pasting object images on background scenes. Then, the framework is extended in

Section 4.4 to insert an object image into a sequence of video frames, considering

visual consistency. Finally, Section 4.5 specifies the augmented MBG database by

applying the proposed framework.

4.1 Tire image database

In this section, an image database composed of photos of different open tires is

presented and two steps are treated: data capture and image segmentation. A Moto

G5S Plus camera, with 13-MP resolution, was used to capture indoor photos of six

tires. The photo set has many tire arrangements regarding orientation and also

combining multiple tires. The proposed database comprises 62 images and some

examples are shown in Figure 4.1.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 4.1: Subfigures (a)-(f) show the six different tires, (f)-(j) the orientations
chosen for a tire, and (k)-(l) examples of multiple tire combinations.

A blue canvas was used as a background for the photos in such a manner that a

simple image segmentation can be applied to remove the background and generate

a sharp segmentation mask. Figure 4.2 shows the RGB and YCbCr color-space his-

tograms of Subfigure 4.1(l). The RGB color space represents the three components

red, green, and blue, while YCbCr represents the luminance, blue different chroma,
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and red different chroma. All these six components are integers that vary from 0 to

255.

(a) RGB histograms.

(b) YCbCr histograms.

Figure 4.2: Percentage histograms of each component of the RGB and YCbCr color
spaces for image 4.1l.

The histograms of the YCbCr color space have clear separations in the last

two components, much more enhanced than in the histograms of RGB color space.

Therefore, the segmentation is performed on the YCbCr color space resulting in

Figure 4.3. The same procedure is adopted to all photos with slight differences in

the threshold values.

(a) Original image. (b) Segmented image.

Figure 4.3: Segmentation of an image by using thresholds on the YCbCr color space.

A white canvas was also tested with the segmentation performed on the lumi-

nance component of the YCbCr color space. However, since tires have a majority of
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gray tones and shadows on the white canvas are also gray, there are cases in which

a simple threshold is not capable of separating the tire from the white background,

as illustrated in Figure 4.4.

(a) Original image. (b) Segmented image. (c) Zoom on the segmented image.

Figure 4.4: Example of an image segmentation that uses a threshold on the lumi-
nance.

Although using a blue canvas makes the segmentation simpler, it yields in a

complication at the borders of the tires: the pixels of the object border are bluish.

To mitigate this problem, a morphological erosion operation [44] can be applied to

the image masks. For this database, a 3×3 circular structuring element is used in

five erosion iterations and results are illustrated in Figure 4.5.

(a) Segmented image. (b) Zoom. (c) Zoom after erosion.

Figure 4.5: Example of applying erosion on the mask of an segmented image.

When the mask of a tire image is defined, the bounding box is automatically

calculated. However, for multiple-tire images, the bounding boxes are manually

annotated.

4.2 Image warping

Image warping is defined in this work as manipulations over an image to produce new

instances. Four actions are executed: introduce an arbitrary luminance gain that

belongs to a predefined interval, horizontally flip the image with 50% probability,
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rotate it with an arbitrary angle, and resize it. Figures 4.6 and 4.7 show examples

of rotating and flipping tires.

(a) 0◦ (b) 45◦ (c) 90◦ (d) 135◦ (e) 180◦

Figure 4.6: Examples of rotating Subfigure (a) with different angles.

(a) Original. (b) Flipped.

Figure 4.7: Example of horizontal flip. Note: vertical flip is not required as it is a
combination of horizontal flip and 180◦rotation.

The interval of luminance gain is experimentally defined. Figure 4.8 shows shifted

luminance averages over a segmented tire image and one can see how the synthetic

object becomes unrealistic when shifting too much the luminance. Hence, since

the photos were all taken at the same lighting environment, the shifted luminance

average remains within [50, 150].

(a) 0 (b) 50 (c) 100 (d) 150 (e) 200 (f) 250

Figure 4.8: Example of a tire image that originally has luminance average of approx-
imately 116. The Subfigures represent the image with shifted luminance average.
The luminance is truncated at 0 and 255. Blue and red chroma (Cb and Cr) are
not altered.

Before merging, the image is resized based on a range that considers the drone

height and the possible measures of a tire. The tire sizes used in Section 4.1 vary

approximately from 0.6 m to 0.7 m. Therefore, to avoid deviating too much from
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reality and knowing the drone height, the image is resized to appear within the

range [0.5, 0.8] in meters.

When rotating and resizing the image, the mask is returned as a grayscale image

and thus a threshold of 127 is set to maintain the values either 0 or 255, i.e., pure

black and white. Following these procedures to add variability on the 62 tire images,

merging methods can be applied to perform data augmentation on the video frames

of the MBG database.

