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Com a proliferação de serviços wireless, a demanda por espectro disponível tam-
bém cresce. Logo, a eficiência espectral é um assunto de grande interesse na co-
munidade científica, que procura por meios para fornecer qualidade de serviço ao
crescente número de usuários. massive MIMO é uma técnica repleta de atrativos
a ser empregada na futura geração wireless, já que aproveita o espectro existente
eficientemente. Este trabalho propõe duas estratégias de seleção de antenas para
serem empregadas no downlink de um sistema massive MIMO, visando a redução da
potência de transmissão. Os algoritmos propostos podem também ser usados para
selecionar um subconjunto de sensores ativos em uma rede centralizada de sensores.
A estratégia proposta para seleção de antenas é inspirada na técnica matching pur-
suit. Os resultados apresentados indicam que uma seleção eficiente pode ser obtida
com baixa complexidade computacional.
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As wireless services proliferate, the demand for available spectrum also grows. As
a result, the spectral efficiency is still an issue addressed by many researchers looking
for solutions to provide quality of service to a growing number of users. massive
MIMO is an attractive technology for the next wireless systems since it can alleviate
the expected spectral shortage. This work proposes two antenna selection strategies
to be applied in the downlink of a massive MIMO system, aiming at reducing the
transmission power. The proposed algorithms can also be employed to select a
subset of active sensors in centralized sensor networks. The proposed strategy to
select the antennas is inspired by the matching pursuit technique. The presented
results show that an efficient selection can be obtained with reduced computational
complexity.

vii



Contents

List of Figures xi

List of Tables xiv

List of Symbols xv

1 Introduction 1
1.1 The Road to 5G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The Big Picture of 5G and Motivation . . . . . . . . . . . . . . . . . 3
1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Basic Concepts of Cellular MIMO Systems 8
2.1 Cellular Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Duplexing schemes . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Coherence Interval . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 MIMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1 Single-user MIMO . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Multi-user MIMO . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Massive MIMO . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Key Features of Massive MIMO 18
3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.1 Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.2 Uplink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.3 Downlink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Channel Estimation in the Uplink . . . . . . . . . . . . . . . . . . . . 23
3.2.1 Pilot sequence generation . . . . . . . . . . . . . . . . . . . . 24
3.2.2 MMSE Channel Estimation . . . . . . . . . . . . . . . . . . . 25
3.2.3 Pilot contamination . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Downlink Data Transmission . . . . . . . . . . . . . . . . . . . . . . . 26

viii



3.3.1 Linear Precoding . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 Uplink Data Transmission . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4.1 Linear Decoding . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5 Precoders/Decoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5.1 Maximum Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5.2 Zero Forcing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.6 Channel Hardening and Favorable Propagation . . . . . . . . . . . . . 30
3.6.1 Channel Hardening . . . . . . . . . . . . . . . . . . . . . . . . 30
3.6.2 Favorable Propagation . . . . . . . . . . . . . . . . . . . . . . 31

3.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Antenna Selection in Massive MIMO 33
4.1 Antenna Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . 34
4.1.2 Selection Criteria . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1.3 Convex Optimization Methods for Antenna Selection . . . . . 36
4.1.4 Random Antenna Selection Problem . . . . . . . . . . . . . . 40

4.2 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Matching Pursuit for Antenna Selection 41
5.1 Matching Pursuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Matching Pursuit as an Antenna Selection Strategy . . . . . . . . . . 44

5.2.1 MR Matching Pursuit Antenna Selection . . . . . . . . . . . . 45
5.2.2 ZF Matching Pursuit Antenna Selection . . . . . . . . . . . . 47
5.2.3 Symbol-level Matching Pursuit Antenna Selection . . . . . . . 50

5.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6 Simulation Results 53
6.1 BER simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.1.1 Perfect CSI knowledge at BS . . . . . . . . . . . . . . . . . . . 56
6.1.2 Imperfect CSI knowledge at BS . . . . . . . . . . . . . . . . . 60

6.2 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . . 63
6.2.1 Common Matrix Operations . . . . . . . . . . . . . . . . . . . 63
6.2.2 Computing selection vector . . . . . . . . . . . . . . . . . . . 64
6.2.3 Computing the vector to be transmitted . . . . . . . . . . . . 66

6.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7 Conclusions 70
7.1 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

ix



8 Antenna Selection in Single-User MIMO 72
8.1 Single-user MIMO versus Sensor selection . . . . . . . . . . . . . . . . 72

8.1.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . 73
8.1.2 Selection Criteria . . . . . . . . . . . . . . . . . . . . . . . . . 75

8.2 Convex Optimization Methods for Antenna Selection . . . . . . . . . 76
8.2.1 SU MIMO A-Optimality Convex Problem . . . . . . . . . . . 76
8.2.2 SU MIMO D-Optimality Convex Problem . . . . . . . . . . . 78
8.2.3 SU MIMO Downlink Capacity Convex Problem . . . . . . . . 79

8.3 Low Complexity Antenna Selection . . . . . . . . . . . . . . . . . . . 80
8.3.1 Trace-Based Low Complexity Problem . . . . . . . . . . . . . 80
8.3.2 Determinant-Based Low Complexity Problem . . . . . . . . . 82

8.4 Single-user MIMO simulations . . . . . . . . . . . . . . . . . . . . . . 83
8.4.1 Computational complexity . . . . . . . . . . . . . . . . . . . . 84

8.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Bibliography 88

x



List of Figures

1.1 Old generation mobile telephones. . . . . . . . . . . . . . . . . . . . 2
1.2 Source: Cisco VNI Mobile, 2017. [1] . . . . . . . . . . . . . . . . . . . 5

2.1 A basic cellular network, where each BS provides service to all termi-
nals in the cell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Duplexing Schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Allocation of the samples in a coherence interval (TDD mode). . . . . 11
2.4 Multipath propagation in a single-cell. . . . . . . . . . . . . . . . . . 12
2.5 Single-user MIMO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6 Multi-user MIMO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.7 Massive MIMO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Channel matrix between BS and terminals. . . . . . . . . . . . . . . . 19
3.2 LOS propagation between terminal k and a BS equipped with a ULA

with M antennas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 NLOS propagation with uncorrelated Rayleigh fading between the

ULA-BS and the terminal k. . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 NLOS propagation with correlated Rayleigh fading between the ULA-

BS and the terminal k. . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5 Channel Estimation via uplink pilot transmission. . . . . . . . . . . . 25
3.6 Downlink Data Transmission to terminal k. . . . . . . . . . . . . . . 28
3.7 Uplink Data Transmission to BS. . . . . . . . . . . . . . . . . . . . . 29

4.1 Downlink massive MIMO with only S selected BS-antennas. . . . . . 33
4.2 Antenna selection process in the downlink of a massive MIMO system. 34

5.1 Example of linear system. . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2 Example of sparse recovery problem. . . . . . . . . . . . . . . . . . . 42

6.1 ZF precoding and Scenario 1: Average BER per user for a massive
MIMO system with perfect CSI knowledge, uncorrelated Rayleigh
channel, and BPSK transmitted symbols. . . . . . . . . . . . . . . . 57

xi



6.2 MR precoding Scenario 1: Average BER per user for a massive MIMO
system with perfect CSI knowledge, uncorrelated Rayleigh channel,
and BPSK transmitted symbols. . . . . . . . . . . . . . . . . . . . . 58

6.3 ZF precoding and Scenario 2: Average BER per user for a massive
MIMO system with perfect CSI knowledge, uncorrelated Rayleigh
channel, and 4-QAM transmitted symbols. . . . . . . . . . . . . . . 58

6.4 MR precoding and Scenario 2: Average BER per user for a massive
MIMO system with perfect CSI knowledge, uncorrelated Rayleigh
channel, and 4-QAM transmitted symbols. . . . . . . . . . . . . . . 58

6.5 ZF precoding and Scenario 3: Average BER per user for a massive
MIMO system with perfect CSI knowledge, correlated Rayleigh chan-
nel, and BPSK transmitted symbols. . . . . . . . . . . . . . . . . . . 59

6.6 MR precoding and Scenario 3: Average BER per user for a massive
MIMO system with perfect CSI knowledge, correlated Rayleigh chan-
nel, and BPSK transmitted symbols. . . . . . . . . . . . . . . . . . . 59

6.7 ZF precoding and Scenario 4: Average BER per user for a massive
MIMO system with perfect CSI knowledge, correlated Rayleigh chan-
nel, and 4-QAM transmitted symbols. . . . . . . . . . . . . . . . . . 59

6.8 MR precoding and Scenario 4: Average BER per user for a massive
MIMO system with perfect CSI knowledge, correlated Rayleigh chan-
nel, and 4-QAM transmitted symbols. . . . . . . . . . . . . . . . . . 60

6.9 ZF precoding and Scenario 5: Average BER per user for a massive
MIMO system with imperfect CSI knowledge, uncorrelated Rayleigh
channel, and BPSK transmitted symbols. . . . . . . . . . . . . . . . 60

6.10 MR precoding and Scenario 5: Average BER per user for a massive
MIMO system with imperfect CSI knowledge, uncorrelated Rayleigh
channel, and BPSK transmitted symbols. . . . . . . . . . . . . . . . 61

6.11 ZF precoding and Scenario 6: Average BER per user for a massive
MIMO system with imperfect CSI knowledge, uncorrelated Rayleigh
channel, and 4-QAM transmitted symbols. . . . . . . . . . . . . . . 61

6.12 MR precoding and Scenario 6: Average BER per user for a massive
MIMO system with imperfect CSI knowledge, uncorrelated Rayleigh
channel, and 4-QAM transmitted symbols. . . . . . . . . . . . . . . 61

6.13 ZF precoding and Scenario 7: Average BER per user for a massive
MIMO system with imperfect CSI knowledge, correlated Rayleigh
channel, and BPSK transmitted symbols. . . . . . . . . . . . . . . . 62

6.14 MR precoding and Scenario 7: Average BER per user for a massive
MIMO system with imperfect CSI knowledge, correlated Rayleigh
channel, and BPSK transmitted symbols. . . . . . . . . . . . . . . . 62

xii



6.15 ZF precoding and Scenario 8: Average BER per user for a massive
MIMO system with imperfect CSI knowledge, correlated Rayleigh
channel, and 4-QAM transmitted symbols. . . . . . . . . . . . . . . 63

6.16 MR precoding and Scenario 8: Average BER per user for a massive
MIMO system with imperfect CSI knowledge, correlated Rayleigh
channel, and 4-QAM transmitted symbols. . . . . . . . . . . . . . . 63

6.17 Time spent to compute 50 transmit messages by each AS algorithm
in an massive MIMO system. . . . . . . . . . . . . . . . . . . . . . . 67

8.1 Comparison between SU MIMO and centralized sensor network
schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

8.2 Antenna selection process in the downlink of SU MIMO system. . . . 74
8.3 Scenario 9: Single-user MIMO system with perfect CSI knowledge,

uncorrelated Rayleigh channel, and BPSK transmitted symbols. . . . 85
8.4 Scenario 9: Single-user MIMO system with perfect CSI knowledge,

uncorrelated Rayleigh channel, and BPSK transmitted symbols, SNR
= 10 dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

8.5 Time spent to compute the selection vector by each AS algorithm in
an SU MIMO system. . . . . . . . . . . . . . . . . . . . . . . . . . . 86

xiii



List of Tables

1.1 Operators used throughout this work . . . . . . . . . . . . . . . . . . 7

6.1 Simulation steps (massive MIMO) . . . . . . . . . . . . . . . . . . . . 55
6.2 Antenna selection algorithms evaluated in the BER simulations . . . 56
6.3 Number of flops required to compute the selection vector by the An-

tenna selection algorithms highlighted in boldface in Table 6.2; M is
the number of BS antennas, S is the number of selected antennas and
K is the number of terminals . . . . . . . . . . . . . . . . . . . . . . 66

6.4 Number of flops required to compute the message vector in massive
MIMO (ZF precoding) by the proposed antenna selection algorithms
highlighted in boldface in Table 6.2; M is the number of BS antennas,
S is the number of selected antennas and K is the number of terminals 68

6.5 Number of flops required to compute the message vector in massive
MIMO (MR precoding) by the proposed antenna selection algorithms
highlighted in boldface in Table 6.2; M is the number of BS antennas,
S is the number of selected antennas and K is the number of terminals 68

8.1 Antenna selection algorithms evaluated in the SU-MIMO simulations 85

xiv



List of Symbols

a array response or steering vector

α path-loss exponent

b target vector in MP

βk large-scale fading between terminal k and the BS

c codeword vector in MP

χ Schur complement

D dictionary matrix in MP

η vector comprising the power allocated for each user

Γ parameter that determines the median channel gain at a reference distance
of 1 km

G channel matrix between BS and terminal(s)

GS S-selected channel matrix

κ positive constant which controls the quality of the barrier approximation

E confidence ellipsoid of the estimation error vector

H Hilbert space

I set containing auxiliary antenna’s indices

I set containing selected antenna’s indices

P precoding matrix

p precoding vector

PS S-selected precoding matrix

Φ pilot matrix

xv



φi pilot sequence assigned to terminal i

q intended transmitted symbols

r residue vector in MP

Rk spatial correlation matrix

ρdl downlink SNR

ρul uplink SNR

σ2
w noise variance

τc length of coherence interval in samples

τdl samples reserved for downlink data transmission in each coherence block

τp samples reserved for uplink pilot signaling in each coherence block

τul samples reserved for uplink data transmission in each coherence block

θ angle between the location of the terminal/obstacle and the ground

V decoding matrix

v decoding vector

w AWGN noise

x transmitted signal

Xp pilot signal transmitted by all terminals

y received signal

Z antenna selection matrix

z selection vector

Bc coherence bandwidth

Cdl downlink capacity

Cul uplink capacity

dH antenna spacing, measured in the number of wavelengths

dk distance between the BS and the terminal

xvi



fk realization of a random variable which models the shadow fading effect

gmk channel gain between the kth terminal and the mth base station antenna

hmk small-scale fading between terminal k and the mth BS antenna

K number of terminals, except in SU MIMO where K is the number of antennas
in the terminal

M number of Base Station antennas

N number of multipaths in NLOS propagation environment

Tc coherence time

gSk channel gain between terminal k and S selected BS antennas

gT
m channel gain between BS antenna m and the K terminals

gk channel gain between terminal k and M BS antennas

xvii



Chapter 1

Introduction

Nowadays, it is hard to imagine our lives without cellphones. Interestingly,
these devices have become essential in such a short period of time. About 40 years
ago, when the first commercial mobile telephones were launched, they were quite
expensive and restricted to a small group of people. Now, everyone has a cellphone
or at least has access to one. To achieve the cellular systems we have today, the
ladder had several steps; these steps are often referred to as cellular generations.

1.1 The Road to 5G

The first mobile phone systems appeared soon after the Second World War, but
they were not easily portable as one can see in Figure 1.1a. This pre-cellular mobile
telephony technology is known as generation zero (0G). The number of simultaneous
calls was limited as each call required a separate frequency channel.

The first generation (1G) systems, based on analog technology with FM modula-
tion, appeared in the 1980s and supported speech services only. Although they were
still quite big, as shown in Figure 1.1b, they were the first handheld telephones. The
US-developed advanced mobile phone service (AMPS) is a typical example of 1G
system based on the frequency division multiple access (FDMA) technology which
allowed multiple users in a cell. Nevertheless, other countries were also develop-
ing their own systems and standards, which were incompatible with each other.
In the face of the incompatibility among various systems, changes in the existing
telecommunication regulatory framework started to be studied.

In the early 1990s, a transition from analog to digital systems was witnessed,
bringing together the second generation (2G), which steadily evolved to support
digital voice and also data services such as emails and short messages (SMS). Unlike
1G systems, in which one call required one frequency channel, in 2G systems one
frequency channel was divided between several users thanks to time-division or code-
division techniques. Therefore, the 2G systems enabled the accommodation of more

1



(a) A radio telephone from 0G [2]. (b) A “brick” cellphone from 1G [3].

Figure 1.1: Old generation mobile telephones.

subscribers in the radio spectrum. Examples of 2G systems include global system
mobile (GSM), IS-136 which is hybrid time division multiple access (TDMA) and
frequency division multiple access (FDMA) and IS-95 which is code division multiple
access (CDMA). The most famous of them is undoubtedly the GSM, whose open
standard easily allowed interoperability.

Given the use of the 2G mobile system, the use of the Internet as a multimedia
service provision has quickly increased. As expected, Internet-based services were
incorporated in the mobile devices from the third generation (3G) system. The
3G systems were defined by the International Telecommunication Union (ITU) to
support high speed data ranges from 144 kbps to 2 Mbps. Examples of successful
3G standards include the Universal Mobile Telecommunications System (UMTS)
and CDMA 2000, which are handled by the Third-generation Partnership Project
(3GPP) and 3GPP2, respectively. The UMTS or Wideband Code Division multiple
access (WCDMA) is the evolved version of GSM, whereas the CDMA 2000 is the
evolution of IS-95. The 3G has also introduced the term “mobile broadband” due to
its rate and capability of delivering Internet browsing into the cellphones.

More support to broadband data is provided by the fourth generation (4G) or
Long Term Evolution (LTE). Originally, LTE was an enhanced version of the 3G
technologies named by 3GPP in 2004 [4]. Although the LTE was not intended to be
used as synonym for 4G, its use is widespread both in the engineering community
and the general public. In LTE, the air interface technology WCDMA is replaced by
the orthogonal frequency division multiple access (OFDMA). Another attempt of
improvement used in LTE is the multiple input multiple output (MIMO) technique
with arrays containing about eight antennas [5].
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As the progress never stops, recent research effort is being conducted in the
direction of the fifth generation (5G) [6–9]. Basically, this future generation will be
concerned with three aspects: higher data-rates, lower latency, and the ability to
connect not only people, but also things [10, 11].

1.2 The Big Picture of 5G and Motivation

We are moving towards a future where everything is connected. Over the last
years, the cellphones evolved to smartphones – powerful devices containing numer-
ous applications and embedded sensors to provide an experience beyond the ini-
tial speech service. As a result, the volume of data is dramatically increasing, as
quantified by the annual visual network index (VNI) reports released by Cisco in
Figure 1.2a. Not only the smartphones will play a significant role in the new genera-
tion wireless communications, but the Machine-to-Machine (M2M) communications
[12, 13] are also gaining ground as evidenced in Figure 1.2b. M2M communications
include smart power-grid, eHealth, intelligent transportation systems and surveil-
lance, to name a few [13].

