6 A
l{l‘.. o COPPE
<
Instituto Alberto Luiz Coimbra de U F RJ
Pés-Graduagao e Pesquisa de Engenharia

DISTRIBUTED SYNCHRONOUS DIAGNOSIS OF DISCRETE-EVENT
SYSTEMS

Maria Zeneide Mota Veras Neta

Dissertacao de Mestrado apresentada ao
Programa de Pos-graduacao em Engenharia
Elétrica, COPPE, da Universidade Federal do
Rio de Janeiro, como parte dos requisitos
necessarios a obtencao do titulo de Mestre em

Engenharia Elétrica.

Orientadores: Marcos Vicente de Brito Moreira

Felipe Gomes de Oliveira Cabral

Rio de Janeiro
Novembro de 2018

DISTRIBUTED SYNCHRONOUS DIAGNOSIS OF DISCRETE-EVENT
SYSTEMS

Maria Zeneide Mota Veras Neta

DISSERTACAO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO
ALBERTO LUIZ COIMBRA DE POS-GRADUACAO E PESQUISA DE
ENGENHARIA (COPPE) DA UNIVERSIDADE FEDERAL DO RIO DE
JANEIRO COMO PARTE DOS REQUISITOS NECESSARIOS PARA A
OBTENCAO DO GRAU DE MESTRE EM CIENCIAS EM ENGENHARIA
ELETRICA.

Examinada por:

Prof. Marcos Vicente de Brito Moreira, D.Sc.

Prof. Felipe Gomes de Oliveira Cabral, D.Sc.

Prof. Antonio Eduardo Carrilho da Cunha, D.Eng.

Prof. José Eduardo Ribeiro Cury, Docteur d’Etat

RIO DE JANEIRO, RJ — BRASIL
NOVEMBRO DE 2018

Veras Neta, Maria Zeneide Mota

Distributed synchronous diagnosis of discrete-event
systems/Maria Zeneide Mota Veras Neta. — Rio de Janeiro:
UFRJ/COPPE, 2018.

pl 13 29, Tem.

Orientadores: Marcos Vicente de Brito Moreira

Felipe Gomes de Oliveira Cabral

Dissertacao (mestrado) — UFRJ/COPPE/Programa de
Engenharia Elétrica, 2018.

Referéncias Bibliograficas: p. [72] -

1. Synchronous fault diagnosis. 2. Distributed
diagnosis. 3. Discrete-event systems. [. Moreira, Marcos
Vicente de Brito et al. II. Universidade Federal do Rio de
Janeiro, COPPE, Programa de Engenharia Elétrica. III.
Titulo.

il

Agradecimentos

Agradeco primeiramente a Deus, pela vida e por me permitir chegar até aqui.

Agradeco também a meus pais, Maria Antoneide e Manoel Mariano, por todo
carinho e apoio incondicional. Agradeco ao meu irmao Manoel Junior, pela torcida
e incentivo. E, em especial, agrade¢o a minha irma Maria Alberméria, por estar
presente durante toda essa trajetoria, e por sempre acreditar em mim.

Agradeco ao meu noivo Leandro de S&, por todo apoio, paciéncia e
companheirismo. Obrigada por estar sempre ao meu lado e, em especial, obrigada
por me ajudar no que acabou aparecendo como uma “disciplina extra” a
instabilidade emocional. Sem vocé o caminho teria sido, sem duvidas, muito mais
dificil.

Agradego a minha sogra Rosimeri Nery, por toda preocupagdao e ajuda,
principalmente nos finais de semana corridos, com muitas horas dedicadas ao estudo.
Sua ajuda foi fundamental em muitos momentos.

Agradeco a toda equipe do Centro de Referéncia Tecnologica - Claro Brasil, pelo
apoio e pela flexibilidade com relacao a horéario, me permitindo cursar todas as
disciplinas e me ausentar nos momentos em que precisei, em especial ao José Silva,
Laila, Carolina e Luiza.

Agradeco aos meus orientadores Felipe Cabral e Marcos Moreira, por toda a
orientacao e horas dedicadas a me ensinar, incentivar e aconselhar sempre que
precisei.

Agradeco também a COPPE/UFRJ, seu corpo docente e administracao, e a

todos aqueles que, de alguma forma, contribuiram para que eu chegasse até aqui.

iv

Resumo da Dissertacao apresentada & COPPE/UFRJ como parte dos requisitos

necessarios para a obten¢ao do grau de Mestre em Ciéncias (M.Sc.)

DIAGNOSTICO SINCRONO DISTRIBUIDO DE SISTEMAS A EVENTOS
DISCRETOS

Maria Zeneide Mota Veras Neta

Novembro,/2018

Orientadores: Marcos Vicente de Brito Moreira

Felipe Gomes de Oliveira Cabral

Programa: Engenharia Elétrica

Recentemente, o diagnostico sincrono centralizado e descentralizado de sistemas
a eventos discretos foi proposto na literatura. Neste trabalho, propomos uma
estratégia de diagnéstico sincrono diferente, denominada diagnostico sincrono
distribuido. Neste esquema, diagnosticadores locais sao construidos com base
na observagao do comportamento livre de falha dos componentes do sistema.
Considera-se que esses diagnosticadores locais sao agrupados em redes de
comunicacao e capazes de informar a ocorréncia de eventos e sua estimativa de
estado atual a outros diagnosticadores locais pertencentes & mesma rede. Os
diagnosticadores sao implementados considerando um protocolo de comunicacao
especifico, o qual refina a estimativa de estado do comportamento livre de falha
dos médulos do sistema, reduzindo, portanto, a linguagem aumentada livre de falha
considerada no diagnoéstico sincrono. Isso é feito com a adi¢ao de condi¢oes booleanas
para a transposicao de transicoes dos modelos livre de falha dos componentes do
sistema, as quais verificam se a ocorréncia de um evento observavel é possivel de
acordo com a estimativa do estado atual dos outros diagnosticadores locais. Isso leva
a nocao de diagnosticabilidade sincrona distribuida. Um algoritmo para verificar a
diagnosticabilidade sincrona distribuida com complexidade polinomial no espago de

estados dos modelos dos componentes do sistema é proposto.

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Master of Science (M.Sc.)

DISTRIBUTED SYNCHRONOUS DIAGNOSIS OF DISCRETE-EVENT
SYSTEMS

Maria Zeneide Mota Veras Neta

November/2018

Advisors: Marcos Vicente de Brito Moreira

Felipe Gomes de Oliveira Cabral

Department: Electrical Engineering

Recently, the centralized and decentralized synchronous diagnosis of discrete-
event systems have been proposed in the literature. In this work, we propose a
different synchronous diagnosis strategy called distributed synchronous diagnosis.
In this scheme, local diagnosers are computed based on the observation of the
fault-free behavior models of the system components. It is considered that these
local diagnosers are separated into networks, and are capable of communicating
the occurrence of events and their current state estimate to other local diagnosers
that belong to the same network. The diagnosers are implemented considering
an specific communication protocol that refines the state estimate of the fault-
free behavior of the system modules, reducing, therefore, the augmented fault-free
language considered for synchronous diagnosis. In order to do so, boolean conditions
are added to the transitions of the fault-free component models, which check if the
occurrence of an observable event is possible according to the current state estimate
of other local diagnosers. This leads to the notion of distributed synchronous
diagnosability. An algorithm to verify the distributed synchronous diagnosability
with polynomial complexity in the state-space of the system component models is

proposed.

vi

Contents

[List of Figures| viii
[List of Tables| X
1__Introduction| 1
2 Fundamental Concepts of Discrete-Event Systems| 9
2.1 Languages| 9
[2.1.1 Language operations| 10

22 Automatal 12
[2.2.1 Operations on automatal 15

[2.2.2 Automata with partially observed events| 19

2.3 Final commentsl o 21

3 lagnosability o S 22
[3.1 Synchronous centralized diagnosability of DiSs| 0 0000 0L 26
[3.1.1 Delay bound for synchronous diagnosis| 33

[3.2 Synchronous codiagnosability of DESs[.00 0. 39
B3 Final comments oo 45

[4 Distributed Synchronous Diagnosability of DESs| 47
M1 Architecturel 50
[4.2 Distributed synchronous diagnosis method| 51
[4.3 Distributed synchronous diagnosability| 59
M4 TFinal comments o 68
b__Conclusions and future workl 69
[Bibliography| 72

vil

List of Figures

(1.1 Different diagnosis schemes and the synchronous diagnosis approach.| 6
[2.1 State transition diagram of automaton GG of Example2.2]]. 13
[2.2 Automata G; and G, of Example[2.3[|. 18
[2.3 Automata G,roq and G, of Example23l[. 18
2.4 Automaton G of Example 2.4] (a), and observer automaton of G, |

Obs(G,%,) (b)) - o o o o 21
3.1 Automaton A;.| 23
3.2 Automaton G (a), automaton G; (b), and diagnoser automaton Gy |

(c)of Example[3.11]o o 25
[3.3 Synchronous centralized diagnosis architecture.. 27
[3.4 Automata G; and G- of bxample[3.2l). 30
[3.5 Automata G and Gy of Example3.2l| 30
[3.6 Automata Gy, and Gy, of Example|3.2l| 30
[3.7 Automaton G of Example|3.3l| 33
3.8 Automata G, and G, of Example(3.3[| 33
B.9 Automaton G% of Example[3.3] L. 34
3.10 Automaton Gy” of Example|3.3l| 34
3.11 Graph @}S;D = Gaoq of Example 3.400 38
[3.12 Topological Sort of graph Gy, of Example[3.4]]. 38

[3.13 "Topological Sort of graph Gg,, of Example [3.4] with values of |

weighting functions p(v;,v;) (above the edges) and [(v;) (below the |

VETTICES).| . v v v v 38
[3.14 Synchronous decentralized diagnosis architecture.| 40
3.15 Automata GE and GX of Example |3.5” 43
3.16 Automaton GT of Example|3.5(. 43
3.17 Automaton Gp© of Example|35[| 44
3.18 Graph Gy = Guag of Example[3.61 45
(3.19 Topological Sort of graph Gy, of Example[3.6[]. 45

viil

B.20

Topological Sort of graph Gg,, of Example [3.4) with values of

weighting functions p(v;,v;) (above the edges) and [(v;) (below the

VETTICES).| o oo 45
.1 Comparison between the synchronous diagnosis architectures: (a) |

the synchronous centralized scheme; (b) the conditional synchronous |

scheme; (c¢) the synchronous decentralized scheme; (d) the distributed |

synchronous scheme.| 49
[4.2 "T'he distributed synchronous diagnosis scheme for a system composed

of five modules and two networks) ol
[4.3 Automata G, Go, and G3 of Exampled.1}| 52
[4.4 Automaton G of Example 4. 1| 0L 53
[4.5 Automaton Gy of Example d.11| o000 53
4.6 Automata Gy,, Gy, and Gy, of Exampled.1}| 53
1.7 Automata G%, GX, and Gy, of Example 4.1l 53
4.8 Automaton G of Example d.1l{ 54
[4.9 Distributed synchronous diagnosis architecture for the system of

Example 4.2l 55
{4.10 Automata Gy, ,, Gy, , and Gy, , of Exampled.3lf 58

11

Automaton G%. The white states represent the states of Gy.

The hatched states and the dashed transitions are the states and

transitions of G that are eliminated by applying Algorithm [4.2] in

Example 4.4l

E12

Automaton Gy, of Example h4lf

13

Automaton Gp of Example 4.5 L.

114

Part of automaton Gy~ with states labeled with F' of Example |4.5]| .

X

65
66

List of Tables

(1.1~ Comparison between different diagnosis schemes.|. 7
[4.1 Summary of notations regarding the synchronous diagnosis |
architectures) L 68

Chapter 1

Introduction

Industrial systems are becoming more complex, with several subsystems or local
components operating concurrently, interacting and connected on local networks or
through the internet. Such systems are known as cyber-physical systems (CPSs).
CPS is a new generation of systems that integrate computing, communication and
physical capabilities to control and monitor different processes [1H4].

Several CPSs can be considered as discrete-event systems (DESs), which are
dynamic systems, whose evolution is governed by the occurrence of events, and have
a discrete state-space [0l [6]. Events are directly associated to state changes in the
system and are modeled as an instantaneous occurrence. Examples of events are
the command of a controller, the realization of a task by a robot, or a change of
position of an autonomous guided vehicle.

Due to the instantaneous occurrence of events and the discrete nature of the
state-space of a DES, mathematical formalisms based on differential or difference
equations are not suitable for representing these systems. Alternative mathematical
formalisms are used in order to represent these characteristics properly. In the
literature, there are several ways to describe DESs, and the most common are
automata and Petri nets [5-9].

DESs are subject to the occurrence of faults, which are unexpected changes in
the system behavior that can cause a reduction in the reliability and performance

of the system. In CPSs, that typically are composed of several physical subsystems,

the occurrence of a fault in one of these subsystems can alter the behavior of
other integrated components, which impacts the whole system behavior. Thus, the
detection and isolation of a fault can be a complex task to perform, leading to the
need for efficient mechanisms to identify the occurrence of fault events. Moreover,
it is also important to analyze the delay bound for diagnosis, which is the maximum
number of events that the system can generate after the occurrence of the fault
event until the fault is detected, in order to evaluate the efficiency of the diagnosis
method.

There are several works in the literature that address the problem of fault
diagnosis of DESs [10-26]. In the seminal work SAMPATH et al. [10, 11], a diagnosis
scheme for systems modeled by finite state automata, is presented. The method
based on the construction of a diagnoser that can be used to both detect and isolate
fault event occurrences and to verify the diagnosability of a language, i.e., verify if
the fault event occurrence can be detected within a bounded delay. However, the
implementation of the diagnoser presented in SAMPATH et al. |10 1] is usually
avoided since, in the worst-case, the state-space of the diagnoser grows exponentially
with the size of the plant model state-space. This is due to the fact that the diagnoser
proposed in SAMPATH et al. [10, 11] is based on the computation of an observer
automaton. Moreover, the diagnoser is based on the global system model, which
is in general obtained from the composition of the system components, and whose
state-space can also grows exponentially with the number of components.

In the diagnosis scheme proposed in SAMPATH et al. [10, 1], it is considered
that all information regarding the occurrence of events is available in a centralized
way, which is not always the case for systems with a high degree of complexity and
with a large number of components. In these cases, if the diagnosis information
is physically distributed, diagnosis architectures such as the decentralized [12HI4]
and distributed [15] [16] are more suitable. In Protocol 3 of DEBOUK et al. [12], a
decentralized diagnosis scheme where local diagnosers identify the occurrence of a

fault event using only local observations of the global system model is presented. In

this approach, each local diagnoser has a different set of observable events, and when
at least one local diagnoser identifies the fault occurrence, it sends this information to
a coordinator, that informs the operator of the system. The notion of decentralized
diagnosability has been called codiagnosability [I3]. The centralized diagnosis
scheme [10, 11}, 24] can be seen as a particular case of the decentralized architecture
[12-14], and polynomial time algorithms for the verification of codiagnosability,
that can also be used to verify diagnosability, have been proposed in the literature
113, 27, 28].

In the distributed diagnosis approach, local diagnosers are computed from
the global system model and are based on local observations. In this scheme,
differently from the decentralized diagnosis architecture, the local diagnosers
exchange information with each other in order to improve the diagnosis decision.
The information exchanged between local diagnosers can be associated, for example,
with the observation of events and/or their current state estimates. In order to do
so, different communication protocols for distributed diagnosis have been proposed
in the literature [15-17].

In KEROGLOU and HADJICOSTIS [16], a protocol that allows the exchange
of information regarding state estimates at predetermined synchronization points is
presented. In KEROGLOU and HADJICOSTIS [16], the global system is modeled
by a nondeterministic finite state automaton and local diagnosers are constructed
based on different sets of observable events, resulting in different state estimates of
the global system. The strategy considered in KEROGLOU and HADJICOSTIS
[16] is such that when at least one local diagnoser observes a predetermined number
of events, the state estimate of all local diagnosers is sent to a coordinator, that
computes the intersection of the sets of state estimates and communicates this
information to all local diagnosers. The information exchanged is used by the local
diagnosers to refine their diagnosis decision in the next event observation. The fault
is detected when at least one local diagnoser identifies its occurrence in the system.

