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Carolina e Cristiane

iv



Acknowledgments

Firstly, I would like to thank my parents, Waldez and Valdires, who are not only

always supportive of my academic endeavors, but are also a constant example of

perseverance.

I would like to thank my sisters, Crisane, Carolina, and Cristiane, that are always

there to share their life experiences. And I give a special thanks to Cristiane who

was able to be present on my presentation.

I would like to thank my girlfriend, Lidia, for making my days lighter and easier

even when life gets tough.

I would like to thank all of the students I met during my time as a master

student in UFRJ, and I give a special thanks to Raphael, Jéssica, Pâmela, Rodrigo,
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Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos
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COMPORTAMENTO DIÁDICO DURANTE CO-MANIPULAÇÃO: DE

HUMANOS PARA ROBÔS

Waldez Azevedo Gomes Júnior

Abril/2018

Orientador: Fernando Cesar Lizarralde

Programa: Engenharia Elétrica

Para tanto diminuir o esforço f́ısico de um humano, quanto aumentar a percepção

de um ambiente por um robô, um d́ıade humano-robô pode ser usado para co-

manipulação de um objeto compartilhado.

Partindo da premissa de que humanos são eficientes trabalhando juntos, a abor-

dagem deste trabalho é a de investigar d́ıades humano-humano co-manipulando um

objeto compartilhado. A co-manipulação é avaliada a partir de dados de um sis-

tema de captura de movimentos, sinais de eletromiografia (EMG), e de sensores de

contato customizados para análise qualitativa de desempenho.

Um experimento de co-manipulação com d́ıades humano-humano foi projetado

no qual cada humano é instrúıdo a se comportar como um ĺıder, um seguidor, ou

simplesmente agir tão naturalmente quanto posśıvel. A análise de dados do expe-

rimento revelou que os humanos modulam a ŕıgidez mecânica do braço a depender

de que tipo de comportamento eles foram designados antes da co-manipulação.

Para emular o comportamento humano durante uma tarefa de co-manipulação,

um controle por admitância com rigidez variável é apresentado neste trabalho. A

rigidez desejada é continuamente variada com base em uma função escalar suave que

define o grau de liderança do robô. Além disso, o controlador é analisado por meio

de simulações, e sua estabilidade é analisada pela teoria de Lyapunov. As trajetórias

resultantes do uso do controlador mostraram um padrão de comportamento muito

parecido ao do experimento com d́ıades humano-humano.
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Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Master of Science (M.Sc.)

DYADIC BEHAVIOR IN CO-MANIPULATION: FROM HUMANS TO ROBOTS

Waldez Azevedo Gomes Júnior

April/2018

Advisor: Fernando Cesar Lizarralde

Department: Electrical Engineering

To both decrease the physical toll on a human worker, and increase a robot’s

environment perception, a human-robot dyad may be used to co-manipulate a shared

object.

From the premise that humans are efficient working together, this work’s ap-

proach is to investigate human-human dyads co-manipulating an object. The

co-manipulation is evaluated from motion capture data, surface electromyography

(EMG) sensors, and custom contact sensors for qualitative performance analysis.

A human-human dyadic co-manipulation experiment is designed in which every

human is instructed to behave as a leader, as a follower or neither, acting as naturally

as possible. The experiment data analysis revealed that humans modulate their arm

mechanical impedance depending on their role during the co-manipulation.

In order to emulate the human behavior during a co-manipulation task, an ad-

mittance controller with varying stiffness is presented. The desired stiffness is con-

tinuously varied based on a scalar and smooth function that assigns a degree of lead-

ership to the robot. Furthermore, the controller is analyzed through simulations, its

stability is analyzed by Lyapunov. The resulting object trajectories greatly resemble

the patterns seen in the human-human dyad experiment.
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Chapter 1

Introduction

Robots have been very successful automatizing daily tasks with different levels of

complexity in varied industries. Nowadays, it is common to see robots executing

tasks such as picking and placing parts or assembling/sorting products in factories,

which essentially require robot capabilities such as power generation, precision and

repeatability. On the other hand, there are also tasks that will require human cog-

nition, perception, and learning capabilities. Depending on the task it could be very

challenging to implement those skills in robots. A solution to this dilemma may in-

clude humans and robots mutually collaborating towards the execution of a common

task. Furthermore, aside from usual applications in industrial environments, robots

can also be used to aid humans in fine manipulation scenarios, like in robot-assisted

surgeries for instance (Enayati et al., 2016; Hoeckelmann et al., 2015).

Human-robot collaboration (HRC) also provides advantages that go beyond mere

task execution. From the human operator standpoint, HRC may allow the user to

profit from less fatigue, stress, and incidence of musculoskeletal disorders (MSDs)

(Punnett and Wegman, 2004), especially when the robot design and control take

into consideration the human biomechanical ergonomics (Bestick et al., 2015; Busch

et al., 2017; Maurice, 2015). Small and medium sized factories with production

flexibility requirements may also greatly benefit from HRC (Michalos et al., 2015)

since their human workers would not need to be separated from the robots, resulting

in less constraints for work cell organization, and more flexibility at the factory floor.

Some issues also arise from the use of robots in the same workspace as humans.

For instance, safe and dependable robot architectures are an absolute necessity (San-

tis et al., 2008) since robots are usually able to generate much more physical power

and could potentially harm human beings. In addition, the robot control design has

to consider the human workers’ comfort, and intuitive human-robot interactions, so

that the human workers feel comfortable when working alongside robots, and that

there will not be additional causes for psychological stress to the humans, or even

additional disturbances for the execution of tasks.

1



Figure 1.1: From isolated robots in the past, to robots and humans coexisting
nowadays, and robots and humans seamlessly collaborating in the future (Siciliano
and Khatib, 2016)

1.1 Human-Robot Collaboration

HRC has advanced greatly in the recent past, and it is expected for it to advance

even further in the future (fig. 1.1). In order for that to happen, there are several

topics currently in active research that are extremely relevant, which include: safety;

motion intention communication; and physical interaction stability.

1.1.1 Safety

Recently, many safety standards have been developed to take into account tasks

where robots are at least in the same work environment as humans. They impose

dynamic and kinematic constraints at the tool control point (TCP) of the robot, as

well as control system performance, robot stopping functions, collision avoidance,

and other safety constraints (Fryman and Matthias, 2012; Matthias et al., 2011;

Michalos et al., 2015). Along with the evolution of the safety standards there have

been also advances in hardware actuation safety (Bicchi et al., 2005; Vanderborght

et al., 2013).

1.1.2 Physical Interaction Stability

The stability in human-robot co-manipulation is heavily dependent on the human

limb stiffness, which can be estimated by bio-signals like voltage measures from

electromyography (EMG) sensors placed on the human skin (Gallagher et al., 2014).