The most recent VNI report [1] and forecast indicate that a huge improvement
should be achieved in data communication to meet the demands that networks will
face by 2021. Ultra-densification, mmWave (milimeter wave), and massive MIMO
are being considered “the big three” technologies for 5G [14].

A possible solution to deal with the demand for higher data rate increase is to
make the cells smaller, hence densifying the area with more BSs (Base Stations).
The benefits include the reuse of spectrum across a geographic area and the decrease
in the number of users competing for system resources. Moreover, reducing the size
of the cell leads to increased spectral efficiency and reduced transmit power.

Since the spectrum range between 300 MHz and 3 GHz are becoming nearly
fully occupied, we need to use higher frequencies to access wider bandwidth. Indeed,
between 30 GHz and 300 GHz, where wavelengths are 1–10 mm, the spectrum is less
crowded and much wider bandwidths are available. On the other hand, millimeter
wave signals are highly attenuated by commonly used solid materials such as concrete
or brick walls [15, 16]. A possible solution to this problem involves the placement
of mmWave femtocells inside buildings for indoor coverage.

Another approach is the use of a large array of antenna elements to provide
diversity and compensate for path loss. The array is supposed to be equipped with
hundreds of antenna elements. Indeed, massive MIMO is one of the most promising
technologies for the future-generation wireless systems [17, 18]. In such a strategy,
the base station is equipped with a large number of antennas M and serves a set
of K terminals or user equipment. One of the characteristics of massive MIMO is
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that M � K which brings about the favorable action of the law of large numbers
[19]. This effect is known as channel hardening, in which all small-scale effects
vanish as the number of antennas increases. However, to maintain a certain level of
performance, all the M antennas in BS do not need to be active at the same time.
Moreover, simple linear processing is allowed due to the quasi-orthogonal nature of
the channels between each BS and the set of active users. Nonetheless, we must
overcome several issues so that massive MIMO can become a reality.

One of the challenges for the realization of the massive MIMO is the BS cost.
In general, the massive MIMO architecture requires radio frequency (RF) elements
for each antenna. Thus, increasing the number of antennas leads to an increase in
the number of these elements. Motivated by this issue, we aim at selecting the most
effective BS antennas in order achieve a certain performance level at the receivers,
leading to power savings as well. Therefore we can alleviate the BS cost and also
benefit from significant diversity gain.

Solving the problem of selecting S out of M available antennas by verifying all
possible choices is quite a challenge. This problem can be solved via convex opti-
mization as shown in [20, 21], but this solution leads to high computational cost.
Therefore, we propose an efficient way to solve the antenna selection problem by us-
ing a greedy algorithm called matching pursuit [22, 23], in which the computational
cost is substantially reduced.

1.3 Organization

The structure of the dissertation is as follows. In chapter 2, cellular networks
are briefly described as well as the main concepts regarding wireless systems. This
chapter also states the possible ways to improve the area throughput of cellular
networks, which culminates in the use of multiple antennas at the BS. The MIMO
technology is also introduced in chapter 2.

The massive MIMO concept is detailed in chapter 3. This chapter embraces
the system model employed and also the main challenges that we need to overcome
in massive MIMO. In addition, the concept of channel hardening and favorable
propagation is also explored in chapter 3.

The antenna selection problem is described in chapter 4. This chapter states
the problem of selecting the best subset of BS antennas for massive MIMO systems.
Moreover, chapter 4 describes the existing antenna selection algorithms which are
based on convex optimization.

Chapter 5 discusses the matching pursuit technique, a greedy approach used in
the sparse recovery context. This chapter contains the proposed antenna selection
algorithms which are based on matching pursuit strategy, the main contribution
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(a) Global Mobile Data Traffic, 2016 to 2021.

(b) Global Mobile Devices and Connections Growth, 2016 to 2021.

Figure 1.2: Source: Cisco VNI Mobile, 2017. [1]

of this work. We propose both channel-level and symbol-level antenna selection
algorithms.

In chapter 6, the proposed antenna selection algorithms and their counterparts
are evaluated via bit error rate in a massive MIMO simulated system. The sim-
ulations are conducted in different scenarios regarding channel model, modulation
scheme and channel estimation. In addition, the computational complexity of the
proposed algorithms is quantified by counting the number of flops required to per-
form the antenna selection. The antenna selection is performed by computing an
auxiliary vector that indicates the active antennas indices. The results show that
our proposed algorithms achieve a performance level almost as high as the ones
yielded by their counterparts based on convex optimization. However, the proposed
algorithms have the advantage of requiring a reduced number of flops.

Furthermore, a relation between SU MIMO system and Sensor Networks is ad-
dressed in chapter 8. This chapter also includes a simple proposed antenna selection
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algorithm based on low complexity approximation.
Finally, some concluding remarks are included in chapter 7 along with possible

future work.

1.4 Notation

Vectors and matrices are represented by characters in bold type in which lower-
case letters are used for vectors and upper-case letters for matrices, whereas non-bold
letters are scalar variables. We consider column vectors and am represents the mth
component of vector a. In a similar way, the entries of a matrix A are of the form
amk in which m represents the row and k the column of A. In order to identify a
column of a matrix, we represent it as a column vector ak where k is the column
index. Similarly, aT

m is used to represent the mth row of matrix A. For example, an
M ×K matrix A can be written as

A =


a11 a12 . . . a1K
...

... . . . ...
aM1 aM2 . . . aMK

 =
[
a1 a2 . . . aK

]
. (1.1)

When the elements of a vector are random variables, we represent the vector by
a character in bold italic type, i.e., a. The statement a ∼ N (0, R) means that the
random vector a is distributed as a real Gaussian random variable with zero mean
and covariance matrix R. The distribution in the statement a ∼ CN (0, R) is known
as circularly simmetric complex Gaussian which means that ejφa ∼ CN (0, R) for
any given φ. E[·] and Var[·] denote the expected value and variance of a random
variable, respectively.

In general, we use subscripts in vectors and matrices just to represent the vari-
able’s name. However, subscripts in parentheses refer to the size of a square matrix.
For example, I(K) is the identity matrix with size K ×K.

The real, complex and natural sets are represented by the following symbols R,
C and N. For example, we can establish that matrix A ∈ RM×K and aK ∈ RM×1 in
equation (1.1).

The operators used throughout the text are organized in Table 1.1.
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Table 1.1: Operators used throughout this work

Operator Input Output

(·)T vector or matrix input vector or matrix with transposed elements

(·)H vector or matrix
input vector or matrix with

transposed and conjugated elements

(·)∗ vector or matrix
vector or matrix of the complex conjugate elements

of the input vector or matrix

(·)−1 matrix inverse of input matrix

‖x‖p vector p-norm,
(∑M

m=1 |xm|p
)1/p

‖·‖0 vector number of non-zero entries of input vector

diag (·) vector
diagonal matrix where the diagonal

entries are the elements of the input vector

det(·) square matrix determinant of the input matrix

tr(·) square matrix
trace of the matrix, that is, the sum of the

diagonal elements of the input matrix

〈·,·〉 two vectors inner product between two input vectors

vec(·) matrix
column vector which is obtained by transposing

the rows of the input matrix and stacking them up

rem(·) matrix
matrix with zero columns

removed
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Chapter 2

Basic Concepts of Cellular MIMO
Systems

In this chapter, we describe the principles of cellular networks and the improve-
ments achieved by using the multiple-input multiple-output approach. Furthermore,
we introduce the main concepts required to understand the following chapters.

2.1 Cellular Networks

In cellular or more general mobile networks, the users’ terminals in a given
geographic area are served by several BSs [24]. Each BS serves simultaneously a
certain number of terminals located in the coverage area of the BS, as illustrated in
Figure 2.1. Such a coverage area is called a cell, allowing an extensive geographic
area to be partitioned into cells [25]. The communication between the terminals
and BS is two-way or in duplex format.

In the Downlink (DL), the BS transmits signals to the assigned terminals,
whereas in the Uplink (UL), the terminals transmit signals to the BS, as depicted in
Figure 2.1. In general, time-division duplex and frequency-division duplex are used
as duplex transmission schemes, which are discussed in subsection 2.1.1.

The cellular networks were originally conceived for voice communication. How-
ever, nowadays the majority of traffic in wireless networks accounts for viewing of
video content.

A relevant performance metric of cellular networks is the area throughput. The
area throughput performance metric, also discussed in [26], is given by

Area throughput[bit/s/km2] = B[Hz] ·D[cells/km2] · SE[bit/s/Hz/cell] (2.1)

where B is the communication bandwidth, D is the average cell density and SE is
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Uplink

Downlink

Terminal

Base Station (BS)

Figure 2.1: A basic cellular network, where each BS provides service to all terminals
in the cell.

the spectral efficiency per cell. Therefore, to improve the area throughput of cellular
networks, we can

• allocate more bandwidth;

• add more BSs;

• improve the SE.

Increasing the bandwidth is not so attractive since the frequency spectrum is
a natural resource with high cost and facing scarcity. Furthermore, it also entails
using much higher frequency bands which limits the communication range. Despite
that, millimeter wavelength (mmWave) bands (e.g., in the range 30–300 GHz) can
be used for short-range applications [27]. Densifying the network, by employing
more BSs, is a hard task without moving BSs closer to terminals, which leads to
increased risks of being in deep shadow, thereby reducing coverage.

These are the main reasons why it is preferable to enhance the SE. One way to
improve SE is by employing multiple antennas at the BS, to collect more energy
from the electromagnetic waves [26]. This promising solution is detailed in section
2.2.

2.1.1 Duplexing schemes

For cellular systems, the possibility of transmitting and receiving data in both
directions using the same environment is essential. Then, choosing the proper duplex
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scheme is a fundamental part of the overall specification for the cellular system. The
main duplex schemes used in wireless communications are time-division duplex and
frequency-division duplex, which are illustrated in Figure 2.2.

Time-Division Duplex (TDD)

In TDD, in a single frequency, the transmission and reception of data are period-
ically alternated [28]. The uplink and downlink directions are separated in the time
domain as one can see in Figure 2.2a. As the same band is used, uplink and downlink
channel responses are reciprocal to each other due to the RF channel reciprocity be-
tween the transmitter and receiver during short period of times [29]. Then, once we
have a channel estimate of the uplink direction at the transmitter, we can directly
utilize it as an estimate of the downlink channel.

Frequency-Division Duplex (FDD)

As the name suggests, in the FDD scheme, the uplink and downlink are separated
in the frequency domain [28]. When FDD is used, it is possible to transmit and
receive signals simultaneously as the frequency channels, depicted in Figure 2.2b,
used by the receiver and transmitter are different. Since uplink and downlink are on
different frequency bands that might be far apart, the channels are not reciprocal
[29]. Thereby, the receiver communicates the estimated channel state information
(CSI) over a control feedback channel which can be very costly as the number of
antennas at the transmitter increases.

Frequency

Time

DL Data

Tc

Bc UL Data

(a) TDD.

Frequency

Time

UL Data

DL Data

Tc

Bc

Bc

(b) FDD.

Figure 2.2: Duplexing Schemes.

2.1.2 Coherence Interval

The time during which the channel variation in time is negligible is called coher-
ence time and Tc is used to denote it. In addition, the length of a frequency interval
over which the channel frequency response is approximately flat is called coherence
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bandwidth, Bc. Then, a time-frequency space of duration Tc and bandwidth Bc is
called coherence interval and it is the largest possible time-frequency space in which
the effect of the channel can be reduced to a multiplication by a scalar gain. The
coherence interval has the length [26]

τc = BcTc samples. (2.2)

The transmission of samples in Figure 2.2 is performed during the coherence interval.
For the TDD mode, for example, the coherence interval can be structured as in
Figure 2.3, in which τul and τdl is the number of samples per coherence interval
allocated for transmission of uplink and downlink data, respectively. Moreover, τp
is the number of samples reserved for pilot symbols in the uplink.

Downlink DataUplink Pilots

τc

τp τul τdl

Uplink Data

Figure 2.3: Allocation of the samples in a coherence interval (TDD mode).

2.2 MIMO

The concept of using multiple antennas was first suggested in 1910, for
transoceanic communications [30]. Since then, many studies have been demon-
strating how multiple-input multiple-output (MIMO) is capable of enhancing the
quality and capacity of wireless communications [31–40].

The MIMO performance depends on the propagation conditions. NLOS (Non-
line-of-sight) and LOS (line-of-sight) are the most common classification. When
a strong direct path is available from the transmitter to the receiver, we have
LOS propagation condition as illustrated in Figure 2.4, whereas multiple obstructed
paths are predominant in NLOS propagation condition. This multipath propaga-
tion that generally impairs the performance of single-antenna systems is exploited in
MIMO to provide a robust link [24]. This is possible since the received signals from
one transmitting antenna may differ from the others in phase, timing, and signal
strength characteristics. On the other hand, LOS condition leads to a high receive
signal-to-noise ratio SNR which will also contribute to improve MIMO capacity. A
performance comparison between LOS and NLOS conditions is addressed in [41].
Nevertheless, obstacles are so frequent in urban and indoor environments that clear
LOS between transmitter and receiver is very rare. In general, the MIMO technique
can be configured as single-user MIMO, multi-user MIMO, and massive MIMO.
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LOS

Path 1

Path 2

Figure 2.4: Multipath propagation in a single-cell.

2.2.1 Single-user MIMO

SU MIMO or point-to-point MIMO consists of a transmitter BS and a terminal
receiver, both equipped with an array of antennas [18, 41]. An illustration is provided
in Figure 2.5, where the M -antenna BS serves a certain K-antenna terminal. In
SU MIMO, the BS transmits multiple streams to the same terminal and different
terminals are orthogonally multiplexed [42]. In theory, under rich scattering and
time-invariant environments MIMO systems can provide remarkable capacity growth
[40, 43, 44]. Shannon theory yields the following capacity formulas (in b/s/Hz) for
uplink and downlink

Cul = log det
(
I(M) +

ρul
K

GGH
)
, (2.3)

Cdl = log det
(
I(M) +

ρdl
M

GGH
)
. (2.4)

when there is additive white Gaussian noise (AWGN) at the receiver. The uplink
and downlink SNRs are denoted by ρul and ρdl, and G is the matrix comprising all
the channel gains between the BS and the terminal. However, equations (2.3) and
(2.4) are just theoretical bounds, based on assumptions about the underlying time-
varying channel model and perfect CSI at the receiver as well as at the transmitter
[18]. CSI is optional at BS, but is mandatory at the terminal which complicates
the terminal equipment. The terminal also requires separate Radio Frequency (RF)
chains per antenna, where an RF chain includes filters, low-noise amplifiers (LNAs),
and down-conversion mixers [45, 46]. Moreover, the terminal demands advanced
signal processing to separate the data streams, which makes the terminal device even
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more complex. In addition, the propagation environment must support min(M,K)
data streams, which is difficult to achieve in practice when compact array antennas
are used. Another disadvantage of SU MIMO is that when the SNR is low, i.e., at
the cell edge, the spectral efficiency is slowly improved as the number of BS antennas
increases. Thus, the relevance of SU MIMO is limited in practice.

K-antenna terminal

M -antenna BS

Signal
Processingdata stream

CSI

Signal
Processing

data stream

(a) Uplink.

K-antenna terminal

M -antenna BS

Signal

Processing
data stream

Signal
Processing data stream

CSI

(b) Downlink.

Figure 2.5: Single-user MIMO.
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2.2.2 Multi-user MIMO

By splitting the antenna array at the terminal receiver of a SU MIMO system into
autonomous antennas, we obtain the multi-user (MU) MIMO. In MU MIMO, a BS
equipped with M antennas transmits simultaneously spatially multiplexed streams
to K different terminal users [42]. Figure 2.6 depicts a MU MIMO system in both
uplink and downlink. MU MIMO allows the spatial multiplexing gain at the BS to
be accomplished with single-antenna terminals [47]. This enables the development
of small and low-cost terminals, whereas the higher complexity is kept at the BS.
Nevertheless, using multiple antennas at the terminal can be viewed as optional
equipment allowing extra diversity gain and enhancing the received signal quality.

MU MIMO differs from SU MIMO in some aspects. First, the terminals are
typically separated by many wavelengths. In this way, MU MIMO overcomes most
of propagation limitations in MIMO such as ill-behaved channels due to the small
spacing between the receiving antennas. Second, in MUMIMO, the terminals cannot
collaborate among themselves, either to transmit or to receive data [41, 47, 48]. The
uplink and downlink capacity bounds are given by [18, 49]

Cul = log det
(
I(M) + ρulGGH

)
, (2.5)

Cdl = max
ηk≥0∑K

k=1 ηk≤1

log det
(
I(M) + ρdlGdiag (η) GH

)
(2.6)

where η = [η1, . . . , ηK ] is the vector comprising the power allocated for each user.
The computation of downlink capacity according to (2.6) requires the solution of a
convex optimization problem. In fact, it is a power allocation problem and can be
solved with iterative water-filling algorithms [50, 51].

As the terminals are served by the BS in the same time-frequency resource, strong
interference among the users is present. When the signal is precoded at the BS, the
interference among the users is generally reduced. Therefore, the BS must know
the CSI perfectly in comparison with SU MIMO schemes, since CSI is of critical
importance to most precoding techniques. Precoding strategies include linear and
nonlinear approaches, which will be discussed in chapter 3.

Unfortunately, complicated signal processing by both the BS and the terminals
are required to achieve the capacity bounds in equations (2.5) and (2.6). Further-
more, in the downlink, both the BS and the terminals must have CSI, which requires
substantial resources to be set aside for transmission of pilots in both directions.
Thus, the implementation of MU MIMO is also limited in practice.
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(a) Uplink.

terminal 1

M -antenna BS
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CSI
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Decoding

CSI

terminal 2

data stream 2
Decoding

CSI

terminal K

data stream K
Decoding

CSI

(b) Downlink.

Figure 2.6: Multi-user MIMO.