4.3 Merging methods

Given an object image with its mask and a video frame with an indicated position

on the background scene, a merging method is defined in this work as a technique to

insert the image on the background. Three different merging methods are presented

and subjectively compared in this chapter and also evaluated within a detector in

the next chapter.

4.3.1 Paste

The first merging method only pastes the image on the background, with no other

consideration. Subfigures 4.9(a) and 4.9(e) contain an example of this method. In-

stead of increasing the performance of the detector, this method introduces boundary

artifacts that tend to hinder the detection results. Therefore, the merging methods

presented in the sequel carry out procedures to make the transition between object

and background smoother when pasting the object on the background.

4.3.2 Blend

The second merging method, similarly to the one in [36], blends the border of the

object with the background when pasting the image. The blending is done by using

the object mask after applying to it a Gaussian filter to smooth the object border.

Figure 4.9 shows the result of blending using different kernel sizes. The size k = 3

is chosen for looking more natural.

4.3.3 Blur and blend

Although the second method explores blending to mitigate the boundary artifacts

introduced by the first merging method, in many cases, the objects still visually

stand out from background, looking too artificial. This can facilitate the detection

and then bias the learning process. The detector features should not emphasize

details of a specific object or the traces of the merging process. Instead, it should
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(a) Paste. (b) Blend k = 3. (c) Blend k = 5. (d) Blend k = 7.

(e) Paste. (f) Blend k = 3. (g) Blend k = 5. (h) Blend k = 7.

Figure 4.9: Blend merging method using different Gaussian kernels.

extract characteristics inherent to the object class, like form and color in the case of

the tire class. Therefore, the last method studies blurring to obtain a merged image

with blurring closer to that of the background.

A two-dimensional Gaussian filter with the same variance in both directions is

applied to blur the objects and a Laplacian of Gaussian (LoG) filter is used in order

to evaluate the blur. The LoG has attractive scaling properties and is commonly

used to detect borders [45] due to its band-pass characteristic of selecting high

frequencies while reducing noise. Meanwhile, the variance of the LoG is applied in

many works [46, 47] to measure the blur level.

The Laplacian of Gaussian

The continuous two-dimensional Gaussian function is given by

G(x, y) =
1

2πσ2
exp

(
−x2 + y2

2σ2

)
(4.1)

where σ2 is the variance. Consider the two-dimensional Laplacian operator L, de-

fined as the second derivative of a given function f : R× R → R

L(x, y) = ∇2f(x, y)

=
∂2f(x, y)

∂x2
+

∂2f(x, y)

∂y2
. (4.2)
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Then, using Equation 4.1,

LoG(x, y) = ∇2G(x, y)

= − 1

πσ4

(
1− x2 + y2

2σ2

)
exp

(
−x2 + y2

2σ2

)
. (4.3)

The Fourier transform of the LoG is calculated as

F(LoG)(m,n) = −(m2 + n2) exp

(
−σ2(m2 + n2)

2

)
(4.4)

where m,n are the spatial frequencies and an illustration is given in Figure 4.10.

(a) Spatial response at y = 0. (b) Frequency response at n = 0.

Figure 4.10: Cross-section of the bidimensional LoG function and its Fourier trans-
form using σ = 1.

One can note that, even though the Gaussian is a separable function, the LoG

is non-separable, i.e., it can not be written as a product of two unidimensional

functions. Hence, calculations to design and apply a LoG filter must be done on the

two-dimensional space.

Discretization

The first step is to discretize the functions. Samples are symmetrically and uniformly

selected with a 1
n
step and a half-sample offset. Considering a squared grid of 1 unit

squared and centered at zero, the functions are evaluated in each sample and each

grid value is set as the mean of the n2 inside samples values. The parameter n is

chosen according to the precision of the estimation one requires and for this work

n = 100. Figure 4.11 illustrates the sampling process. Also, the standard deviation

σ has to be greater or equal to 0.5, otherwise, it has almost or no filtering effect.
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(a) Sample grid when using n = 4. (b) Cross-section at y = 0 of a discrete LoG with
σ = 1 and n = 100.

Figure 4.11: Scheme of the discretization process in Subfigure (a) and an example
in Subfigure (b).

Truncation

For the one dimensional Gaussian function, it is well-known that truncating at one,

two, and three standard deviations cover approximately 68.3%, 95.5%, and 99.7%

of the values. Thus, for the two-dimensional Gaussian function, if truncating in

both dimensions separately, the coverage becomes approximately 46.6%, 91.2%, and

99.4%, the quadratic of the percentages on the one-dimensional domain. Then, the

kernel size is defined as

kGaussian(σ) = 2 . ⌈3σ − 0.5⌉+ 1, (4.5)

ensuring truncation greater or equal to 3σ and odd kernel size of at least 3.