It is important to notice that the exponential growth of the global model with

the number of system components is not avoided in the architectures considered
in [I2HI6], since the local diagnosers are computed from the global plant model.
In SU and WONHAM [17], a different notion of distributed diagnosis is proposed,
where local diagnosers are constructed from the component models of the system in
order to avoid the construction of the composed system model. The idea is to infer
if a fault event, that is modeled in a local component, has been executed by the
composed system. The local diagnosers are computed based on the local behavior
models, and exchange information with other diagnosers. Since both the faulty and
fault-free behaviors of each local component is considered for the construction of
the local diagnosers, a consistency analysis must be carried out. A communication
protocol is defined in order to achieve global (resp. local) consistency, i.e., for each
local estimate, knowing all other local estimates does not help to further reduce
redundant information in the local estimate (resp. knowing adjacent local estimates
does not improve the local diagnosis).

Also taking advantage of the modularity of DESs, in DEBOUK et al. [29] and
CONTANT et al. [30] different notions of modular diagnosability are proposed.
In these works, it is considered that the fault event is modeled in a unique local
component of the system, and the occurrence of the fault event is identified by
observing only this local component. It is important to remark that in the modular
diagnosis architecture, it is assumed that the component where the fault is modeled,
has persistent excitation, i.e., the system does not generate a faulty trace with
arbitrarily long length formed only with events that do not belong to the component
where the fault is modeled.

Recently, in CABRAL et al. [31], CABRAL and MOREIRA [32] and CABRAL
[33] a new technique for fault diagnosis of DESs, called synchronous diagnosis,
is proposed. In this approach, a synchronized diagnoser based on the fault-free
behavior model of the system components is constructed, and the definition of
synchronous diagnosability of the language of the system is introduced. The main

advantage of this method is to use the modularity of a DES to avoid a diagnosis based

on the composed system model, which can have exponential growth in the state-
space with the number of system components. In CABRAL and MOREIRA [34] and
CABRAL [33], the centralized synchronous diagnosis is extended to the decentralized
architecture, and a notion of synchronous codiagnosability is defined. It is also
shown in CABRAL and MOREIRA [34] and CABRAL [33], that the centralized
synchronous diagnosis is a particular case of the decentralized synchronous diagnosis.
Differently from the modular diagnosis scheme [29, 0], where the diagnoser is
computed considering only the component where the fault is modeled, in the
decentralized synchronous approach, local diagnosers are constructed for all system
components. Thus, it is possible to detect the occurrence of the fault event in a local
diagnoser based on a component where the fault is not modeled, which is not possible
in the modular diagnosis scheme. Therefore, a system not modularly diagnosable
can be synchronously diagnosable. It is important to remark that none of the
assumptions made in CONTANT et al. [30] for modular diagnosis are considered in
the synchronous diagnosis scheme [31H36].

The main drawback of the synchronous diagnosis technique is that the observed
fault-free language considered for diagnosis can be a larger set than the observed
fault-free language of the composed system. Thus, a diagnosable system, according
to SAMPATH et al. [10], can be not synchronously diagnosable. In order to
reduce the growth of the observed fault-free language for synchronous diagnosis,
in CABRAL et al. [35], the addition of boolean conditions to the transitions of
the local diagnosers in the centralized architecture is proposed. These conditions
are computed from the fault-free behavior model of the composed system. By
considering these conditions, the transitions of the diagnosers that are not associated
with a transition in the fault-free behavior model of the composed system are
disabled, avoiding some incorrect state estimates. By applying this modification, the
augmented observed fault-free language considered in the synchronous centralized
diagnosis is reduced, which improves the diagnosis decision. The notion of

conditional synchronous diagnosability is introduced in CABRAL et al. [35], where

it is shown that a system that is not synchronously diagnosable can be conditionally
synchronously diagnosable. In CABRAL et al. [35], a method for the verification of
the conditional synchronous diagnosability of a system is also presented.

In this work, we introduce the distributed synchronous diagnosis architecture.
In this scheme, a communication protocol is developed and local diagnosers are
constructed from the fault-free behavior model of the system components. For each
component, we consider that there exists a corresponding local measurement site,
which provides information of local event observations. In addition, we assume that
local diagnosers can be connected through networks, and that they can exchange
information regarding the observation of events and local state estimates. We
also present the notion of distributed synchronous diagnosability, which takes into
account the information that can be communicated between local diagnosers. The
approach presented in this work, generalizes the conditional centralized synchronous
diagnosis method proposed in CABRAL et al. [35] to the distributed case. The
main advantage of the distributed synchronous diagnosis is the reduction of the
fault-free language for synchronous diagnosis, in comparison with the synchronous
decentralized diagnosis scheme proposed in CABRAL and MOREIRA [34] and

CABRAL [33], leading to a less conservative fault diagnosis.

Failure
Diagnosis

| Centralized | | Decentralized | | Distributed | [Modular | [Synchronous|

|
| Centralized | | Decentralized | | Distributed |

Figure 1.1: Different diagnosis schemes and the synchronous diagnosis approach.

It is important to remark that, in the synchronous distributed diagnosis
approach, a fault event can be detected by a local diagnoser whose corresponding
local component does not have the fault event modeled. Moreover, differently
from other methods proposed in the literature, the same fault event can be

modeled in more than one local component of the system. In Figure [1.1] it is

presented the most common diagnosis architectures proposed in the literature.
Since the synchronous diagnosis architecture cannot be classified as a centralized,
decentralized, distributed nor modular architecture, it is highlighted in gray in
Figurel[l.1|as a new diagnosis framework. In summary, the synchronous diagnosis can
be implemented in three different schemes: (i) centralized, where a single diagnoser
is implemented, and all information regarding the observation of events is sent to the
diagnoser by a centralized measurement [31H33] 85]; (¢7) decentralized, where local
diagnosers, based on the fault-free behavior component models are implemented
locally, and the fault diagnosis decision is informed to a coordinator |33, [34]; and
(7i1) distributed, where diagnosers are implemented locally and can communicate
their event observations and current state estimates in order to refine the diagnosis
decision [36], which is the proposal of this work. In summary, in Table[L.1] the main

characteristics of each diagnosis architecture depicted in Figure is presented.

Table 1.1: Comparison between different diagnosis schemes.

Diagnoser
. Measurement .
Architecture computed . Diagnoser
sites
from
Centralized Global plant Centralized Mf)nollthlc
model measurement diagnoser
Decentralized Global plant Distributed . Local
model measurement diagnosers
Local
. lobal plant Distributed . .
Distributed Global plan 1StHbute diagnosers with
model measurement .
communication
Faulty . .
Centralized Single
Modular component .
measurement diagnoser
model
Fault-f . .
Synchronous ault-free Centralized Single
. component .
centralized measurement diagnoser
models
Fault-f -
Synchronous aufi-iree Distributed Local
. component .
decentralized measurement diagnosers
models
Fault-f - Local
Synchronous auti-iree Distributed . ocat
. . component diagnosers with
distributed measurement C .
models communication

This work is organized as follows. In Chapter [2| we present some preliminary
concepts about DESs. The notions of diagnosability and synchronous diagnosability
are presented in Chapter[3] We introduce, in Chapter[d], the distributed synchronous
diagnosis architecture, the communication protocol between local diagnosers, and
the notion of distributed synchronous diagnosability. An example is used throughout

the text to illustrate the results. The conclusions are drawn in Chapter [f|

Chapter 2

Fundamental Concepts of

Discrete-Event Systems

A Discrete Event System (DES) is a system whose state-space is described by a
discrete set and whose state transitions are driven by the occurrence of events.
Due to the nature of a DES, differential or difference equations are not suitable to
describe its behavior [5]. Therefore, it is necessary to introduce a different formalism
to model and describe these types of systems. In this work, the automaton formalism
is considered to model DESs.

In this chapter we present the theoretical background of DESs. In order to do

so, we first introduce the notations and definitions regarding languages.

2.1 Languages

Before we introduce the concept of languages, we first present some notations. The
set of events of a DES is represented by symbol . The concatenation of events
forms a trace, and the language of a system consists of the set of bounded length
traces that can be executed by the system. A trace that does not contain any event
is called the empty trace and is denoted by . The length of a trace s is represented
by ||s]| and, the length of the empty trace is equal to zero. In the sequel, we present

the formal definition of a language [5].

Definition 2.1 (Language) A language L defined over ¥, is a set of finite length

traces formed with events of X.

Example 2.1 Consider a system with event set ¥ = {a,b}. The language L =
{e,a,ab,aab,abb} is composed of five traces, and the length of the traces of L are
lell =0, [lal| = 1, [lab]| =2, [laabl]| = 3 and ||abd|| = 3.

Since languages are sets, the usual operations of sets such as union, intersection,
difference, and complement, can be applied to languages. Moreover, there are other
important operations that can be applied to languages and are presented in the

sequel.

2.1.1 Language operations

The Kleene-closure operation over the event set Y is represented as >*, and consists
of all finite length traces that are constructed with elements of X, including the
empty trace €. Therefore, a language L defined over X is a subset of ¥*. This

operation can also be applied to languages and is defined as follows.

Definition 2.2 (Kleene-closure) Let L C X*, the Kleene-closure operation L* is

given by:

L*={s}ULULLULLLU...

An important operation applied to traces and, consequently, to languages is
the concatenation. A trace s = abba, for example, can be constructed by the
concatenation of two traces ab and ba. Moreover, the empty trace € is considered
the identity element of the concatenation operation and, therefore, the trace ab is
the concatenation of ¢ and ab, i.e., cab = abe = ab. This operation can also be

formally defined for languages.

10

Definition 2.3 (Concatenation) Let L,, L, C ¥*. The concatenation operation

L, Ly s defined as:

LoLy = {s =848y : (84 € Lo) and (sy € Ly)}.

The concatenation operation, when applied to languages L, and L, generates a
set containing the concatenation of each trace of set L, with each trace of set L.

Consider a trace s = tuv, where t,u,v € ¥*, t is a prefix of s, u is a subtrace of
s and v if a suffix of s. Notice that, since ¢t,u,v € ¥*, then ¢ is always a prefix, a
subtrace and a suffix of s. Now, the definition of prefix-closure of a language L can

be stated.

Definition 2.4 (Prefix-closure) Let L C X*, the prefiz-closure operation L is

given by:

L={sex*:(3tecystel]}

The prefix-closure of a language L is the set composed of all prefixes of all traces
of L, thus L C L. If L = L, i.e., if all prefixes of all traces of language L are also
elements of L, this language is said to be prefix-closed.

Other important operations applied to traces and languages are the natural

projection and the inverse projection, presented in the sequel.

Definition 2.5 (Projection) Consider ¥, and %y, such that ¥ C ;. The natural

projection Pl : YF — Y* is defined recursively as follows:

Pl(e) =,

o, if o € X,
Pl(o) =
e, ifo e\,

Pl(so) = PY(s)P!(o), for all s € ¥}, 0 € %,

where the operator \ represents set difference.

11

The projection operation P!(s) erases all events o € Y; \ X, from the traces
s € X;. This operation can be extended to languages by applying the operation to
all traces of the language.

The inverse projection operation is defined as follows.

Definition 2.6 (Inverse projection) The inverse projection PL ' : ¥* — 2% s
defined as:

l—l

P

s

(t) ={s € 5 : P(s) =t}.

For a given trace ¢t € X7, the inverse projection operation Psl_l(t) generates a set
formed of all traces s that can be constructed with the events of ¥; whose projection
P! results in the trace t. This operation can also be extended to languages by
applying the operation to all traces that belong to the language.

The language of a DES represents all traces that the system is capable of
executing, 7.e., it can be used to represent the system behavior. However, mainly in
large and complex systems, the representation of the behavior of systems using only
their languages is not easy and viable to work with. Therefore, it is necessary to use
another formalism to describe DESs to facilitate the manipulation and analysis of
systems with complex behavior. In this work we use automata to represent DESs,

which are detailed in the next section.

2.2 Automata

An automaton is a device that is capable of representing a language according to

well-defined rules, and is formally defined as follows |5 [6].

Definition 2.7 (Automaton) A deterministic automaton, denoted by G, is a five-

tuple:

G = (Qa Ea f7 qo, Qm>7

12

where Q) is the set of states, X is the set of events, f: Q) x X — @ is the transition

function, qq is the initial state, and Q,, is the set of marked states.

For the sake of simplicity, when the set of marked states (),, is the empty set,
i.e., Qm = 0, it will be omitted in the representation of the automaton.

We can also define I'; : Q — 2% as the function of active events of a state of G,
i.e., 'g(q) is the set of all events o € ¥ for which the transition function f(q,0) is
defined.

Automata can be represented by state transition diagrams, which are oriented
graphs capable of reproducing all characteristics defined in GG. The state transition
diagram is formed of vertices, represented by circles, and edges, represented by
arcs. The vertices represent the states of the system, and the edges represent the
transitions between these states, which are labeled with events of ¥ in order to
represent which event correspond to each state transition. The initial state of the
automaton is represented by an arc without an origin state. Example [2.2] shows an

automaton and its state transition diagram.

Example 2.2 Consider automaton G with state set @ = {0,1,2} and event set
Y = {a,g}. The transition function of G is defined as: f(0,a) = 1, f(0,9) =
0, f(1,9) = 2, f(2,a) = 1 and, therefore, the active event function is given by:
I'¢(0) ={a, g}, Ta(l) = {g}, T'c(2) = {a}. The initial state qo is O and the set of
marked states is Q. = {1}. The state transition diagram of automaton G is shown

n Figure |2. 1,

g
~Fea
a

Figure 2.1: State transition diagram of automaton G of Example 2.2

We also define a path in an automaton G as a sequence

(ql,O'l,QQ,...,qnfl,anfl,qn), where o; € E, qi+1 = f(qi,O'i), 1 = 1,2,...,71 —1. A

13

path (q1,01,4G2, -, qn-1,0n-1, @) is said to be cyclic, if ¢; = g,. The set of states
of a cyclic path forms a cycle.
Another important definition is the generated and marked languages of an

automaton, presented as follows.

Definition 2.8 (Generated and marked languages) The generated language

of an automaton G = (Q, %, f,qo, Qm) is defined as

L(G)={se€ X" : f(q,s) is defined}.

The marked language of G is defined as

Ln(G) = {s € L(G) : f(q0,) € Qm}-

Notice that, in Definition 2.8] the domain of the transition function is considered
to be extended, i.e., f: Q x ¥* — (). In addition, notice that for any G such that
Q#0,ce€ L(G).

In general, the language generated by G, L(G), is composed of all traces that,
starting from the initial state, can be concatenated by following the transitions of
the state transition diagram. Therefore, since a trace in G is only feasible if all its
prefixes are also feasible, the generated language £(G) is prefix-closed by definition.
Moreover, if f is a total function over its domain, then £(G) = X*. In this work,
the language generated by G, L(G), is also referred to as L.

The marked language of G, L£,,(G), is a subset of L, which contains all traces s
that reach a marked state, i.e., all traces s such that f(qo,s) € Q,,. In this case,
L,,(G) is not necessarily prefix-closed, since @, is not necessarily equal to Q.

The generated language of an automaton G = (Q, X, f, q) is said to be live if
Ta(q) # 0 for all g € Q.

In the following, we introduce some operations that can be applied to automata.

14

2.2.1 Operations on automata

There are several operations that can be used to modify the state transition diagram
of a single automaton, or compose two or more automata. These operations are

separated into two groups: unary and composition operations.

Unary operations

Unary operations are applied to a single automaton, in order to alter appropriately
its state transition diagram, without change the automaton event set. In the sequel

we present the definition of two unary operations.