2.2.3 Massive MIMO

The massive MIMO concept was introduced by Marzetta in [52], where the main
idea was to scale up MU MIMO systems, by deploying a huge number of antennas
at the BS that dramatically exceeds the number of active terminals, M � K .
Thereby, the use of simple linear processing becomes nearly optimal. As in MU
MIMO, the base station serves all active users, simultaneously, in the same time-
frequency resource. Figure 2.7 illustrates a massive MIMO system operating in
both uplink and downlink modes. Since the number of BS antennas is large, the
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channel becomes nearly deterministic, and hence, the effects of small-scale fading
and frequency dependence disappear. This is known as channel hardening. One can
compare Figures 2.7 and 2.6 and see that the main difference between MU MIMO
and massive MIMO occurs in the downlink, where the terminals no longer need to
perform decoding. Thus, no channel estimation is required at the terminals and only
the BS obtains CSI, thanks to channel hardening. By operating in TDD mode and
exploiting reciprocity of the propagation channel, the amount of resources needed
for pilots only depends on the number of simultaneously served terminals, K.

terminal 1

M -antenna BS

Decoding

data stream 1

CSI

data stream 1

terminal 2

terminal K

data stream 2

data stream K

data stream 2

data stream K

(a) Uplink.

terminal 1

M -antenna BS

Precoding

data stream 1

CSI

data stream 1

data stream 2

data stream K

terminal 2

data stream 2

terminal K

data stream K

(b) Downlink.

Figure 2.7: Massive MIMO.
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2.3 Concluding Remarks

In this chapter, the cellular networks were introduced. A cell was described as
the geographic area covered by a transmit facility called base station. The users
or terminals in a cell communicate with the base station via uplink or downlink.
Among the aspects that compose the presented performance metric known as area
throughput, the spectral efficiency was shown to be preferable. The MIMO technique
was suggested as a promising solution to improve the spectral efficiency. In addition,
several MIMO configurations were presented culminating in the target: massive
MIMO. In the next chapter, the details of the massive MIMO systems are discussed,
regarding the system model, propagation and also some challenges that are inherent
to this technique.
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Chapter 3

Key Features of Massive MIMO

When the number of BS antennas becomes significantly larger than the number
of terminal users in the cell, we are in the context of large or massive MIMO. The
benefits of massive MIMO include improvements in throughput and radiated energy
efficiency [17], interference suppression among users [26], and more effective linear
signal processing at BS [53]. Nevertheless, the advantages are followed by some
challenges like pilot contamination and unfavorable propagation. In this chapter,
we provide an overview of massive MIMO theory, including some preliminaries and
essential concepts. Both uplink and downlink system designs are presented. Fur-
thermore, the massive MIMO challenges are discussed. For the sake of simplicity, we
restrict our discussion to the single-cell systems, and hence we consider interference
from neighboring cells to be negligible.

3.1 System Model

We consider a single-cell massive MIMO system where a BS equipped withM an-
tennas simultaneously serves K single-antenna terminal users. The massive MIMO
operating in both uplink and downlink is illustrated in Figure 2.7. The majority
of massive MIMO deployment rely on the TDD transmission scheme [17, 18, 26].
As discussed in subsection 2.2, TDD is useful due to the effective acquisition of
downlink CSI at the BS by exploiting channel reciprocity. On the other hand, vast
amounts of spectrum are reserved for FDD operation [54] and considerably reduced
CSI accuracy can result [55, 56]. However, the large number of BS antennas leads to
a CSI overhead increase when operating in FDD mode. Therefore, TDD is preferable
for massive MIMO [57], and it is the scheme considered in this work.

Now we need to model the channel between the BS and the terminal. In fact,
it depends on the propagation environment, which is generally classified as LOS,
NLOS with rich scattering and NLOS with spatial multipath [26]. The uplink and
downlink system models are defined in subsections 3.1.2 and 3.1.3.
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3.1.1 Channel Model

In a single-cell system, the channel response for terminal k to the BS is denoted
by gk ∈ CM×1, where each element of gk is the channel response from the terminal
to one of the M -BS antennas. Let G be a matrix comprising the channel responses
for all the terminals in the cell to the BS,

G =


g11 g12 . . . g1K
...

... . . . ...
gM1 gM2 . . . gMK

 , (3.1)

and gk is the kth column of G. An illustration of the channel matrix is provided
in Figure 3.1. The model choice for the elements of G depends on the propagation
environment, generally classified as LOS and NLOS, both mentioned in section 2.2.

M -Antenna BS

g11

g1K

gM1

gMK K Terminals

Channel Matrix, G

(single-antenna)

Switch
RF

Figure 3.1: Channel matrix between BS and terminals.

LOS channel model

When there is no local scattering, and all terminals have a direct path to the BS,
we are in the LOS case which is depicted in Figure 3.2. Consider that the BS is a
horizontal uniform linear array (ULA) with antenna spacing dH , which is measured
in the number of wavelengths between adjacent antennas. Moreover, assume that
the terminals are located at fixed locations in the far-field of the BS array. Hence,
we have the following deterministic channel response between the BS and a terminal
k located at the angle θk ∈ [0, 2π)

gk =
√
βk
[
1 e2πjdHsin(θk) . . . e2πjdH(M−1)sin(θk)

]T
, (3.2)

where βk describes the macroscopic large-scale fading [58]. Observe that the phase
rotations in (3.2) of adjacent antennas differ by dHsin(θk), which is the additional
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distance that signals have to travel, as illustrated in Figure 3.2. The large-scale
coefficient is often modeled in decibels as

βk = Γ− 10αlog10

(
dk

1km

)
+ fk (3.3)

where dk(km) is the distance between the BS and the terminal, α is the path-loss
exponent which determines how fast the signal power decays with the distance,
and Γ determines the median channel gain at a reference distance of 1 km [26].
Deterministic parameters Γ and α are functions of the carrier frequency, antenna
gains, and vertical heights of the antennas which can be obtained by established
propagation models [59]. The term fk is the realization of a random variable Fk ∼
(0, σ2

sf) which models the shadow fading effect [60]. The shadow fading can be viewed
as a model of physical blockage from large obstacles.

0

dH

(M − 1)dH

dHsin(θk)

Terminal k

θk

M -antenna BS

LOS

Figure 3.2: LOS propagation between terminal k and a BS equipped with a ULA
with M antennas.

NLOS channel model

In the NLOS case, there are two possibilities for the scattering scenarios. In the
first, the system operates in a rich scattering environment so that the signal arises
at BS through many paths. As illustrated in Figure 3.3, a single-antenna terminal
communicates with the BS equipped with a uniform linear array of M antennas.
The LOS path is blocked, but the signal finds multiple other paths via specular
reflection. We can use the uncorrelated Rayleigh fading also known as independent
and identically distributed (i.i.d.) Rayleigh fading [26] to model gk as a realization
of the random variable

gk ∼ CN (0(M), βkI(M)). (3.4)

Thus, gmk can be modeled as
gmk =

√
βkhmk (3.5)
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where βk is a large-scale coefficient dependent only on k and hmk is the realization of
a random variable distributed as CN (0, 1) which represents the effect of small-scale
fading.

Terminal k

M -antenna BS

LOS is

obstructed

Rich scattering
environment

Figure 3.3: NLOS propagation with uncorrelated Rayleigh fading between the ULA-
BS and the terminal k.

In the second case, the BS receives the signal only through a few number of
significant paths. It can happen due to insufficient antenna separation or poor
scattering environment [61]. Hence, the received signal has a strong spatial signature
in the sense that stronger average signal gains are received from certain spatial
directions [26]. In this way, the channel can be modeled by correlated Rayleigh
fading [26] in which gk is modeled as a realization of the random variable

gk ∼ CN (0(M), Rk). (3.6)

where Rk ∈ CM×M is the spatial correlation matrix and it is also the covariance
matrix as the mean is zero. Similarly to the uncorrelated Rayleigh fading model,
the Gaussian distribution is used to model the small-scale fading variations and
the covariance matrix describes the large-scale fading. In the uncorrelated fading
the covariance matrix is diagonal, whereas in the correlated fading the covariance
matrix is not necessarily diagonal. A possible model for Rk is described in [26, 35].
This scenario is exemplified in Figure 3.4, where the signal arrives at BS through
only two paths. The received signal at the BS is the superposition of N multipath
components. Each of the multipath components thus results in a plane wave that
reaches the array from a particular angle θkn and gives an array response or steering
vector akn ∈ CM×1 similar to the LOS case in (3.2)

akn = hkn
[
1 e2πjdHsin(θkn) . . . e2πjdH(M−1)sin(θkn)

]T
(3.7)

where hkn ∈ C accounts for the gain and phase-rotation for this path. Then, the
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channel response for terminal k is the superposition

gk =
N∑
n=1

akn (3.8)

of the array responses of the N components.

Terminal k

M -antenna BS

LOS is
obstructed

θn1

Local scattering
θn2

Path n1

Path n2

Figure 3.4: NLOS propagation with correlated Rayleigh fading between the ULA-BS
and the terminal k.

Suppose the angles θkn are realizations of i.i.d. random variables with angular
probability density function (PDF) f(θ) and hkn are i.i.d. random variables with
zero-mean and variance E[|hkn|2]. The variance represents the average gain of the
nth path and the total average gain of the multipath components is denoted by
βk =

∑N
n=1E[|hkn|2]. If the number of paths is large, the multidimensional central-

limit theorem [62] implies that

gk → CN (0(M), Rk), N →∞ (3.9)

where the convergence is in distribution and the correlation matrix is

Rk = E

[
N∑
n=1

ana
H
n

]
. (3.10)

3.1.2 Uplink

The signal y ∈ CM×1 received at BS equipped with M antennas is of the form

y =
K∑
k=1

gkqk + w = Gq + w (3.11)

where w is a realization of a random variable distributed as CN (0(M) , σ
2
wI(M)) and

represents independent additive receiver noise with zero mean and variance σ2
w. The

signal q ∈ CK×1 is the composition of the symbols transmitted from all the terminals
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in the cell. The element qk is the symbol transmitted by terminal k and can be either
a data or pilot signal. The channels are constant within a coherence block, while
the signals and noise take new realization at every sample. When the terminals are
transmitting data symbols, the BS performs linear detection to separate the symbols
from each terminal. On the other hand, when the terminals transmit pilot symbols,
the BS uses them to perform channel estimation. The channel estimation process is
detailed in section 3.2, whereas the data reception is outlined in section 3.4.

3.1.3 Downlink

The received signal yk at terminal k is modeled as

yk = gT
k x + wk = gT

k Pq + wk (3.12)

in which wk is a realization of a random variable distributed as CN (0, σ2
w) repre-

senting the receiver noise. The channel between terminal k and BS is denoted by
gk ∈ CM×1. The BS transmits the vector x ∈ CM×1 which is a combination of the
intended vector q and the precoding matrix P. The precoding operation is explained
in subsection 3.3.1.

3.2 Channel Estimation in the Uplink

The massive number of antennas plays a significant role in the estimation of
the channel gains between the BS and the terminals. Indeed, activating more BS
antennas enables the BS to attain an accurate estimation of the channels so that
the chance of success in the precoding is increased.

In each coherence block, τp of the available τc samples are reserved for the ter-
minals to transmit the pilot symbols. The terminals simultaneously transmit their
corresponding pilots, which are known at the BS. As the K pilot waveforms share
the same coherence block, pilots from different users need to be mutually orthogonal
to avoid interference with each other. The pilot sequence assigned to terminal k is
denoted by φk ∈ Cτp×1, τp ≥ K and is assumed to have unit power magnitude,
‖φk‖

2
2 = 1. We also denote the pilot matrix as Φ ∈ Cτp×K , which contains the pilot

sequences from all terminals, such that

ΦHΦ = I(K). (3.13)

To set the total energy spent by each terminal equal to the duration of the pilot
sequence τp, the pilot sequences are scaled by √τp [18]. Hence, complete set of pilot
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signals transmitted by the terminals is given by

Xp =
√
τpΦ

H. (3.14)

The BS receives the M × τp signal

Yp = GXp + Wp

=
√
τpGΦH + Wp.

(3.15)

in which the entries of the M × τp noise matrix Wp are independent identically
distributed (i.i.d) realizations of a random variable distributed as CN (0, 1).1

To estimate gk, BS can correlate Yp in equation (3.15) with the pilot sequence
φk. In this way, the received pilot signal is

y′pk = Ypφk

=
√
τpgkφ

H
kφk +

K∑
l=1,
l 6=k

√
τpglφ

H
l φk + Wpφk.

(3.16)

Since we are considering orthogonal pilots, the inner product φH
l φk = 0 and thus

we can obtain the noisy version of gk,

y′pk =
√
τpgk + Wpφk. (3.17)

Equivalently, the BS can estimate the channel matrix G by right-multiplying the
equation (3.15) by the pilot matrix. Then, yielding

Y′p = YpΦ

=
√
τpGΦHΦ + WΦ

=
√
τpG + WΦ

(3.18)

which is a noisy version of the channel matrix G.

3.2.1 Pilot sequence generation

The pilot matrix can be generated as a Walsh-Hadamard matrix Φ(τp) [26]. The
Walsh-Hadamard of dimension 2N can be computed with the following recursive
formula

Φ(2N ) =

[
Φ(2N−1) Φ(2N−1)

Φ(2N−1) −Φ(2N−1)

]
= Φ(2) ⊗Φ(2N−1), (3.19)

1For convention, the noise variance is equal to one
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in which ⊗ denotes the Kronecker product. The initial seed is Φ(0) = 1 and hence,

Φ(21) =

[
1 1

1 −1

]
, Φ(22) =


1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

 (3.20)

are examples of Walsh-Hadamard matrices of dimensions 2 and 4, respectively.

3.2.2 MMSE Channel Estimation

If we have a priori knowledge of the signal distributions, a Bayesian estimator can
be employed to obtain a better version of the estimated channel matrix G. Assume
we want to estimate a vector x ∈ CM×1 which is a realization of a Gaussian random
variable with zero mean and covariance R, from the observation y = Ax+w ∈ CK×1.
The matrix A is considered known and w is additive white Gaussian noise (AWGN)
with zero mean and variance σ2

w. As defined in [26], the MMSE estimator of x based
on y is

x̂MMSE = RAH(σ2
wI + ARAH)−1y. (3.21)

We assume the large-scale fading coefficients are known, then gmk is a realization
of a random variable with known prior distribution of CN (0, βk). By using equation
(3.21) we can obtain the MMSE estimator of gk as

ĝk =

√
τpβk

1 + τpβk
y′pk . (3.22)

The complete channel estimation procedure is detailed in Figure 3.5.
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τpφK
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wpM

ĝ1

ĝK

De-spreading

Estimator

MMSE

Base StationTerminals

Figure 3.5: Channel Estimation via uplink pilot transmission.
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3.2.3 Pilot contamination

Owing to the limited availability of frequency spectrum, there is a practical ne-
cessity to reuse the time-frequency resources across cells. In particular, when the
resources designed for uplink pilot training are shared, the resulting channel esti-
mate and thus system performance is affected by pilot contamination. Indeed it is
not possible to assign orthogonal pilot sequences for all users in all cells, due to the
limitation of the channel coherence interval. Orthogonal pilot sequences have to be
reused from cell to cell. Therefore, the channel estimate obtained in a given cell will
be contaminated by pilots transmitted by users in other cells [63]. Pilot contamina-
tion has an important impact beyond channel estimation, since the contamination
makes it particularly hard for the BS to mitigate interference between terminals that
use the same pilot. Pilot contamination is often described as a major inherent limi-
tation of massive MIMO, as the effect persists even when the number of BS antennas
grows to infinity [64]. Considerable efforts have been made to reduce this effect. The
eigenvalue-decomposition-based channel estimation, pilot decontamination, as well
as pilot contamination precoding schemes are proposed in [65–69].

3.3 Downlink Data Transmission

The BS wants to transmit the messages to each terminal, but it has to ensure
that each terminal receives only the message intended to it. To do so, the BS
can combine the channel estimates, obtained in the uplink training phase, with the
vector comprising the messages designated to the terminals to obtain the actual
signal to be transmitted. This combination is also known as precoding. Basically,
when the message vector is obtained via a linear mapping, i.e., by multiplying q by a
matrix we are performing a linear precoding. In contrast, when there is a nonlinear
mapping, the employed precoder is nonlinear. We consider the linear precoding due
to its low complexity. However, in chapter 4 we mention an algorithm that employs
a nonlinear precoding scheme. Figure 3.6 illustrates the process of transmitting data
in the downlink direction.

3.3.1 Linear Precoding

Linear precoding is a technique in which the signal is weighted at the transmitter
so that interference among users is minimized in the downlink reception. Indeed,
the precoding vectors determine the spatial directivity of the transmission. The BS
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transmits the downlink signal

x = Pdiag (η)1/2 q =
K∑
k=1

√
ηkpkqk (3.23)

in which qk is the message intended for the kth terminal. The transmit power
allocated to terminal k is denoted by ηk so that

K∑
k=1

ηk ≤ 1. (3.24)

In equation (3.23), pk is the k-th column of the M ×K precoding matrix P, which
is detailed in section 3.5. The precoding vectors pk, k ∈ {1, · · · , K}, must satisfy
E{‖pk‖

2} = 1, such that
E{√ηk ‖pkqk‖

2} = ηk. (3.25)

Such a precoding normalization can be performed by making ‖pk‖2 = 1, k ∈
{1, · · · , K} [26].

The received signal yk at terminal k is modeled as

yk = gT
k x + wk

=
K∑
k=1

√
ηkg

T
k pkqk + wk

= gT
k pk
√
ηkqk

︸ ︷︷ ︸
Desired signal

+ gT
k

K∑
k′=1
k′ 6=k

p′k
√
η′kq
′
k

︸ ︷︷ ︸
User-interference

+ wk

︸︷︷︸
Noise

(3.26)

in which wk is a realization of a random variable distributed as CN (0, σ2
w) and

represents the receiver noise.

3.4 Uplink Data Transmission

In this case, the BS wants to detect the signals transmitted from the K termi-
nals. When the number of BS antennas is large, linear decoders are usually good
enough. With linear decoding schemes at the BS, the received signal y is separated
into K streams by multiplying it by a multiuser decoding matrix. Each stream is
then decoded independently. The uplink data transmission procedure is depicted in
Figure 3.7.