For the LoG function, since it is not a probability function, it is more reasonable

to look at the energy error. From [45], three and four standard deviations contain

86.41% and 99.27% of the energy, respectively. Then, in this work, the LoG kernel

size is set as

kLaplacian(σ) = 2 . ⌈4σ − 0.5⌉+ 1. (4.6)

In this way, the truncation of the LoG is made after 4σ. The frequency responses of

the generated kernels are analyzed in Figure 4.12 to guarantee adequate estimations.

Consistency analysis

Discretizing and truncating the functions can end up modifying the filters regarding

image gain. The Gaussian filters must sum one to avoid introducing gain on the
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image brightness, while the LoG filters must sum zero to prevent changes in the

signal average (the DC level). Hence, for the Gaussian filter, all coefficients are

positive and then a simple scaling is applied. To the LoG filter, a subtraction of the

filter average value is applied to all coefficients in order to correct the sum.

These operations, including the discretization, may disturb the frequency re-

sponse, so a verification is made in Figure 4.12, showing that, for the cases applied

in this work, these procedures are sufficient to generate adequate filters.

Figure 4.12: Magnitude of the frequency response after discretizing and truncating
the Laplacian of Gaussian function with σ = 2. The variable t represents how many
standard deviations are used for truncation.

LoG filter

The LoG filter is used to capture the blurring of the image scene. Therefore, to

maintain consistency, the standard deviation value should be scaled based on the

drone height.
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For σ = 0.5, the LoG filter is given by

LoGσ=0.5 =


0. 0.004 0.013 0.004 0.

0.004 0.109 0.121 0.109 0.004

0.013 0.121 −1. 0.121 0.013

0.004 0.109 0.121 0.109 0.004

0. 0.004 0.013 0.004 0.

 ,

so the filter basically compares how the central region is different from its neighbor-

hood.

A tire with 60 cm of diameter has the following approximate measures when

captured from different heights:

• 10 m: 152 pixels

• 15 m: 101 pixels

• 20 m: 76 pixels

• 40 m: 38 pixels

In this way, the standard deviation values are set as

• 10 m: σ = 2.0

• 15 m: σ = 1.5

• 20 m: σ = 1.0

• 40 m: σ = 0.5

Method outline and comparison

To evaluate the blurring, a blur measure is defined by the variance of the image

convolved with the LoG filter. Then, the greater the blur measure, the lower the

blurring.

Figure 4.13 shows how the method works. First, the LoG filter is defined based

on the drone height and the blur measure of the background τ 2ref is calculated and

stored as a reference value. Then, iterations for blurring the object are performed

to obtain a merged image with blurring closer to that of the background.

The variance of the Gaussian filter used to blur the object is initialized as σ2
0 = 0.5

and updated by ∆σ = 0.1 in each iteration. This process stops when the blur

measure of the blended image τ 2i is smaller than the reference value τ 2ref, resulting in

a merged image with equalized blur measure.
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Figure 4.13: Block diagram of the blur and blend merging method.

Figure 4.14 shows the results when applying the three merging methods. The

paste merging method introduces boundary artifacts while the blend merging

method solves this problem. In addition, the blur and blend merging method blurs

the artificial object image to obtain a blur measure that is closer to the background,

which could help detect real objects.

(a) Paste. (b) Blend. (c) Blur and blend.

(d) Paste. (e) Blend. (f) Blur and blend.

Figure 4.14: Comparison of the merging methods.
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4.4 Video data augmentation

The previous section presented a methodology to insert a given object image into

a scene. In this section, the framework is extended to insert an object into a video

instead of over an image background. The main difference is that using videos

the subsequent frames should maintain consistency regarding object position and

luminosity on the ground.

To paste an object in the same ground position, instead of using the GPS coordi-

nates, which can have significant measuring errors, a visual approach is considered.

As the designed trajectories have constant height and the drone do not rotate and

have a stable gimbal, the movements can be considered pure translations and hence

phase correlation technique [48] is adequate.

Considering two subsequent frames f0, f1 on grayscale and the translation move-

ment represented by a vector (tx, ty) in pixels, the displaced frame is

f1(x, y) = f0(x− tx, y − ty). (4.7)

Let F0, F1 be the discrete Fourier transform of f0, f1, respectively, and m,n the

spatial frequencies. From Equation 4.7 and the shifting theorem

F1(m,n) = F0(m,n) . e−2πi(mtx+nty). (4.8)

The cross-correlation c(x, y) between images is defined as the circular convolution

of the functions f0(m,n), f1(−m,−n). Then, applying the discrete Fourier transform

C(m,n) =
F0 . F ∗

1

|F0 . F ∗
1 |

(4.9)

=
F0 . F ∗

0

|F0 . F ∗
0 |

. e2πi(mtx+nty)

where ∗ indicates the complex conjugate.