Definition 2.9 (Accessible part) Consider automaton G = (Q,%, f,qo, Qm)-

The accessible part of G, Ac(Q), is defined as:

AC(G) = (Qaca E, faca q0, Qac,m)a

where Qac = {q € Q : (33 € E*)[f(CIO,S) = Q]}7 Qac,m = Qm N Qac; and fac .
Qac X X — Que. The transition function f,. corresponds to f restricted to the

smaller domain of the accessible states QQqe.

The operation of taking the accessible part of an automaton G erases the states
that are not reachable from the initial state gy and its related transitions.
It is important to remark that the generated language of an automaton G is not

modified with this operation.
Definition 2.10 (Coaccessible part) Consider automaton G = (Q, %, f, o, Qm)-

The coaccessible part of G, CoAc(G), is defined as:

COAC(G) - (Qcoaca Ea fcoacy qo,coacs Qm)7

where Qcoac = {q c Q : (ELS’ € Z*Mf((b S) € Qm}}: qo,coac =4qo Zf 4o € Qcoac and QO,coac
is not defined if go & Qeoac; A feoac * Qeoac X X = Qcoac-

15

The operation of taking the coaccessible part of automaton G deletes all states
q such that a path from ¢ to a marked state does not exist.

It is important to notice that the generated language of G can be reduced by
applying the coaccessible part, i.e., L(CoAc(G)) C L(G), while the marked language

is not modified.

Composition operations

Composition operations applied to DESs modeled by automata allow us to combine
two or more automata, resulting in a single automaton. Moreover, using composition
operations it is possible to construct the global system model from the models of
its individual components. In the following, we present two important composition

operations.

Definition 2.11 (Product composition) Let Gy = (Q1,%1, f1,90.1, @m,) and
Gy = (Q2, 29, f2,q02, Qm,) be two automata. The product of Gy and Go results

in the automaton

G x Gy = AC(Ql X Q2,21 U Xg, fixe, (%,1, %,2)7 Qm, X sz)v

where

(filq1,0), f2(q2,0)) if 0 €Tg(q1) NTa,(qe)

undefined, otherwise.

f1x2((Q1>CI2),U) =

In the product composition, an event can only occurs in the resulting automaton
G1 x G4 if it occurs simultaneously in G; and GG5. For this reason, the product
operation is also known as completely synchronous composition.

Due to the complete synchronization of the product operation, the generated
language of G| x (G is the intersection of the generated languages of the automata

used in the composition, i.e., L(G1 X Gg) = L(G1) N L(Gs). If ¥; N Xy = (), then

16

L(Gy x Gy) = {e}.

In general, systems are formed by several components that work together and
whose event sets have private events, representing the internal behavior of each
component, and common events, representing the coupling behavior between the
components. The common way to obtain the global model of a system from the
models of its components is applying the parallel composition. With this operation,
it is possible to maintain the private behavior of each component and capture the
synchronism between the components. The formal definition of parallel composition

is presented in the sequel.

Definition 2.12 (Parallel composition) Let Gi = (Q1,%1, f1,901, Qm,) and
Gy = (Q2, 22, f2,902, Qm,) be two automata. The parallel composition of Gy and

G4 results in automaton

GlHG? = AC(Ql X Q27 El U 227 f1||27 (CIO,17QO,2)7 le X Qm2)a

where

(

(f1<q170)7 fQ(QQaa)) ng € FGI (ql) N FGQ(QQ);
,0), ' L'eq, o;
Fia((ans a0),0) = (filq1,0),q2) if o € Tg (q1) \ X2
(q1, fo(q2, 0)) if o € Lay(q2) \ 21;
| undefined, otherwise.

The parallel composition synchronizes the common events of components, i.e.,
an event o € 31 N Yy can only occur in the resulting automaton G4||Gs if it occurs
in GG; and G5 simultaneously. On the other hand, private events of each automaton,
i.e., the events in (3; \ X2) U (22 \), can be executed whenever possible in G4
and Gb.

It is important to notice that if ¥; = Yy, then G1||Gy = G; X Gy, since all

transitions can only occur synchronously.

17

In order to correctly define the language generated by Gi||Ga, it is necessary
to consider the natural projections P; = (3, U Xy)* — 3F, for i = 1,2. Based
on these projections, the generated language of G1||G2 is equal to L(G1||Gy) =
PIHL(Gh)) N Py (L(G)).

An example of the product and parallel composition operations is presented in

the sequel.

Example 2.3 Consider automata G1 and G5 presented in Figure[2.4(a) and[2.3(b),
respectively. The event set of G1 and Gy are, respectively, 31 = {a,b} and Xy =
{a,c}. Computing the product and parallel compositions of automata G1 and G,
we obtain automata Gpoq = G1 X Gy and Gper = G1]|G2, respectively, presented
in Figure 2.3 Notice that since the only common event of G1 and Gy is event a,
i.e., X1NEy = {a}, automaton G,roq has only transitions labeled with event a, while
in automaton Gpe, it s possible to observe the concurrent behavior of Gy and G,

represented by transitions labeled with events b and c.

b.a c)
" Loea 33
NOYRC IO
(a) G (b) G2

Figure 2.2: Automata G; and G5 of Example [2.3]

b . b, c

(@) Gprod (b) Gpar

Figure 2.3: Automata Gp,oq and Gpe, of Example 2.3]

In the following, we present an important characteristic that must be taken into

account when we use automata for modeling real systems.

18

2.2.2 Automata with partially observed events

In real systems it is not always possible to detect the occurrence of all events, due to
limitations of the sensors used in the system. Events that do not have an associated
sensor, such as fault events that do not cause immediate change in sensors readings,
are called unobservable events. With the view to representing this, the event set X
can be partitioned as ¥ = ¥,UX,,,, where 3, is the set of observable events, ¥, is
the set of unobservable events, and U represents union of disjoint sets. The observed
language of an automaton G can be defined as P,(£(G)), where P, : ¥* — X7 is the
natural projection.

In order to analyze a system with unobservable events, it is important to define
the concept of unobservable reach of a state ¢, denoted as UR(q). The unobservable
reach of a given state ¢ € @) represents the set of states that can be reached from
q after the occurrence of a trace formed with only unobservable events, and it is

formally defined as follows.

Definition 2.13 (Unobservable reach) The unobservable reach of a state q € Q,

represented by UR(q), is defined as:

UR(q) ={y € Q: (3t € X,)[f(¢,t) =y} (2.1)

The unobservable reach can also be defined for a set of states B € 29 as:

UR(B) = | J UR(q). (2.2)

4€B

From the definitions of observed language and unobservable reach, it is possible

to compute a deterministic automaton that generates the observed language of G
with respect to X,, P,(L(G)). This automaton is called observer of G and is denoted

by Obs(G,3,).

Definition 2.14 (Observer automaton) The observer of automaton G with

respect to the set of observable events X, Obs(G,%,), is given by:

19

ObS(G7 Z’o) = (Qob57 Zoa fobs’ qo,0bs Qm,obs)a

where qops C 29, fops, Qo.0bs and Qu.ops are obtained by following the steps of
Algorithm [2.1] [5, [37).

Algorithm 2.1 Observer automaton

Input: G = (Q,%, f,q0,Qm), and the set of observable events ,, where ¥ =
YUY .

OUtPUt' ObS(G7 Zo) - (Qobsa 207 fobs: q0,0bs Qm,obs)~

1: Deﬁne qo,0bs = UR(qD); Qobs = {qo,obs} and @obs = Qobs-
2: Qobs = @obs and CTjobs = @

3: For each B € Qobs:

3.1: Tope(B) = (quB FG(q)> ns,.
3.2: For each o € I'yps(B),

fovs(B,0) :=UR({q € Q: (3y € B)lg= f(y,0)]}).

3.3: éobs = C1}01)3 U fobs(Ba U)-
4-' Qobs = Qobs U Cijobs-
5: Repeat steps 2 to 4 until all accessible part of Obs(G,%,) is constructed.

6: Qm.obs == {B € Qops : BN Q, # 0}.

We present now an example with the observer Obs(G,3,) of a system modeled

by automaton G.

Example 2.4 Consider automaton G presented in Figure[2.4)(a). The set of events
is given by ¥ = {a,b, 04}, where ¥, = {a,b} and ¥,, = {ou.}, and the set of states
of G is Q = {0,1,2,3}. The observer of G, Obs(G,%,), is shown in Figure [2.4)(b).

Let us assume that the system has executed trace s = aoub, then the observed trace

20

is Py(s) = ab, where P, : ¥* — X*. Notice that the state reached in Obs(G,%,)
after the observation of trace ab is {2,3}, which is the state estimate of G after
observation of trace s. As it can be seen in Figure (b), each state of the observer

Obs(G,X,) is the state estimate of G after the observation of a trace.

a b

(b) Obs(G, %,)

Figure 2.4: Automaton G of Example (a), and observer automaton of G,
Obs(G, %,) (b).

2.3 Final comments

In this chapter, the background of DESs, such as the definition of language,
operations and the automaton formalism used to represent DESs is presented.
Automata with partially observed events, which models systems where not all events
are possible to be detected, is also presented.

An example of unobservable event in real systems is the occurrence of a fault
and, methods with the aim to detect and isolate its occurrence are needed. In the
next chapter, we present the theoretical background of diagnosis for DESs modeled

as automadta.

21

Chapter 3

Diagnosability of DESs

Systems are subject to faults that can alter their expected behavior. Thus, it is
necessary to define mechanisms that are capable of diagnosing the occurrence of
fault events. In this work, a fault event is an unobservable event, since observable
events are trivially diagnosed. In this chapter we present some preliminary results
regarding diagnosis for DESs. In order to do so, we first introduce the seminal
definition of diagnosability of DESs presented in SAMPATH et al. [10].

Consider a system modeled by automaton G and consider the language generated
by G as L(G) = L. The set of fault events is denoted by X, where ¥; C ¥, and,
for the sake of simplicity, assume that the set of fault events is composed of only one
fault event type, i.e., ¥y = {os}. It is important to remark that in systems with
more than one fault event type, each fault event can be considered separately [3§]
and, therefore, there is no loss of generality in the results presented in this work by
making this assumption.

Before presenting the definition of language diagnosability of DESs, we first

introduce the notion of faulty and fault-free traces as follows.

Definition 3.1 (Faulty and fault-free traces) A trace s € L is a faulty trace if
oy is one of the events that form s, otherwise, the trace is said to be a fault-free

trace.

The set of all fault-free traces that can be generated by the system is the fault-

22

free language, denoted as Ly, where Ly C L, and the subautomaton of G that
generates Ly is denoted by Gy. Thus, the set of all faulty traces is Lr = L\ Ly,
called faulty language. Now, the definition of language diagnosability, presented in

SAMPATH et al. [10], can be stated.

Definition 3.2 (Language diagnosability) Let L and Ly C L be the live and
prefir-closed languages generated by G and Gy, respectively. L is said to be

diagnosable with respect to projection P, : ¥* — X% and Xy if

(32 € N)(Vs € Lp)(Vst € Lp)(||t]| > 2) =

(PO(St) Q/ PO(LN))'

From Definition [3.2] it can be seen that L is diagnosable with respect to P,
and Xy if, and only if, for all faulty traces st with arbitrarily long length after the
occurrence of a fault event, there does not exist a fault-free trace sy € Ly, such
that P,(st) = P,(sy). Thus, if L is diagnosable, then it is always possible to identify
the occurrence of a fault event after a bounded number of event occurrences.

In order to verify the diagnosability of L and for implementation of a fault
diagnosis scheme, a diagnoser automaton, denoted by G4 can be computed |5} [10]
11]. In order to construct the diagnoser automaton Gy, it is necessary to present
the labeler automaton automaton A;, defined as A; = (Qy, Xy, fi, qo;), where Q; =
{N,F}, filN,oy) =F, fi(F,o0f) = F, qo; = N. The state transition diagram of A,

is shown in Figure [3.1
of
of
Figure 3.1: Automaton A;.

Now, consider a system modeled by automaton G = (Q, %, f, qo). By computing
the parallel composition between automata G and A;, we obtain automaton G; =

G||A;. A state ¢, € Gy is labeled with N if it is reached by a fault-free trace, and

23

it is labeled with F' if it is reached by a faulty trace. The language generated by
Gy is L(G)) = L. After the construction of automaton Gy, the diagnoser automaton
G4 is computed by making the observer of GG; with respect to its observable events,
i.e., Gg = Obs(G},%,). In the following, the diagnoser automaton Gy is formally
defined.

Definition 3.3 (Diagnoser automaton) The diagnoser automaton Gy of the
system G, with respect to the faulty event set Xy and observable events set 3,
18 defined as:

Gy = Obs(Gy, S,).

Notice that the generated language of G4 is the natural projection of L, i.e.,
L(G4) = P,(L). Moreover, we can also notice that the states of G, are the state
estimates of (5; after the observation of a trace. Thus, if G, reaches a state that has
only labels N, it can be affirmed that the fault did not occur, however if G, reaches
a state where all labels are F', the fault certainly occurred and is diagnosed.

The states of Gy that have both labels, N and F', are called uncertain states,
since it indicates that the diagnoser is not certain about the fault occurrence status.
A cycle formed by uncertain states is called an uncertain cycle. When an uncertain
cycle can be associated with at least two cycles in (;, one with states labeled with
N and one with states labeled with F', this cycle is called indeterminate. Thus,
the verification of diagnosability of L can be done by searching for indeterminate
cycles in G4, such that if G4 has an indeterminate cycle, then L is not diagnosable,
otherwise, L is diagnosable [10, 1T, 39].

The example in the sequel is presented in order to illustrate the construction of

the diagnoser automaton Gj.

Example 3.1 Consider the system G depicted in Figure (a). The set of events
is given by ¥ = {a,b,c,d, o}, where the set of observable events is ¥, = {a,b,c,d}
and the set of uonbservable event is ¥, = {os}. The fault event set is ¥y = {os}.

Automaton G, = G||A; is shown in Figure[3.3(b), and the diagnoser automaton G,

24

obtained by computing the observer of Gy with respect to its observable event set 3,
is shown in Figure[3.9(c).

Notice that, if the first observed event is b, the fault event has not occurred.
Howewver, if the first observed event is a, Gy reaches the uncertain state {2N;3F}.
If, in the sequel, event b is observed, Gy reaches a fault-free state, confirming the non
occurrence of the fault event. However if only event ¢ is observed, G4 remains in the
uncertain state {2N;3F}. Notice that the uncertain cycle formed by the self-loop
labeled with event c in state {2N,3F} is also an indeterminate cycle, since there are
two cycles in G, a faulty and a fault-free, associated with the uncertain cycle of Gg,
namely, the traces ac* and acsc*. Since there exists an indeterminate cycle in Gg,

the generated language of G, L, is not diagnosable with respect to P, : ¥* — X% and

S

C & C C C
N a %Of 8 NG a %0’/ @ >[N—2>PN3F
7] T T] b
OreOre0 O e ®) N> BN

O O
d d d
(a) G (b) Gy (c) Ga

Figure 3.2: Automaton G (a), automaton G, (b), and diagnoser automaton G4 (c)

of Example [3.1]

Although the diagnoser automaton G, can be used for the verification of
diagnosability of L, its computation is, in general, avoided due to the exponential
computational growth of the state-space of G4 with the cardinality of the state-
space of the system (). In order to circumvent this problem, in MOREIRA et al.
[25, 27] an algorithm for the construction of a verifier automaton is presented, and
it is shown that the cardinality of the set of states of the verifier grows polynomially
with the set of states of the system.

Besides the monolithic diagnosis architecture presented in SAMPATH et al.
[10], with the computation of the diagnoser automaton Gy, there exists several

diagnosis architectures, such as decentralized, distributed and modular diagnosis

25

in the literature. Recently, a new architecture, called synchronous diagnosis, which
takes advantage of the modularity of DESs modeled by automata, has been proposed.