The kth terminal transmits a weighted symbol,
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Figure 3.6: Downlink Data Transmission to terminal k.

xk =
√
ηkqk, (3.27)

where ηk is a power control coefficient. The symbols qk have zero mean and unit
variance, and they are uncorrelated, so that

E[qqH] = I(K), (3.28)

where q = [q1, . . . , qK ]T is the vector composed of the messages from all terminals.
The signal received at the mth BS antenna element is a linear combination of the
signals transmitted by all terminals

ym =
K∑
k=1

gmkxk + wm. (3.29)

Hence, the complete M × 1 received signal is

y = Gx + w. (3.30)

3.4.1 Linear Decoding

Linear decoding [70] is used to separate the signal xk of terminal k from the
other interfering terminals. To obtain an estimate of xk, the BS pre-multiplies the
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received signal y by the decoding vector vH
k ,

x̂k = vH
k y = vH

k gkqk

︸ ︷︷ ︸
Desired signal

+
K∑
i=1
i 6=k

vH
k giqi

︸ ︷︷ ︸
User-interference

+ vH
k w

︸︷︷︸
Noise

. (3.31)

The decoding vector vk is the kth column of the decoding matrix V. The precoding
matrix, as well as the decoding matrix are presented in section 3.5.
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Figure 3.7: Uplink Data Transmission to BS.

3.5 Precoders/Decoders

One of the advantages of massive MIMO, mentioned in subsection 2.2.3, is the
possibility of using simple signal processing due to the huge number of transmit
antennas. Indeed, many linear processing approaches were provided in [71–75]. The
most common linear precoding/decoding schemes are: maximum ratio and zero
forcing.

3.5.1 Maximum Ratio

With the maximum ratio (MR), the BS wants to maximize the received SNR
of each stream, ignoring the effect of multiuser interference [76, 77]. Then, the
precoding matrix

PMR = G∗ (3.32)

is the conjugate channel matrix, whereas the decoding matrix

VMR = G (3.33)

is the channel matrix. Since MR neglects the effect of multiuser interference, it
performs poorly in interference-limited scenarios.
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3.5.2 Zero Forcing

Zero forcing (ZF) is a simple method which decouples the multiuser channel
into multiple independent subchannels and reduces the design to a power allocation
problem. Indeed, ZF takes the interuser interference into account, but neglects the
effect of noise. Thus, it performs very well in the high SNR regime, but it works
poorly under noise-limited scenarios [78]. The precoding matrix,

PZF = G∗(GTG∗)−1 (3.34)

is the right pseudo-inverse of the channel matrix GT, whereas the decoding matrix,

VZF = G(GHG)−1 (3.35)

is the right pseudo-inverse of the channel matrix G. Compared with MR, ZF has a
higher implementation complexity due to the computation of the pseudo-inverse of
the channel gain matrix.

3.6 Channel Hardening and Favorable Propagation

Channel hardening and favorable propagation are two related, but different prop-
erties. Channel hardening means that a fading channel behaves as a nearly deter-
ministic channel [79]. Favorable propagation means that the channel vectors from
different users are almost orthogonal [80]. These are both consequences of the law
of large numbers.

3.6.1 Channel Hardening

Channel hardening makes a fading channel behave as deterministic, so that the
random fluctuations in the channel due to microscopic changes in the propagation
environment become negligible [81]. This property alleviates the need for combating
small-scale fading and improves the downlink channel gain estimation. A propaga-
tion channel gk provides asymptotic channel hardening if the gain ‖gs‖22 of the fading
channel is close to its mean value as the number of antennas increases,

‖gk‖
2
2

E[‖gk‖
2
2]
→ 1,M →∞. (3.36)

Equation (3.36) also implies that

Var

[
‖gk‖

2
2

E[‖gk‖
2
2]

]
=

Var
[
‖gk‖

2
2

](
E
[
‖gk‖

2
2

])2 → 0, M →∞. (3.37)
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Moreover, by applying lemma

E[(gHk Igk)
2] = (tr(IRk))

2 + tr(I(Rk)
2IH), (3.38)

from [26] in (3.36), we obtain

Var
[
‖gk‖

2
2

](
E
[
‖gk‖

2
2

])2 =
(tr(Rk))

2 + tr((Rk)
2)− (tr(Rk))

2

(tr(Rk))2

=
tr((Rk)

2)

(tr(Rk))2
=

tr((Rk)
2)

(Mβk)2
.

(3.39)

Therefore, if the variance in (3.39) is not close to zero as M increases, one can
assure that the channel does not harden [79]. Thus, we can compute the variance
in equation (3.39) for both uncorrelated and correlated fading channels to check
if channel hardening is observed. First, observe that tr((Rk)

2) in the numerator
of (3.39) is the sum of the squared eigenvalues of Rk. In the case of uncorrelated
fading, all the eigenvalues are equal to βk and hence Rk = βkI(M), where βk is the
coefficient regarding the large-scale fading effect. Thus, equation (3.39) becomes

tr((Rk)
2)

(Mβk)2
=

tr((βkI(M))
2)

(Mβk)2
=

Mβ2
k

(Mβk)2

=
1

M
→ 0, M →∞

(3.40)

which confirms the presence of channel hardening. On the other hand, in the case of
correlated fading, Rk is not diagonal in general. Indeed, strong spatial correlation
is characterized by large eigenvalues variations which thereby reduce the level of
channel hardening that is observed for a given number of antennas. Then, more
antennas are required to achieve a certain value in (3.39) under spatially correlated
fading than with uncorrelated fading.

3.6.2 Favorable Propagation

Favorable propagation is observed if the channel vector gk, for k = 1, . . . K are
pairwisely orthogonal [80], that is, if

gHk gk′

0, k,k′ = 1, . . . K, k 6= k′

‖gk‖
2
2 6= 0, k = 1, . . . K.

(3.41)

Unfortunately, the condition in (3.41) is not true in practice. However, we can
investigate if the channel offers approximately favorable propagation. The pair of
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channels gk and gk′ provide asymptotically favorable propagation if

gHk gk′√
E[‖gk‖

2
2]E[‖gk′‖

2
2]
→ 0,M →∞ (3.42)

This means that the inner product of the normalized channels gk′/
√
E[‖gk‖

2
2] and

gk/
√
E[‖gk′‖

2
2] goes asymptotically to zero. For correlated Rayleigh fading channels,

a sufficient condition for (3.42) is that the spatial correlation matrices Rk and Rk′

have spectral norms that are bounded and the average channel gains remain strictly
positive as M → ∞. Notice that under this condition, the two channels will also
exhibit asymptotic channel hardening. Likewise channel hardening, one can consider
the variance

Var

 gHk gk′√
E[‖gk‖

2
2]E[‖gk′‖

2
2]

 =
tr(RkRk′)

tr(Rk) tr(Rk′)
=

tr(RkRk′)

M2βkβk′
→ 0 (3.43)

of the expression in (3.42) and verify if it holds. The closer to zero the variance is,
the more orthogonal the channel directions are and less interference the terminals
cause to each other. Ideally, the variance in (3.43) should be zero, but in practice it
is not (unfavorable propagation). Therefore, using precoding/decoding schemes is
still a good choice to mitigate interuser interference.

If both channels have uncorrelated fading, the variance becomes 1/M and thus
decreases with an increasing number of antennas. In general, it is the spatial channel
correlation that determines the variance in (3.43). It is zero if the terminals have
orthogonal correlation eigenspaces, while the worst-case appears when the terminals
have identical eigenspaces and only a few strong eigenvalues.

3.7 Concluding Remarks

In this chapter, we focused on the massive MIMO system. The system model was
introduced, and the uplink and downlink modes were also mathematically described.
Furthermore, the channel hardening and favorable propagation aspects of massive
MIMO systems were briefly discussed. The next chapter exposes how to perform
antenna selection in the downlink of a massive MIMO system.
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Chapter 4

Antenna Selection in Massive MIMO

In theory, massive MIMO systems provide an impressive improvement in per-
formance in comparison to single-input single-output (SISO) counterparts in terms
of link reliability, data rate and radiated-energy efficiency due to the large number
of BS-antennas. Unfortunately, increasing the number of antennas at BS may lead
to undesired costs in practice. MIMO systems with M BS-antennas require M RF
chains at the transmitter, which include low-noise amplifiers, downconverters, and
digital-to-analog converters. Therefore, schemes in which the most suitable S out
of M antennas are selected to be active have been proposed to reduce the number
of required RF chains from M to S [20, 82, 83]. Antenna selection strategies lead
to significant savings, but a performance loss is observed when compared to the full
system. The main goal is to select the subset of antennas that preserves the system
performance at a certain level.

In this chapter, we introduce the problem of selecting S out of M BS antennas
in the downlink of a single-cell massive MIMO system as illustrated in Figure 4.1.

terminal 1

M -antenna BS

terminal 2

terminal K

S selected antennas

Figure 4.1: Downlink massive MIMO with only S selected BS-antennas.
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4.1 Antenna Selection

When all the BS antennas are active, the data transmission in the downlink
of a massive MIMO system is modelled as in equation (3.3) and is also illustrated
in Figure 3.6. To model the selection of a subset of S antennas to transmit the
data, we add a new step at the BS processing. This step, depicted in Figure 4.2,
comprises the antenna selection algorithm which generates matrix GS ∈ CS×K .
The subscript S in matrix GS denotes that S rows are selected out of M in the
full channel matrix G. In general, the antenna selection algorithms only have the
estimated channel matrix as input, so that the switch in Figure 4.2 is opened.
This means that the antenna selection procedure is only needed when the channel
matrix changes. However, some antenna selection strategies also require the so-
called intended/desired vector q as input, hence the switch in Figure 4.2 is closed.
In this case, the antenna selection procedure has to be performed whenever a new
intended vector q is generated. Hence, the precoding matrix is recomputed every
time a desired vector q is generated. Such a precoder is known as symbol-level
precoder [84].

Precoder

RF

Chain 1

RF

Chain S

Switch
RF

Symbol

Generator

CSI Antenna Selection

Algorithm

RF

Chain 2

q1

q2

qK

M antennas

(S out of M)

single-antenna
terminals

qK×1

ĜS

Ĝ

x1

x2

xS

Power

Allocation

p

η1q1

p

η2q2

p

ηKqK

Figure 4.2: Antenna selection process in the downlink of a massive MIMO system.

4.1.1 Problem Description

Based on some selection criterion, the antenna selection algorithms produce the
selection vector,

z = [z1, z2, . . . , zM ]T ∈ {0,1}M (4.1)

in which zm = 1 denotes that the antenna with index m was selected. Moreover,
the selection vector must satisfy

1Tz = S, (4.2)
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where S is the number of selected antennas. We can form the S-selected channel
matrix,

GS = rem(diag (z))G = ZTG, (4.3)

where Z is the antenna selection matrix. We can obtain matrix Z by removing the
zero columns of the diagonal matrix diag (z). Indeed, the rem(·) operator represents
the action of removing the zero columns of a given matrix, and is defined in Table 1.1.
The message xS ∈ CS×1

xS = PSdiag (η)1/2 q, (4.4)

is transmitted by the S active BS antennas, where PS = G∗S(GT
SG∗S)−1 with S ≥ K

for ZF precoding and PS = G∗S for MR precoding. The received signal in the kth
terminal is of the form,

yk = gS
T
k xS + wk, (4.5)

where gSk is the kth column of GS.

4.1.2 Selection Criteria

The most common criterion used to select the antennas is the one that aim at
maximizing the downlink capacity [20, 85–87]. In addition, a recent method exploits
the sparse recovery problem in the precoding stage, so that antenna selection and
precoding procedures are jointly performed [21]. Our proposed methods follow a
similar strategy, but at lower complexity.

4.1.2.1 Capacity maximization

The maximization of the downlink capacity problem, detailed in equation (2.6),
is rewritten to account for the antenna selection as

Cdl = max
ηk≥0∑K

k=1 ηk≤1

log det
(
I(M) + ρdlZ

TGdiag (η) GHZ
)
, (4.6)

where diag (η) allocates the power among the K terminal channels. By considering
A = ZTG ∈ CS×K and B = diag (η) GHZ ∈ CK×S we can use the Sylvester’s
determinant theorem det(I(S) + AB) = det(I(K) + BA) to rewrite (4.6) as

Cdl = max
ηk≥0∑K

k=1 ηk≤1

log det
(
I(K) + ρdldiag (η) GHdiag (z) G

)
, (4.7)
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where ZZT = diag (z). Then, we can formulate the optimization problem,

maximize
z∈RM×1

η∈RK×1

log2(det(I(K) + ρdldiag (η) GHdiag (z) G))

subject to 1Tz = S zm ∈ {0,1},m ∈ {1, · · · ,M}

1Tη = 1 ηk ≥ 0, k ∈ {1, · · · , K}

(4.8)

in which η is the power allocation vector.

4.1.2.2 Sparse Recovery

The antenna selection problem can also be interpreted as finding the most sig-
nificant columns of a dictionary matrix D ∈ CM×K that is, the columns that most
contribute to the recovering of the desired vector b ∈ CK×1. Such a problem is
known as sparse recovery and can be formulated as

minimize
a∈CM×1

‖Da− b‖22

subject to ‖a‖0 = S
(4.9)

where S is the number of non-zero elements of vector a. We can choose the dictionary
matrix equal to the channel matrix D = G, the desired vector equals the intended
signal b = q, and the sparse vector equals the transmitted message a = x. The
equivalent optimization problem is

minimize
x∈CM×1

‖Gx− q‖22

subject to ‖x‖0 = S
(4.10)

in which S represents the number of selected antennas. Essentially, the problem
in (4.10) consists of finding a sparse precoding scheme so that a good estimate of
vector q is obtained at the terminal.

4.1.3 Convex Optimization Methods for Antenna Selection

In the massive MIMO system setup, the subset of active antennas is chosen to be
either the one that maximizes the downlink capacity or the one that minimizes the
bit error rate at reception. Unfortunately, those problems are not convex due to the
presence of binary and l0-norm constraints, which are non-convex. A near-optimal
solution can be achieved thanks to convex relaxation and l1-norm approximation. In
this subsection, the antenna selection problems are rewritten using these techniques
so that a convex optimization algorithm can be directly employed.
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4.1.3.1 Massive MIMO Downlink Capacity Convex Problem

The problem represented in equation (4.8) is over two vector variables, z and η.
In case that the entries of these vectors are continuous, the objective function in
equation (4.8) is concave. However, the elements of z are binary integer variables
and hence, the problem in equation (4.8) is not convex [20, 88]. We can replace
the binary constraints of the form zm ∈ {0,1} in problem (4.8) with the convex
constraints zm ∈ [0,1], and then obtain the following convex relaxed optimization
problem [20, 88, 93, 94]

maximize
z∈RM×1

η∈RK×1

log2(det(I(K) + ρdldiag (η) GHdiag (z) G))

subject to 1Tz = S 0 ≤ zm ≤ 1,m ∈ {1, · · · ,M}

1Tη = 1 ηk ≥ 0, k ∈ {1, · · · , K}

(4.11)

over two vector variables. In order to simplify the two sets of variables problem in
equation (4.11), the optimization is divided into two steps [20]. In the first step, we
assume equal power allocation among the users so that ηk = 1/K for k ∈ {1, · · · , K}.
Then resulting the optimization problem

maximize
z∈RM×1

log2(det(I(K) + GHdiag (z) G))

subject to 1Tz = S 0 ≤ zm ≤ 1,m = 1, . . .M
(4.12)

is over the selection vector. The optimization problem in equation (4.12) can be
solved by using interior-point methods [50]. Alternatively, we can obtain an approx-
imate version of the problem by using one iteration of the log-barrier method [88].
Using this strategy, the inequality constraints are implicit in the objective function
of the problem,

maximize
z∈RM×1

log2(det(I(K) + GHdiag (z) G))+

κ

M∑
m=1

(log(zm) + log(1− zm))

subject to 1Tz = S

(4.13)

where κ is a positive constant which controls the quality of the approximation. It is
worth mentioning that the log-barrier method is also a interior-point method based
on successive approximations. However, here we consider only one approximation
and hence the value of κ is fixed. The optimization problem in (4.13) can be solved
via Newton Method [50] as we only have equality constraints. Instead of a binary
vector, the solution of problems (4.11), (4.12) and (4.13) is a vector whose elements
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are between zero and one. In order to obtain a binary vector, which suits better
a vector to represent the antenna selection, the S largest elements of z can be
replaced by one and the remaining by zero. The resulting z is used to compute
GS, the channel matrix after selection, as in equation (4.3). The antenna selection
algorithm based on the problem in equation (4.12) is presented in Algorithm 1. The
sets I and I ′ in Algorithm 1 are meant to store the indices of the selected and
non-selected antennas, respectively.

In the second step, we optimize over the user power allocation and thus find the
maximum average capacity

maximize
η∈RK×1

log2(det(I(K) + ρdldiag (η) GS
HGS))

subject to 1Tη = 1 ηk ≥ 0, k = 1, . . . K
(4.14)

by using water-filling algorithms [50, 51].

Algorithm 1 : Max Capacity Antenna Selection (MCAS) [20]
1) Input: G, S
2) Initialization: I ′ = {1, 2, . . .M}, I = {}
3) Compute z that solves the problem (equation (4.12))

maximize
z∈RM×1

log2(det(I(K) + GHdiag (z) G))

subject to 1Tz = S 0 ≤ zm ≤ 1,m = 1, . . .M

by employing interior-point methods [50].
4) Store the indices of the k-largest z in I
5) I ′ = I ′ − I
6) Set zi ← 1 for i ∈ I
7) Set zi ← 0 for i ∈ I ′
8) Compute the S-selected channel matrix

GS = rem(diag (z))G = ZTG

9) Output: GS

4.1.3.2 Massive MIMO LASSO Convex Problem

Although the l0-norm leads to a sparse solution, it produces a challenging op-
timization problem to solve, due to its discontinuity and non-convexity. Hence,
even though the objective function of the problem in equation (4.10) is convex, the
l0-norm constraint produces a non-convex optimization problem. The l1-norm, a
continuous and convex surrogate, can be used as an approximation of the l0-norm
[95]. By replacing the l0-norm with the l1-norm and the equality with inequality in
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equation (4.10), we obtain

minimize
x∈CM×1

‖Gx− q‖22

subject to ‖x‖1 ≤ γ1

(4.15)

which is known as least absolute shrinkage and selection operator (LASSO) method
[96]. The constraint ‖x‖1 ≤ γ1 induces a sparse precoding vector x. To ensure that
the power used to transmitting x does not exceed the transmit power used when all
the antennas are active, a new constraint is added. By adding such a constraint we
end up with the antenna selection problem stated in [21]

minimize
x∈CM×1

‖Gx− q‖22

subject to ‖x‖1 ≤ γ1 ‖x‖2 ≤ γ2

where γ1 = α1 ‖xZF‖1 , γ2 = α2 ‖xZF‖2 .