Since the phase of F0 . F ∗
0 is always zero, taking the inverse Fourier transform,

the normalized cross-correlation becomes

c(x, y) = δ(x− tx, y − ty), (4.10)

a delta function indicating the translational displacement.

The method used in this work is based on a extended version of the phase corre-

lation [49] that considers subpixel registration. Also, in real applications, the move-

ments are not perfectly pure translations and then the peak of the cross-correlation

function is used as the estimated displacement. Figure 4.15 illustrates an example

of video data augmentation using phase correlation.
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Figure 4.15: Frames stepped every 10 of an augmented video fragment using phase
correlation. The frames are cut to appropriately utilize the page space.

From a Litchi telemetry file corresponded to a video of the MBG database, one

can approximately recover the drone trajectory with the GPS coordinates. Fig-

ure 4.16 shows the approximated drone trajectory and the evolution of the displace-

ment components of the phase correlation over time.

4.5 The augmented MBG video database

Finally, after presenting methods to create synthetic objects and adding them into

videos, this section details the augmented MBG video database. The augmentation

uses the image database presented in Section 4.1 composed of tires, which are the

target class for the detector in Chapter 5.

In contrast to increasing the number of objects in the database, maintaining part

of the regions untouched is important to ensure real environments in the training set.

An approximate proportion of one object per 20 m2 is held and thus the augmented

database has an approximate average of 20 synthetic objects per frame when the

drone flew 20 m high. Also, inserted objects do not occlude another object, especially

an annotated one, being it a tire or any other type.

The locations are randomly chosen and the three merging methods use the same

configuration. Table 4.1 details the augmented video database and Figure 4.17 shows

a frame as an example.
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(a) GPS coordinates.

(b) x-direction.

(c) y-direction.

Figure 4.16: GPS coordinates from Litchi file illustrating the drone trajectory and
the displacement in pixels estimated using phase correlation.

Table 4.1: Details of the augmented video database.

site
name

ground
type

marked real
tires

synthetic
tires

covered
area

Gremio low grass 6 235 4.7 ×103 m2

BLI1 high grass 6 120 2.4 ×103 m2

BLI2 street and low grass 6 60 1.2 ×103 m2

BLI3 street and building 0 425 8.5 ×103 m2

CCMN wasteland 0 200 4.0 ×103 m2

FAU wasteland 0 670 13.4 ×103 m2

Total - 18 1,330 26.6 × 103 m2
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(a) From video Gremio (10 m).

(b) From video BLI2 (15 m).

Figure 4.17: Frames of the augmented MBG video database. Real tires in blue and
artificial ones in red.
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Chapter 5

Object detector

Object detection involves both localization and classification of objects. Localization

can be done as a general mask, identifying for each image pixel if it is or not part

of an object. However, segmentation masks often require many parameters and, if a

supervised approach is taken, they make the annotation task very laborious. Instead

of using masks, bounding boxes reduce each object label to only five components:

the two coordinates of the central point, the object size as height and width, and

the class label.

Current state-of-the-art object detectors are typically based on deep convolu-

tional neural networks (CNNs) [50]. In traditional machine learning systems, fea-

ture extraction is usually the most challenging step, especially when dealing with

multidimensional data. CNNs solve this problem by automatically learning features

from images. In contrast, deep learning means that dozens of convolutional layers

are used, thus requiring an extensive database to learn the many parameters without

overfitting. This shows why data augmentation is so desirable in the deep learning

context.

The chapter is concerned with evaluating the data augmentation approaches

developed in Chapter 4. To simplify our comparisons, an image object detector is

constructed as an initial strategy.

The most commonly used CNNs for object detection are based on R-CNN or its

variants Fast and Faster R-CNN [51, 52]. These networks have the state-of-the-art

results in terms of accuracy. In contrast, they are not simple to use and can be

very time consuming to train properly. Another well-known CNN is the so-called

YOLO neural network [53], that is much simpler and faster than the R-CNN and its

variants, while still achieving near state-of-the-art detection performance. On the

one hand, YOLO showed higher localization error than the Fast R-CNN, whereas,

on the other hand, YOLO predicts fewer background detections, i.e., it tends to

detect object where there is none [53]. As the application of this dissertation does

not require perfect localization, YOLO is chosen to construct an object detector.
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This chapter is organized as follows: Section 5.1 details the CNN components

and presents the architecture and functionality of the YOLO network. Section 5.2

shows how images are extracted from the MBG video database in order to use an

image object detector. Finally, Section 5.3 presents the achieved results: evidence

that artificial data augmentation techniques are valuable for avoiding over training.

5.1 Convolutional neural networks

5.1.1 Fundamental structure

There are many types of CNNs but all have a fundamental structure in common.

This subsection, based on [50], aims to briefly explain the main structure compo-

nents.