The human natural behavior is to modulate his/her endpoint Cartesian stiffness in

the presence of instability (Burdet et al., 2001; Franklin et al., 2007, 2008) while

executing accurate tasks (Osu and Gomi, 1999). For this reason, some works have
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(a) (Peternel et al., 2017)
(b) (Ficuciello et al., 2014)

Figure 1.2: Human robot dyads physically coupled

adapted the stiffness of robots based on a human stiffness estimation through EMG

signals (Ajoudani et al., 2014, 2015; Gallagher et al., 2014; Grafakos et al., 2016;

Li et al., 2017; Peidong Liang and Li, 2016). It is also possible to measure human

stiffness by measuring force/displacement at the TCP (Tsumugiwa et al., 2002).

In lieu of human arm stiffness estimation, Dimeas and Aspragathos (2016) pro-

posed an instability index that monitors high frequency oscillations at the TCP. In

Gopinathan et al. (2017), the authors propose a similar solution to Dimeas and As-

pragathos (2016) that also varies the stiffness online, but the variation is dependent

on personalized force measures acquired for each user. In their experiments, the per-

sonalized stiffness adaptation strategy was associated with good trajectory tracking

and interaction force stability for more complex tasks, while the fixed medium stiff-

ness strategy showed good performance for simpler tasks. Further analysis of their

results also indicated that the manipulability (Yoshikawa, 1985) of the human arm

is closely related to a good execution of the task.

1.1.3 Motion Intention Communication

In order to achieve an efficient HRC, a robot should be aware of all agents that

take part in the system: the environment, other robots, objects to be physically

manipulated, and human partners.

In the case of a physically coupled human-robot dyad (HR-dyad) 1 (fig. 1.2),

which will be the case for the remainder of this section unless stated otherwise,

the physical interaction between the partners is usually based on a multimodal

communication that comprehends both the physical task, and information to advise

the partners about the ongoing action (Jarrassé et al., 2014).

To comprehend the human partner, in the robot perspective, it is to understand

what the partner is doing, and possibly to be able to predict his/her motion inten-

tions from the multimodal exchange. Consequently, HRC demands an anticipatory

1Dyad: A pair of partners. It may be a Human-Human (HH), Human-Robot (HR), or Robot-
Robot (RR) dyad
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model of the human dynamics (Bandyopadhyay et al., 2013; Dermy et al., 2017).

This may allow the robot to learn from the human’s actions or execute actions of

its own according to the human’s feedback. Studies on dyad physical interaction

(Dumora et al., 2012; Reed, 2012) have observed that force/pressure information

is insufficient to determine intention of motion. But in spite of that, most works

use only force/pressure sensors in contact to the human partner to model human

intentions or to control the robot with impedance (or admittance) control strate-

gies (Agravante et al., 2014; Ajoudani et al., 2017b; Duchaine and Gosselin, 2007;

Gribovskaya et al., 2011; Peternel and Babič, 2013; Rozo et al., 2014).

The robot may use the information regarding the human intention of motion

to produce actions that establish HR communication patterns. If those actions are

recognizable as natural and intuitive to the human partner, they are also said to

be legible (Bauer et al., 2008; Dragan et al., 2013; Jarrassé et al., 2014; Klingspor

et al., 1997; Stulp et al., 2015; Zhou et al., 2017). Dragan et al. (2015) defined a

legible motion as a functional motion that enables the human partner to quickly

and confidently infer the robot’s goal. The results of their study suggested that

legible motions lead to more fluent collaborations in comparison to purely functional

motions, or predictable motions (that match prior human expectations).

Recently, despite the studies in Dumora et al. (2012); Reed (2012), the new

study in Mojtahedi et al. (2017) devised an experiment to study physical HH dyad

communication without visual feedback (fig. 1.3). The study verified that HH

dyads were able to communicate intended direction of movements by modulating

directionally the Cartesian impedance of the dyad control point. These results

indicated that legible motions are necessary for intuitive HRC, as much as legible

impedance/admittance adaptation.

1.2 Partner’s Roles in Dyad Collaboration

Communication among agents is therefore very important to the intuitiveness of

HRC. Within the topic of dyadic HR co-manipulation, this work focuses closely on

the leadership hierarchy relationship among agents in the dyad. There is still a

lack of precise terminology on the distribution of roles in general HR interactions

due to the complexity of the multimodal communications, nevertheless, Ong et al.

(2008) identified 5 types of HR interaction : Master-slave, supervisor-subordinate,

partner-partner, teacher-learner, and fully autonomous robot.

For this work, the relationship hierarchy is limited by the roles of leader and

follower, which may be assigned to any of the agents in the dyad.
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Figure 1.3: Experiment to evaluate human-human dyad communication of intention
Mojtahedi et al. (2017)

1.2.1 Robot as a Follower

In some works, the robot (follower) in a HR dyad will act exclusively upon commands

from the human operator (leader). Many applications have been developed with this

role assignment, most notably robots that are able to assist humans in lifting and

carrying heavy or bulky parts/objects (Kosuge and Hirata, 2004). In this category,

there are exoskeletons that augment the human’s physical capabilities (Dollar and

Herr, 2008; Kazerooni et al., 2005), and intelligent assistive devices (IADs) (Colgate

et al., 2003), or cobots (collaborative robots) as defined by Colgate et al. (1996),

that not only constrain and guide the motion of a human partner, but also decrease

the human efforts.

Other more sophisticated control strategies include the work in Ficuciello et al.

(2014, 2015), where there is a Cartesian impedance adaptation that explores the

null-space dynamics matrix of a redundant robot in order to decouple the apparent

inertia at the TCP, reportedly improving the intuitiveness of the task for the human

leader.

1.2.2 Robot as a Leader or a Follower

Most of the research in dyadic HR co-manipulation has focused on control strategies

that assign the robot exclusively as a follower to the human agent. However, Jarrassé

et al. (2014) suggest that more efficient collaboration could be achieved by switching

the robot’s role between leader or follower at some points in time, resulting in a

symmetric relationship overall.

Cherubini et al. (2016) swaps the usual roles, assigning the robot as leader, giving

the robot its own trajectory to track, but it also enables the robot to deviate from
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(a) Equal Share of the Voluntary Effort

(b) Robot Takes All of the Voluntary Effort

(c) Human Takes All of the Voluntary Effort

Figure 1.4: Dynamic role allocation (Mörtl et al., 2012)

its own trajectory based on visual and haptic cues communicated by the human

partner. The robot calculates the deviation based on an admittance control used by

a regular robot with position controlled joints. Likewise, this robot application also

features robot-environment interactions, trajectory optimization to help the human

partner throughout the entire task and not just compensate the weight like in some

IADs. In Navarro et al. (2016), the authors use an adaptive admittance control

law, that like in Cherubini et al. (2016) also requires compliance to the standard

ISO10218-1 (ISO, 2006).