This architecture is presented in the sequel.

3.1 Synchronous centralized diagnosability of DESs

In general, systems are composed of several subsystems, modules or components,
such that the global plant model G is obtained from the parallel composition of
these components, i.e., G = ||;_; Gk, where r is the total number of components,
and Gy = (Q, Xk, fr,qok), k = 1,...,r, are the automaton models of the system
components. Let ¥ = 3 ;U be the set of events of Gy, where X, and i 0
are the set of observable and unobservable events of GG}, respectively.

In the most common diagnosis architectures presented in the literature, for
example the monolithic, decentralized and distributed architectures, the diagnosis
is based on the global model of the system, G, which may result in a large number
of states, since the computation of GG is obtained from the parallel composition of
the system component models, G. In order to avoid the computation of the global
plant model for diagnosis, in [31H33] a method that uses the modularity of DESs
modeled by automata, is proposed.

The diagnosis method presented in [31H33] is called synchronous diagnosis, and is
based on the observation of the fault-free behavior of the system components, G, ,
for K = 1,...,r, which provides a superset of the state estimate of the fault-free
behavior model Gy after the occurrence of an observable event. In this method,
local observers that return the online state estimate of Gy, , are constructed. The
diagnosis of a fault event is given by using a fault detection logic, which detects the
fault event when, in at least one local state observer, the state estimate is equal to
the empty set, i.e., when an observable event o, € ¥, that is not feasible in the
current state estimate of G, is executed.

In Figure the architecture of the synchronous diagnosis method is presented.

In this approach, there is a unique communication channel and, therefore, an

26

observable event o, € Y, is observable for all system components for which o,
is defined, i.e., ¥;,,NE; C X;,, for any 4,5 € {1,2,...,r}. The diagnoser consists
of the fault-free component model observers implemented concurrently, in addition

to the fault detection logic that detects the fault event occurrence.

Figure 3.3: Synchronous centralized diagnosis architecture.

In the synchronous diagnosis scheme, the modular structure of the system is
taken into account. Thus, in order to provide the current state estimate of the
fault-free behavior model of the system, the diagnoser provides the online state
estimate of each component model, which are synchronized by the occurrence of
the observable events. The resulting language is given by L(]|;_,0bs(Gn,,Xk0)) =

11 P2, (Pro(Lyy)), where P2, i 58— S5, Pro: 55— S5, and 8, = Uj_ S

Let Ly, denotes the augmented fault-free language obtained by applying the
synchronous diagnosis scheme, i.e., Ly, = L(||-;0bs(Gy,,%k,)). Then, we have
that P,(Ly) C Ly,, which indicates that a diagnoser that uses the information
provided by the parallel composition of the observers of the system components may
represent more observable traces than the system is capable of generating. Thus,
the diagnosis based on the observation of the system modules is equivalent to the
diagnosis of an augmented system G, whose generated language is L, = Ly, U Lp,
where Lp is the faulty language of the system [33]. The direct consequence of that,
is that a diagnosable system can be not synchronously diagnosable. It occurs when

the observation of a fault-free trace in Ly, \ Ly is equal to the observation of a

27

faulty trace in Lp. In this case, L, is not synchronously diagnosable, even if L
is diagnosable. In the following we present the formal definition of synchronous

diagnosability.

Definition 3.4 (Synchronous diagnosability) Let L and Ly C L be the
languages generated by automata G and Gy, respectively, and let Lr = L\ Ly.
Consider a system composed of r modules, such that Gy = ||;_,Gn,, where Gy,
s the automaton that models the fault-free behavior of Gy, and let Ly, denote the
language generated by Gy, , for k = 1,...,r. Then, L is said to be synchronously
diagnosable with respect to Ly,, Pg,: X5 — Xf), Pro X = X5, fork=1,...,7,

P, X% — X%, and Xy if

(3z e N)(Vs € Lp)(Vst € Lp,||t] > 2z) =

(Polst) & Mioa Py (Pro(Lny))).

It is important to remark that if there is no unobservable events in common
between the system components, i.e., if ¥; ,,NE;,, =0 forall i £ j € {1,2,...,r},
the augmented fault-free language Ly, is equal to the observation of the fault-
free language of the system P,(Ly). Thus, if there is no synchronization between
unobservable events, the synchronous diagnosability condition is the same as the
diagnosability condition presented in SAMPATH et al. [10].

The verification of the synchronous diagnosability of the language of a composed
system can be carried out by using Algorithm Before presenting this algorithm,
we show the algorithm used to compute the fault-free behavior models Gy, from

the system component models Gy.

Algorithm 3.1 Fault-free behavior models of the system components.

Input: Gy, = (Qr, Xk, fr, Qo) fork=1,....r, and G = (Q,%, f, q)-

0utput. GNk = (QNMZNk?ka?qQNk)ﬁ f07” k= 1, Lo, T

1: Compute automaton Gn = (Qn, %N, fn, o) as follows:

28

1.1: Define Xy := X\ Xy.

1.2: Construct automaton Ay composed of a single state N, that is also its

initial state, with a self-loop labeled with all events in Xy.
1.3: Compute the fault-free automaton Gy = G x Axn = (Qn, 2, fn, o.n)-

1.4: Redefine the event set of Gy as X, i.e., Gy = (Qn, XN, [N, Q.N)-

/

2: For all transitions fx(qn,0) = ¢y in Gy, flag the transitions fir(qr, o) = g,
in Gy, for k=1,...,r, where q,. and q are the k-th elements of qn and qly,
respectively.

3: Obtain automata G}, by erasing from Gy all transitions that are not flagged.

4: Compute automata G, = Ac(G),) = (Qns 2Ny [N Qon,), fork=1,...,r.

5: Redefine the event sets X, == X, \ Xy, fork=1,...,r.

Algorithm is necessary since the post-faulty behavior of a component model
G; can interact with another component model G;, ¢ # j where the fault event is not
modeled. Therefore, the behavior of G; after the occurrence of the fault event can
be different from its behavior without the occurrence of the fault event, resulting in
an automaton Gy, different from Gj, even if the fault event is not modeled in Gj.

This problem is illustrated in the following example.

Example 3.2 Consider the system G composed of two components G1 and G, i.e.,
G = G1||G2, where Gy and G are shown in Figures[3.4(a) and[3.4(b), respectively.
The event sets of Gy and Gy are ¥ = X1, U X1, = {a,c,e,04,0¢}, and Lo =
Yoo UXou = {a,b,c,0,}, respectively, where ¥y, = {a,c,e}, 14 = {0u, 04},
Yoo = {a,b,c}, and X9, = {0,}. Automaton G is depicted in Figure [3.5(a),
where the event set is given by ¥ = {a,b,c,e,0,,07}. Following Step 1 of Algorithm
we obtain automaton Gy, shown in Figure[3.5(b), which is the automaton that
models the fault-free behavior of G. According to Gy it is possible to notice that
transition (2,a,2) of automaton Gy only can occurs after the occurrence of the fault

event oy and, therefore, although the fault event is not modeled in automaton Go,

29

the transition (2, a,2) of Gy does not belong to its fault-free behavior. Automata Gy,
and G, obtained by following Step 4 of Algorithm[3.1], are presented in Figure[3.6

®
{?E)@j@ g »acgb C?C
D—70 OF RO

(a) Gy (b) G

Figure 3.4: Automata G and G5 of Example [3.2

-0

c
G3)—-
(b) Gn

Figure 3.5: Automata G’ and Gy of Example

) a} ¢
D : O ©

(a) Gn, (b) Gn,

Figure 3.6: Automata Gy, and Gy, of Example [3.2]

Now we can state the algorithm used to verify the synchronous diagnosability of

the language of a system [32], 33].

30

Algorithm 3.2 Synchronous Diagnosability Verification

Input: System modules Gy, for k=1,...,r, and G = ||},_,G.

Output: Synchronous diagnosability decision.

1: Compute automaton Gg that models the faulty behavior of G, whose marked

language is Lp = L\ Ly, as follows:

1.1: Set Ay = (Qi, Xy, fi,qo1), where Qy = {N,F}, qo; = {N}, fi(N,o5) = F

and fi(F o) = F, for all oy € ¥y.

1.2: Compute G, = G||A; and mark all states of G, whose second coordinate

s equal to F.

1.3: Compute the faulty automaton Ggp = CoAc(G)).

2: Compute automata G, by following the steps of Algorithm [3.1]

8: Compute automaton G& = (QF, X, f& q0) as follows:

3.1: Define function Ry : Xy, — X§ , as:

o, if 0 € X,
O'Rk, if o e Ek,uo-
3.2: Construct automata G = (Qn, X%, [N qonN,), k = 1,....r, with

I8 (an,, Ri(0)) = fu,(an,, 0), Yan, € Qn, and Vo € Ly,

3.8: Compute G = |[;}_,G%, .

4: Compute the verifier automaton Gy = (Qv, v, fv,qv) = Gr|GE. Notice

that a state of G3P is given by qv = (qr, %), where qp and ¢% are states of

Gr and G%, respectively, and qr = (q,q), where ¢ € Q and q, € {N, F'}.

5: Verify the existence of a cyclic path cl = (q@,a(g,q?fl

P

31

2 5
Qv O, QY), where

v >8>0, in GYP such that:

Jj€{0,0+1,...,7} such that for some q{},

(qu:F)/\(O'j e).

If the answer is yes, then L is not synchronously diagnosable with respect to
Ly, ., P,g’vo DX — 22’0, Py, X — 2270, fork=1...,r, P,: ¥ = X} and

Y. Otherwise, L is synchronously diagnosable.

Notice that the method used to verify the synchronous diagnosability is based on
the comparison between the projections of the languages generated by G and G¥%,
where G models the faulty behavior of the system G and G¥% is the automaton that
models the augmented fault-free behavior considered in the synchronous diagnosis
scheme. Thus, the projection in ¥, of the generated language of G is equal to the
fault-free language observed by the synchronous diagnoser, i.c., PX(L(GR)) = Ly,
where PR . XF — ¥ [32] 33)].

In the sequel we present an example that illustrates the application of Algorithm

for the verification of synchronous diagnosability.

Example 3.3 Consider automata Gy and Gy depicted in Figure[3.4), and automaton
G = G4||G2 shown in Figure[3.5(a), where ¥ = {a,b,c,e,0u,07}, ¥ = {a,b,c, €},
Yo ={ou,0r}, Xy ={or}, X1 ={a,c,e,04,0¢}, X1, ={a,c,e}, ¥y ={a,b,c,0,},
Yo, = {a,b,c}. Following the first step of Algorithm automaton G g, shown in
Figure s constructed, which models the faulty behavior of the system. Applying
the Step 2, we compute automata Gy, and Gy,, shown in Figure[3.6 and, in Step 3,
automaton G is constructed by making the parallel composition of G¥ and GF, .
In Figure we present automata Gﬁl and Gﬁrﬂ while automaton G is depicted
wn Figure . Notice that the gray states of GX and their corresponding transitions
labeled with observable events do not belong to Gy, which indicate the growth of
the fault-free language considered in the synchronous diagnosis scheme. Finally,

applying Step 4 of Algorithm we obtain the synchronous verifier automaton

32

GyP, depicted in Figure|3.10. Since there are no cyclic path in G labeled with F
such that at least one transition is labeled with a non-renamed event, we conclude
that L is synchronously diagnosable with respect to Ly,, Ln,, Py, : X5 — X,

Py, 35— X5, Pro: 85— X7,

Pyy: ¥* — 3}

2,07

P, : X" = X* and ;.

>
@D

Figure 3.8: Automata G} and G of Example .

3.1.1 Delay bound for synchronous diagnosis

In CABRAL and MOREIRA [32] and CABRAL [33], a method for the computation
of the delay bound for synchronous diagnosis is proposed. The delay bound is the
maximum number of events that the system can generate after the occurrence of the
fault event until the fault is detected by the diagnoser, and can be used to evaluate
the efficiency of the diagnosis method.

Since the fault-free language observed by the synchronous diagnoser can be a

larger set that the natural projection of the fault-free language of the system, 7.e.,

33

Figure 3.9: Automaton G% of Example [3.3]
—>[0.0.N.0,0—>[T,0.N:1,0
7 b
01N 1 }——>[TI N1 1

C C

of

R

o 'l
52NB2— >N "5 2N 32

05‘2 052 af? 052 052 052
Rl ’ Rl
e O, - . N Oy R €)
5,2,N:5,3 B> 2,2.,N;2,3| 2,2.N:3,3 6,2,F;2.3 6,2,F:;3,3 6,2,F:4,3
ol g, ou| % o /o /7 a
Ry
CEIMENCEEN c.rn . , .
3,3,N:2.3 3,3,N:3,3 4.3,N:4,3 6,2,F:0,0
ol 052 052 a e

13N42 62110

Figure 3.10: Automaton G§ of Example [3.3]

P,(Ly) C Ly,, then, the delay bound for synchronous diagnosis can be larger than
the delay bound for the monolithic diagnosis. This fact can cause a decrease in the
diagnosis performance and, for this reason, it is important to compute the delay
bound z* for synchronous diagnosis, in order to evaluate if it can be implemented
in a real system.

The method proposed in [32, B3] for the computation of z* is a polynomial

time algorithm in the size of the composed plant model, adapted from the method

34

presented in TOMOLA et al. [40] for the computation of the length of the longest
path in a directed acyclic graph (DAG). Before introducing the algorithm, it is
necessary to present how to compute the maximum number of events that the system
can execute after the occurrence of the fault event of, namely d, for which there

exists a faulty trace st and a fault-free trace w with the same observation, such that

P,(w) € Ly, [32,33]:

d=max{||t| : (s € Lp)(st € Lp)(P,(st) = Py(w),

Py(w) € Niy PEy (Pro(Li)))}-

It is important to notice that, for the computation of d, we need to search
for traces st € Lp and P,(w), such that P,(st) = P,(w), and ¢ has maximum
length. Since automaton G3P represents the faulty traces st and fault-free traces
P,(w) € Ly, with the same projection P,, then, d can be computed by searching
in GYP for a path associated with a trace in X* with the largest length after the
occurrence of the fault event oy.

Now the following algorithm for the computation of d can be stated |32, [33].

Algorithm 3.3 Computation of d.

Input: GJP.

Output: d.

1: Compute the graph @}g/D by eliminating all states that have label N and their

related transitions from G .
, —SD
2: Find all strongly connected components of G\, .

3: Obtain the acyclic graph Guoy = (Qdags Xdags fdags 90.dag); where Xgqq
Zzlzﬁk U, from @‘S/D by shrinking each strongly connected component to

a single state [{1)].

35

4: (v1,02,...,0y) < Topological Sort(Gaeg), where vj € Qaag, for j =1,...,1,

and 1 = |Qdag|-

5: Define the weight function p : Qag X Qaag — {0, 1}, where

1, if o € ¥ such that fiaq(vi,0) = vj,
p(viv Uj) =
0, otherwise.

6: Forj=1,...,n:

maz{l(v;) + p(vi, v;) : (30 € Bgag)(faag(vi, o) = vj)},
0,4f A(vi,0) € Qaag X Xdag such that (faag(vi,0) = v;).

l(v;) :=

In Step 1 of Algorithm it is computed the graph E‘S/D, from automaton G2,
in order to obtain only the states of G{ reached after the occurrence of the fault
event o¢. It is important to remark that, for the computation of the delay bound,
the system must be synchronously diagnosable according to Definition Thus,
the automaton verifier G52 can have cyclic paths composed of transitions labeled
with renamed events. By applying Steps 2 and 3 of Algorithm these cyclic
paths of E‘S/D are eliminated by shrinking all its strongly connected components and
obtaining the directed acyclic graph G gq,-

In Step 4 of Algorithm [3.3, the Topological Sort of G4y is performed, which
returns the linked list of vertices of a DAG G, such that if G has an edge (u,v),
then, u appears before v in the ordering [42] [43]. In the sequel, in Step 5, a weight
function p is applied in order to assign weight zero to transitions of Gg,4 labeled
with renamed events, and weight one to transitions labeled with events of ¥. In
Steps 6 and 7, the number of transitions labeled with events of X of the longest path
in Gqg, d, is computed.