Figure 5.1: First stage of a CNN. The input image is convolved with a filter of same
depth resulting in a feature map. Using n filters result in n feature maps. Then,
each pooled map is a subsampling of a feature map.

Figures 5.1 illustrates the first stage of a CNN. The in-between stages have the

same framework of the first, except for the input that becomes the output of the

previous stage. In the end, the maps are converted into a one-dimensional vector

that associates the image features to class probabilities. Each structure component

shown in Figure 5.1 is detailed below.

Input maps

The input images usually consist of three channels, typically the red, green, and

blue of the RGB color space. These channels are the input maps of the first stage

of the network. On the next stages, the input maps can be either feature or pooled

maps, as discussed in the next items.
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Convolutional layers and feature maps

A convolutional layer performs convolutions of the input with filters of the same

depth as the input. It adds bias after each convolution, generating the feature maps.

Each feature map is responsible for saving different information about the signals.

The network training is focused on estimating the parameters of these convolutional

layers in order to recognize patterns for each object class.

Pooling layers and pooled maps

The pooling layers subsample the feature maps leading to a deeper level of abstrac-

tion, but these layers are not necessarily in every stage. The most common pooling

layer is a 2 × 2/2 maxpool, which calculates the maximum of each sliding window

of size 2× 2 with stride 2.

Softmax function

The softmax function is used after the final stage of the network to normalize the

final output into a probability distribution. Basically, it maps the network outputs

into multi-class probabilities, allowing the classification of the network inputs.

5.1.2 YOLO neural network

The simplicity of YOLO neural networks is that “you only look once” at each input

image. With a single convolutional network, it allows joint training of the entire

network, directly optimizing detection performance [53].

YOLO detection networks can have different number of layers and output sizes

at each stage. As an example, Table 5.1 describes the framework of a YOLO network

that has 19 convolutional layers and five maxpooling layers. In sequence, a global

average pooling layer and a softmax function are applied to calculate the class

probabilities. Table 5.1 also shows the number of filters for each convolutional

layer, as well as the size of filters and outputs at each layer.

To predict the bounding boxes within a single CNN, YOLO divides an input

image into an S × S grid and uses the concept of anchors boxes: regions with pre-

defined shape and size. Using the architecture as shown in Table 5.1, the parameter

S is set as 26 and the input images have 832 × 832 resolution. If an input has a

different resolution, it is automatically resized before going through the network.

Each grid cell predicts C conditional class probabilities and a fixed number B of

bounding boxes based on these anchors and with respective confidence scores. The

parameter B is set as 5 and C represents the number of classes which depends on

the dataset. Figure 5.2 illustrates this process.
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Table 5.1: YOLOv2 architecture. Adapted from [4].

Layer type Number of filters Filters size and stride Output size
Convolutional 32 3 × 3 832 × 832
Maxpool 2 × 2/2 416 × 416
Convolutional 64 3 × 3 416 × 416
Maxpool 2 × 2/2 208 × 208
Convolutional 128 3 × 3 208 × 208
Convolutional 64 1 × 1 208 × 208
Convolutional 128 3 × 3 208 × 208
Maxpool 2 × 2/2 104 × 104
Convolutional 256 3 × 3 104 × 104
Convolutional 128 1 × 1 104 × 104
Convolutional 256 3 × 3 104 × 104
Maxpool 2 × 2/2 52 × 52
Convolutional 512 3 × 3 52 × 52
Convolutional 256 1 × 1 52 × 52
Convolutional 512 3 × 3 52 × 52
Convolutional 256 1 × 1 52 × 52
Convolutional 512 3 × 3 52 × 52
Maxpool 2 × 2/2 26 × 26
Convolutional 1024 3 × 3 26 × 26
Convolutional 512 1 × 1 26 × 26
Convolutional 1024 3 × 3 26 × 26
Convolutional 512 1 × 1 26 × 26
Convolutional 1024 3 × 3 26 × 26

Convolutional Number of classes 1 × 1 26 × 26
Avgpool Global Number of classes
Softmax

Figure 5.2: YOLO divides the image into grid cells and predicts bounding boxes
with confidence scores and class probabilities. Based on: [4].

The box confidence score is given by Pr(Object) × IOUtruth
pred , where Pr(Object) is

the probability that the box contains an object and IOUtruth
pred is the intersection over

union between the ground truth (xi, yi, wi, hi) and the predicted box (x̂i, ŷi, ŵi, ĥi).