Mörtl et al. (2012) developed dynamic role allocation strategies that continu-

ously share the required effort (force/torque) among the partners in a dyad that

cooperatively manipulated a table. The role allocation, described the leadership as

a matter of voluntary effort in a preset direction that is redundant for both partners,

that is, each partner could act in the redundant direction independently. If one of

the partners was to act solely as a leader of the task, the entire required effort would

be expected of the leader (fig. 1.4). The dynamic role allocation strategies were com-

pared to fixed role strategies. But even though dynamic role allocation had better

quantitative measures, the subjective measures (questionnaires to the experiment

subjects) suggest that their fixed role allocation strategy was more intuitive.

The idea that both partners in the dyad behave between the extremes of pure

leader or pure follower is also explored in Evrard and Kheddar (2009a,b) using an

homotopy (interpolation) between two distinct controllers. The authors followed up

by developing a human-human (HH) experiment to lift a table, in which a proba-

bilistic framework based on a gaussian mixture model learned how the robot should
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act as a pure leader and as a pure follower by looking at the robot force and ve-

locity at the TCP. Then, the authors used a gaussian mixture regression to apply

the homotopy between both extremes into the homotopy controller for the robot

(Evrard et al., 2009). However, the reproduction of the task did not seem to be in

agreement with the human-human dyads, especially lacking adaptability to different

human motor behaviors from the ones previously learned.

In Li et al. (2015a,b) the authors approach the problem by modeling it as a two

player game (human and robot as players). Then, a role adaptation law based on

game theory is implemented. One boundary condition gives total control of the task

to the robot, and the other to the human.

Whitsell and Artemiadis (2017) introduced the concept of asymmetric collabora-

tion, where the leader/follower roles could be independently exchanged in 6 degrees

of freedom. The human would be needed to correct the TCP trajectory every now

and then, and the robot would change from leader to follower in the required degrees

of freedom. Instead of an interpolation-like strategy from leader to follower bound-

aries, they used three different states: robot as leader; intermediate; and robot as

follower;

In addition to role exchange and robot control, Beton et al. (2017) also investi-

gated the impact that each one of the roles (leader/follower) have on the human’s

perception of the robot competence and safety towards the human. The prelimi-

nary results seem to indicate that the assignment of the follower role to the robot

influences the human to view the robot as more knowledgeable and competent.

1.2.3 Human-Human Co-Manipulation

The major problem with the role-exchange strategies mentioned above is that they

are mostly heuristics based on knowledge of human motor control for individual

manipulation only. A HH dyad co-manipulation requires planning and coordination

from two different persons that, just as in the HR case, are constantly communicating

through various kinds of information channels (visual, haptic, etc.). This is much

more complicated than an individual manipulation. For a HR dyad to behave as

natural as a HH dyad behaves, the robot has to know what kinds of information to

look for in the human partner, and most importantly, how to adapt to it in a way

that is natural to the human partner. To do that, it is of the utmost importance to

analyze and extract information on natural HH dyad behavior. The works in Noohi

et al. (2016); Takagi et al. (2017) are examples of HH dyad studies that lead to HRC

applications.

In van der Wel et al. (2011) the authors designed an experiment to compare a task

that could be executed by an individual or by a physically coupled HH dyad. They
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observed that the HH dyad exerted higher forces at the shared object, suggesting

that HH dyads communicate haptically throughout the task execution. This result

is in accordance with Reed (2012) that also verified this increase in force in a HH

dyad related to haptic communication, along with faster times of execution for the

HH dyad.

Melendez-Calderon et al. (2011) explored, and classified how human dyads mod-

ulated their mechanical impedance while physically coupled in order to attenuate

disturbances and ensure interaction stability. Notwithstanding, as previously men-

tioned, Mojtahedi et al. (2017) investigated the haptic communication not only as

a function of the interaction force, but also as modulation of Cartesian impedance.

In Townsend et al. (2017), the authors trained a neural network to predict in-

tentions of motions based on an experiment where HH dyads manipulated a table.

The neural network was trained using only motion data without wrench sensors at

the human partners. In a HR experiment, it was able to predict the partner velocity

up to .25s into the future.

It can be concluded that knowledge of dyadic HH behavior leads to better control

strategies for robots in HRC.

1.3 Objectives

It is still an open question in the human motor behavior scientific community how

humans work together to co-manipulate objects. This work aims to understand how

leader/follower roles are naturally distributed in a HH dyad, which signals can be

used to infer the distribution, and how this distribution can be efficiently reproduced

in a robot within a HR dyad.

To this matter, the first objective of this work is to investigate the behavior of HH

dyads manipulating an object. Thus, making it possible to infer what is a natural

behavior to a HH dyad regarding dynamic role exchange among the dyad agents.

The second objective is to develop a robot controller for a HR co-manipulation

scenario (fig. 1.5) based on the findings from the first objective. This controller

should be able to take into account the human partner kinematics/dynamics, and

generate a human-like behavior.

1.4 Methodology

To achieve the first objective, a HH dyad experiment is designed to obtain informa-

tion for different role assignments to the human agents. Every human agent behavior

in the HH dyad co-manipulation experiment is analyzed by acquiring kinematic data
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Figure 1.5: Human-robot dyad in a co-manipulation task

across time (trajectories), alongside stiffness estimations from EMG sinals, and per-

formance metrics designed for the experiment. After preliminary results of the HH

experiment, another experiment exhibiting only one human agent was designed to

gather more information, especially on the hand trajectory.

Then, to achieve the second objective, the results of the human experiment are

used to design an adaptive admittance controller that enables a robot to dynamically

change its role in a HR dyad co-manipulation, from a total leader to a total follower.

The controller is tested with numerical simulations for a planar robot and simulated

human forces. Similar simulations are also employed with a 7 DoF robot in a

simulator with a physics engine, and an additional experiment with a real robot is

executed as well.

1.5 Contributions

The manipulation experiments verified that humans change their stiffness according

to their role in a dyad that is co-manipulating an object. Moreover, their change

in stiffness is associated with the tracking of its own desired trajectory for the

manipulated object. The object trajectory is a blend of the desired trajectories

from both agents in the dyad.

The results from the HH, and single human manipulation experiments served as

inspiration for an adaptive admittance controller that adapts the robot stiffness and

damping parameters according to an estimate of the human partner arm stiffness

variation. This controller produced similar trajectories blending as in the HH exper-
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iment. In addition, conditions for the global asymptotic stability of the controller

equilibrium point are also devised here.

1.6 Organization

The remainder of this dissertation is organized as follows:

• Chapter 2: Describes fundamental concepts regarding modeling robot kine-

matics and dynamics; basic kinematic, and impedance/admittance controllers.