Finally, in order to obtain the delay bound z*, it is necessary to add to d the

36

occurrence of the event that leads to the detection of the fault event. Therefore, the

delay bound for synchronous diagnosis can be computed as

2 =d+ 1. (3.2)

In the sequel we present an example using Algorithm to compute the delay

bound for synchronous diagnosis.

Example 3.4 Consider again automata G1 and Go depicted in Figure and
automaton G = G1||Gy depicted in Figure [3.5(a). As shown in Ezample the
language of the system, L, is synchronously diagnosable with respect to Ly,, Ln,,

PP, S = 5, PRy S5 — S5, Py XF - S

].,07 2707 1,0’

Pyo: X" = X5, Po: X" — X5,
and X¢. Therefore, the mazimum number of transitions that can be executed by
the system after occurrence of the fault event oy, such that exist a faulty trace st
and fault-free trace P,(w) with the same projection, can be computed by applying
Algorithm . From Ezrample we obtain automaton GLP depicted in Figure
. Using GP as input of Algom'thm and following Steps 1, 2 and 3, we obtain
automata G‘S,D and Gaqeg. In this example, giD = Gag, as shown in Figure m
since there is no strongly connected component to be shrunk. By following Step 4, the
Topological Sort of Gaag @5 computed, resulting in the graph depicted in Figure .
Applying Steps 5 and 6, the weighting functions p and | are computed, as presented
in Figure[3.15. Finally, from Step 7, d = 3 and, the delay for synchronous diagnosis
of the system G 1is z* = 4.

It s important to remark that the delay bound of the classical monolithic
diagnoser [10] is also z* = 4. Thus, although the delay bound can be larger in
the synchronous diagnosis method than in the monolithic diagnosis approach, there
are systems where the fault event can be diagnosed with the same delay bound in both

approaches, even with the growth of the observed fault-free language for synchronous

diagnosis.

37

Ry
2[5 2 32— >[62FA2]

O'URQ 052 05’2
ol e R
[62F:23—{6.2.F33—>{62F:43]
a
/
[6.2.F:00
(&
\
6,2,F:1,0
Figure 3.11: Graph éﬁD = (444 of Example
o e ol
olt2 ol a e
L] W [[
6,2,F;2.2 6,2,F;3.2 6,2,F;4.2| [62F43] [62F00] [62F;10]
051 e

0 0
o e ol
0 0 1 1
052 052 a e
L] W [[
6,2,F;2.2 6,2,F;3.2 6,2,F;4.2| [62F43] [62F00] [62F;10]
0 0 1 1 2 3
0
051 e
NREE

/
[62.F;23] [62F;33]
0 0

Figure 3.13: Topological Sort of graph G a4 of Example [3.4] with values of weighting
functions p(v;,v;) (above the edges) and [(v;) (below the vertices).

38

In the next section, the notion of synchronous diagnosis is generalized to the
decentralized diagnosis scheme. In this approach, we take into account that all
information regarding the occurrence of events is not available in a centralized way,
which is usually the case for systems with a large number of components and high

degree of complexity.

3.2 Synchronous codiagnosability of DESs

The synchronous decentralized diagnosis scheme, presented in CABRAL and
MOREIRA [34] and CABRAL [33], consists in r local diagnosers, where each local
diagnoser, constructed based on one component model of the system, has its own
set of observable events, and does not communicate with the others local diagnosers.
The set of events can, in this case, be partitioned as >; = XAILOL'JEA]WO, fori=1,...,r,
where f]m and EA]WO are, respectively, the set of observable and unobservable events
of the local component modeled by automaton G;. According to this architecture,
a fault event is diagnosed when at least one local diagnoser identifies its occurrence
and send this information to a coordinator.

The synchronous decentralized diagnosis scheme is based on Protocol 3 of
DEBOUK et al. [12], where it is assumed that two different sets of observable
events can have events in common, 7.e., 21’,0 N f]j,o is not necessarily equal to the
empty set, for i # j, 7,5 € {1,...,r}. However, it is also assumed in DEBOUK
et al. [12], that local diagnosers are constructed based on the global model of
the system, GG, and therefore, may grow exponentially with the number of system
components. Differently from DEBOUK et al. [12], in CABRAL and MOREIRA [34]
and CABRAL [33] local diagnosers are constructed based on the fault-free behavior
model of the system components, avoiding the exponential growth with the number
of system components.

It is important to notice that one difference between the synchronous centralized
scheme presented in section and the synchronous decentralized approach, is that

in the synchronous decentralized approach an event can be observable to a local

39

diagnoser and unobhservable to another local diagnoser, and therefore, 21',0 C Yo
In Figure we present the architecture of the synchronous decentralized
diagnosis scheme. TLocal diagnosers Dj are constructed based on the fault-free
behavior models of the system components, Gy, , for k = 1,...,7. The occurrence
of a fault event is identified based on the observation of each component separately,
i.e., when an event that is not feasible in the current state estimate of the fault-free
behavior of one component is observed, and they send the diagnosis decision to a

coordinator.

Coordinato

Figure 3.14: Synchronous decentralized diagnosis architecture.

Based on the synchronous decentralized diagnosis scheme, the following definition

of synchronous codiagnosability can be stated [33], 34].

Definition 3.5 (Synchronous codiagnosability) Let Gn = ||;_,Gn,, where
Gy, 1s the automaton that models the fault-free behavior of Gy, and let Ly, denote
the language generated by Gy, , for k = 1,...,r, where r is the number of system
components. Assume that there are v local sites with projections p/w D EE 2270,
k=1,...,r. Then, L is said to be synchronously codiagnosable with respect to Ly, ,

]5,670, and Xy if

(32 e N)(Vs € Lg)(Vst € Lg, ||t|]| > 2) =

(Fk e {1,2,...,7})(Pro(st) & Pro(Ly,)).

40

Let j}Na denotes the augmented fault-free language obtained by applying this
synchronous approach. Then, the augmented fault-free language for synchronous
decentralized diagnosis is given by Ly, = m;zlﬁggl(ﬁk,o(LNk)). It was also shown
in [33, 34] that P,(Ly) C Ly, C Ly,. Therefore, the synchronous codiagnosability
implies in synchronous diagnosability, which ultimately implies in the diagnosability
of L. However, the converse is not always true, i.e., L can be synchronously
diagnosable and not synchronously codiagnosable. But, there is a condition which
ensures that if L is synchronously diagnosable, then L is also synchronously

codiagnosable. This condition is presented in the following corollary:

Corollary 3.1 Let f],-,uoﬂf]m =0 foralli,j € {1,...,r}. Then, L is synchronously
codiagnosable with respect to Ly, , 15;670 DX — 2;70, and Xy, if, and only if, L is
synchronously diagnosable with respect to Ly,, P¢,: X5 — Xf ,, Pro : X° — Xf

fork=1,2, P,:¥* = X7, and Xy.

Proof. See [33].
The verification of synchronous codiagnosability of the language L can be done
by applying Algorithm , replacing the renaming function Ry (Equation (3.1])),

shown in Step 3, by the new renaming function Ry : XN, — ﬁ]ﬁk defined as follows:

R o, ifoe i}k,o
Ri(0) = A . (3.3)
O'Rk, if o € El@uo
After replacing function Ry (Equation 1) with function R;, (Equation 1)
in Algorithm , the synchronous codiagnosability verifier automaton G3° is
computed. The synchronous codiagnosability is verified by searching for cyclic paths
in Gy¢ formed by states with the label F' and non-renamed events.

In the following example we illustrate the synchronous codiagnosability

verification of the language of a DES.

Example 3.5 Consider again the system G composed of two components, G and

Go, such that G = G1||Gy. Automata Gy and Gy are depicted, respectively, in

41

Figures [3.4(a) and [34|(b), and automata G and Gy are shown in Figures [3.5(a)
and (b), where Gy is the automaton that models the fault-free behavior of

G. Differently from FEzample in this example we consider that event c 1is
unobservable to local diagnoser 1, such that, ¥, = ZA]LO U ZA}LW = {a,b,e,04,0¢},
where 21,0 = {a,e} and 21#0 = {c,0u,0¢}. The set of fault events is composed of
only one event, ¥y = {0}, and the event set of automaton Gy is Xy = 2270U227u0 =
{a,b,c,0,}, where 22’0 = {a,b,c}, and i]gw ={o.}.

Following Steps 1 and 2 of Algorithm [3.3, automata G, Gy,, and Gy, are

computed and can be seen in Figures [3.6(a) and [3.6(b), respectively. In the

sequel, it is necessary to rename the unobservable events of Gy, and Gy, according
to Fquation , resulting in automata G’ﬁl and Gﬁz, shown wn Figures (a)
and (b), respectively. In order to model the fault-free language considered in
the synchronous decentralized diagnosis approach, we compute automaton éf, by
making the parallel composition between G’fh and C;']}\z,z in Step 3 of Algorithm .
Automaton G% is depicted in Figure . Since event c is unobservable to local
diagnoser D, then language izva 15 a larger set than language Ly, of Example
where the synchronous centralized verification is presented. Indeed, it can be seen by
comparing automaton G, in Fz'gure with automaton éﬁ,, in Figure . Notice
that the growth of the fault-free language considered in the synchronous decentralized
scheme is represented by gray states, that are states that do not exist in Gy, and
their related transitions labeled with observable events.

The verifier automaton G3°, depicted in Fz'gure s constructed by following
Step 4 of Algorithm . Since there are no cyclic paths in GY° labeled with F
such that at least one transition is labeled with a non-renamed event, then L 1is

synchronously codiagnosable with respect to Ly,, Ln,, [A’LO, p2707 and Xj.

Since the fault-free language Ly, considered for synchronous decentralized
diagnosis can be a larger set than the language considered for synchronous
centralized diagnosis Ly, then, it is also important to compute the delay bound

for synchronous decentralized diagnosis. It can be computed by following the steps

42

Figure 3.16: Automaton G& of Example .

of Algorithm , replacing the input G by automaton G{¢. Notice that, due to
Ly, C f)Na, the delay bound for synchronous decentralized diagnosis can be larger
than the delay bound for synchronous centralized diagnosis.

In the following example, the delay bound for synchronous decentralized

diagnosis for the system G of Example is computed.

Example 3.6 Let us consider again the system G = G41||G2 presented in Example
3.5, The mazimum number of events that can be executed by the system, d, after
occurrence of oy, such that exist a faulty trace st and fault-free trace P,(w) with the

same observation, can be computed by using the verifier automaton Gy, depicted

43

—[0,0.N;0,0 |10\120|—>|1 0.N:3,0]

b

0,1,N;0,1 |0 0,N;0 0|—>|1 1LN;3.1]
€
EW[LINT , o e
. - c c [6.2,F;4,0«—[6,2.F;3,0«——[6,2,F;2.0]
FA|BEN; 5,2 ot A
o, o
5,2.N:0,2 2 2.N;22—>[22N;3 2| \
R Ry
€ 2,2,N12|i o [62Fi 2 s[5 F2 ot s [62F B 2> [62 512
Ry Ry it :
oy r _ g,° Oy of 5> 0.5,2 0—52 0—52
off [6,2.F:13] [6.2 236213 35>[6.2F 43—

2N2,3H--22N33]

52N.0.3 | 23] N33
!

€ ‘22N13|j
or

Oy Oy Ty Oy Oy

) R
|3,3,N;1,3|;>I|3ﬂ3“\1123| S5 N e gy BN e o B

qu?-z o2 Ry 052

Oy Oy

/ Hl\
|3,3,N;1,2|;>| SHB?A\TQQ'Ll3,3,N;3,2|L>|4,3,N;4,2|

Figure 3.17: Automaton G3¢ of Example .

wn Figure as input of Algorithm Following Steps 1, 2 and 3 of Algorithm

we can see that EﬁD = Glag, which is shown in Figure |3.18 By Step 4, the

Topological Sort of Gaag is computed, which is depicted in Figure [3.19. Applying
Steps 5 and 6, we obtain the weighting functions p and l, presented in Figure [3.20,
Then, with Step 7, d is computed, resulting in d = 4 and, finally, with Equation
, the delay bound for synchronous decentralized diagnosis is z* = 5.
Comparing automaton GE of Erxample with automaton G’ﬁ of Example
we can see the the fault-free language considered for synchronous decentralized
scheme 1s larger than the fault-free language for the synchronous centralized scheme.
For this reason, the resulting delay bound for synchronous decentralized diagnosis
can also be larger than the delay bound for synchronous centralized diagnosis, which

indeed occurs in the system G considered.

44

Ry
(627 10——[62F 30— (62720

R
|6727F;1,2|C—m>|6,2,F;2,2|U—“1>6727F;3,2 € >[6,2F:42

Ry Ro Ry R
UU U’U au O-u, 2

Y o \ o i \ a
[6,2.F:13}—>{6,2.F2,3}—>[6,2.F;33}-5>[6,2.F;4 3} —

Figure 3.18: Graph G‘S,D = (449 of Example

R
CR1 Oy ! ¢

Ry
u

Ry Ry
g O'U Ull

[62F12] | [62F22] | [62F:32] | [62F42]

cf ‘751

0 0 1 0. 0 1
CR 1 a f 1 € Ty 2 CRl e
0
0 0 0 o !
o ol ol u e

U u

[62F12] | [62F22] | [62F32] | [6.2F42]

0 0 0 1 3 3 4
0 0
e Ufl

[62F13] [62F23] [62F33]
0 0 0

Figure 3.20: Topological Sort of graph G 4,4 of Example |3.4] with values of weighting
functions p(v;,v;) (above the edges) and I(v;) (below the vertices).

3.3 Final comments

In this chapter, the problem of fault diagnosis for DES modeled by automata is
introduced, presenting the classical definition of diagnosability of SAMPATH et al.
[10]. A new architecture that takes advantage of the modularity of DESs, called

centralized synchronous diagnosis, is also presented. This scheme is generalized to

45

the decentralized case, called synchronous decentralized diagnosis scheme. Both
synchronous diagnosis approaches lead to different notions of diagnosability, namely
synchronous centralized diagnosability and synchronous codiagnosability.

In the next chapter, a new diagnosis method, called distributed synchronous
diagnosis is proposed. In this scheme, local diagnosers can exchange information
with each other in order to reduce the size of the augmented language considered

for diagnosis.

46

Chapter 4

Distributed Synchronous
Diagnosability of DESs

In [31H33], a method for fault diagnosis of DES based on the observation of the fault-
free behavior of the system components is presented, called synchronous centralized
diagnosis method. In this scheme, an event is observable for all system components
for which it is defined. The diagnoser consists of local state estimators of the
fault-free component models, providing the online state estimate of each fault-
free component model, which are naturally synchronized by the observable events
executed by the system, as presented in Section

In CABRAL et al. [35], a modification in the synchronous centralized diagnosis
method with the view to refining the diagnosis decision, is proposed. This
modification is done by adding boolean conditions to the local diagnosers transitions,
based on the fault-free model of the global plant. These conditions are implemented
to prevent fault-free traces that cannot occur in the system to be considered as
belonging to the estimated fault-free observed behavior. With this refinement, the
augmented fault-free language considered in the synchronous centralized diagnosis
method can be reduced, improving the synchronous diagnosis.