The loss function to be optimized during the training comprises three loss compo-
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nents: localization, confidence, and classification loss; and the full expression given

by

L = Llocalization + Lconfidence + Lclassification, (5.1)

where

Llocalization =λcoord

S2∑
i=0

B∑
j=0

δobjij

[
(xi − x̂i)

2 + (yi − ŷi)
2]

+ λcoord

S2∑
i=0

B∑
j=0

δobjij

[(√
wi −

√
ŵi

)2

+

(√
hi −

√
ĥi

)2
]
,

Lconfidence =
S2∑
i=0

B∑
j=0

δobjij

(
Ci − Ĉi

)2

+ λnoobj

S2∑
i=0

B∑
j=0

δnoobjij

(
Ci − Ĉi

)2

,

Lclassification =
S2∑
i=0

δobji

∑
c∈classes

(pi(c)− p̂i(c))
2 ,

and each additional parameter is defined bellow.

The functions δobji , δobjij , and δnoobjij can only assume values 0 or 1: δobji assumes 1

when the object appears in cell i and 0 otherwise. A grid cell is said to be responsible

for detecting an object if the center of this object falls within the grid cell. The

function δobjij assumes 1 if the jth bounding box predictor in cell i is responsible for

that prediction, otherwise, assumes 0. Finally, δnoobjij is the complement of δobjij , i.e.,

δnoobjij = 1− δobjij .

The term Llocalization in Equation 5.1 represents the localization loss, the error

between the predicted box and the ground truth. The parameter λcoord is used to

emphasize the localization loss ahead of the other loss components when optimizing

the loss function during the training stage. The term Lconfidence in Equation 5.1 is

the confidence loss. If an object is not detected in the box, the confidence error is

multiplied by λnoobj to deal with class imbalances. Finally, the term Lclassification in

Equation 5.1 is the classification loss, where pi(c) is the conditional class probability

of class c in cell i.

With a designed architecture and a defined loss function, the YOLO network is

ready to be trained.
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5.2 Image extraction from the MBG video

database

In order to use an image object detector, images should be extracted from the MBG

video database. Subsequent frames are very similar and may not have additional

information in terms of object detection. Therefore, frames are selected based on

phase correlation, a technique explained in Section 4.4 that calculates the trans-

lational displacement between frames. In our case, frames are selected every 720

pixels displacement, three times less than the front-rear resolution, in such a way

that each object appears approximately three times on the extracted image set.

Since the application of this dissertation uses aerial videos, the objects tend to

have low resolution. In fact, the annotated videos of the original MBG database have

the maximum size of the object bounding boxes varying from approximately 202 to

3302 squared pixels area. A common reference of evaluation metrics is described

in [54] for the COCO dataset [55] where objects are split into three scales:

• Small objects: area < 322.

• Medium objects: 322 < area < 962.

• Large objects: area > 962.

(a) The sliding window used for cutting frames

of size 3, 840× 2, 160 into images of size 832×
832.

(b) Original frame. (c) Images extracted.

Figure 5.3: Cutting smaller images from the database frames.
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Following this classification, the MBG database, in full resolution, contains ob-

jects in all scales. Therefore, in order to avoid reducing object resolutions, the

extracted frames are cut into images of lower resolution. A sliding window is used

with the same size as the network inputs, 832× 832, and the largest possible stride

while still covering the entire frame of size 3, 840×2, 160, as illustrated in Figure 5.3.

5.3 Tire detection

As a partial solution, this dissertation tackles the problem of detecting abandoned

tires of the MBG database.

The first step is to split the MBG video database into training and test sets. In

order to avoid contaminating the test set, an entire video is chosen to be in only

one set. The current MBG database version contains only three annotated videos

which are used as training set. Other three non-annotated videos are allocated in

the test set. Table 5.2 has details of the split sets.

Table 5.2: Attributes of the recordings made at each local splited into trainning and
test sets. FAU, BLI3, and CCMN are not annotated yet.

site
name

ground
type

drone
height

marked
tires

video
duration

covered
area

set
flag

Gremio low grass 10 m 6 212 s 4.7 ×103 m2 train
BLI1 high grass 10 m 6 97 s 2.4 ×103 m2 train

BLI2
street and
low grass

20 m 6 23 s 1.2 ×103 m2 train

Train - - 18 5.53 min 8.3 × 103 m2 train
FAU wasteland 20 m 0 187 s 13.4 ×103 m2 test
BLI3 building 40 m 0 47 s 8.5 ×103 m2 test
CCMN wasteland 15 m 0 75 s 4.0 ×103 m2 test
Test - - 0 5.15 min 25.9 × 103 m2 test

From Table 5.2, the original database contains 18 annotated tires. After extract-

ing images from the video as explained in Section 5.2, the training set has only 54

images containing bounding boxes of real tires.

A suitable way to deal with insufficient data when training a CNN is to use

pre-trained weights. There are many available pre-trained weights based on large

datasets such as COCO [55], ImageNet [56], PascalVOC [57], Open Images [58], and

Tiny Images [59]. Using these weights tends to accelerate the training of custom

objects and also tends to avoid overfitting.