It also presents the mathematical notation used in this dissertation;

• Chapter 3: Describes the nature of EMG signals, as well as guidelines to obtain

the signal, and how it is usually processed. Furthermore, it also presents the

concept of index of co-contraction;

• Chapter 4: Describes details regarding the design of the HH dyad co-

manipulation experiment, and the single human manipulation experiment and

their respective experiment protocols. Moreover, the data analysis is also

shown in this chapter;

• Chapter 5: Describes the development of an admittance robot controller that

allows the robot to automatically change its role in a manipulation task based

on EMG signals from a human partner for instance. The controller is validated

through simulations, and a real robot experiment with virtual human force;

• Chapter 6: Final considerations regarding this work and its results. It also

proposes routes for future work.
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Chapter 2

Robotic Manipulators Modeling

and Control

This work describes a robotic manipulator as an open chain of rigid bodies (links)

connected through revolute or prismatic joints. In order to execute a task, the

manipulator needs a tool located at the end of the chain, which is named end-

effector (EEF).

This chapter delves into how one can describe the EEF position and orientation

(pose) with respect to a reference frame based on the configuration of the manipu-

lator joints (forward kinematics). Then, the chapter follows by describing how the

joint velocities and the EEF linear and angular velocities are related (differential

kinematics), and how the EEF can track pose trajectories (kinematic control). Fur-

thermore, it includes an analysis of redundancy, and how it can be used to improve

the kinematic control.

This chapter also describes the dynamic equation of motion (EoM) of a ma-

nipulator and how to specify and control a relationship between a wrench (force

and torque) applied at the EEF and the EEF pose using impedance or admittance

control in the operational space (also known as Cartesian space).

2.1 Rigid Body Transformations

A rigid body is defined as a collection of particles with a fixed distance among

any two particles regardless of any forces applied to the body, or any movements

executed by the body (Murray et al., 1994).

In other words, given any two particles in a rigid body with position trajectories

p(t) = (xp(t), yp(t), zp(t))
> ∈ R3, and q(t) = (xq(t), yq(t), zq(t))

> ∈ R3, in which

the coordinates are with respect to an inertial orthonormal cartesian frame Fa =
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Figure 2.1: Inertial frame Fa, and frame Fo attached to a rigid body

( ~xa, ~ya, ~za) the following is valid:

‖p(t)− q(t)‖ = ‖p(0)− q(0)‖,∀t ≥ 0 (2.1)

Thus, it is only necessary to choose one point in the rigid body to describe

its position trajectory. Nonetheless, to describe the orientation trajectory, another

orthonormal frame Fo = ( ~xo, ~yo, ~zo) has to be fixed at the object, for example, in

p(t) (fig. 2.1).

2.1.1 Rigid Body Rotation

Rotation Matrix

The object orientation in fig. (2.1) can be described by a rotation matrix, that

relates the two orthonormal coordinate frames.

Given the coordinates of the frame Fo with respect to the Fa frame in the column

vectors xao, y
a
o , z

a
o ∈ R3, a rotation matrix from Fo to Fa is defined as (Spong et al.,

2005):
aRo =

[
xao yao zao

]
∈ R3×3 (2.2)

And since the right-hand rule is used here, aRo also possesses the following

properties:

(aRo)
> = (aRo)

−1 (2.3)

det(aRo) = +1 (2.4)

As a matter of fact, every 3× 3 matrix with the same properties belongs to the

3-dimensional special orthonormal group SO(3) . Moreover, the special orthonormal
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Figure 2.2: Vector ~p rotated by an angle α around an axis ~k

group can be generalized for other dimensions:

SO(n) = {R ∈ R3×3 | RR> = I, det(R) = +1} (2.5)

The rotation of a position vector in Fo coordinates to Fa coordinates is:

ap = aRo
op (2.6)

One may also concatenate rotation matrices, for example, a rotation matrix from

Fc to Fa is equivalent to a rotation from Fa to Fb, then a rotation from Fb to Fc
(post-multiplication):

aRc = aRb
bRc (2.7)

Axis and Angle

By the Euler theorem (Murray et al., 1994) a rotation matrix Rk(α) ∈ SO(3) can

be interpreted as a rotation operator for a vector ~p around a fixed axis represented

by a unit vector with coordinates k = (kx, ky, kz)
> ∈ R3 by an angle α ∈ [0, 2π) (fig.

2.2). Therefore, the rotated vector is:

p′ = Rk(α)p (2.8)

where,

Rk(α) = ek̂α (2.9)

And,

k̂ =

 0 −kz ky

kz 0 −kx
−ky kx 0

 (2.10)

Finally, we can calculate ek̂α by using the Rodrigues formula (Murray et al.,

1994):
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ek̂α = I + k̂ sin(α) + k̂2(1− cos(α)) (2.11)

To complete the equivalence, given R, it is also possible to retrieve k ∈ R3, α ∈ R:

α = arccos
(
tr(R)−1

2

)
(2.12)

k̂ =
1

2 sin(α)
(R−R>) (2.13)

Quaternion

Another very common way to represent a body orientation is to use unit quaternions,

which have no singularities, and use less mathematical operations when calculating

rotations if compared to rotation matrices (Murray et al., 1994; Siciliano et al.,

2008).

Quaternions are a generalization of complex numbers, and a quaternion Q is

given by Q = a+ bi+ cj+dk, where a, b, c, d ∈ R, and i, j, k ∈ C are unit imaginary

numbers. Its scalar component is given by Qs = a, and its vector component by

Qv = [b, c, d]>. Commonly, a quaternion is represented by a 4-dimensional vector

space Q such that: [
Qs
Qv

]
=


a

b

c

d

 ∈ Q (2.14)

A quaternion multiplication between Q1,Q2 ∈ Q, which is distributive and as-

sociative, but not commutative is defined as:

Q1 · Q2 =

[
Q1sQ2s −Q>1vQ2v

Q1sQ2v +Q2sQ1v + Q̂1vQ2v

]
(2.15)

The conjugate of a quaternion Q = [Qs,Qv]> is Q∗ = [Qs,−Qv]> such that:

Q · Q∗ =


1

0

0

0

 (2.16)

where [1, 0, 0, 0]> is the identity element with respect to quaternion multiplication.

Finally, Murray et al. (1994) defines unit quaternions as a subset of all Q ∈ Q
such that ‖Q‖2 = a2 + b2 + c2 + d2 = 1. Moreover, the rotation of θ rad around an

axis ~k is associated with the following unit quaternion:
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Figure 2.3: Coordinate transformation from orthonormal frame Fb to orthonormal
frame Fa

Q =

[
cos
(
θ
2

)
k sin

(
θ
2

)] (2.17)

And the associated rotation matrix Rk(θ) is:

Rk(θ) = (2Q2
s − 1)I + 2(QvQ>v +QsQ̂v) (2.18)

The unit quaternions are a group that gives a global parameterization for the group

SO(3).