However, in CABRAL et al. [35] it is considered that all information associated

with event observations and state estimates is available in a centralized way, which is

47

not always true in systems with a high degree of complexity and with large number
of local components. In these cases, architectures such as the decentralized and
distributed are more suitable. Thus, in order to improve the synchronous diagnosis
for systems where the information is not available in a centralized way, we propose
in this work a distributed synchronous diagnosis approach. As in Section we
consider that the global plant model is composed of r modules, i.e., G = ||;_; G},
and, associated with each module Gy, for k € {1,...,r}, there is a local diagnoser Dy,
constructed from the fault-free behavior model Gy,. The main difference between
the synchronous decentralized and distributed schemes is that in the decentralized
approach, local diagnosers are based only on the local observations of the system
components, while in the synchronous distributed method, local diagnosers can
exchange information regarding the observation of events and local state estimates
[36]. This information can be used to refine the diagnosis decision based on the
strategy proposed in CABRAL et al. [35], by adding conditions to the fault-free
component models and reducing the augmented fault-free language considered for
synchronous diagnosis.

In Figure [4.1| we show the synchronous diagnosis schemes applied to a system
composed of three local components: (i) the synchronous centralized scheme, where
the diagnoser consists in observers of the fault-free component models implemented
concurrently; (i7) the conditional synchronous scheme, where conditions associated
to state estimate of the global system model are included in the local observers
of the synchronous centralized scheme; (iii) the synchronous decentralized scheme,
where local diagnosers are constructed based on the fault-free component models,
each one with its own set of observable events, and a coordinator indicates the
fault occurrence; (iv) the distributed synchronous scheme, where local diagnosers
are separated into networks, allowing the exchange of information between them in

order to improves the synchronous diagnosis, which is the proposal of this work.

48

(a) Synchronous centralized (b) Conditional synchronous
diagnosis scheme diagnosis scheme
e AR { e I
| ' |G G G '
! GNl GN2 GNg ; I Ny H N H N3 I
j SAT[IEA (A PR L et L bl
YP, vPQ’O \(P37O YP ., Y%, VPB,O
[I I
I B |
D1 D2 D3 : D 1 D 2 :: D 3 :
N T 7 i
' C12 | Networ
Coordinator L '~ __ 4 Network 2
Network 1
(c) Synchronous decentralized (d) Distributed synchronous
diagnosis scheme diagnosis scheme

Figure 4.1: Comparison between the synchronous diagnosis architectures: (a) the
synchronous centralized scheme; (b) the conditional synchronous scheme; (¢) the
synchronous decentralized scheme; (d) the distributed synchronous scheme.

In this chapter, we introduce the distributed synchronous diagnosis scheme for
DESs, first presenting its architecture with more details. Then, we introduce the
distributed synchronous diagnosis method and explain how it can improve the fault
diagnosis. In the sequel we present a communication protocol that allows the
exchange of information between local diagnosers. Finally, the notion of distributed
synchronous diagnosability is presented, and an algorithm for the verification of
distributed synchronous diagnosability, that has polynomial complexity in the size
of the system components, is proposed. An example is used throughout the text to

illustrate the results.

49

4.1 Architecture

In the synchronous distributed diagnosis approach it is considered that local
diagnosers can commmunicate with each other through a network and, therefore, the
construction of each local diagnoser takes into account the communication between
diagnosers that belong to the same network.

Figure depicts the distributed synchronous diagnosis scheme for a system
composed of five modules and two networks. In this setting, there are two networks
of local diagnosers: (i) a network composed of diagnosers D;, Dy, and Ds, with
communication channels chy o, chys, and ches; and (i) a network composed of
diagnosers Dy and D5, and communication channel chy 5. It is considered that each
component G has a local measurement site, denoted as LM, that communicates
the observation of events directly to diagnoser Djy. In this configuration, a local
diagnoser connected in a network works as a node in the net, being capable of sending
and receiving information from all local diagnosers in this network, regarding the
observation of events and state estimates. Therefore, observable events associated
with diagnoser Dy, of a given module Gy, is formed by the events that are directly
observed by the local measurement site LM}, and the events whose observation are
communicated to Dj from the other local diagnosers in the same network. It is
important to remark that, in this work, it is considered that each diagnoser belongs
to a unique network.

The event set of each module Gy can be partitioned as 3y = %y ,UY; 0, where
Ykwo = 2k \ ik, is the set of unobservable events for local diagnoser Dy, i.e., is the
set of events whose occurrence cannot be detected locally by LM, or communicated
to Dy by any other local diagnoser D;, ¢ # k. Thus, the set of observable events
of Gj in the distributed synchronous diagnosis scheme can be defined as ¥, =

(Ur_ X8k N 3, where Y5F

o

i # k, denotes the set of observable events that can
be communicated from local diagnoser D; to local diagnoser Dy, and ¥F* is the
set of events whose observations are directly sent to local diagnoser Dy from local

measurement site LN}, as shown in Figure Notice that if two local diagnosers

20

1 1

1 1 | |

1 1 | |

' Dy Dy | | Ds :ED4 Ds i

1 1

| w7 o A I

! chio CW W Cchys i

I 1! ’

i Ch1~,3 i Network 2
Network 1

Figure 4.2: The distributed synchronous diagnosis scheme for a system composed
of five modules and two networks.

D; and Dy, are in different networks, then Yo% = $%¢ = (),
Before introducing the synchronous diagnosis method, we make one last
assumption: the communication between local diagnosers is supposed to be ideal,

i.e., there is no communication delays and/or package losses.

4.2 Distributed synchronous diagnosis method

When local diagnosers connected in a communication network exchange only the
information regarding event occurrences, the distributed synchronous diagnosis
scheme becomes equivalent to a decentralized synchronous diagnosis architecture,
as proposed in [33] 34] and presented in Section , where f]k,o = Yo The main
drawback of this strategy is the growth of the fault-free language considered for
diagnosis, which is represented in the augmented automaton G¥. The following

example illustrate this problem.

Example 4.1 Let the system be composed of three modules G, G5 and Gj,
presented in Figure [{.3 The event sets of each module are, respectively, ¥, =
Y10US10 = {a,c,6,9,01}, Yo = Y9,UN0., = {e,h,01,02,04}, and X3 =
Y30UX5u0 = {b,d, h,0s}, where X1, = {a,c,e,9}, T1uo = {01}, oo = {e,h},
Youo = {01,00,0¢}, X3 = {b,d}, and 33, = {h,or}. The set of fault events is

51

Y¢={os}. The composed plant model, G = G41||G2||G3, and the fault-free behavior
model, Gy are shown in Figures and [{.5, respectively. The fault-free behavior
model of the components Gy, Gy and G3, denoted by Gn,, Gn, and Gy, respectively,
are represented in Figure . Following the method presented in [33, (34, the
unobservable events of Gn,, Gy, and Gy, are renamed and G% is obtained from
the parallel composition of the resulting automata, Gﬁl, GﬁQ and Gf,s, depicted in
Figure . Automaton G, = G |G, ||GE, is shown in Figure .

The gray states of GX and the associated transitions do not exist in the fault-
free behavior model of the system, G. These states, and their associated transitions
labeled with observable events, represent the growth of the fault-free observed language
for synchronous decentralized diagnosis compared to the classical diagnosis method of
SAMPATH et al. [10]. Moreover, the faulty trace hog(eh)?, for z € N, has the same
observation in X, = X1, U X, U X3, = {a,b,c,d,e,g,h} than the fault-free trace
hafz(ehaf“z)z generated by automaton G%, which shows that the composed system,

G, 1s not synchronously codiagnosable.

Figure 4.3: Automata Gy, Go, and G5 of Example [4.1]

When we consider the communication of the occurrence of observable events
and state estimates between local diagnosers, it is possible to reduce the fault-
free language for synchronous diagnosis. This can be done by checking if the
occurrence of an observable event is possible according to the state estimate of
the local diagnosers. The following example illustrate how this communication can

be used to improve the synchronous diagnosis decision.

52

h
b h

b h'ts

(c) GR,

Figure 4.7: Automata G¥ , GX, and G¥ of Example

93

s hH R & l
- R 3
5,0,0—% (@UFI 200FU11 30h059 @GS @D—I>@oi of" 50,1 0{2141 a_ G0 |
Q0 00— @00y, —~GID<—@Dy @Dy - @D5 0D Dy —QobE
A h b hl b h h h h 151 J his L 1Es

o
P

(i)

(=)
= I

2

(3]

(=)
20

= 2

2

(=)

=

=l |I™s

S|

T
)

b/\b‘

S =
N}

e

S/
>

“)

=

5
Nl

[*%)

o)

Q
=5y

[&)

&,
2
=

(o

“l\')

=
(0]

R3
) 12}
i Q 1<y y Q i
b b Rl_d b ol Wi RN AT h T ks
C : R
o1 of {012 1 " ol o ¢ |9 Rh S n ol o
1 R 1 ol
@D @D @ @ @ D @@
R 2 2 > T{} =
b, oy 2 b, o3)02 R b, O‘f‘ b, 09 ? hHS7 O‘?’Z 7‘ hRS, 0.232 hRS, 0'52 it 052 his, 0’52
Ry hRs R ,)
hfs h
€ €
€ €

Figure 4.8: Automaton G of Example [4.1]

Example 4.2 Consider again automaton Gy of Ezample[]. 1], shown in Figure[{.5
It can be seen that a transition labeled with event e in Gy is only possible in states
(0,0,0), (0,0,1), and (3,2,1), i.e., a transition labeled with event e in Gy can only
occur if the first module Gy, is in state 0 and the second module Gy, is in state 0,
or the first module Gy, is in state 3 and the second module Gy, is in state 2. Now,
let us consider that diagnosers Dy and Dy are in the same network, as depicted in
Figure[{.9 and, therefore, can exchange information regarding the stale estimate of
Gy, and Gy,, and observable event occurrences.

Let us assume now that we add to transition (0, e, 3) of Gy, a condition associated
with state 0 of G,, such that transition (0,e,3) of Gn, can only be transposed if the
current state estimate of Gy, has state 0 and event e is observed. Considering the
same faulty trace hoy(eh)?, for z € N, of Example we can see that when event e
s observed, the current state estimate of automaton Gy,, depicted in Figure (a),
is {0}, while the current state estimate of Gy,, depicted in Figure[{.f(a), does not
have state 0. Thus, since we have added to transition (0,e,3) of Gn, a condition
associated with state 0 of G,, event e is not feasible in state O of Dy anymore and,
thus, diagnoser Dy is capable of diagnosing the fault event, after the occurrence of

trace hoe.

54

Network 1

Figure 4.9: Distributed synchronous diagnosis architecture for the system of
Example 4.2

The idea of this work is to use the knowledge of the fault-free behavior model of
the system, G, to add conditions to the fault-free component models Gy, for the
transposition of transitions. These conditions are associated with the states of the
other components of the system, whose corresponding local diagnosers are in the
same network. If an event o, € X, that is enabled in the current state estimate of

Gy,

. is observed, all conditions of the enabled transitions labeled with o, must be

satisfied, otherwise, the fault event is identified by the local diagnoser D;. In order

to do so, we define in the sequel the extended automaton with conditions G.,.

Definition 4.1 An extended automaton with conditions is the five-tuple G, =
(Q,%2, P, f,,q0), where Q is the set of states, ¥ is the set of events, ® is a set
of boolean conditions, f, :) x X x ® — Q is the conditional transition function,

and qo 1s the initial state.

In the extended automaton with conditions G, a transition ¢’ = f,(q,0,¢),

@9
where o € ¥ and ¢ € ®, can only be transposed if the associated event o occurs,
and condition ¢ is true.

In order to model the conditions for the transposition of transitions in automaton
G, associated with the state estimates of the fault-free component models Gy,

whose local diagnosers are in the same network, as shown in Example it is

necessary to extend automaton Gy, , as presented in Definition .1} obtaining the

95

fault-free extended automaton with conditions Gy, . In order to do so, let us
consider, without loss of generality, that local diagnosers Dy, for £k = 1,...,m,
where m < r, are in the same network. We first define, for each state gy, of Gy,

the following set of states of Gy:

By, = {qn € Qn : qu, is the k-th coordinate of gy }. (4.1)

Then, the following set of states formed with all j-th coordinates of the states of

By, can be defined as:

k

Qr; = {av, € Qn, Jav=(qny,-- - qn;5 -, qN,) € B} (4.2)

Let us define the projection operation P;, : X* — X*

]707

and let Reach;(s) denote
the state estimate of automaton GNJ. after the occurrence of a trace s € L. The

procedure to compute Gy, , is shown in Algorithm .

Algorithm 4.1 Computation of the fault-free ertended automaton with conditions

Gn,.,-

Input: Automata Gy, and Gy, for k€ {1,...,m}.

Output: Automaton Gy, , = (Qn,, Xk \ Zyf, Pry [, dok)-

1: For each state qn, € Qn, of Gy, do:
1.1: Form sets Qi , 7 =1,...,m, j # k, as presented in Equation .
1.2: For all o € T'gy (qn,) do:
1.2.1: If 0 € Y40, set @ = true.
1.2.2: If 0 € Xy, set

m

© = /\ [Reach;(s) N Qr; # 0.

j=1,j#k
1.3: Define fn, ,(an,, 0, 9) = qy,, where ¢y, = fx, (qn,, 0).

2: Form set @ with all conditions created in Step 1.2.

26

Notice that, in Step 1.2 of Algorithm [4.1, a condition associated to the state
estimate of the fault-free component models Gy, for j # k and j = 1,...,m, is
added to each transition of Gy, labeled with an observable event. With that, it
is possible to reduce the size of the fault-free language considered for diagnosis,
when the communication of the state estimates Reach;(s) is assumed between local
diagnosers in the same network. It is important to remark that the complexity of
adding the conditions to automata Gy, according to Algorithm is polynomial
with the number of system components.

In the following example, the construction of the fault-free component models

with conditions, Gy, , of a composed system is presented.

Example 4.3 Let us consider again the system G = G1||Gs||Gs presented in
Figure and let us assume that diagnosers D and Dy are in the same network
and, therefore, can exchange information regarding state estimates. The fault-free
behavior model of the composed system, Gy, is depicted in Figure[{.3, and the fault-
Jree behavior model of automata Gi, Gy and Gs, denoted as Gy,, Gn, and Gy,
respectively, are depicted in Figure[{.6 In order to extend automata Gy,, Gy, and
Gy, according to Definition we apply Algorithm resulting respectively in
the fault-free extended automata with conditions Gy, ,, Gn,, and Gy, shown in
Figure[{.10,

Since we have the knowledge of the fault-free behavior model of the system, Gy, it
can be seen that when G, is in state 0, the transition labeled with event e can only be
transposed if state 0 of G, belongs to its current state estimate. Applying Step 1.3 of
Algorithm to state qn, = 0 of Gy, and o = e, then transition f,(qn,,0,) = qy,
of Gy, becomes f,(0,e,[qn, = 0]) = 3. This procedure is repeated to all transitions
of Gn,, for k =1,2,3. Notice that, since diagnoser D3 is not connected to Dy and
Ds, the condition ¢ associated with the transitions labeled with observable events is
always ¢ = true. It is important to remark that, in Figure[{.10, we do not represent

the conditions ¢ = true.

a7

(b) GNz‘L; (C) GN3,¢

Figure 4.10: Automata Gy, _, G, and Gy, , of Example

In order to consider the communication between local diagnosers through a
network, it is necessary to define a communication protocol. The communication
protocol proposed in this work is described for a network composed of an arbitrary
number of local diagnosers, and the same procedure is considered for all networks
of the system. The communication protocol can be divided into two steps: (i) when
an event o, € X5 is directly observed by the local measurement site LM; of local
diagnoser D;, i € {1,...,r}, it sends the information of the occurrence of o, to all
other local diagnosers in the same network; (4¢) then, all local diagnosers D, send the
state estimate of its corresponding module Gy, , to the other diagnosers in the same
network. After the end of communication of the state estimates in the network, the
conditions for the transposition of the transitions labeled with o,, in the fault-free
component models Gy, , for which o, € ¥;, are verified. If there is at least one
feasible transition in G, , then D; updates its state estimate. Otherwise, the fault
is identified and its occurrence can be communicated to the operator of the system.
It is important to remark that, in this work, it is assumed that while steps (z) and
(77) of the communication protocol are being performed, no other observable event
defined in a local diagnoser belonging to the same network occurs.