The proposed tire detector uses the pre-trained weights of PascalVOC on

YOLOv2 architecture, as described in Table 5.1. The VOC2007 is composed of

natural images collected from the flickr photo-sharing web-site. There are 24,640
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annotated objects of 20 classes, such as car, bicycle, person, dog, bottle, sofa, and

table.

Problems associated with insufficient data can also be prevented by using data

augmentation. By introducing image scaling and translations, by varying exposure

and saturation, and many other transformations, one diversifies the data, reducing

the chance of overfitting. YOLO already considers these data transformations to

improve performance. One can note that these transformations are applied to the

entire image, unlike the data augmentation methods presented in Chapter 4, that are

used to add objects into image or video background scenes. These data modifications

are respectively entitled from now on as YOLO data augmentation and merging data

augmentation.

In this work, the YOLO training is executed considering the following scenarios:

• Case 1: No data augmentation.

• Case 2: YOLO data augmentation.

• Case 3: Merging data augmentation.

• Case 4: Both merging and YOLO data augmentation.

As mentioned in Section 4.5, the augmented MBG database has three versions,

one for each merging method. For a fair comparison of these three approaches, the

same parameters for tire insertion are used for the three methods: when randomly

choosing the tire, warping parameters, and tire location. From the videos of the

training set, 330 frames are extracted resulting in 4,950 images with 18 real and

1,237 artificial tires. In the test set, 450 images are evaluated containing 13 real

tires.

Using 0.001 of learning rate and 1,000 iterations with batch 64, YOLO achieves

the results presented in Table 5.3 and Table 5.4 when thresholding the class prob-

ability on 50%. Table 5.3 shows the total number of false positive bounding boxes

predicted by YOLO in the test set. The results of training the network without

augmentation present a large number of false positives.

Table 5.4 shows the number of real tires detected by YOLO. Since all videos of

the test set are non-annotated, the tire detections are visually counted. An object

appears in three images in average and if a tire is detected in at least one, it counts

as a detected tire. Otherwise, if a tire is not detected in any of the images it appears,

then it counts as a non-detected tire. Figure 5.4 shows an example of an object that

is no longer detected when occlusion occurs, but still counting as a detected tire.
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Table 5.3: Number of true and false positive bounding boxes (TPb and FPb) with
probability greater than 0.5 of class tire in a total of 450 images.

CCMN FAU BLI3 Total

TPb FPb TPb FPb TPb FPb TPb FPb

Case 1 0 27 8 27 7 71 15 125

Case 2 0 11 5 13 3 60 8 84

Case 3 (Paste) 0 0 3 4 4 6 7 10

Case 3 (Blend) 0 0 2 2 5 3 7 5

Case 3 (Blur+Blend) 0 1 10 2 7 7 17 10

Case 4 0 0 7 3 5 4 12 8

Table 5.4: Number of true and false positive objects (TPo and FNo) using a 0.5
threshold.

CCMN FAU BLI3 Total

TPo FNo TPo FNo TPo FNo TPo FNo

Case 1 0 4 3 3 3 0 6 7

Case 2 0 4 2 4 2 1 4 9

Case 3 (Paste) 0 4 1 5 2 1 3 10

Case 3 (Blend) 0 4 1 5 2 1 3 10

Case 3 (Blur+Blend) 0 4 4 2 3 0 7 6

Case 4 0 4 3 3 3 0 6 7

Figure 5.4: Example of occlusion that harms detection.

One can note that none of the networks detected a tire from video CCMN. A

possible reason is that this video is much darker than the ones used for training,

51



as shown in Subfigure 5.5(a), making it difficult to detect. In contrast, all the six

networks are capable of detecting the at least two of three tires on video BLI3.

Figure 5.6 presents the three detections.

(a) Tire (bottom right). (b) Container.

(c) Bottle. (d) People.

Figure 5.5: Examples of YOLO (without augmentation) detections on video CCMN.

Figure 5.5 shows four images tested using YOLO trained without augmentation.

The network does not detect the tires but many false positives occur, such as a

container, a bottle, and people. This suggests that the network did not learn the

tire class, but rather background discrepancies.

Moreover, a bounding box location bias is visually noted on the tire detections

using YOLO without augmentation, as shown in Figure 5.7. By looking through

the tire annotations in the original database, one can note that the bounding boxes
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(a) (b)

(c)

Figure 5.6: Examples of YOLO (blur and blend) detections on video BLI3. The
tires of Subfigures (b) and (c) are detected by the six networks.

are not fitting perfectly the objects. Figure 5.7 gives a couple of examples. These

errors may occur due to the linear interpolation used to accelerate the annotation

process. Further investigation is necessary to fairly compare the results. However,

another advantage of merging data augmentation comes up: the annotation of the

artificial tires are perfectly fit by construction.
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(a) (b) (c) (d) (e)

Figure 5.7: Errors on bounding box annotations (a)-(c) resulting in detection bias
(d),(e).