(4.16)

The parameters γ1 and γ2 are chosen as fraction of the l1 and l2 norms of the zero
forcing solution

xZF = PZFq (4.17)

where PZF is the ZF precoding matrix defined in equation (3.34). By setting param-
eter α2 = 1, the l2-norm constraint works like a energy controller of the precoded
signal x. Parameter α1 ∈ [0,1] is called sparsity factor and is used to control the
sparsity of the solution. The value of the parameter α1 does not correspond to the
percentage of active antennas, but it is closely related as reported in [21]. Problem
in equation (4.16) gives rise to Algorithm 2 which is the joint-precoding and antenna
selection algorithm proposed in [21]. Hence, the algorithm’s output is the precoding
vector x itself rather than the S-selected channel matrix. Indeed, the algorithm in
Algorithm 2 induces a nonlinear mapping as there is no precoding matrix P that
linearly delivers precoding vector x. Moreover, such an algorithm is a symbol-level
precoder, which means that its solution varies with the symbol vector q.

Algorithm 2 : LASSO [21]
1) Input: G, α1, q
2) Compute the ZF solution, xZF = G∗(GTG∗)−1q
3) Find x that solves the problem (equation (4.16))

minimize
x∈CM×1

‖Gx− q‖22

subject to ‖x‖1 ≤ γ1 ‖x‖2 ≤ γ2

where γ1 = α1 ‖xZF‖1 , γ2 = α2 ‖xZF‖2 .

5) Output: xLASSO ← x
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4.1.4 Random Antenna Selection Problem

In the Algorithm 3, we consider that the active antennas are chosen randomly.
Although it is the antenna selection algorithm with the least computational cost, it
is also the antenna selection with lowest accuracy. Then, it is only used in this work
to provide a performance lower bound.

Algorithm 3 : Random Antenna Selection (RAS)
1) Input: G
2) Initialization: z = 0M , I = {}, I ′ = {1,2, . . .M}
3) Choose randomly S indices of I ′ and use them to form I
5) Set zi ← 1 for i ∈ I
6) Compute the S-selected channel matrix
GS = rem(diag (z))G = ZTG
7) Output: GS

4.2 Concluding Remarks

In this chapter, the problem of selecting a subset of BS antennas was addressed.
As a result, basic optimization problems concerning the antenna selection were
stated. We briefly summarized the existing antenna selection algorithms based
on convex optimization and also an algorithm based on random selection. In the
next chapter, four proposed antenna selection algorithms are proposed based on the
Matching Pursuit technique are introduced.
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Chapter 5

Matching Pursuit for Antenna
Selection

Overcoming the massive MIMO systems drawbacks regarding high computa-
tional complexity and BS cost is one of the major concerns in recent research. The
antenna selection strategy has been considered an efficient approach to reduce the
number of RF elements with negligible loss in performance. Nonetheless, the com-
plexity of these antenna selection algorithms should also be considered, in order to
alleviate the BS computational effort and hence the overall system cost. For this pur-
pose, in this chapter, we propose two low complexity antenna selection algorithms
derived from the matching pursuit technique, which are the main contributions of
this work. The proposed algorithms are addressed for channel-level and symbol-level
precoders, respectively.

5.1 Matching Pursuit

Often used in compression, denoising, and pattern recognition, matching pursuit
(MP) is a greedy algorithm employed to represent a signal using a redundant dictio-
nary [22, 23, 99]. Iteratively, the MP aims to solve the l0-norm constrained problem
in (4.9), which is conveniently repeated below,

minimize
z∈CM×1

‖Dz− b‖22

subject to ‖z‖0 = S
(5.1)

by approximating the target vector b using the dictionary matrix D and a sparse
vector z.

First, consider a vector z which is multiplied by matrix D to obtain the target
vector b in a linear system, as depicted in Figure 5.1. The ultimate objective of
the MP algorithm is to identify which elements of vector z are less informative and
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= ×

zDb

K

M

Figure 5.1: Example of linear system.

= ×

zDb̂

K

M

zero value

Figure 5.2: Example of sparse recovery problem.

hence can be set to zero, as it is outlined in Figure 5.2. Moreover, we can observe
that zeroing the ith element of the vector z is equivalent to replace the ith column
of the matrix D by a zero column, or selecting the most informative columns of
matrix D. The columns of D, called codewords cm,m ∈ {1, · · ·M}, are vectors in
the Hilbert space H [99]. Since we need to define distance, angles and orthogonality
between signal vectors, we see the convenience of working in the Hilbert space. The
Hilbert space is a Banach space where inner product exists [22]. A Banach space is
a complete vector space with a metric that allows the computation of vector length
and distance between vectors. As H is also a Banach space, it also admits the norm
and must be complete. The completeness property entails the convergence of every
Cauchy sequence in H to an element of H. A sequence fn is a Cauchy sequence if
for any ε > 0 one has

‖fn − f‖ < ε (5.2)
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when n and p are large enough [22].
Instead of approximating the l0-norm constrained problem and applying a so-

phisticated optimization method or starting an exhaustive search over all possible
combinations, the MP algorithm tries to find the best solution at each iteration. As
a matter of fact, it searches for the codeword which is closest to the current residue.
In the first iteration, the residue is the vector we want to approximate, whereas in
the remaining iterations it is composed of the last residue and a modified version of
the selected codeword. To measure how close the residue is from the codewords we
use the inner product, represented by 〈·,·〉, so that the selected codeword with index
mi achieves the maximum inner-product. The approximate version of b at the ith
iteration

b̂i =
I∑
i=1

〈ri,cmi
〉cmi

(5.3)

is composed by the sum of the projections of the current residue in the selected
codeword. Variable I is the total number of iterations when the stopping criterion
is reached. One of the possible stopping criteria is when the residue’ norm is very
close to zero. The inner product in equation (5.3) acts like a weight applied to each
selected codeword, illustrated by the different colors in the selected column’s border
of the dictionary matrix D represented in Figure 5.2. The original corresponding
algorithm is detailed in Algorithm 4.

Algorithm 4 : Original Matching Pursuit (MP) [99]
1) Initialization
i = 1, r1 = b, b̂1 = 0K
2) Generate Dictionary
3) Repeat until a stop criterion is met:

〈ri,cmi
〉 = max

i∈I
{|〈ri,cm〉|}

b) Choose zmi
= 〈ri,cmi

〉
c) Let ri+1 = ri − zmi

cmi

d) Let b̂i+1 = b̂i + zmi
cmi

e) Increment i.
4)Stop
5)Output b̂i
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5.2 Matching Pursuit as an Antenna Selection

Strategy

Originally, the MP method aims at finding the sparsest vector z and thus the
codewords can be chosen more than once, which is quite reasonable since the MP was
conceived for compression applications. However, in the antenna selection problem,
we are interested in selecting a fixed number of antennas, S. Then it is more con-
venient to employ an approach similar to the one used in the Orthogonal Matching
Pursuit (OMP) technique [22], where a codeword can be chosen only once. Further-
more, by using the number of selected antennas S as maximum number of iterations,
we ensure that the l0-norm of vector z is S.

The goal of the antenna selection problem is to obtain a subset of indices that
represent the selected antennas. In fact, we are interested in the indices of the non-
zero entries of z, which are equivalent to the indices of the chosen codewords. We
can then formulate the optimization problem that describes the antenna selection
as

minimize
z∈CM×1

‖Dz− b‖22

subject to ‖z‖0 = S, z ∈ {0,1}M
(5.4)

and solve it with a proposed version of MP, whose algorithm is described in Algo-
rithm 5.

The main difference between the original MP algorithm and the proposed Match-
ing Pursuit Antenna Selection (MPAS) algorithm is that zmi

is no longer the inner
product value. Due to the additional constraint in problem (5.4), z ∈ {0,1}M , it is
more convenient to have zmi

= 1. In problem (5.4), the stop criterion is the number
S of antennas we want to be active/selected. Thus the total number of iterations I
is equal to S. Another important issue to be mentioned is that selected codewords
are no longer used at the remaining iterations. If the selected codewords are not
discarded, we cannot guarantee that S distinct antennas are selected.

The challenge now is to find which variables of the antenna selection problem can
act like target vector b and dictionary matrix D. We start by observing the signal
received at a certain terminal. When all the BS antennas are active, the received
signal at terminal k is

yk = gT
k x + wk

= gT
k Pdiag (η)1/2 q + wk,

(5.5)

where P is the precoding matrix and vector η contain the terminal power allocation.
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Algorithm 5 : Proposed Matching Pursuit Antenna Selection (MPAS)
1) Input: b, D = [c1 . . . cM ]
2) Initialization: i = 1, r1 = b, z = 0M , I = {1, . . .M}
3) Repeat until i = S − 1:
a) Find the closest codeword, i.e., find mi ∈ I such that

〈ri,cmi
〉 = max

i∈I
{|〈ri,cm〉|}

b) Choose zmi
= 1

c) Let ri+1 = ri − zmi
cmi

d) I = I −mi

e) Increment i.
4)Stop.
5) Compute the S-selected channel matrix

GS = rem(diag (z))G = ZTG

6) Output: GS

In contrast, when only S antennas are active the terminal k receives

y′k = gS
T
k xS + wk

= gT
k ZPSdiag (η)1/2 q + wk,

(5.6)

where PS is the precoding matrix when S antennas are active. Matrix Z ∈ CM×S

is obtained by removing the zero columns of matrix diag (z), previously defined in
subsection 4.1.1. By comparing equations (5.5) and (5.6), we see that if ZPS ≈
P, then yk ≈ y′k, which means that the obtained vector z leads to the minimum
reception absolute error, ‖yk − y′k‖2. Thus our main goal is finding z with ‖z‖0 = S

that leads to
ZPS ≈ P (5.7)

for the MR and ZF precoding schemes which were introduced in section 3.5.

5.2.1 MR Matching Pursuit Antenna Selection

In this subsection we propose an antenna selection algorithm based on matching
pursuit, assuming that an MR precoding is performed. The matrix P, previously
defined in equation (3.32) as

P = G∗, (5.8)

is the MR precoding matrix when all the BS antennas are active. In contrast, when
only a subset of S transmit antennas are active, the resulting precoding matrix
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becomes

PS = G∗S

= ZTG∗
(5.9)

By replacing P and PS in equation (5.7), it follows that

ZZTG∗ ≈ G∗

diag (z) G∗ ≈ G∗
(5.10)

where ZZT = diag (z). This means that finding the vector z that makes ZPS ≈ P

is equivalent to finding the one that ensures

GTdiag (z) G∗ ≈ GTG∗ (5.11)

In fact we want to iteratively find the z′ms that contribute more to

GTdiag (z) G∗ =
M∑
m=1

zm(gT
m)T(gT

m)∗ =
M∑
m=1

zmgmgH
m, (5.12)

where gT
m is the mth row of channel matrix G, defined in equation (3.1). For that,

it is convenient to express the approximation in equation (5.11) as

[
g1g

H
1 g2g

H
2 . . .gMgH

M

]

z1IK

z2IK
...

zmIK

 ≈
M∑
m=1

gmgH
m (5.13)

due to the MP structure problem. The MP technique considers the approximation
of a vector, however, in equation (5.13) we are trying to obtain an approximation for
a matrix. Therefore, some manipulations are necessary so that the MP technique
can be applied. We start by considering A =

∑M
m=1 gmgH

m and Daux as the following
auxiliary block matrix

Daux =
[
C1 C2 . . .CM

]
(5.14)

in which Cm = gmgH
m, for m ∈ {1, · · · ,M}. Also, let R1 = A so that we can try to

find the best match for R1 in Daux by computing

|〈R1,Cm〉| = tr(RH
1 Cm) (5.15)
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for m ∈ {1, · · · ,M}. Fortunately, the matrix inner product is equivalent to the
vector inner product

tr(RH
1 Cm) = vec(R1)

H vec(Cm) = rH1 cm. (5.16)

The vec(·) operator takes a matrix as input, and outputs a column vector which is
obtained by transposing the rows of the input matrix and stacking them up. We then
propose the Algorithm 6 which is the Algorithm 5 with input vector b = vec(GTG∗)

and input matrix

DMR =
[
vec(g1g

H
1 ) vec(g2g

H
2 ) . . . vec(gMgH

M)
]
, (5.17)

in which Cm = gmgH
m. The corresponding sparse recovery for the antenna selection

problem with MR precoding can then be expressed as

minimize
z∈RM×1

∥∥DMRz− vec(GTG∗)
∥∥2
2

subject to ‖z‖0 = S, z ∈ {0,1}M
(5.18)

and solved with Algorithm 6.

Algorithm 6 : Proposed MR Matching Pursuit Antenna Selection (MR-MPAS)
1) Input: b = vec(GTG∗), DMR = [c1 . . . cM ], I = {1, . . .M}
2) Initialization: i = 1, r1 = b, z = 0M
3) Repeat until i = S − 1:
a) Find the closest codeword, i.e., find mi ∈ I such that

〈ri,cmi
〉 = max

i∈I
{|〈ri,cm〉|}

b) Choose zmi
= 1

c) Let ri+1 = ri − zmi
cmi

d) I = I −mi

e) Increment i.
4)Stop.
5) Compute the S-selected channel matrix

GS = rem(diag (z))G = ZTG

6) Output: GS

5.2.2 ZF Matching Pursuit Antenna Selection

In this subsection we propose an antenna selection algorithm based on matching
pursuit, assuming that a ZF precoding is performed. The procedure prescribed in
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the previous subsection 5.2.1 is adopted here for the ZF precoding scheme. The
matrix, defined in equation (3.34) as

P = G∗(GTG∗)−1, (5.19)

is the ZF precoding matrix when all the BS antennas are active. On the other hand,
if only a subset of S transmit antennas are active, the resulting precoding matrix
becomes

PS = G∗S(GT
SG∗S)−1

= ZTG∗(GTZZTG∗)−1

= ZTG∗(GTdiag (z) G∗)−1.

(5.20)

By replacing P and PS in equation (5.7), we obtain

ZZTG∗(GTdiag (z) G∗)−1 ≈ G∗(GTG∗)−1

diag (z) G∗(GTdiag (z) G∗)−1 ≈ G∗(GTG∗)−1
(5.21)

which means that finding the vector z that makes ZPS ≈ P is equivalent to finding
the one that ensures diag (z) G∗ ≈ G∗

(GTdiag (z) G∗)−1 ≈ (GTG∗)−1.
(5.22)

Observe that we can left-multiply the first statement in equation (5.22) by GT and
obtain

GTdiag (z) G∗ ≈ GTG∗, (5.23)

which is equal to the MR objective statement in equation (5.11). Thus, the first
statement is already the objective approximation for the MR precoding. For the
sake of simplicity, we will only take the second statement in equation (5.22) into
account. In fact, the statement

(GTdiag (z) G∗)−1 ≈ (GTG∗)−1. (5.24)

can also be obtained if we impose the approximation

PH
SPS ≈ PHP, (5.25)

as PH
SPS = (GTdiag (z) G∗)−1 and PHP = (GTG∗)−1. It is efficient to write PH as

PH =
[
p1 p2 . . .pM

]
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so that matrix PHP can be understood as the summation of rank-one matrices,

PHP =
M∑
m=1

pmpH
m, (5.26)

and the approximation in equation (5.25) is rewritten as

M∑
m=1

zmpmpH
m ≈

M∑
m=1

pmpH
m

[
p1p

H
1 p2p

H
2 . . .pMpH

M

]

z1IK

z2IK
...

zmIK

 ≈
M∑
m=1

pmpH
m

(5.27)

which is more convenient for MP purposes. Although the approximation in equation
(5.27) is between two matrices and not two vectors as in the MP technique, we can
get around this issue by following the same manipulations mentioned in the MR
case. Hence, we are able to employ the MP method by setting b = vec(PHP) and

DZF =
[
p1p

H
1 p2p

H
2 . . .pMpH

M

]
(5.28)

as inputs in the MPAS algorithm in Algorithm 5. As a result we obtain the Algo-
rithm 7.

Algorithm 7 : Proposed ZF Matching Pursuit Antenna Selection (ZF-MPAS)
1) Input: b = vec(PHP), DZF = [c1 . . . cM ], I = {1, . . .M}
2) Initialization: i = 1, r1 = b, z = 0M
3) Repeat until i = S − 1:
a) Find the closest codeword, i.e., find mi ∈ I such that

〈ri,cmi
〉 = max

i∈I
{|〈ri,cm〉|}

b) Choose zmi
= 1

c) Let ri+1 = ri − zmi
cmi

d) I = I −mi

e) Increment i.
4)Stop.
5) Compute the S-selected channel matrix

GS = rem(diag (z))G = ZTG

6) Output: GS
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5.2.3 Symbol-level Matching Pursuit Antenna Selection

In the downlink of a massive MIMO system, the BS desires to transmit vectors
of the form q ∈ C(K×1) containing the symbols intended to each terminal k, k ∈
{1, · · · , K}. In fact, the BS generates a block of L message vectors [q1 . . .qL].
First, the BS performs precoding so that the transmitted signal is x = Pq, when
all the transmit antennas are active. The precoding matrix P can be the same for
all ql, in the transmit block. The preceding antenna selection methods based on
MP compute the matrix P only once. Therefore, the associated precoders are called
channel-level precoders, which means that the AS algorithms have as input only the
channel matrix and the number of selected antennas. In contrast, matrix P can be
computed for every ql in the transmit block. In the present case, the AS algorithms
have additionally the desired symbol vector ql as input, and hence the associated
precoder is known as symbol-level precoder. In this subsection, we propose an AS
algorithm, also based on MP, in which the associated precoder is a symbol-level
precoder.

We start by considering the message which is indeed transmitted by the M BS
antennas

Pq = x (5.29)

and we left-multiply both sides of equation (5.29) by PH yielding

PHPq = PHx. (5.30)

Fortunately, we have just obtained a vector equal to a matrix multiplied by a vector,
and thus we can bring it to the MP point of view. We only need to consider x as
the selection vector z, that is, we need to build z that reflects the most informative
elements of x. The resulting problem can be formulated as

minimize
z∈RM×1

∥∥PHPq−PHz
∥∥2
2

subject to ‖z‖0 = S, z ∈ {0,1}M .
(5.31)

If we employ a ZF precoder, we can replace matrix P by PZF = G∗(GTG∗)−1 in
the problem represented by equation (5.31) and obtain

minimize
z∈RM×1

∥∥q−GTz
∥∥2
2

subject to ‖z‖0 = S, z ∈ {0,1}M
(5.32)

which is similar to the problem solved by the LASSO-AS algorithm [21] and can
be solved by the Algorithm 8. On the other hand, if we opt for an MR precoding
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scheme, problem (5.31) becomes

minimize
z∈RM×1

∥∥GTG∗q−GTz
∥∥2
2

subject to ‖z‖0 = S, z ∈ {0,1}M
(5.33)

and hence can be solved by the Algorithm 9. Interestingly, the simulation results
showed that there is no loss in performance if we choose b = q instead of b = PHPq.
Hence the initial residue is set as b = q in Algorithms 8 and 9.