In the next section the distributed synchronous diagnosability of the language of

a system is defined.

o8

4.3 Distributed synchronous diagnosability

In Algorithm {4.1) we add conditions for the transposition of transitions in the fault-
free component models of the system, Gy,, k € {1,...,7}, in order to reduce the
size of the augmented fault-free language for synchronous diagnosis. Notice that, if
we assume that there is no communication of state estimates between diagnosers,
the augmented fault-free language can be modeled by using automaton G% and,
therefore, the distributed synchronous diagnosis can be seen as a decentralized
synchronous diagnosis problem. When we consider the effect of the addition of
conditions and the communication between diagnosers of the same network, we need
to define an automaton that models this effect in the fault-free language considered
for the distributed synchronous diagnosis. In Algorithm we compute automaton

Gﬁ,w that models the fault-free language for distributed synchronous diagnosis.

Algorithm 4.2 Fault-free model for distributed synchronous diagnosis Gﬁw.

Input: Automata G¥ and Gy, and set N = {(i,j) € {1,...,r} x {1,...,r} :
D; and D; belong to the same network}.

Output: Automaton Gf .

1: For each pair (i,7) € N, flag all transitions (g%, 0,G%) of GR such that o €
YioUX; 0, and the combination of the i-th and j-th coordinates of gk does not
exist in any state of Gy.

2: Delete all flagged transitions of G%, obtaining automaton G]’\%/.

3: Compute automaton G, , = Ac(GR).

Consider that Ly, , denotes the augmented observed fault-free language obtained
by using the synchronous distributed method proposed in this work. The following
theorem shows that automaton Gﬁ’w, computed by applying Algorithm can
be used to model the fault-free behavior considered in the distributed synchronous

diagnosis scheme.

29

Theorem 4.1 Ly, , = PF(L(GY), where PF : X5 — X% and Xg = Ui 3F
where Zﬁk 15 the event set of Gﬁk obtained after renaming all unobservable events

Of GNk-

Proof. If no conditions are added to Gy, , the observed augmented language
is Ly, = PR(L(GR)). Thus, the addition of conditions for the transposition of
transitions in automata G, , erases transitions of G¥ in order to obtain automaton
Gﬁm. According to Algorithm , transitions labeled with unobservable events,
i.e., 0 € X0, can be transposed whenever possible, since condition ¢ is true when
o is unobservable to Gj. This fact is considered in Algorithm since transitions
labeled with an unobservable event are not erased from G in the construction of
Gt .

Now, without loss of generality, let us suppose that diagnoser Dy computed from
automaton Gy, , belongs to a network composed of diagnosers D;, j = 1,...,m,
where j # k, and m < r. According to Algorithm transitions (qn,,o,qy,) of
Gn,.,» where o € 3, can be transposed only if Gy, , 1s in state gy, , event o occurs,
and condition ¢ is true. Notice that, according to Algorithm [£.1] condition ¢ is true,
only if qn; € Qy, for j =1,...,m, and j # k, where qy; is the j-th coordinate of
the states of Gy. Thus, any transition labeled with o leaving a state ¢ of G%, such
that gy, is the k-th coordinate of ¢, and gy, ¢ Qi is the j-th coordinate of ¢, must
be erased from G. This elimination of transitions is performed in Algorithm [4.2]in
order to obtain Gﬁyw. Since only these transitions are eliminated in Algorithm
then Ly, , = PF(L(GR) [

In the following example the construction of Gﬁ#) according to Algorithm is

illustrated.

Example 4.4 Let us consider again automata Gy,, G, and G, depicted in Figure
and presented in Example [{.1 Consider again that local diagnosers Dy and
Dy are connected, forming a network. According to Step 1 of Algorithm [{.2, all
transitions labeled with observable events associated to states where the combination

of states of Gy, and Gy, do not exist in automaton Gy must be flagged. In

60

Figure we show automaton GX with dashed transitions representing the flagging
operation executed in Step 1. In Steps 2 and 3 of Algorithm [{.9, these transitions
are erased, and when the accessible part of the resulting automaton is computed, the

hatched states depicted in Figure are eliminated, resulting in automaton Gﬁ#)

shown in Figure [{.13

c

h

hR3 I____J_.“, _______ _,')
/c Rl\ \ hR3 \ C/ L 7 Rl\\
(o1 g ¥ Bl — g ¥ o o 4 et
L - i by o S S
-'b h's h''s Ry :
b1 hi h! h K3 h

Figure 4.11: Automaton G¥. The white states represent the states of Giy. The
hatched states and the dashed transitions are the states and transitions of G¥ that
are eliminated by applying Algorithm [1.2] in Example [4.4]

Ry
h hR3 hR3 l
o ot Kt i ot of |
NG @x, —@Ds QU
P b s I e 8
Wb h b Bt h
s Rt hfis hRy
R
a ul af 0" of" £
b g o)
t : h s R) R
0—{?2 i 0_{{2 b e 5 U{%Q 0_{32 s o1’ {{z h'ts a{?g h s
W13 hts hfs ¢ |nR c f \
Ry Ry Ry Ry
o o R g
1 bl #{ b 57 g 3.2.0) 11? é@ oy .
it hits g h'3 .
b w b N b o_{lz ” R 052 s 0{22 » Ry h1ts
o o3 o o2 01 o? 71
o s ol gy ol
@D, > >@0 @@, |G CEBN
R o) 2 2
b, ol b, o5 , 09 N b, 0_232 b, 03 P, 0.52 / s, 052 hits, 0’?2 Wi, 052 hBs, 052
BB Bl hfs h
. e
. e

Figure 4.12: Automaton G , of Example

61

Since the augmented observed fault-free language Ly, , can be a smaller set than
language [A/Na, obtained without considering the communication of state estimates,

it is necessary to introduce the notion of distributed synchronous diagnosability.

Definition 4.2 (Distributed synchronous diagnosability)

Consider a system composed of r modules, such that Gy = ||;_,Gn,, where Gy,
is the automaton that models the fault-free behavior of Gy, and let Ly, denote the
language generated by Gy,, for k = 1,...,r. Then, L is said to be distributed

synchronously diagnosable with respect to Ly, ,, B, and Xy if

(3z € N)(Vs € Lp)(Vst € Lp, [|[t|| > 2) = P,(st) € Ln,

The observed language of Gﬁw with respect to YJ,, denoted by Ly ., can be a

a,d’
larger set than the observation of the fault-free language of the composed system
P,(Ly), i.e., Po(Ly) € Ly,,. Thus, it is necessary to verify the distributed
synchronous diagnosability in order to implement the distributed synchronous
diagnosis scheme.

It is important do remark that the definition of distributed synchronous
diagnosability is equivalent to the definition of synchronous diagnosability of a
system with fault-free language given by Ly, , and faulty language given by Lp.
Thus, the verification of distributed synchronous diagnosability of language L can be
performed by using the same strategy presented in Algorithm [3.2]for the verification
of synchronous diagnosability, replacing automaton G with automaton G§ . In

the following we present an algorithm that can be used to verify the distributed

synchronous diagnosability of the language generated by a system.

Algorithm 4.3 Distributed synchronous diagnosability verification

Input: System modules Gy, for k=1,...,r, and G = ||;_,Gy.

Output: Distributed synchronous diagnosability decision.

62

: Compute automaton G that models the faulty behavior of G, whose marked

language is Ly = L\ Ly, as follows:

1.1: Set Al = (Ql)zfaflaQO,l)} where Ql = {N7 F}; qdo,; = {N}) fl(Nv O-f) =F
and fi(F o) = F, for all oy € Xy.

1.2: Compute G = G||A; and mark all states of G, whose second coordinate

15 equal to F.

1.3: Compute the faulty automaton Gr = CoAc(G).
: Compute automata Gy, k =1,...,r, by following the steps of Algorithm[3.1]
. Compute automaton Gﬁ@ following the steps of Algorithm .

: Compute the verifier automaton GPP = (Qv,%v, fv, q@v) = GF||G§¢.
Notice that a state of GEP is given by qy = (qF,qﬁ@), where qp and qﬁ,’¢
are states of Gp and Gﬁ,w respectively, and qp = (q,q), where ¢ € @Q and

qr € {N,F}

. Verify the existence of a cyclic path cl = (q{s/,ai,qffﬂ, ...,q&,av,qé), where

0<d <7, in Gy such that:

Jje{0,0+1,...,9} s.t. for some q{},

(¢ = F) A (o € 3). (4.3)

If the answer is yes, then L s not distributed synchronously diagnosable

with respect to Ly

a,d’?

P, : ¥ — X%, and Xy. Otherwise, L is distributed

synchronously diagnosable with respect to Ly, ,, Pp : 3* — X7, and Xy.

Notice that any verification method could be applied by using the automata

that generate languages Lp and Ly, ,, or any language whose projection in X,

corresponds to Ly, ,. The method presented in Algorithm has polynomial

complexity with respect to the number of states of the system components, since we

do not use observers to obtain Ly

and exponential complexity with the number

a,d’

63

of components r. The verification of the distributed synchronous diagnosability is
performed by searching for cycles of states in GDP with label F such that at least
one transition of the cycle is labeled with a non renamed event.

The following theorem proves the correctness of Algorithm [4.3|for the verification

of distributed synchronous diagnosability.

Theorem 4.2 Let Ly, denotes the language generated by Gn,, for k = 1,...,r,
and consider GDP = GF||G§W where wa is computed by following Algorithm
4.3 A state of GEP is given by qv = (qr,qR), where qr and g% are states
of Gr and GJ}\%W’ respectively, and qr = (q,q), where ¢ € Q and q € {N, F}.
Then, L 1s not distributed synchronously diagnosable, according to Definition
with respect to Ly,, Pro, and Xy if, and only if, there exists a cyclic path cl =

(q%, 05, q@“, e QY 0y g in GEP = GF”G%#); where v > 6 > 0, such that:

35 €{0,0+1,...,7} such that for some g,

(¢l = F) A (0, € 3). (4.4)

Proof. According to Definition[4.2] language L of the composed system G = ||;_, G
is distributed synchronously diagnosable if there does not exist an arbitrarily long
length faulty trace st such that P,(st) € Ly, ,. Theorem shows that Ly, , =
PFL(GY), where P : %3 — Y% Thus, in order to verify the distributed
synchronous diagnosability of language L, it is necessary to check if there exists a
faulty trace st with the same observation of a fault-free trace w € E(Gﬁ,w), where
Pf(w) € Ly, ,. Notice that the unobservable events of G , are renamed, and thus,
are private events of G . Therefore, it can be seen that the verifier automaton G7;”
proposed in this work is equal to the verifier automaton Gy proposed in MOREIRA
et al. [27] applied to a system where the faulty behavior automaton marks Lp and
whose observable fault-free behavior automaton generates Ly, ,. Besides that, using
the verification method proposed in [27], the same necessary and sufficient condition

(4.4) would be obtained, which concludes the proof. [|

64

In the following example, we illustrate the method for the verification of

distributed synchronous diagnosability.

Example 4.5 Considering again the system composed of three modules, such that
G = G1||Gs||Gs, where Gy, Ga, and G are shown in Figure[{.5 Let us also assume
that local diagnosers D1 and Dy are connected in a network, and diagnoser Ds s
not connected to Dy and Do, as depicted in Figure [{.9. Then, applying Step 1 of
Algorithm we compute automaton Gp, depicted in Figure [{.13 According to
Step 2, we obtain automata Gy,, Gy, and Gy,, depicted in Figure[{.6, Following
Step 3 of Algorithm which compute automaton G]I\%W7 by using Algom'thm we
obtain the automaton presented in Figure . Finally, the verifier automaton GDP
18 computed by making the parallel composition of automaton Gr and automaton
Gﬁ#. Only part of GEP is shown in Figure due to the lack of space. Since
there are no cycles in GEP that satisfy condition of Theorem then, L is
distributed synchronously diagnosable with respect to Ly, ,, Po: X% — X7, and Y.
Now, let us consider the faulty trace hog(eh)* of G. In Ezxample it was
shown that L is not synchronously codiagnosable, since this faulty trace has the same
observation as the fault-free trace hoi?(ehot)?* of automaton GR. Notice that there
18 no trace in G%M whose observation with respect to ¥, is equal to h(eh)?. This
shows, as expected, that a system can be distributed synchronously diagnosable, and

not synchronously codiagnosable.

Figure 4.13: Automaton G of Example [4.5

65

hfy

\If N, N Wy N o o o ar; o
N N B N i N Ry £ s 2})2 2
022 F0, L0122 FLLOF 2 >[I 32 F 2 LOF 2> [1 3.2 F3, L0 [T 32 F 3. LI 132 Fa L 1 32 F L L e {04, 2.F 0,11

e hf 't e
) R 3 Ry

\\\(;/ 0{72 \\”f o‘le Ly \\0, Ul’?z hfy \\g/ g{?z {7{(" g/// (IIR'(;,// (71[’ gc/ U{Q gr//
PR xR o oy AW oy s B R ey e DA sy o x B s W NI R 5
[042F:0.20] [142F:120] [142F:2.20] [142F:320] {142 F321«—142F221]«—142F12]] [04:2F:02.1]

uh”* hls Uh,“" htt
a1 h' R 2 2,

N N of h'% N1 ol hit, N1 ol z‘r{(zn/lv/ ﬂ]"aj// ot a5 rT{"a///
N Y Y A —.1 ol A R Y __£ 5l Lol 2 Y £
[042F ;().3& [142F:130] 1427230} [142F:330] 142133 1«—142F23 1]«—142F:13]] [04.2,F:03.1]

5l >l e 5l P piis, o3 (I pbs, o3 uhR’, ol Uh”“, ol
2 2 2 2

Figure 4.14: Part of automaton GP with states labeled with F' of Example

Although in the worst case scenario the distributed synchronous diagnosability
verification method has exponential complexity in the number of system
components, in the distributed synchronous diagnosis architecture proposed in this
work, each local diagnoser has polynomial growth with the number of states of its
corresponding component model. Therefore, the use of the global plant model is
avoided for the distributed synchronous diagnosis.

Besides the need of verification of distributed synchronous diagnosability due to
the fault-free language considered in this approach be a larger set than the fault-
free language of the composed system, we may also compute the delay bound z*
for distributed synchronous diagnosis. It can be computed by using Algorithm
and Equation , replacing the input automaton by GEP. In the next example
we compute the delay bound for distributed synchronous diagnosis for the system

of Example [4.5]

Example 4.6 Let us consider again the system G = G1||Gs||Gs presented in
Example [{.5. Since L is distributed synchronously diagnosable with respect to
Ly, ,, Po: X% — X5, and Xy, we can compute the delay bound z* for distributed
synchronous diagnosis. Using the verifier automaton GHP | whose states labeled with
F and their correspondent transitions is shown in Figure[{.14 as input of Algorithm
and applying the result in Equation , we obtain z* = 2. Computing the delay
bound for the monolithic diagnosis, we obtain the same result z* = 2. This shows

that, for this system, using the distributed synchronous diagnosis approach, we take

66

advantage of the modularity of the system, takes into consideration that information
18 not available in a centralized way and, besides that, the resulting delay bound is

the same as in the centralized monolithic architecture.

It is important to notice that the notion of synchronous codiagnosability
presented in Section is a particular case of the notion of distributed synchronous
diagnosability presented in this work. The distributed synchronous diagnosis is
equal to the decentralized synchronous diagnosis when there is no network formed
with local diagnosers and, consequently, no exchange of information between local
diagnosis.

In CABRAL [33], a comparison between the notion of modular diagnosability,
proposed by CONTANT et al. [30], and the notion of synchronous codiagnosability
(Definition is presented. The approach presented in [30] shows a different notion
of modular diagnosability, where necessary and sufficient conditions that ensure the
modular diagnosability of a DES are proposed. The assumptions assumed by [30]
are: (i) the language of the system is considered live, and there are no cycles of
unobservable events in the system component models; (i4) common events between
two or more components are observable, which implies that the fault event belongs
only to one local component model of the system; (ii7) the model that exhibits the
faulty behavior has persistent excitation. In [30], only the observation of the local
component where the fault event is modeled is taken into account to diagnose a
global fault occurrence.