The experimental results show that, without data augmentation, the network

tends to detect many false positives, as illustrated in Figure 5.5 and Figure 5.8.

Using YOLO augmentation, the number of false positives is much lower, but also

the number of tire detections decreases. A more extensive study regarding the

network parameters may encounter an adequate compromise between true and false

positives.

Comparing the merging methods, the blur and blend method reveals an advan-

tage: the number of false positives is very low and presents the higher number of tire

detections on videos FAU and BLI3. Figure 5.9 gives two examples: one which only

blur and blend method detected and other which only the network trained without

augmentation detected.

(a) Tire detected only by the network without

data augmentation.

(b) Tire detected only by the network that uses

blur and blend method.

Figure 5.9: Tires that are rarely detected by YOLO networks.
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(a) Frame with the largest number of false posi-
tive detections using network without data aug-
mentation.

(b) Fans detected by YOLO using blur and
blend method.

(c) A shirt as a common false positive. (d) Buckets as common false positives.

Figure 5.8: YOLO false detections.

These results indicate that artificial data augmentation techniques are very useful

for reducing false positives. Moreover, in this initial investigation, the blur and blend

method holds the highest detection performance. This indicates that approaches

that attempt to hinder the detection of objects during training may be promising

to increase overall detection accuracy.
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Chapter 6

Conclusion

This dissertation presents a framework for detecting mosquito breeding-related ob-

jects. Starting by understanding the problem that health organizations are facing

regarding mosquito-borne diseases, Chapter 2 proposes a system that uses computer

vision in order to automatically detect these objects of interest.

The MBG video database presented in Chapter 3 is recorded by a drone and the

current version is composed of six videos three of which are annotated frame-by-

frame. Since state-of-the-art object detection systems usually require large training

sets, data augmentation techniques are the focus of this dissertation and two strate-

gies are analyzed in Chapter 5: (i) the insertion of artificial objects into the videos;

(ii) transformations over the entire frames, such as introduce scaling, translations,

and vary exposure and saturation.

The second strategy is widely used and the available detectors like YOLO al-

ready include these parameters for training the network. However, the first strategy

requires many stages to be applied. Chapter 4 devises an image database composed

of segmented tires and techniques of merging these images into the videos of the

MBG database are presented.

Lastly, Chapter 5 uses a convolutional neural network detector to evaluate the

different proposed methods for augmenting the database. The results indicate that

artificial data augmentation reduces overfitting, improving the overall detection per-

formance by the proposed network.

6.1 Future work

There is a lot of work to be done. First, further investigation is necessary to affirm

and compare the benefits of each artificial data augmentation technique. Explore the

data augmentation parameters such as the variability range of the transformations

and the number of artificial insertions and also vary the detector parameters such

as the number of training iterations and the probability thresholds are required.
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However, in order to adequately evaluate the techniques, the extension of the video

database and annotations is strongly necessary.

A possible direction is to extend the data augmentation approach to different

objects of interest, such as containers, buckets, and bottles, which are already en-

closed in the MBG database. Also, a dataset with objects of confusion can be used

as distractions to the detector, which tends to reduce even more the false positives.

Moreover, the use of a video detector instead of an image detector is expected.

The time information may benefit the detection by applying a temporal consistency

analysis regarding standing objects.

57



Bibliography

[1] “Zika virus monitoring: Image analysis for identifying mosquito breeding

grounds”. http://zika-virus-monitoring.weebly.com/. Accessed:

2018.

[2] MEHRA, M., BAGRI, A., JIANG, X., et al. “Image analysis for identifying

mosquito breeding grounds”. In: Proc. IEEE International Conference

on Sensing, Communication and Networking, pp. 1–6, 2016.

[3] AGARWAL, A., CHAUDHURI, U., CHAUDHURI, S., et al. “Detection of

potential mosquito breeding sites based on community sourced geotagged

images”. In: Proc. Geospatial InfoFusion and Video Analytics IV; and

Motion Imagery for ISR and Situational Awareness II, v. 9089, p. 90890M,

2014.

[4] REDMON, J., FARHADI, A. “YOLO9000: Better, faster, stronger”, arXiv

preprint arXiv:1612.08242, 2016.

[5] IOOS, S., MALLET, H.-P., GOFFART, I. L., et al. “Current Zika virus epidemi-

ology and recent epidemics”,Medecine et Maladies Infectieuses, v. 44, n. 7,

pp. 302–307, 2014.

[6] MONATH, T. P. “Yellow fever: an update”, The Lancet Infectious Diseases,

v. 1, n. 1, pp. 11–20, 2001.
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