2.1.2 Homogeneous Transformation Matrix

A position apb ∈ R3 , and orientation aRb ∈ SO(3) with respect to an inertial frame

Fa fully describes free motion of a rigid body in space. The rigid body configuration

space is then the product space of R3 and SO(3), denominated 3-dimensional special

euclidean group (SE(3)) :

SE(3) = {(p,R) | p ∈ R3, R ∈ SO(3)} = R3 × SO(3) (2.19)

Which also generalizes to n dimensions:

SE(n) = R3 × SO(3) (2.20)

If desired to transform the coordinates of a point q from Fb to the Fa frame,

that is, obtain apq from bpq, then the pair (apb,
aRb) is used (fig. 2.3):

apq = apb + aRb
bpq (2.21)
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Figure 2.4: Robot manipulator with revolution and prismatic joints (Leite, 2005)

Which can be rewritten in matrix form as:[
apq

1

]
=

[
aRb

apb

0 1

][
bpq

1

]
(2.22)

where we define a homogeneous transformation matrix as:

aTb =

[
aRb

apb

0 1

]
(2.23)

Note that differently from the rotation matrix, with homogeneous transforma-

tions we have that (aTb)
> 6= bTa. Moreover, the inverse transformation is given

by:

bTa =

[
bRa −bRa

bpa

0 1

]
(2.24)

Nonetheless, it is also possible to concatenate homogeneous transformations:

aTc = aTb
bTc (2.25)

2.2 Forward Kinematics

The goal of the forward kinematics is to calculate the pose of the EEF with respect

to a base frame based on the configuration of the robot joints.

An open chain robotic manipulator has n + 1 links, and n joints, in which a

frame is placed at the end of every link from the first link (link 0, usually fixed to

the base) until the last link (link n, where the EEF is fixed) (fig. 2.4).

The pose of each posterior frame with respect to the anterior frame is given

by a homogeneous transformation i−1Ti(qi) that is dependable on a joint variable
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Figure 2.5: Forward kinematics in an open-chain manipulator

qi ∈ R | i ∈ N and i ∈ [0, n].

The transformation from link 0 to link n is obtained by concatenating transfor-

mations (fig. 2.5):

0Tn(q) = 0T1(q1)
1T2(q2) . . .

i−1Ti(qi) . . .
n−1Tn(qn) (2.26)

where the variable q ∈ Rn is formed by stacking up the qi variables. Moreover, q

forms the joint configuration space of the robot.

Finally, to obtain the forward kinematics homogeneous transformation matrix,

one has to concatenate two additional transformations, one from the base to the

link 0, and another from link n to the EEF:

BTe(q) = BT0
0Tn(q) nTe (2.27)

A robot forward kinematics is usually expressed as an equation of the form:

xe(q) = f(q) =

[
pe

φe

]
(2.28)

where pe is the EEF position taken from eq. (2.27), and φe is a representation of

the EEF orientation, possibly an unit quaternion Qe ∈ Q like in eq. 2.17.

Remark. From now on, unless stated otherwise, it is assumed that any coordinates

are taken with respect to a base frame FB.

Since a task trajectory requirements for the EEF are usually described in position

and orientation representations, xe(q) ∈ SE(·) denotes the task operational (or

cartesian) space, while q ∈ Rn denotes the task joint (or configuration) space.
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Figure 2.6: Placement of joint i axis for the Jacobian calculation

2.3 Differential Kinematics

The goal of differential kinematics is to find a relationship between the joint velocities

(q̇) and the EEF velocity (linear, ṗe(q), and angular, ωe):

ve =

[
ṗe

ωe

]
=

[
Jp(q)

Jo(q)

]
q̇ = J(q)q̇ (2.29)

where Jp(q) ∈ R3×n is the position Jacobian, and Jo(q) ∈ R3×n is the orientation

Jacobian, when stacked together they form the geometric Jacobian J(q) ∈ R6×n.

2.3.1 Jacobian Calculation

Every column i of the Jacobian matrix corresponds to one joint i of the manipulator.

Jn(q) =

[
Jp1 . . . Jpn

Jo1 . . . Jon

]
(2.30)

Given a unit vector ~hi correspondent to the joint i axis (fig. 2.6), the link i

velocities at frame Fi−1 are related to q̇i by:

[
i−1~vi
i−1ωi

]
=



 0

~hi

 q̇i, i is revolute

~hi
0

 q̇i, i is prismatic

(2.31)

Then, the velocities at the frame Fn are taken using the adjoint transformation

Murray et al. (1994): [
n~vi
nωi

]
=

[
I −i~pn×
0 I

][
i−1~vi
i−1ωi

]
(2.32)
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where i~pn is the position vector from frame Fn with respect to the frame Fi.
Depending on the joint type we have:

[
Jpi

Joi

]
=

[
n~vi
nωi

]
=



~hi × i~pn

~hi

 q̇i, i is revolute

~hi
0

 q̇i, i is prismatic

(2.33)

If the EEF is exactly at the frame Fn, then Jn(q) = J(q), otherwise, the Jacobian

at the EEF is given by:

J(q) =

[
I −e~pn×
0 I

]
Jn(q) (2.34)

Remark. J(q) must be expressed in any given frame coordinates before being used

in an equation like eq. 2.29.

If we want to use the operational space along with the orientation representation

(eq. 2.28), we should find the representation Jacobian Jr(φ) that relates φ̇ with ω:

φ̇ = Jr(φ)ω (2.35)

Therefore,

ẋe(q) =

[
ṗe

φ̇e

]
=

[
I 0

0 Jr(φ)

]
J(q)q̇ = Ja(q)q̇ (2.36)

where Ja(q) is denoted analytic Jacobian. Moreover, one should note that if the task

space does not require orientation, only translational movements, then the analytical

Jacobian and the geometric Jacobian is the same (Ja(q) = J(q)).

2.3.2 Manipulator Redundancy

The Jacobian is a linear mapping from the joint velocity space (q̇ ∈ Rn), into the

EEF velocity space (ẋe ∈ Rm).

If m < n then the manipulator is kinematically redundant with respect to the

given task, and there are n−m redundant DoF .

Moreover,

dim(N (J(q))) = n−m 6= 0 ⇐⇒ N (J(q)) 6= 0 (2.37)
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Figure 2.7: Velocity manipulability ellipsoid for a two-link manipulator in a planar
task (non-redundant)

Many control algorithms use the Jacobian inverse to map joint velocities from

velocities at the operational space. However, in the case of redundant manipulators,

the null space of the Jacobian is no longer zero (eq. 2.37), therefore, the Jacobian

is not invertible anymore. The solution to this problem is to use the pseudo-inverse

matrix J† instead of the inverse of J :

J† = J>(JJ>)−1 (2.38)

JJ† = I ∈ Rm×m (2.39)

2.3.3 Velocity Manipulability

If J(qs) ∈ N (J(q)), then qs is a singular configuration of the manipulator that leads

to a ẋe = 0, which implies that singular configurations should be avoided when

controlling a robot. As a matter of fact, near a singular configuration, the robot

may require high joint velocity rates to move the EEF pose in certain directions.

The velocity manipulability serves as an index that measures the ability of the

robot to move freely in all directions in the robot workspace.