Algorithm 8 : Proposed Zero-Forcing Symbol-level Matching Pursuit Antenna
Selection (ZFSL-MPAS)
1) Input: b = q, D = [c1 . . . cM ] = PH

ZF, I = {1, . . .M}
2) Initialization: i = 1, r1 = b, z = 0M
3) Repeat until i = S − 1:
a) Find the closest codeword, i.e., find mi ∈ I such that

〈ri,cmi
〉 = max

i∈I
{|〈ri,cm〉|}

b) Choose zmi
= 1

c) Let ri+1 = ri − zmi
cmi

d) I = I −mi

e) Increment i.
4)Stop.
5) Compute the S-selected channel matrix

GS = rem(diag (z))G = ZTG

6) Output: GS

5.3 Concluding Remarks

The main contribution of this chapter was two antenna selection algorithms
based on the MP technique. In fact, since we are considering two precoding schemes,
each algorithm has two versions depending on the chosen precoding approach. The
MPAS algorithm is associated with a channel-level precoder, whereas the SL-MPAS
should work along with a symbol-level precoder. Symbol-level precoders are compu-
tationally more costly than channel-level precoders. Nonetheless, the symbol-level
precoders achieve the lowest bit error rate, as we will see in the simulation results in
chapter 6. In the next chapter, the performance of each AS algorithm is evaluated
in terms of bit error rate. Moreover, the number of operations of our proposed AS
methods are compared with the corresponding AS algorithm counterparts.
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Algorithm 9 : Proposed Symbol-level Matching Pursuit Antenna Selection (SL-
MPAS)
1) Input: b = q, D = [c1 . . . cM ] = PH

MR, I = {1, . . .M}
2) Initialization: i = 1, r1 = b, z = 0M
3) Repeat until i = S − 1:
a) Find the closest codeword, i.e., find mi ∈ I such that

〈ri,cmi
〉 = max

i∈I
{|〈ri,cm〉|}

b) Choose zmi
= 1

c) Let ri+1 = ri − zmi
cmi

d) I = I −mi

e) Increment i.
4)Stop.
5) Compute the S-selected channel matrix

GS = rem(diag (z))G = ZTG

6) Output: GS
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Chapter 6

Simulation Results

In this chapter, the proposed antenna selection algorithms, introduced in chap-
ter 5, are evaluated via simulation. We also provide the comparison among the
proposed algorithms and the existent AS algorithms presented in chapter 4 for mas-
sive MIMO system. The comparison is performed via bit error rate (BER). We
assume perfect and imperfect channel estimation at BS. All the simulation results
are obtained by averaging 300 Monte Carlo runs. The simulations are performed
using MATLAB software and the convex optimization problems are solved using
CVX [102].

Since the primary motivation for the proposed AS algorithms is their reduced
computational complexity, in this chapter we also quantify their complexity by
counting the required number of flops to compute the selection vector z. A flop
is defined to be a real floating point operation [100]. A real addition or multiplica-
tion is counted as one flop, whereas a complex addition and multiplication have two
flops and six flops, respectively [101]. We also provide the number of flops required
to compute the transmit vector x in a massive MIMO system.

To compare our proposed AS algorithms with their counterparts, we provide the
time spent by each AS algorithm to compute a block of 50 transmitted vectors x in
a massive MIMO system. The simulations are conducted in a computer with Intel
Core i7-7500U CPU 2.70GHz x4 processor and 7.7 GB of memory.

6.1 BER simulations

In this section, we investigate how selecting a subset of S active BS antennas
out of M can impact the average BER per user performance, as the SNR varies
in the downlink of a massive MIMO system. The system is composed of K = 12

single-antenna terminals that are served by a BS equipped with M = 100 antennas
in a single-cell.

The simulation steps are outlined in Table 6.1. First of all, the BS uses the pilot
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symbols, transmitted by the K terminals in the uplink, to obtain an estimate of
the channel matrix. Secondly, the BS generates a block of L = 50 message vectors
[q1 . . .q50], where each vector q contains a stream of BPSK or 4-QAM samples.
Thirdly, the BS applies the AS algorithms which are listed in Table 6.2, where the
proposed AS algorithms are highlighted in boldface. In the symbol-level precoder
case, steps 4-5 in Table 6.1 are repeated whenever a vector q is generated. In
contrast, steps 4-5 are performed only once if the associated precoder is channel-level.
All the AS algorithms generate the selected channel matrix GS, except the LASSO-
AS algorithm which generates the transmitted signal x directly. Therefore, in the
LASSO-AS case, steps 5 and 6 are not performed. We consider both uncorrelated
and correlated Rayleigh fading channel models which are detailed in equations (3.4)
and (3.8), respectively. We also consider perfect and imperfect CSI knowledge at
the BS.

The massive MIMO simulation results comprise curves of the Average BER per
user for S = {34, 91} when the SNR is varied between -12 and 12 dB. In these
results, two curves are always present in order to provide upper and lower bounds.
The first one is composed of the ZF-full and MR-full methods, in which all the BS
antennas are active and hence we expect to be the best BER performance. The
second one is composed of the ZF-RAS and MR-RAS methods, in which the AS
algorithm is random and then we expect to be the worst BER performance. It is
worth mentioning that we set the sparsity factor α1 = {0.5, 0.9} in the LASSO
algorithm to obtain S = {34, 91}, as recommended in [21].

Steps 1, 3 and 5 contain two possible choices related to channel model,
constellation-symbol types and precoding scheme, respectively. These options are
used to organize the massive MIMO simulation results by scenarios.

In scenario 1, the channel is modeled assuming a rich scattering environment,
which is equivalent to using an uncorrelated Rayleigh fading model. The transmitted
message x is composed of BPSK symbols, and both ZF and MR precoding schemes
are employed. Scenario 2 assumes the same channel model considered in scenario 1.
These scenarios differ with respect to the constellation symbol, which is 4-QAM for
scenario 2 and BPSK for scenario 1.

In scenario 3, the channel is modeled assuming a poor scattering environment
[61] in which only 2 paths reach the receivers, that is equivalent to use a corre-
lated Rayleigh fading model with N = 2 in equation (3.8). As in scenario 1, the
transmitted signal is composed by BPSK symbols.

Scenario 4 is a version of scenario 3 with 4-QAM transmitted symbols.
It is worth to mentioning that the BS has perfect CSI knowledge in the four

previous scenarios. On the other hand, scenarios 5-8 are equivalent to scenarios
1-4 with imperfect CSI knowledge at the BS. Furthermore, each scenario has two
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Table 6.1: Simulation steps (massive MIMO)

1) Generate the colums of the channel matrix G

a) gk ←

{
realization of g ∼ CN (0(M), βkI(M))∑N

n=1 hn
[
1 e2πjdHsin(θn) . . . e2πjdH(M−1)sin(θn)

]T
b) Normalize the columns of G

2) Perform channel estimation at BS (with Uplink SNR ρul)

a) The BS receives the pilot signals transmitted by the K terminals

Yp = GXp + Wp =
√
τpGΦH + Wp

b) Perform De-spreading by right-multiplying by the pilot matrix Φ

Yp =
√
τpGΦHΦ + WpΦ =

√
τpG + WpΦ

c) Obtain a channel estimate by using an MMSE estimator

Ĝ = MMSE(Yp)

3) Generate the intended message for each terminal

a) q←

{
BPSK symbols
4-QAM symbols

4) BS decides which antennas to transmit

a) Apply the AS algorithms (summarized in Table 6.2) to obtain GS

5) Generate normalized precoding matrix

a) PS ←

{
G∗S(GT

SG∗S)−1, for ZF precoding
G∗S, for MR precoding

6) Form the signal to transmit

x = PSdiag (η)1/2 q

7) Perform signal reception at each terminal

a) Each terminal k receives

yk = gTk x + wk

8) Calculate average BER per user,

BER = 1
K

∑K
k=1 BERk,

where BERk for k ∈ {1, · · · , K} is the BER of user k

9) Compute the average SNR per user

ρdl = 10 log10

(
PowT

PowR

)
where PowT and PowR are the average transmitting and receiving power,

respectively.
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Table 6.2: Antenna selection algorithms evaluated in the BER simulations

Algorithm Description Precoder Location

ZF-MPAS
Zero forcing - Matching

Pursuits Antenna Selection
channel-level Algorithm 7

RAS Random Antenna Selection channel-level Algorithm 3

MCAS [20]
Maximum Capacity

Antenna Selection
channel-level Algorithm 1

ZFSL-MPAS
Zero forcing Symbol Level -

Matching Pursuits Antenna Selection
symbol-level Algorithm 8

LASSO [21]
Least Absolute Shrinkage

and Selection Operator
symbol-level Algorithm 2

MR-MPAS
Maximum Ratio -

Matching Pursuits Antenna Selection
channel-level Algorithm 6

MRSL-MPAS
Maximum Ratio Symbol Level -

Matching Pursuits Antenna Selection
symbol-level Algorithm 9

groups of results: the ones achieved with ZF precoding and the ones achieved with
MR precoding.

6.1.1 Perfect CSI knowledge at BS

In this subsection, the channel estimation performed by the BS in the uplink is
considered perfect, that is, the uplink SNR is assumed high, for example ρdl = 12 dB.
Hence, the channel estimate Ĝ is equal to the actual channel matrix G. Fig-
ure 6.2 depicts the Average BER per user for scenario 1. For the first four scenar-
ios with ZF precoding scheme, illustrated in Figures 6.2(a,b), 6.4(a,b), 6.6(a,b) and
6.8(a,b), the BER curves are slightly different. First due to the constellation chosen,
i.e., BPSK (in Figure 6.2(a,b)) achieves better performance than 4-QAM (in Fig-
ure 6.4(a,b)). Moreover a poor scattering environment induces a worse performance
(in Figure 6.6(a,b)), when compared with a rich scattering one (in Figure 6.2(a,b)).
Nevertheless, the AS algorithms tested in these scenarios (with ZF precoding) per-
form quite the same. When only 34 antennas are active, the proposed ZFSL-MPAS
algorithm is always very close in performance to the LASSO algorithm, with the
benefit of being less computationally expensive. The same holds for the proposed
ZF-MPAS algorithm which is always quite close in performance to the MCAS algo-
rithm, but also has the advantage of having an associated channel-level precoder.
As expected, when 91% of the BS antennas are active, the AS methods behavior

56



is very similar to the one when all the antennas are active. This also uncovers the
massive MIMO ability to operate well even when 9% of the antennas are damaged
[21].

On the other hand, we can note that the overall performance is harmed when the
MR precoding is chosen. In fact, MR precoding relies on favorable propagation, i.e.,
GTG∗ = IM , which might not be true in the simulations, specially in the scenario
with too few paths reaching the terminals.

Since the MR-MPAS and MRSL-MPAS algorithms performance was not good,
we also employed the ZF-MPAS and ZFSL-MPAS algorithms, that were originally
conceived for ZF precoding, with MR precoding. In this way, ZF-MPAS and ZFSL-
MPAS algorithms select the subset of antennas pretending that a ZF precoding is
going to be applied after, but in fact an MR precoding is used in the end. Inter-
estingly, the results are quite promising, as one can see in Figures 6.2(c,d), 6.4(c,d),
6.6(c,d) and 6.8(c,d) but specially in Figure 6.6(c,d), where ZFSL-MPAS with 34
active antennas outperforms MR-full with all active antennas. One possible reason
is that by activating all the antennas the propagation becomes less favorable when
there is poor scattering in the environment.
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(a) ZF precoding scheme, S = 34.
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(b) ZF precoding scheme, S = 91.

Figure 6.1: ZF precoding and Scenario 1: Average BER per user for a massive
MIMO system with perfect CSI knowledge, uncorrelated Rayleigh channel, and
BPSK transmitted symbols.
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(b) MR precoding scheme, S = 91.

Figure 6.2: MR precoding Scenario 1: Average BER per user for a massive MIMO
system with perfect CSI knowledge, uncorrelated Rayleigh channel, and BPSK trans-
mitted symbols.
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(a) ZF precoding scheme, S = 34.
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(b) ZF precoding scheme, S = 91.

Figure 6.3: ZF precoding and Scenario 2: Average BER per user for a massive
MIMO system with perfect CSI knowledge, uncorrelated Rayleigh channel, and 4-
QAM transmitted symbols.
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(a) MR precoding scheme, S = 34.
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(b) MR precoding scheme, S = 91.

Figure 6.4: MR precoding and Scenario 2: Average BER per user for a massive
MIMO system with perfect CSI knowledge, uncorrelated Rayleigh channel, and 4-
QAM transmitted symbols.
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(a) ZF precoding scheme, S = 34.
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(b) ZF precoding scheme, S = 91.

Figure 6.5: ZF precoding and Scenario 3: Average BER per user for a massive
MIMO system with perfect CSI knowledge, correlated Rayleigh channel, and BPSK
transmitted symbols.
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(a) MR precoding scheme, S = 34.
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Figure 6.6: MR precoding and Scenario 3: Average BER per user for a massive
MIMO system with perfect CSI knowledge, correlated Rayleigh channel, and BPSK
transmitted symbols.
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(a) ZF precoding scheme, S = 34.
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Figure 6.7: ZF precoding and Scenario 4: Average BER per user for a massive
MIMO system with perfect CSI knowledge, correlated Rayleigh channel, and 4-
QAM transmitted symbols.
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(a) MR precoding scheme, S = 34.
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Figure 6.8: MR precoding and Scenario 4: Average BER per user for a massive
MIMO system with perfect CSI knowledge, correlated Rayleigh channel, and 4-
QAM transmitted symbols.

6.1.2 Imperfect CSI knowledge at BS

In this scenario, we investigate the impact on the results of not having a very
accurate channel estimate. Then, we decrease the Uplink SNR ρdl to 3 dB. The
channel estimate is the output of the MMSE estimator.

In the last four scenarios with ZF precoding scheme, depicted in Figures
6.10(a,b), 6.12(a,b), 6.14(a,b) and 6.16(a,b), the patterns formed by the BER curves
are very similar to the ones achieved by the MR precoding in the previous simula-
tions. Thus, when the BS has poor CSI knowledge we should not expect measured
BER equal to zero at high SNR. For the cases where an MR precoder is employed,
the results are slightly worse than the ones yielded when the BS knows the CSI
perfectly.
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(a) ZF precoding scheme, S = 34.
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Figure 6.9: ZF precoding and Scenario 5: Average BER per user for a massive
MIMO system with imperfect CSI knowledge, uncorrelated Rayleigh channel, and
BPSK transmitted symbols.
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(a) MR precoding scheme, S = 34.
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(b) MR precoding scheme, S = 91.

Figure 6.10: MR precoding and Scenario 5: Average BER per user for a massive
MIMO system with imperfect CSI knowledge, uncorrelated Rayleigh channel, and
BPSK transmitted symbols.
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(a) ZF precoding scheme, S = 34.
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(b) ZF precoding scheme, S = 91.

Figure 6.11: ZF precoding and Scenario 6: Average BER per user for a massive
MIMO system with imperfect CSI knowledge, uncorrelated Rayleigh channel, and
4-QAM transmitted symbols.
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(a) MR precoding scheme, S = 34.
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Figure 6.12: MR precoding and Scenario 6: Average BER per user for a massive
MIMO system with imperfect CSI knowledge, uncorrelated Rayleigh channel, and
4-QAM transmitted symbols.
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(a) ZF precoding scheme, S = 34.
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(b) ZF precoding scheme, S = 91.

Figure 6.13: ZF precoding and Scenario 7: Average BER per user for a massive
MIMO system with imperfect CSI knowledge, correlated Rayleigh channel, and
BPSK transmitted symbols.
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(a) MR precoding scheme, S = 34.
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Figure 6.14: MR precoding and Scenario 7: Average BER per user for a massive
MIMO system with imperfect CSI knowledge, correlated Rayleigh channel, and
BPSK transmitted symbols.
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(a) ZF precoding scheme, S = 34.
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(b) ZF precoding scheme, S = 91.

Figure 6.15: ZF precoding and Scenario 8: Average BER per user for a massive
MIMO system with imperfect CSI knowledge, correlated Rayleigh channel, and 4-
QAM transmitted symbols.
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(a) MR precoding scheme, S = 34.
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Figure 6.16: MR precoding and Scenario 8: Average BER per user for a massive
MIMO system with imperfect CSI knowledge, correlated Rayleigh channel, and 4-
QAM transmitted symbols.

6.2 Computational Complexity

6.2.1 Common Matrix Operations

In this subsection, we summarize the most common matrix operations used to
compute the computational cost of each AS algorithm.

6.2.1.1 Inner product

The inner product between two vectors of size n involves n− 1 additions and n
multiplications. To simplify we consider that the inner product involves n additions
as considered in [100]. If the vectors are complex, then the dot product requires 4n

additions and 4n multiplications and hence 8n flops.
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6.2.1.2 Outer product

The outer product between two vectors of size n involves n2 multiplications [100].
If the vectors are complex, then it requires 2n2 additions and 4n2 multiplications
and hence 6n2 flops.

6.2.1.3 Matrix-vector product

The product between a matrix A ∈ Cn×n and a vector b ∈ Cn×1 is composed by
n inner products between vectors of size n. Therefore, it requires 8n2 flops.

6.2.1.4 Matrix-matrix product

The product between two matrices A ∈ Cm×n and B ∈ Cn×k consist of mk inner
products between vectors of size n. Then, the resulting complexity is mk(8n) flops.
If we are interested in square matrices, that is A ∈ Cn×n and B ∈ Cn×n, then the
matrix product involves 8n3 flops.