In order to compare the notions of modular diagnosability and synchronous
codiagnosability, in CABRAL [33|, the assumptions proposed by [30] are applied
to the synchronous decentralized diagnosis scheme. The effect of considering these
assumptions is that the definition of synchronous codiagnosability becomes equal to
the definition of modular diagnosability, which implies that modular diagnosis can
be seen as a particular case of synchronous decentralized diagnosis.

Therefore, we can conclude that modular diagnosability can also be seen as a

particular case of distributed synchronous diagnosability. Thus, if the language

67

of a system is modularly diagnosable according to [30], only the local diagnoser

associated with the fault-free component model can be used for fault diagnosis.

4.4 Final comments

In this chapter, we propose a new synchronous diagnosis method, which consider
that local diagnosers are separated into networks. Each local diagnoser works as
node in the net, and can exchange information regarding observation of events and
state estimates. This information is used to refine the diagnosis decision, by adding
boolean conditions for the transposition of transitions of the fault-free component
models of the system. These conditions are associated to the state estimates of
local diagnosers that belong to the same network. For the implementation of the
distributed synchronous diagnosis method, the local diagnosers considering these
boolean conditions can be constructed following the method presented in CABRAL
et al. |35]. The notion of distributed synchronous diagnosability is introduced, and
a method to verify the distributed synchronous diagnosability based on the method
for the verification of synchronous diagnosability presented in Section [3.1] is also
presented.

In Table the notations of each synchronous diagnosis architecture is
presented, in order to summarize and compare the preliminary results presented

in Chapter |3| and the distributed synchronous diagnosis proposed in this chapter.

Table 4.1: Summary of notations regarding the synchronous diagnosis architectures.

A ted i
. Augmented observed HBImente Verifier .
Architecture fault-free Diagnoser
fault-free language automaton
automaton
Synchronous Sinele
centralized Ly, G GoP s
diagnosis diagnoser
Synchronous
) . . Local
decentralized Ly, GR GY© | oea
diagnosis : diagnosers
Distributed Local
synchronous Ln,, G¥ o GHP diagnosers with
diagnosis communication

68

Chapter 5

Conclusions and future work

In this work, we propose the distributed synchronous diagnosis scheme for modular
discrete-event systems. In this scheme, local diagnosers are computed based on
the fault-free behavior models of the system components, and are capable of
communicating the observation of events and state estimate to other local diagnosers
in the same network. The communication between diagnosers is used to improve the
fault diagnosis in comparison with other synchronous diagnosis strategies, leading
to the notion of distributed synchronous diagnosability.

In order to implement the distributed synchronous diagnosis scheme, a
communication protocol is proposed. The addition of boolean conditions for the
transposition of transitions of the fault-free component models are presented. These
conditions are associated with the state estimate of other local components whose
corresponding local diagnosers are in the same network, which result in the definition
of an extended automaton with conditions. The fault detection logic considered in
this work is that, when an event is observed by a local diagnoser, all conditions of
the enabled transitions labeled with the same event should by satisfied, otherwise,
the fault event is identified.

In summary, the main contributions of this work are as follows.

e A fault diagnosis scheme with distributed architecture for modular discrete-

event systems modeled by automata, called distributed synchronous diagnosis,

69

is proposed. In this scheme, local diagnosers are constructed based on the

observation of the fault-free behavior model of the system components.

e A communication protocol is introduced in order to allow the exchange of

information between local diagnosers that belong to the same network.

e An extended automaton with conditions is introduced in order to alter its
transition function according to the boolean conditions added to the transitions

of the fault-free component models.
e The notion of distributed synchronous diagnosability is presented.

e A method for the verification of distributed synchronous diagnosability of
DESs with polynomial computational complexity in the state-spate of the

system components is proposed.

Future works

In order to avoid a diagnosis technique based on the composed system model,
the synchronous diagnosis has been proposed in the literature. In this scheme,
although the composed plant model is not used for diagnosis, all system components
are considered in order to construct the synchronous diagnoser. However, in
several cases, the language of the system could be diagnosed using a subset of its
components. Therefore, an idea of future work is to obtain a method of computing
minimal subsets of local components that ensure synchronous diagnosability of the
language of a composed discrete-event system. This idea is similar to the problem
of finding minimal diagnosis bases of events for diagnosability of DESs |22} 26], with
the difference that the objective is to provide a method for the computation of a
minimal synchronous diagnosis base of automata. It is important to notice that
if the minimal number of components necessary for synchronous diagnosis is used,
then the computational cost of the synchronous diagnoser is also decreased, which

is particularly interesting for systems with a high degree of concurrency.

70

For the implementation of the distributed synchronous diagnosis method, it
is considered that the network topology is known, i.e., the information of which
diagnosers can exchange information between then is previously known. Thus,
another idea of future work is to obtain a mechanism that returns an optimal network
topology in order to obtain the lowest delay bound for the distributed synchronous
diagnosis. In addition, exploring other communication protocols present in the
literature applied to this architecture, in order to increase the efficiency of the

method, may also be interesting.

71

Bibliography

[1] SHI, J., WAN, J., YAN, H., et al. “A survey of cyber-physical systems”.
In: International Conference on Wireless Communications and Signal
Processing (WCSP), pp. 9-11, Nanjing, China, 2011.

[2] BAHETI, R., GILL, H. “Cyber-physical systems”. In: The impact of control
technology, pp. 161-166, 2011.

[3] LEE, J., BAGHERI, B., KAO, H. “A Cyber-Physical Systems architecture for
Industry 4.0-based manufacturing systems”, Manufacturing Letters, v. 3,
pp. 18-23, 2015.

[4] LIMA, P. M., ALVES, M. V. S., CARVALHO, L., et al. “Security Against
Communication Network Attacks of Cyber-Physical Systems”, Journal of
Control, Automation and FElectrical Systems, pp. 1-11, 2018.

[5] CASSANDRAS, C., LAFORTUNE, S. Introduction to Discrete Event System.
Secaucus, NJ, Springer-Verlag New York, Inc., 2008.

[6] HOPCROFT, J. E., MOTWANI, R., ULLMAN, J. D. Introduction to automata
theory, languages, and computation. Boston, Addison Wesley, 2006.

[7] MIYAGI, P. E. Controle programdvel: fundamentos do controle de sistemas a
eventos discretos. Edgard Bliicher, 1996.

[8] LAWSON, M. V. Finite automata. Florida, CRC Press, 2003.

[9] DAVID, R., ALLA, H. Discrete, Continuous and Hybrid Petri Nets. Springer,
2005.

[10] SAMPATH, M., SENGUPTA, R., LAFORTUNE, S., et al. “Diagnosability of
discrete-event systems”, IEEE Transactions on Automatic Control, v. 40,
n. 9, pp. 1555-1575, 1995.

[11] SAMPATH, M., SENGUPTA, R., LAFORTUNE, S., et al. “Failure diagnosis
using discrete-event models”, IEEE Transactions on Control Systems
Technology, v. 4, n. 2, pp. 105-124, 1996.

72

[12]| DEBOUK, R., LAFORTUNE, S., TENEKETZIS, D. “Coordinated
decentralized protocols for failure diagnosis of discrete event systems”,
Discrete Event Dynamic Systems: Theory and Applications, v. 10, n. 1,
pp- 33-86, 2000.

[13] QIU, W., KUMAR, R. “Decentralized failure diagnosis of discrete event
systems”, IEEE Transactions on Systems, Man, and Cybernetics Part A:
Systems and Humans, v. 36, n. 2, pp. 384-395, 2006.

[14] WANG, Y., YOO, T.-S., LAFORTUNE, S. “Diagnosis of discrete event systems
using decentralized architectures”, Discrete Event Dynamic Systems:
Theory And Applications, v. 17, pp. 233-263, 2007.

[15] QIU, W., KUMAR, R. “Distributed diagnosis under bounded-delay
communication of immediately forwarded local observations”, IFEFE
Transactions on Systems, Man, and Cybernetics-Part A: Systems and
Humans, v. 38, n. 3, pp. 628-643, 2008.

[16] KEROGLOU, C., HADJICOSTIS, C. N. “Distributed Fault Diagnosis
in Discrete Event Systems via Set Intersection Refinements”, [EEFE
Transactions on Automatic Control, v. 63, n. 10, pp. 3601 — 3607, 2018.

[17] SU, R., WONHAM, W. M. “Global and local consistencies in distributed fault
diagnosis for discrete-event systems”, IEEE Transactions on Automatic
Control, v. 50, n. 12, pp. 1923-1935, 2005.

[18] RAMIREZ-TREVINO, A., RUIZ-BELTRAN, E., RIVERA-RANGEL, L., et al.
“Online fault diagnosis of discrete event systems. A Petri net-based
approach”, IEEFE Transactions on Automation Science and Engineering,
v. 4, n. 1, pp. 31-39, 2007.

[19] BASILE, F., CHIACCHIO, P., DE TOMMASI, G. “An efficient approach
for online diagnosis of discrete event systems”, IEEE Transactions on
Automatic Control, v. 54, n. 4, pp. 748-759, 2009.

[20] CABASINO, M. P., GIUA, A., POCCI, M., et al. “Discrete event diagnosis
using labeled Petri nets. An application to manufacturing systems”,
Control Engineering Practice, v. 19, n. 9, pp. 989-1001, 2011.

[21] CABASINO, M., GIUA, A., LAFORTUNE, S., et al. “A New Approach
for Diagnosability Analysis of Petri Nets using Verifiers Nets”, IFEFE
Transactions on Automatic Control, v. 57, n. 12, pp. 3104-3117, 2012.

73

22|

23]

[24]

[25]

[26]

27]

28]

29]

[30]

[31]

BASILIO, J. C., LIMA, S. T. S., LAFORTUNE, S., et al. “Computation of
minimal event bases that ensure diagnosability”, Discrete Event Dynamic
Systems: Theory And Applications, v. 22, pp. 249-292, 2012.

CARVALHO, L. K., MOREIRA, M. V. BASILIO, J. C., et al
“Robust diagnosis of discrete-event systems against permanent loss of
observations”, Automatica, v. 49, n. 1, pp. 223-231, 2013.

CABRAL, F. G., MOREIRA, M. V., DIENE, O., et al. “A Petri net diagnoser
for discrete event systems modeled by finite state automata”, IFEE

Transactions on Automatic Control, v. 60, n. 1, pp. 59-71, 2015.

MOREIRA, M. V., BASILIO, J. C., CABRAL, F. G. ““Polynomial Time
Verification of Decentralized Diagnosability of Discrete Event Systems”
Versus “Decentralized Failure Diagnosis of Discrete Event Systems™ A
Critical Appraisal”, IEEE Transactions on Automatic Control, v. 61, n. 1,
pp. 178-181, 2016.

SANTORO, L. P. M., MOREIRA, M. V., BASILIO, J. C. “Computation
of minimal diagnosis bases of Discrete-Event Systems using verifiers”,
Automatica, v. 77, pp. 93-102, 2017.

MOREIRA, M. V., JESUS, T. C., BASILIO, J. C. “Polynomial time
verification of decentralized diagnosability of discrete event systems”,
IEEE Transactions on Automatic Control, v. 56, n. 7, pp. 16791684,
2011.

CASSEZ, F. “A note on fault diagnosis algorithms”. In: Proceedings of the
48th IEEE Conference on Decision and Control held jointly with the
28th Chinese Control Conference, CDC/CCC., pp. 6941-6946, Shanghai,
China, 20009.

DEBOUK, R., MALIK, R., BRANDIN, B. “A modular architecture for
diagnosis of discrete event systems”. In: jIst IEEE Conference on
Decision and Control, pp. 417-422, Las Vegas, Nevada USA, 2002.

CONTANT, O., LAFORTUNE, S., TENEKETZIS, D. “Diagnosability of
discrete event systems with modular structure”, Discrete Event Dynamic
Systems: Theory And Applications, v. 16, n. 1, pp. 9-37, 2006.

CABRAL, F. G., MOREIRA, M. V., DIENE, O. “Online fault diagnosis of
modular discrete-event systems”. In: IEEE 5/th Annual Conference on
Decision and Control (CDC), pp. 4450-4455, Osaka, Japan, 2015.

74

[32] CABRAL, F. G., MOREIRA, M. V. “Synchronous Diagnosis of Discrete-Event
Systems”, Transactions on Automation Science and Engineering, 2018.

Submitted for publication.

[33] CABRAL, F. G. Synchronous Failure Diagnosis of Discrete-Event Systems.
Tese de Doutorado, Programa de Pos-Graduagao em Engenharia Elétrica
- COPPE/UFRJ, Rio de Janeiro, RJ, Brasil, 2017.

[34] CABRAL, F. G., MOREIRA, M. V. “Synchronous Decentralized Diagnosis of
Discrete-Event Systems”. In: 20th World Congress of the International
Federation of Automatic Control, pp. 7025-7030, Toulouse, France, 2017.

[35] CABRAL, F. G., VERAS, M. Z. M., MOREIRA, M. V. “Conditional
Synchronized Diagnoser for Modular Discrete-Event Systems”. In: 14th
International Conference on Informatics in Control, Automation and
Robotics (ICINCO), v. 2, pp. 88-97, Madrid, Spain, 2017.

36] VERAS, M. Z. M., CABRAL, F. G., MOREIRA, M. V. “Distributed
Synchronous Diagnosability of Discrete-Event Systems”. In: Discrete
FEvent Systems (WODES), 2018 14th International Workshop on, pp. 88—
93, 2018.

[37] BASILIO, J. C., CARVALHO, L. K., MOREIRA, M. V. “Diagnose de falhas
em sistemas a eventos discretos modelados por automatos finitos”, Revista
Controle €& Automacao, v. 21, n. 5, pp. 510-533, 2010.

[38] YOO, T.-S., LAFORTUNE, S. “Polynomial-time verification of diagnosability
of partially observed discrete-event systems”, IEEE Transactions on
Automatic Control, v. 47, n. 9, pp. 1491-1495, 2002.

[39] BASILIO, J. C., LAFORTUNE, S. “Robust codiagnosability of discrete event
systems”. In: American Control Conference (ACC), pp. 2202-2209, St.
Louis, MO, USA, 2009.

[40] TOMOLA, J. H. A, CABRAL, F. G., CARVALHO, L. K., et al
“Robust Disjunctive-Codiagnosability of Discrete-Event Systems Against
Permanent Loss of Observations”, IEEE Transactions on Automatic
Control, v. 62, n. 11, pp. 5808-5815, 2017.

[41] YOO, T.-S., GARCIA, H. “Computation of fault detection delay in discrete-
event systems”. In: Proceedings of the 14th International Workshop on
Principles of Diagnosis, DX’03, pp. 207-212, Washington, USA, 2003.

75

[42] DASGUPTA, S., PAPADIMITRIOU, C., VAZIRANI, U. Algorithms. McGraw-
Hill, 2008.

[43] CORMEN, T. H., LEISERSON, C. E., RIVEST, R. L., et al. Introduction to
algorithms. Massachusetts, MIT Press, 2007.

76

	List of Figures
	List of Tables
	Introduction
	Fundamental Concepts of Discrete-Event Systems
	Languages
	Language operations

	Automata
	Operations on automata
	Automata with partially observed events

	Final comments

	Diagnosability of DESs
	Synchronous centralized diagnosability of DESs
	Delay bound for synchronous diagnosis

	Synchronous codiagnosability of DESs
	Final comments

	Distributed Synchronous Diagnosability of DESs
	Architecture
	Distributed synchronous diagnosis method
	Distributed synchronous diagnosability
	Final comments

	Conclusions and future work
	Bibliography