Infinitesimal EEF pose motion is related to infinitesimal joint motion through

the Jacobian matrix (eq. 2.29), for that reason the Jacobian is usually the base for

local manipulability measures (ability to change its pose at a given configuration).

There are many different ways to define a manipulability measure, but they are

usually related to the velocity manipulability ellipsoid.

The set of joint velocities of constant (unit) norm is given by:

q̇>q̇ = 1 (2.40)

It describes the points on the surface of a sphere in the joint velocity space,
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which for a redundant manipulator, where q̇ = J†(q)ẋe, translates to:

ẋ>e
(
J(q)†>J†(q)

)
ẋe = 1 (2.41)

That yields,

ẋ>e
(
J(q)J>(q)

)−1
ẋe = 1 (2.42)

Which is a quadratic expression equivalent to the equation of an ellipsoid surface

in the EEF velocity space. Along the direction of the major axis of the ellipsoid the

EEF move at a larger velocity easier than along the direction of the minor axis of

the ellipsoid (fig. 2.7). Note that the closer the ellipsoid is to a sphere, the better

the robot is able to move in all directions.

The ellipsoid axes can be calculated by obtaining the eigenvectors of JJ>:

~u1, . . . , ~um. And the dimensions of the axes are given by the singular values from J

that can be obtained from singular value decomposition: σ1, . . . , σm (Siciliano et al.,

2008).

Finally, some examples of manipulability measure include (Murray et al., 1994):

• Minimum singular value of J :

w1(q) = σmin(J(q)) (2.43)

Which corresponds to the minimum velocity in the operational space that can

be produced by a unit joint velocity vector.

• Inverse of the condition number of J :

w2(q) =
σmin(J)

σmax(J)
(2.44)

• Velocity ellipsoid volume (Yoshikawa, 1985):

w3(q) =
√

det (JJ>) = σ1 . . . σm (2.45)

This measure gives a more global measure of velocity manipulabity, however,

it may produce significant values of manipulability if a singular value of J is

very large in one direction, and another singular value is very small in another

direction.

Note that all those measures produce 0 manipulability levels at a singular con-

figuration qs, therefore, they are usually interpreted as a measure of distance from

a given configuration q to a singular configuration qs.
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2.4 Kinematic Control

Slow movement of robotic manipulators with high performance joint speed control,

and high gear ratios, can be controlled without considering the effects of its intrinsic

dynamics (inertia matrix, coriolis matrix, and gravity).

The EEF movement in time is given by eq. 2.36. The kinematic control problem

consists in designing a q̇(t) ∈ Rn that takes the EEF pose trajectory xe(t) to a

reference pose trajectory xref (t), that is, take a tracking error e(t) to zero:

e(t) =

[
ep(t)

eo(t)

]
(2.46)

lim
t→∞

e(t) = 0↔ lim
t→∞

xe(t) = xref (t) (2.47)

Where ep, eo are the position and orientation errors respectively.

2.4.1 Position Control

In the case of position control e(t) = ep(t) = xe(t)− xref (t). Then, deriving e to get

the error dynamics:

ė = J(q)q̇ − ẋref (2.48)

If J ∈ Rn×n, and J is invertible, then we can linearize the system designing q̇

with J−1 and a control signal u ∈ Rn as:

q̇ = J−1u (2.49)

ė = u− ẋref (2.50)

Then, assuming ẋref is available, it is used as a feedforward term along with a

feedback term to design u:

u = −Kp(xe − xref ) + ẋref (2.51)

That leads to the system:

ė+Kpe = 0 (2.52)

Which is exponentially stable if Kp > 0.
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2.4.2 Position Control with Redundant Manipulators

If a manipulator is redundant to its required task (m < n, and J ∈ Rm×n), its

Jacobian matrix is longer be invertible, therefore, eq. 2.49 is not available as an

option for kinematic control anymore.

So, instead of using the inverse of J, we use its pseudo-inverse matrix J† in eq.

2.49 so we have:

q̇ = J†(ẋref −Kpe) (2.53)

Which leads to the same error system as in eq. 2.52.

Exploring Redundancies

Because of its null space a redundant manipulator has an infinite number of solu-

tions q̇ that satisfy eq. 2.36. In other words, given an EEF velocity, there are an

infinite number of velocity configurations that are able to achieve it (due to internal

motions).

Notwithstanding, it is possible to use that knowledge to try to obtain different

secondary goals, by using a matrix whose range is in the null space of J(q) (Siciliano

et al., 2008):

R(I − J†J) ∈ N (J) (2.54)

And applying it into the kinematic control law for redundant manipulators (eq.

2.53):

q̇ = J†(ẋref −Kpe) + (I − J†J)ν (2.55)

where ν is usually assigned the secondary goal of maximizing a function w(q):

ν = K0

(
∂w(q)
∂q

)>
(2.56)

Common secondary goals are given by functions that describe desired behavior

that is not essential to the task completion, like maximizing the distance to obsta-

cles, or trying to guarantee maximum distance from singular configurations while

executing a movement by using the task manipulability (eq. 2.45).

2.4.3 Position and Orientation Control with Quaternions

To be able to control an EEF orientation, first, a definition for error orientation is

needed. In the case of a unit quaternion representation we can compare orientations

by the following error quaternion:
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Qerror = Qe(t) · Q∗ref (t) =

[
Qes
Qev

]
(2.57)

If the desired orientation Qref is the current orientation Qe we have Qes = 1,

and Qev = [0, 0, 0]>. Then, since Qe0 = 1↔ Qev = ~0, we define an orientation error

for a quaternion representation by only using Qev:

eo(t) = Qev (2.58)

Now, similarly to the position control scenario we may propose a linearizing

control law for the EEF entire pose:

q̇ = J†

([
−Kp 0

0 −Ko

][
ep(t)

eo(t)

]
+

[
ṗref

0

])
(2.59)

Notwithstanding, eq. 2.59 is known to make the equilibrium point e(t) = 0 al-

most globally asymptotically stable (Slotine and Li, 1991; Wen and Kreutz-Delgado,

1991).

2.5 Dynamic Equation of Motion

A dynamic model for a manipulator with n DoF (q ∈ Rn) in its joint space may be

given by the following EoM1(Murray et al., 1995):

M(q)q̈ + C(q, q̇)q̇ + g(q) = τc − J>(q)Fext (2.60)

where M(q) ∈ Rn×n is the inertia matrix; C(q, q̇) ∈ Rn×n is the Coriolis matrix;

g(q) ∈ Rn is a vector with gravitational torques for each joint; J(q) ∈ R3×n is the

manipulator Jacobian; Fext ∈ R3×1 is the equivalent external force vector applied

to the EEF); and τc ∈ Rn is a control vector used to achieve a desired dynamic

behavior for the manipulator.