6.2.1.5 Inverse of a square matrix

The matrix inversions are computed using QR decomposition, i.e. by computing
A = QR, A ∈ Cn×n. Then

A−1 = R−1QH (6.1)

where R ∈ Cn×n is upper triangular with real nonzero diagonal elements and Q ∈
Cn×n has orthonormal columns (QHQ = In). The complex QR decomposition
requires 16n3/3 flops [100]. If we left-multiply equation (6.1) by R it yields

RA−1 = QH, (6.2)

which can be seen as n linear systems if we rearrange equation (6.2) as

R
[
ã1 ã2 . . . ãn

]
=
[
q̃1 q̃2 . . . q̃n

]
, (6.3)

in which ãi and q̃i are the ith column of A−1 and QH, respectively. Then we can use
Backward Substitution to solve each linear system in equation (6.3), which requires
4n3 − 3n2 flops [100] in total. Therefore, the resulting complexity for inverting a
matrix A ∈ Cn×n is 28n3/3− 3n2 flops.

6.2.2 Computing selection vector

In this subsection we count the total number of flops to produce the selection
vector z in each proposed antenna selection algorithm. The proposed antenna selec-
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tion algorithms are highlighted in boldface in Table 6.2. The complexity (in flops)
of each proposed AS algorithm is summarized in Table 6.3.

6.2.2.1 ZF-MPAS

First we need to compute the initial residue

b = vec(PHP) = vec((GTG∗)−1), (6.4)

where P = G∗(GTG∗)−1 is the ZF precoding matrix. It requires 28K3/3 − 3K2 +

8M2K flops, according to subsection 6.2.1.5. Secondly, we need to compute the
dictionary matrix D, which involves M outer-products that require 6MK2 flops in
total.

For each iteration we need to compute one addition, which requires 2K2 flops.
Since S iterations are performed in the ZF-MPAS algorithm, it results in 2SK2 flops.
As the number of inner products that need to be computed in the search phase is
decreased by one whenever an iteration is concluded, the number of inner products
in S iterations is M + M − 1 + M − 2 + . . . + M − (S − 1) = (MS − (S2 − S)/2).
To compute (MS − (S2 − S)/2) inner products of vectors of size K2 it requires
(MS − (S2 − S)/2)8K2 flops.

In total, the ZF-MPAS algorithm requires 28K3/3+8M2K+2SK2 +8MSK2 +

4SK2 − 4S2K2 − 3K2 flops to produce the selection vector z.

6.2.2.2 MR-MPAS

First we need to compute the initial residue

b = vec(PHP) = vec(GTG∗), (6.5)

where P = G∗ is the MR precoding matrix. It involves M additions and M outer
products, which requires 8MK2. Secondly, we need to compute the dictionary
matrix D, which involves M outer-products but they were already counted in the
previous step.

Similarly to ZF-MPAS, the S iterations require (MS − (S2− S)/2)8K2 + 2SK2

flops. In total, the MR-MPAS algorithm requires 8MK2 +(MS− (S2−S)/2)8K2 +

2SK2 flops to obtain the selection vector z.

6.2.2.3 ZFSL-MPAS

First we need to compute the ZF precoding matrix P = G∗(GTG∗)−1 which
requires 28K3/3 − 3K2 + 8M2K + 8MK2 flops. For each iteration we need to
compute one addition, which requires 2K flops. Since S iterations are performed in
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the ZFSL-MPAS algorithm, it results in 2SK flops. To compute (MS− (S2−S)/2)

inner products of vectors of sizeK it requires (MS−(S2−S)/2)8K flops. Therefore,
the ZFSL-MPAS algorithm requires 28K3/3 − 3K2 + 8M2K + 8MK2 + 6SK +

8MSK − 4S2K flops to build the selection vector z.

6.2.2.4 MRSL-MPAS

The MR precoding matrix is P = G∗. In total S iterations are required in the
MRSL-MPAS algorithm, in which (MS− (S2−S)/2)8K+ 2SK flops are necessary.
Therefore, the MRSL-MPAS algorithm requires (MS− (S2−S)/2)8K + 2SK flops
to produce the selection vector z.

Table 6.3: Number of flops required to compute the selection vector by the Antenna
selection algorithms highlighted in boldface in Table 6.2; M is the number of BS
antennas, S is the number of selected antennas and K is the number of terminals

AS Algorithm Complexity (in flops)

ZF-MPAS 28K3/3 + 8M2K + 2SK2 + 8MSK2 + 4SK2 − 4S2K2 − 3K2

MR-MPAS 8MK2 + (MS − (S2 − S)/2)8K2 + 2SK2

ZFSL-MPAS 28K3/3− 3K2 + 8M2K + 8MK2 + 6SK + 8MSK − 4S2K

MRSL-MPAS (MS − (S2 − S)/2)8K + 2SK

6.2.3 Computing the vector to be transmitted

In this subsection we provide the number of flops required to compute the vector
to be transmitted x for K terminals in a massive MIMO system. The number of
flops to compute the selection vector z was already computed in the previous section.
After acquiring the selection vector z, we can compute the S-selected channel matrix

GS = rem(diag (z))G = ZTG (6.6)

which requires 8MSK flops (ignoring the flops needed to compute z). To form the
transmit message x = PSq we first need to choose the precoding scheme.

• ZF precoding scheme
First we compute the precoding matrix

PS = G∗S(GT
SG∗S)−1 (6.7)

which requires 28K3/3− 3K2 + 8SK2 flops. Then, to compute x = PSq it is
required 28K3/3 − 3K2 + 8SK2 + 8MSK + 8SK flops. Therefore, each AS
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algorithm in section 6.2.2 requires 28K3/3 − 3K2 + 8SK2 + 8MSK + 8SK

additional flops to build the transmit vector. The total number of flops is
shown in Table 6.4.

• MR precoding scheme
First we compute the precoding matrix

PS = G∗S (6.8)

which requires no flops. Then, to compute x = PSq it is required 8MSK +

8SK flops. Therefore, each AS algorithm in section 6.2.2 requires 8MSK +

8SK additional flops to build the transmit vector. The total number of flops
is shown in Table 6.5.

Figure 6.17 depicts the time spent by each AS algorithm to form a block of 50
transmit messages x in the downlink of a massive MIMO system. By comparing the
two AS algorithms whose precoders are symbol-level in Figure 6.17, we can easily
note that the proposed ZFSL-MPAS is less computationally intensive than LASSO.
Moreover, we can observe that a symbol-level precoder requires less computation
than a channel-level one, such as MCAS.
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Figure 6.17: Time spent to compute 50 transmit messages by each AS algorithm in
an massive MIMO system.

67



Table 6.4: Number of flops required to compute the message vector in massive
MIMO (ZF precoding) by the proposed antenna selection algorithms highlighted in
boldface in Table 6.2; M is the number of BS antennas, S is the number of selected
antennas and K is the number of terminals

AS Algorithm Complexity (in flops)

ZF-MPAS 56K3/3 + 8M2K + 2SK2 + 8MSK2+

12SK2 − 4S2K2 − 6K2 + 8MSK + 8SK

MR-MPAS 8MK2 + (MS − (S2 − S)/2)8K2 + 10SK2+

28K3/3− 3K2 + 8MSK + 8SK

ZFSL-MPAS 56K3/3− 6K2 + 8M2K + 8MK2+

14SK + 16MSK − 4S2K + 8SK2

MRSL-MPAS (MS − (S2 − S)/2)8K + 10SK+

28K3/3− 3K2 + 8SK2 + 8MSK

Table 6.5: Number of flops required to compute the message vector in massive
MIMO (MR precoding) by the proposed antenna selection algorithms highlighted in
boldface in Table 6.2; M is the number of BS antennas, S is the number of selected
antennas and K is the number of terminals

AS Algorithm Complexity (in flops)

ZF-MPAS 28K3/3 + 8M2K + 6SK2 + 8MSK2−
4S2K2 − 3K2 + 8MSK + 8SK

MR-MPAS 8MK2 + (MS − (S2 − S)/2)8K2+

2SK2 + 8MSK + 8SK

ZFSL-MPAS 28K3/3− 3K2 + 8M2K + 8MK2+

14SK + 16MSK − 4S2K

MRSL-MPAS (MS − (S2 − S)/2)8K + 10SK + 8MSK

(MS − (S2 − S)/2)8K + 10SK + 8MSK

6.3 Concluding Remarks

In this chapter, the proposed algorithms based on the matching pursuit technique
were evaluated and also compared with their counterparts via bit error rate. The
AS algorithms were tested in different scenarios, comprising rich and poor scattering
environments, BPSK and 4-QAM modulations, ZF and MR precoders, and perfect
and imperfect CSI knowledge at the BS.

The best AS algorithm choice for massive MIMO systems depends on designer’s
goal. If one is looking for the best BER performance but at lower power consump-
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tion, for instance by activating only a subset of antennas, a symbol-level precoder
such as ZFSL-MPAS is a good candidate. On the other hand, if one accepts a cer-
tain level of performance but is more concerned with the computational cost, the
ZF-MPAS algorithm is a good choice. In addition, if one is planning to use a simple
precoding scheme as MR-MPAS, ZF-MPAS algorithm is also a relevant possibility.

This chapter also evaluated the computational complexity of the proposed an-
tenna selection algorithms. The complexity was quantified by the number of flops
required to compute the selection vector. Since the computation of the transmitted
message is the main task the BS performs in the downlink of a massive MIMO sys-
tem, we also provided the number of flops needed to compute the transmitted vector.
Moreover, the time spent to compute the transmit vector was used to compare the
proposed AS algorithms and their counterparts. Indeed, we could observe that the
proposed algorithm ZFSL-MPAS is faster than LASSO and MCAS algorithms, in
the setup tested. In addition, the proposed ZF-MPAS is also faster than MCAS
Algorithm.
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Chapter 7

Conclusions

7.1 Final Remarks

In this work, we explored the antenna selection problem in massive MIMO sys-
tems. The criterion employed in massive MIMO systems to select the most promising
antennas is based on the maximization of the downlink capacity or on the sparse
recovery of a vector of interest. Two algorithms based on the matching pursuit tech-
nique are proposed for selecting the subset of active antennas in a massive MIMO
system. The algorithms are called Zero Forcing - Matching Pursuit Antenna selec-
tion (ZF-MPAS) and Zero Forcing Symbol Level - Matching Pursuit Antenna selec-
tion (ZFSL-MPAS). In fact, we also derived two other algorithms based on matching
pursuit but idealized for MR precoding. Unfortunately, these MPAS algorithms did
not present good results.

The simulation results indicated that ZFSL-MPAS and ZF-MPAS achieve per-
formance level very similar to the ones achieved by their counterparts LASSO and
MCAS algorithms, respectively, at lower complexity. As discussed in chapter 6,
choosing the best AS algorithm for a massive MIMO system is a task that mainly
depends on the level of performance required. For instance, if high BER perfor-
mance is the most important aspect, we recommend the ZFSL-MPAS algorithm. In
contrast, if the computational cost is the main concern, we suggest the ZF-MPAS
algorithm that works quite well using both ZF and MR precoding.

7.2 Future Work

Massive MIMO is a technique with great promises, but with many challenges
and practical issues that researchers still need to investigate. For example, the effect
of pilot contamination that seriously limit the performance could be accounted in
future simulations.
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There are technical aspects that should be considered in order to make mas-
sive MIMO a reality. For instance, including constraints regarding the satura-
tion in the power amplifier, low resolution (e.g., one bit) digital-to-analog (DAC)
[84, 103]. A possible way is to adapt the Matching Pursuits with Generalized Bit-
Planes (MPGBP) algorithm proposed in [23] to select the antennas. Moreover, the
MPGBP algorithm can be quite useful to include power allocation in the antenna
selection problem. In this way, the elements of the selection vector z would be
allowed to be in the interval [0,1] and hence represent percentage of power. Further-
more, attempts that jointly explore the big three main technologies for 5G: ultra-
densification, mmWave (milimeter wave), and massive MIMO. For example, antenna
selection and mmWave are worth to be jointly considered [104, 105]. Another rele-
vant issue is the calibration drawback, which is needed in order to compensate for
the lack of reciprocity induced by RF components [106].
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Chapter 8

Antenna Selection in Single-User
MIMO

In this chapter we provide a connection between the single-user MIMO system,
described in chapter 2, and a centralized sensor network. Such a connection can be
useful to see that our low complexity proposed methods can also be employed in sen-
sor networks. Therefore, in this chapter we describe the antenna selection problem
in an SU MIMO system, as well as the main algorithms used to select the antennas.
This chapter also contain simulation results via BER, MSE and determinant. We
also propose a lower complexity algorithm and provide its complexity in number of
flops.

8.1 Single-user MIMO versus Sensor selection

Wireless sensor network (WSN) is another system of huge interest in recent re-
search due to applications as target detection, target estimation and target tracking
techniques. In a WSN, the sensor nodes transmit their measurements to the cen-
tral unit, which is responsible for estimating a desired vector by using the sensor
measurements received. The M × 1 vector of measurements, received in the central
unit, is of the form

y = Hx + w (8.1)

where H is the regressor matrix which represents the effect of the environment in
the desired vector x and w is a realization of an AWGN zero mean random vector.
Since the sensor’s resources are limited, sensor selection is an effective way to save
power consumption. The problem of selecting the BS antennas in the downlink of a
single-user MIMO can be modeled as a centralized sensor selection problem [88–91].
In this way, the sensor nodes play the role of the BS antennas, the central unit is
the single-user terminal and the regressor matrix is equivalent to the channel matrix
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H = G, as illustrated in Figure 8.1. The central unit in the WSN must know the
regressors in matrix H in order to estimate vector x. Therefore, the selection criteria
used in sensor selection problem usually relies on minimizing functions of the error
covariance matrix. As mentioned in subsection 2.2.1, the terminals do not perform
channel estimation in massive MIMO due to the precoding and the large number of
antennas. However, to use the same selection criteria employed in sensor selection
problem, the terminal must have CSI. Thus, exceptionally in this chapter we consider
the single-user MIMO system presented in subsection 2.2.1, where precoding is not
used.

Switch

RF

M antennas

(S out of M)

K-antenna

terminal

x

x

x

x

x

y = Gx+w

(a) SU MIMO (Downlink).

central node

sensors

(b) Centralized sensor network.

Figure 8.1: Comparison between SU MIMO and centralized sensor network schemes.

8.1.1 Problem Description

When all the BS antennas are active, the measurements from each antenna are
of the form

ym = gT
mx + wm, m = 1, . . .M, (8.2)

where gT
m is the mth row of channel matrix G described in equation (3.1). The

transmitted message is represented by vector x ∈ CK×1. An AWGN, wm, corrupts
the message. The element gmk of vector gm comprises the fading channel gain
between the mth BS antenna and the kth receive antenna of the terminal. The
vector gm is considered independent of x and wm. In vector form,

y = Gx + w (8.3)

is anM×1 vector containing the measurements from all active BS antenna elements.
For the sake of simplicity, the correlation between the receive antennas is not con-
sidered. Hence, the channel matrix G is composed by vectors gm whose entries are
generated from a complex Gaussian distribution due to central-limit Theorem [62].
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The BS performs the antenna selection as depicted in Figure 8.2, so that the
single-user terminal receiver collects only the selected measures,

y = diag (z) [Gx̂ + w], (8.4)

where the selection vector z is defined in equation (4.1). By pre-multiplying both
sides of equation (8.4) by GHdiag (z) and isolating x, we obtain the estimated trans-
mitted vector

x̂ = (GH(diag (z))2G)−1(GHdiag (z) y −GH(diag (z))2w). (8.5)

RF

Chain 1

RF

Chain S

Switch
RF

Symbol

Generator

CSI

Antenna Selection

Algorithm

RF

Chain 2

M antennas

(S out of M)

K-antenna
terminal

ĜS
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Figure 8.2: Antenna selection process in the downlink of SU MIMO system.

The noise variance is considered known and (diag (z))2 = diag (z) because z is a
binary vector. The original transmitted vector can be expressed as

x = (GHdiag (z) G)−1GHdiag (z) y (8.6)

by zeroing w in equation (8.5). Thus we can compute the estimation error

x− x̂ = (GHdiag (z) G)−1GHdiag (z) w. (8.7)

As the noise has zero mean, the estimation error also has zero mean and its covari-
ance matrix is given by

Σ = (GHdiag (z) G)−1GH(diag (z))2σ2I(M)G(GHdiag (z) G)−1

= σ2(GHdiag (z) G)−1 =

(
1

σ2

M∑
m=1

zmgmgH
m

)−1 (8.8)
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where E[wwT ] = σ2I(M) is the covariance matrix of the AWGN vector w.

8.1.2 Selection Criteria

The selection vector z is obtained by a criterion that is employed by the antenna
selection algorithms. The capacity maximization can also be applied in the SU
MIMO context, so that the antennas that most contribute to the maximization in
equation (2.3) are chosen. By adding the selection step in equation (2.3), we obtain

Cdl = log det
(
I(M) +

ρdl
M

diag (z) GGHdiag (z)
)
. (8.9)

and we can apply the Sylvester theorem, previously used in subsection 4.1.2.1, thus
yielding the final expression for the capacity maximization

Cdl = log det
(
I(K) +

ρdl
M

GHdiag (z) G
)
. (8.10)

Alternatively, the subset of antennas leading to the minimum estimation error
can be selected. To minimize the estimation error, one could try to minimize its
variance. However, the estimation error is a vector and its variance is in fact a
matrix, well known as covariance matrix. Thus, we aim to minimize an adequate
function of the covariance matrix. Fortunately, the theory of optimal experimental
design is concerned with the problem of selecting a design which minimizes some
function ψ(·) of a matrix H over all possible designs [92]. The function ψ(·) is called
an optimality criterion and is usually applied to the covariance matrix Σ. In this
way, the optimality criteria are used to measure the quality of the estimation, where
the most common are known as A-and D-optimalities [90]. Both A-and D-optimality
criteria are related to the confidence ellipsoid of the estimation error vector x− x̂

E = (x− x̂)TΣ−1(x− x̂) (8.11)

which corresponds to the minimum volume ellipsoid that contains the estimation
error vector. In the A-optimality, minimizing the tr(Σ) is the same as minimizing
the mean-squared-error (MSE) which geometrically corresponds to minimize the
sum of the length of each semi-axes of such an ellipsoid. On the other hand, in the
D-optimality, maximizing det(Σ−1) is equivalent to minimize the log-volume of the
confidence ellipsoid [88],

logvol(E) = β −
(

1

2

)
log det

(
M∑
m=1

zmgmgH
m

)
. (8.12)

Observe that maximizing the last term in (8.12) is the same as minimizing the whole
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expression. Now we are able to formulate the antenna selection as optimization
problems based on A-and D-optimalities.