It is also useful to realize the manipulator dynamics in the operational space

referred in subsection 2.2. Thus, the EoM turns into:

Λ(q)ẍe + µ(q, q̇)ẋe + Fg(q) = Fc + Fext (2.61)

1In this work, only external forces (without external torques) are considered to the dynamic
equation of motion.
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Λ = (JM−1J>)−1 (2.62)

µẋe = Λ(JM−1C − J̇)q̇ (2.63)

Fg =
(
J>
)†
g (2.64)

Fc =
(
J>
)†
τc (2.65)

where Λ(q) ∈ R3×3 is the EEF inertia matrix, also referred as apparent inertia,

(Ficuciello et al., 2014), µẋe represents the forces at the EEF correspondent to the

Coriolis matrix in joint space, and Fg and Fc to the forces at the EEF correspondent

to the gravitational, and control torques.

2.6 Impedance and Admittance Control

A mechanical impedance (or admittance) is a relationship between a body motion

and the effort applied to it. It can be seen both in the joint space, with angular

displacements and external torques, and in the operational space, with displacements

and external forces.

If the system receives effort as input, and outputs motion it behaves as a me-

chanical admittance. On the other hand, if the input is motion and the output is

effort then it behaves as an impedance.

It is possible to specify this relationship in terms of a mass-spring-damper system.

In the operational space for instance, the impedance/admittance at the EEF level

is modeled as the following differential equation:

Λdër +Ddėr +Kder = Fext (2.66)

er(t) := xe(t)− xr(t) (2.67)

where Λd ∈ R3×3 is the desired apparent inertia; Dd ∈ R3×3 is the desired damping;

and Kd ∈ R3×3 is the desired stiffness. Furthermore, Λd, Dd and Kd are all positive

definite and symmetric.

The system in eq. (2.66) has its equilibrium point defined by a robot desired

trajectory (xr(t), ẋr(t), ẍr(t)), and it receives a position/velocity feedback, or a

force feedback, which depends on the controller, either an impedance controller, or

an admittance controller.

Both controllers, the impedance controller and the admittance controller, fea-

ture advantages and disadvantages depending on the environment stiffness, and the

available robot. Further readings regarding the admittance/impedance duality can

be found in Ott et al. (2010); Siciliano et al. (2008).

25



Figure 2.8: Impedance Control Implementation

Figure 2.9: Admittance Control Implementation

2.6.1 Impedance Controller

In impedance control (fig. 2.8), the system (eq. 2.61) is linearized by force control

(Siciliano et al., 2008):

Fc = Λuc + µẋe + Fg − Fext (2.68)

Substituting eq. 2.68 into eq. 2.61 we have:

ẍe = uc (2.69)

And inspecting eq. 2.66 we choose the input control, uc, as:

uc = ẍr + Λ−1d (−Ddėr −Kder + Fext) (2.70)

2.6.2 Admittance Controller

Very compliant environments associated with a low Kd may degrade the rejection

of disturbances using impedance control (Siciliano et al., 2008) (fig. 2.8), to solve

this issue, admittance control separates the kinematic control problem from the

impedance control problem, in such a way that the kinematic controller is designed

as to guarantee the disturbances rejection. Therefore, there are two separate con-

trollers (fig. 2.9): an outer loop controller (the admittance controller) that specifies

a reference velocity, or position, ẋref or xref , given the external forces vector (Fext);

and an inner loop kinematic controller that receives xref , or ẋref and outputs joint

velocities commands.

Both controllers are separately designed. The velocity control may be designed

as in (2.53), while the admittance controller is implemented substituting er by

(xref − xr) in (2.66) (Siciliano et al., 2008), i.e.:
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Λd (ẍref − ẍr) +Dd (ẋref − ẋr) +Kd(t) (xref − xr) = Fh(t) (2.71)

2.7 Conclusions

The fundamental concepts presented in this chapter may be used not only to model,

analyze and control open-chain serial robots, but also to model a human arm as

a robot with 7 degrees of freedom, allowing an unified analysis of performance for

both the human arm and the robot arm.

However, in the case of the human arm, some informations, like torque applied

at every joint or intention of movement are likely not readily available in real ap-

plication scenarios. To settle some of these issues, one approach used by many

researchers is to use biological signals such as EMG.
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Chapter 3

Electromyography and

Co-Contraction

This chapter describes the nature of the EMG signal, and overviews some of its

applications. It provides guidelines to the signal acquisition, and processing. Fur-

thermore, it points out common pitfalls regarding the usage of EMG signal and its

acquisition.

It ends by discussing human arm stiffness, the concept of co-contraction, how to

obtain an index of co-contraction (ICC), and how those concepts are related.

3.1 Electromyography

Electromyography is an experimental technique concerned with the development,

recording, and analysis of myoelectric signals, which are formed by physiological

variations in the state of muscle fiber membranes (Basmajian and De Luca, 1985).

The muscle fiber membranes are part of the motor unit (MU). A MU is the

smallest functional unit of a muscle. It comprises a α-motoneuron, its axon, and

a set of muscle fibers attached to it. Whenever a MU is activated by an action

potential (electrical signal from the central nervous system), its muscle fibers will

contract. The activation of several MUs will contract several groups of muscle fibers

and will result in the muscle contraction. These activations superpose themselves

and may be detected by surface EMG sensors placed on the human skin (fig. 3.1).

Properly placed surface EMG sensors are able to roughly detect the EMG signal of a

single muscle. If the muscle that is desired for the EMG signal acquisition is located

internally in a human limb then needles and wire electrodes will be used instead of

skin surface electrodes. Those types of sensors require very specialized training and

a special room/laboratory for an experiment. Therefore, all EMG sensors used in

this work are the simpler surface electrodes.
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Figure 3.1: A surface EMG signal composed of several motor unit action potentials
(Luca et al., 2006)

3.1.1 Applications

The EMG signal may be used to estimate or measure data from individual muscles,

or sets of muscles. It is possible to estimate torque/force in isometric contractions;

estimate the muscle activation; indicate fatigue in a muscle; or compare the behavior

of different sets of muscles in different experiment trials for different human subjects.

EMG signal is used in real world applications in the most diverse areas of knowl-

edge, such as medical research; rehabilitation; ergonomics; sports science; or in HRC.

EMG signal provides information regarding intention of motion, which could be vol-

untary or not. Due to communication delay, the EMG signal shows activity before

the muscle actually starts contracting (Luca, 2008). In this work, EMG signal is

used to quantify muscle activation levels.