• A-optimality

minimize
z∈RM×1

tr

( M∑
m=1

zmgmgH
m

)−1
subject to 1Tz = S zm ∈ {0,1},m ∈ {1, · · · ,M}

(8.13)

• D-optimality

maximize
z∈RM×1

log det

(
M∑
m=1

zmgmgH
m

)
subject to 1Tz = S zm ∈ {0,1},m ∈ {1, · · · ,M}

(8.14)

8.2 Convex Optimization Methods for Antenna Se-

lection

8.2.1 SU MIMO A-Optimality Convex Problem

The objective function in problem (8.13) is convex, but the binary constraints
zm ∈ {0,1} are not. To obtain a convex optimization problem, we need to replace
the binary constraints with inequality constraints. This strategy yields

minimize
z∈RM×1

tr

( M∑
m=1

zmgmgH
m

)−1
subject to 1Tz = S 0 ≤ zm ≤ 1,m ∈ {1, · · · ,M}

(8.15)

which is indeed a convex optimization problem. In fact, the problem in equa-
tion (8.15) can be transformed to a semidefinite program (SDP), and as a result
it is efficiently solved. In SDP one minimizes a linear function subject to the con-
straint that an affine combination of symmetric matrices is positive semidefinite [50].
We just need to find the linear function to be used as objective function and the
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matrices to be used as constraints. We can write the problem (8.15) as

minimize
z∈RM×1

u∈RS×1

1Tu

subject to us ≥ eT
s

(
M∑
m=1

zmgmgH
m

)−1
es s ∈ {1, · · · , S}

1Tz = S 0 ≤ zm ≤ 1, m ∈ {1, · · · ,M}

(8.16)

where the vector es is the sth column of the identity matrix I(S). An efficient way
to solve the problem in equation (8.16) is to define a matrix

Bs =

[
us eT

s

es
∑M

m=1 zmgmgH
m

]
(8.17)

for s ∈ {1, · · · , S}, where us is the sth element of an auxiliary vector u. The Schur
complement [50] of matrix

∑M
m=1 zmgmgH

m in Bs is

χj = us − eT
s

(
M∑
m=1

zmgmgH
m

)−1
es. (8.18)

One of the Schur complement’ properties states that if matrix Bs is semidefinite
positive, Bs � 0, then χs ≥ 0 [50]. Therefore, it is straightforward to write

eT
s

(
M∑
m=1

zmgmgH
m

)−1
es ≤ us (8.19)

and as a result the problem in equation 8.15 can be written as

minimize
z∈RM×1

u∈RS×1

1Tu

subject to

[
us eT

s

es
∑M

m=1 zmgmgH
m

]
� 0 s ∈ {1, · · · , S}

1Tz = S zm ≥ 0, m ∈ {1, · · · ,M}

(8.20)

which is an SDP problem and can be solved by interior-point methods [50]. The
resulting antenna selection is detailed in Algorithm 10, where a procedure very
similar to the Algorithm 1 is employed.
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Algorithm 10 : A-Optimality Antenna Selection (AOAS) [91]
1) Input: G, S
2) Initialization: I ′ = {1, 2, . . .M}, I = {}
3) Find z that solves the problem (equation (8.20))

minimize
z∈RM×1

u∈RS×1

1Tu

subject to

us eT
s

es
∑M

m=1 zmgmgH
m

 � 0 s ∈ {1, · · · , S}

1Tz = S zm ≥ 0, m ∈ {1, · · · ,M}

4) Store the indices of the k-largest z in I
5) I ′ = I ′ − I
6) Set zi ← 1 for i ∈ I
7) Set zi ← 0 for i ∈ I ′
8) Compute the S-selected channel matrix

GS = rem(diag (z))G = ZTG

9) Output: GS

8.2.2 SU MIMO D-Optimality Convex Problem

The objective function of the problem in equation (8.14) is also concave, but
the binary constraints are non-convex. As in the A-Optimality case, the binary
constraints in equation (8.14) can also be replaced by the inequalities yielding the
convex relaxed version of problem (8.14):

maximize
z∈RM×1

log det

(
M∑
m=1

zmgmgH
m

)
subject to 1Tz = S 0 ≤ zm ≤ 1,m ∈ {1, · · · , M}

(8.21)

which can be solved by interior-point methods [50]. Similarly to the massive MIMO
maximum capacity case, the log-barrier method [88] can be used to obtain an ap-
proximated version of the problem in equation (8.21),

maximize
z∈RM×1

log det

(
M∑
m=1

zmgmgH
m

)
+

κ
M∑
m=1

(log(zm) + log(1− zm))

subject to 1Tz = S

(8.22)
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where κ is a positive constant which controls the quality of the approximation. The
optimization problem in (8.22) can also be solved by applying the Newton Method
[50]. The resulting antenna selection is summarized in Algorithm 11.

Algorithm 11 : D-Optimality Antenna Selection (DOAS) [88]
1) Input: G, S
2) Initialization: I ′ = {1, 2, . . .M}, I = {}
3) Find z that solves the problem (equation (8.21))

maximize
z∈RM×1

log det

(
M∑
m=1

zmgmgH
m

)
subject to 1Tz = S 0 ≤ zm ≤ 1,m ∈ {1, · · · , M}

4) Store the indices of the k-largest z in I
5) I ′ = I ′ − I
6) Set zi ← 1 for i ∈ I
7) Set zi ← 0 for i ∈ I ′
8) Compute the S-selected channel matrix

GS = rem(diag (z))G = ZTG

9) Output: GS

8.2.3 SU MIMO Downlink Capacity Convex Problem

The downlink capacity of an SUMIMO system was previously defined in equation
(2.3). Since no user power allocation is performed in SU MIMO, because there is
only one user, the problem in equation (2.3) can be seen as a simplified version of the
problem in equation (4.8). After performing the relaxation in the binary constraints,
we can solve the problem

maximize
z∈RM×1

log2(det(I(K) + GHdiag (z) G))

subject to 1Tz = S 0 ≤ zm ≤ 1,m = {1, · · · ,M}
(8.23)

by using interior-point methods, or we can use an approximation via log-barrier
approach which yields the problem

maximize
z∈RM×1

log2(det(I(K) + GHdiag (z) G))+

κ

M∑
m=1

(log(zm) + log(1− zm))

subject to 1Tz = S m ∈ {1, · · · ,M}

(8.24)

79



that can be solved by Newton method [50]. The resulting antenna selection is
summarized in Algorithm 12.

Algorithm 12 : Max Capacity Antenna Selection (MCAS) [20]
1) Input: G, S
2) Initialization: I ′ = {1, 2, . . .M}, I = {}
3) Find z that solves the problem (equation (8.23))

maximize
z∈RM×1

log2(det(I(K) + GHdiag (z) G))

subject to 1Tz = S 0 ≤ zm ≤ 1,m = {1, · · · ,M}

4) Store the indices of the k-largest z in I
5) I ′ = I ′ − I
6) Set zi ← 1 for i ∈ I
7) Set zi ← 0 for i ∈ I ′
8) Compute the S-selected channel matrix

GS = rem(diag (z))G = ZTG

9) Output: GS

8.3 Low Complexity Antenna Selection

Although a good performance is achieved by antenna selection strategies solved
via convex optimization, a price is paid in computational cost. Therefore, different
sub-optimal antenna selection methods have been proposed recently, as described
in [97] and references therein. We present in this section some existing low com-
plexity antenna selection methods. Moreover, we propose a low complexity antenna
selection algorithm based on the approximation of the D-optimality function.

8.3.1 Trace-Based Low Complexity Problem

In the A-optimal design approach, the objective is to select the antennas so
that the trace of the resulting covariance matrix is minimized. A related method
is proposed in [97], in which the minimization of tr[(GGH)−1] is also the main
goal. The authors in [97] start by considering that the full-rank M ×K matrix G

with QR decomposition G = QR, where Q is an M × K matrix of orthonormal
column vectors, and R is an upper triangular square matrix. Therefore, the trace
of (GGH)−1 can be expressed as

tr[(GGH)−1] =
K∑
k=1

Tk, (8.25)
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where

Tk =
1 +

∑k−1
t=1 |pk,t|2

|rk,k|
. (8.26)

In which ri,j denotes the (i,j)th entry of R, and

pk,t =
rt,k −

∑k−1
j=t+1 pk,jrt,j

rt,t
. (8.27)

In the proposed trace-based AS scheme, the antenna that results in the smallest
value of Tk is selected at the kth step. The process continues until S antennas are
selected. Resulting in the Algorithm 13.

Algorithm 13 : Trace-Based Antenna Selection (TBAS) [97]
1) I ′ ← {1,2, . . .M}
2) I ← {}, z = 0M
3) for i ∈ I ′ do
vi ← hi
r1,i ← |vi|
Ti ← 1/|r1,i|2
end for
4) for k = 1, . . . , S do
a)Choose the best antenna
kopt ← argmini∈I′Ti
I ′ ← I ′ − {kopt}
I ← I ∪ {kopt}
b)Perform Gram-Schmidt Orthogonalization
u← vkopt/rk,kopt
for i ∈ I ′ do
rk,i ← uHvi
vi ← vi − rk,iu
rk+1,i ← |vi|
for t = k, k − 1, . . . , 1 do
pi,t = (rt,i −

∑k
j=t+1 pi,jrt,j)/rt,t

end for
Ti = (1 +

∑k
t=1 |pi,t|2)/|rk+1,i|2

end for
end for
5) Set zi ← 1 for i ∈ I
6) Compute the S-selected channel matrix

GS = rem(diag (z))G = ZTG

7) Output: GS

81



8.3.2 Determinant-Based Low Complexity Problem

In the D-optimal design, the main goal is to find the vector z that solves

maximize
z∈RM×1

log det

(
M∑
m=1

zmgmgH
m

)
(8.28)

in which
∑M

m=1 gmgH
m = GGH is the inverse of the covariance matrix. Such a

problem is similar to the maximization of the massive MIMO downlink capacity,

maximize
z∈RM×1

log2(det(I(K) + Gdiag (z) GH)). (8.29)

The matrix determinant lemma [98], which states that

det(A + uvH) = (1 + vHA−1u) det(A), (8.30)

can be used to express the determinant of A0 =
∑M

m=1 gmgH
m as

det (A0) =
M∏
i=1

[
1 + gH

M−i+1(Ai−1)
−1gM−i+1

]
(8.31)

where Ai−1 =
∑M−i

m=1 gmgH
m. If we try to calculate each product element in equation

(8.31), it would lead to the computation of M matrix inversions. We can compute
an auxiliary vector and search for the S largest vector components so that the
selected antenna indices match the largest elements indices. Hence, we can use an
approximation and form the new auxiliary vector,

t =
[
gH
1 (A0)

−1g1, . . . ,g
H
M(A0)

−1gM
]T (8.32)

where we only need to invert the matrix A0 =
∑M

m=1 gmgH
m once, and thus avoiding

the M matrix inversions. The resulting algorithm is described in Table 14. Al-
ternatively, the authors in [86] used the matrix inversion lemma, which is derived
from the Sherman Morrison formula to alleviate the computation of the M matrix
inversions. The inverse matrix

Bn =
(
IK + GGH

)−1 (8.33)

is updated whenever a row is added, based on the previous inverse matrix Bn−1.
Hence resulting in the Algorithm 15.
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Algorithm 14 : Determinant Approximation Antenna Selection (DAAS)
1) Input: G, S
2) Initialization: z = 0M , I = {}
3) Compute auxiliary vector

t =
[
gH
1 (A0)

−1g1, . . . ,g
H
M(A0)

−1gM
]T

4) Store the indices of the k-largest t in I
5) Set zi ← 1 for i ∈ I
6) Compute the S-selected channel matrix

GS = rem(diag (z))G = ZTG

7) Output: GS

Algorithm 15 : Fast Antenna Selection (FAS) [86]
1) Input: G, S, ρdl
2) Initialization: z = 0M , I = {}, B = IK
3) for j = 1, . . . ,M do
αj ← gH

j gj
end for
4) for n = 1, . . . , S do
J ← argmaxj∈Iαj
I ← I ∪ J
if n < S
a← 1√

M/ρdl+αj

Bgj

B← B− aaH

f
¯
or all j ∈ I
αj ← αj − |aHgj|2
e
¯
nd for
end if
end for
5) Set zi ← 1 for i ∈ I
6) Compute the S-selected channel matrix

GS = rem(diag (z))G = ZTG

7) Output: GS

8.4 Single-user MIMO simulations

In this section, the performances of the AS algorithms are compared in the
downlink of a single-user MIMO system. The system is composed of a unique
terminal equipped with K = 20 antennas which is served by a BS equipped with
M = 100 antennas in a single-cell. Analogously, the system can be seen as a central
unit that estimates a message of size K from M estimations received by M sensor
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nodes in the network.
The BS transmits a block of 200 message vectors [x1 . . . x200] to the single

terminal in the cell. Each vector xi ∈ RK×1 in the block is composed by BPSK
symbols. The terminal is assumed to know CSI perfectly and then is able to estimate
each xi in the block by computing

xi = (GH
SGS)−1GH

Syi (8.34)

where GS is the S selected channel matrix and yi, i ∈ {1, · · · ,200} is the received
vector. The matrix GS is generated by the AS algorithms considered in the simu-
lations, which are listed in Table 8.1. The proposed algorithms are highlighted in
boldface in Table 8.1. Observe that we are also considering the antenna selection
algorithms based on matching pursuit.

Since the different scenarios were already tested in massive MIMO system, here
in SU MIMO system, we only consider scenario 9 which is depicted in Figures 8.3 and
8.4. Such a basic scenario is enough to illustrate the single-user MIMO behavior
and that can be propagate to sensor networks. In scenario 9, the AS algorithms
are compared in three different ways: BER in Figure 8.3a, A-optimality (MSE) in
Figure 8.4a and D-optimality (determinant) in Figure 8.4c. To better compare the
algorithms we also provide a zoom in Figures 8.3b, 8.4b and 8.4d.

As expected, the methods based on convex optimization AOAS, DOAS and
MCAS are the ones that achieved the best performances in general. For example,
AOAS is the one that achieved the lowest MSE level in Figures 8.4a and 8.4b and
also has the best BER performance, which is reasonable since AOAS employs the
trace as objective function to be minimized. DOAS and MCAS algorithms yielded
the best performance in terms of the determinant, which again is justifiable as they
both maximize the determinant in their optimization problems. Nevertheless, these
methods are too expensive in terms of computation. Among the low complexity AS
algorithms, the proposed ZF-MPAS is the one that achieved the best BER perfor-
mance. In terms of MSE and determinant, the proposed DAAS is the best option
in the group of low complexity AS algorithms.

8.4.1 Computational complexity

In this subsection we compute the complexity in flops needed by the proposed
DAAS algorithm. To compute the auxiliary vector detailed in equation (8.32) we
need to calculate 2M matrix-vector products. First of all, we need to obtain the

square matrix
(∑M

m=1 gmgH
m

)−1
of size K, which requires 28K3/3 − 3K2 flops, ac-

cording to subsection 6.2.1.5. Fortunately we need to compute this inverse only once.
Now we are able to compute the matrix-vector products, which involves 16MK2 flops
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Table 8.1: Antenna selection algorithms evaluated in the SU-MIMO simulations

AS Algorithm Description Location

ZF-MPAS Zero forcing - Matching Pursuits Antenna Selection Algorithm 7

MR-MPAS
Maximum Ratio - Matching Pursuits

Antenna Selection
Algorithm 6

AOAS [91] A-Optimality Antenna Selection Algorithm 10

DOAS [88] D-Optimality Antenna Selection Algorithm 11

TBAS [97] Trace Based Antenna Selection Algorithm 13

DAAS Determinant Approximation Antenna Selection Algorithm 14

FAS [86] Fast Antenna Selection Algorithm 15

RAS Random Antenna Selection Algorithm 3

MCAS [20] Maximum Capacity Antenna Selection Algorithm 12
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Figure 8.3: Scenario 9: Single-user MIMO system with perfect CSI knowledge,
uncorrelated Rayleigh channel, and BPSK transmitted symbols.

in total. Then, the DAAS algorithm requires 28K3/3−K2(3− 16M) flops to build
the selection vector z.

Figure 8.5 illustrates the time spent by each AS algorithm to produce the se-
lection vector z in the downlink of a single-user MIMO system. Indeed, DOAS and
MCAS algorithms, which are based on convex optimization, are more computation-
ally intensive as shown in Figure 8.5. The least computationally intensive algorithms
are the ones proposed in this work as can be seen in Figure 8.5.

85



Number of active antennas, S
30 40 50 60 70 80 90

M
S
E
(d
B
)

-6

-4

-2

0

2

4

ZF-MPAS

MR-MPAS

RAS

FAS

TBAS

DAAS

MCAS

DOAS

AOAS

(a) MSE

Number of active antennas, S
39.8 40 40.2 40.4 40.6

M
S
E
(d
B
)

-2

-1.5

-1

-0.5

0

0.5

(b) MSE (zoom).

Number of active antennas, S
30 40 50 60 70 80 90

D
et

(d
B
)

-400

-350

-300

-250

ZF-MPAS

MR-MPAS

RAS

FAS

TBAS

DAAS

MCAS

DOAS

AOAS

(c) Determinant.

Number of active antennas, S
39.8 40 40.2 40.4 40.6

D
et

(d
B
)

-320

-315

-310

-305

-300

-295

-290

(d) Determinant (zoom).

Figure 8.4: Scenario 9: Single-user MIMO system with perfect CSI knowledge,
uncorrelated Rayleigh channel, and BPSK transmitted symbols, SNR = 10 dB.
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8.5 Concluding Remarks

In this chapter, we observed how an SU MIMO system is related to a centralized
sensor network. We briefly summarized the existing antenna selection algorithms
based on convex optimization and low complexity approaches for an SU MIMO
system. In both SU MIMO and sensor networks we can use a criterion based on the
minimization of the estimation error at the terminal. Although there is no theory
motivation to employ this latter criterion in massive MIMO, we tried it. However,
no success was obtained and hence they are not shown in the simulation results for
Massive MIMO. We also employed the algorithms originally conceived for massive
MIMO in the SU MIMO simulations, and in this setup, we obtained interesting
results. We also develop one algorithm based on approximation of a function of the
error covariance matrix, which we called DAAS algorithm. We consider DAAS the
best option among the low complexity AS algorithms as it performs well enough in
the three different aspects considered in the simulations. Moreover, in the sensor
network context, DAAS is also the best candidate since its complexity is low without
losing too much in performance.
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