3.1.2 EMG Acquisition Pitfalls

The acquisition of EMG signal and its interpretation, however, can be dramatically

influenced by several factors, of which the most prominent are:

• Cross-talk from other muscles (fig. 3.2a);

• Sensor location (fig. 3.2b);

• Sensor quality;

• Changes in muscle geometry during signal acquisition (fig. 3.2c)

• Sensor not properly attached to the skin;

• Electrode-Skin high impedance;
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(a) The conductivity of the skin and other
human tissues generate cross talk even
when the sensor is perfectly placed on top
of the desired muscle at all times (Luca,
2008)

(b) The sensor location greatly influences
both the amplitude and the frequency of
the EMG signal (Luca, 1997)

(c) When the biceps contracts, the muscle
moves away of the EMG sensor in this fig-
ure (Konrad, 2005)

(d) Some human tissues, such as subcuta-
neous fat, with high impedance will alter
the EMG signal (Konrad, 2005)

Figure 3.2: Difficulties that arise when acquiring EMG signal

• High impedance of other human tissues (fig. 3.2d);

The crosstalk is caused by the inherent conductivity of the human skin and other

tissues, thus, making it possible for other muscles’ signals to interfere in the signal

from the desired muscle.

As can be seen on fig. 3.2b, both the amplitude and frequency of a muscle EMG

signal greatly vary according to the sensor location relative to the desired muscle.

Higher signal amplitudes are to be found with sensors placed on the muscle belly.

This also implies that, whenever a muscle changes its geometry while contracting,

the EMG sensor may not be in ideal condition for signal acquisition anymore (fig.

3.2c).

Another sensitive aspect consists of the human skin impedance, that may be too

high mostly due to dirt, dead cells, etc. To decrease the skin-electrode impedance,

the skin is usually cleaned prior to the signal acquisition. Furthermore, other tissues

may decrease the signal quality, like subcutaneous fat tissue with high impedance

values (fig. 3.2d).
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3.1.3 Guidelines to EMG acquisition

General guidelines for EMG acquisition can be found in the books/website by the

former European project SENIAM (Surface ElectroMyoGraphy for the Non-Invasive

Assessment of Muscles) (Stegeman and Hermens, 2007) (www.seniam.org), or in

(Luca, 2008). The guidelines can be summarized as:

• Use differential sensors (with two electrodes and one differential amplifier) to

reduce noise;

• Place the EMG sensor in the muscle belly, with the electrodes in parallel to

the muscle fibers;

– Perroto (2011) is a good reference for locating muscles, and ideal sensor

placement;

• Clean the human subject skin with gaze and alcohol (and allow the alcohol to

vaporize) to decrease the skin impedance;

• Use good adhesive to attach the EMG sensor onto the skin;

3.1.4 EMG signal processing

Raw EMG signal

The unfiltered and unprocessed superposition of MU action potentials is called a

raw EMG signal (uraw). Considering that the signal acquisition is being properly

done, and the noise sources have been taken care of, whenever a muscle is completely

relaxed its baseline should have very little noise, and when it contracts its amplitude

spikes are of random nature (Konrad, 2005)(fig. 3.3).

The raw EMG signal typically is in the scale of µV and its frequency ranges up

to 500 Hz (Luca, 1997). Some EMG sensors have built-in band pass filters to avoid

anti-aliasing effects while sampling. According to the Nyquist sampling theorem,

the minimum sampling rate has to be of 1 kHz.

Signal Processing Overview

Due to the random nature of the EMG signal amplitude spikes, the use of the raw

EMG signal directly into robot control loops or even in off-line analyses would not

be advantageous since it would produce very unreliable data. To overcome this

issue, the EMG signal must be properly processed. Lots of works in the literature

that use EMG signal to quantify mucle activation levels process it in similar fashion

(Ahmadi-Pajouh et al., 2012; Darainy and Ostry, 2008; Grafakos et al., 2016; Luca,

1997; Paul L. Gribble and Mattar, 2003):

31

www.seniam.org


Figure 3.3: Raw EMG signal example (Konrad, 2005)

• Obtain the EMG signal envelope;

– Apply full-wave signal rectification followed by a low-pass filter;

– Or apply a windowed RMS filter;

• Normalize the muscle EMG signal with respect to a maximum voluntary con-

traction signal (MVC);

Obtaining the signal envelope will smooth as well as remove the negative values

of the signal. While the signal normalization will actually calculate a measure of

muscle activation that may be compared with other experiment trials, even from

other subjects.

To illustrate the signal processing, the steps taken in this work to process the

EMG signal are shown in the next section.

EMG Signal Envelope

To obtain an envelope of the signal, in this work, the raw EMG signal (uraw) is

passed through a windowed RMS filter with a 100 ms time window which is suitable

for most cases (Konrad, 2005). Then, to further smooth the signal, an additional

low pass third order Butterworth filter with a cut-off frequency of 10 Hz is applied

to it. A summary of the steps taken toward the enveloping of the EMG signal can

be seen on the fig. 3.4.

Signal Normalization

The value to which the EMG signal is normalized has to be obtained from an

isometric exercise (contraction without limb movement) related to the muscle that

will be measured a posteriori. The subject usually executes 3 isometric contractions

with 1 min rest intervals to avoid muscle fatigue (Luca, 2008), then the highest value

is assigned as the MVC for that muscle. The normalized EMG (uinorm) for a certain
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(a) EMG signal processing steps: acquisition from sensor uraw; RMS
window of 100 ms (urms); Butterworth low pass third order filter with
10 Hz cutoff frequency(ufil).

(b) Comparison between uraw, and urms. It can be seen that urms is an envelope of uraw.

(c) Comparison between urms, and ufil. The Butterworth filter smooths the RMS signal.

Figure 3.4: Steps to obtain an enveloped EMG signal for this work
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muscle i will be given by the ratio between the filtered signal(uifil) and the muscle

MVC:

uinorm(t) =
uifil(t)

MVCi
(3.1)

3.2 Human Arm Stiffness and Co-Contraction

There are 3 types of stiffness associated with a human arm:

• Muscle stiffness: The resistance of a single muscle to arm displacement;

• Joint stiffness: The resistance of a joint to changes in the joint angle;

• Endpoint stiffness: The resistance of the entire arm to endpoint displacements;

The direct measurement of a human arm stiffness in typical conditions (with very

few motion restrictions) is either very difficult or unfeasible. This happens because

even though it is possible to measure the force/torque in any given time, the neutral

point of displacement is moving as well (Gallagher et al., 2014). Nonetheless, the

simultaneous contraction of pairs of antagonist muscles, or co-contraction, is related

to changes in human joint stiffness (Hogan, 1984; M. Smith, 1981), where antagonist

muscle pairs are simply muscles that when contracted produce torque around the

same joint, but in opposite directions. This happens because the co-contraction leads

to an increase in muscle effort and stiffness without the arm displacement, therefore,

increasing joint stiffness for several different joints (and endpoint stiffness). Many

studies have already verified experimentally the relationship between co-contraction

and human joint stiffness (De Serres and Milner, 1991; Gardner-Morse and Stokes,

2001; Nielsen et al., 1994).

It is important to note that the endpoint stiffness depends not only on the joint

stiffnesses, but also on the human arm configuration (posture) (Murray et al., 1995).

Therefore, achieving arbitrary endpoint stiffness at arbitrary positions is not feasible

(Ajoudani et al., 2017a; McIntyre et al., 1996; Perreault et al., 2002). Furthermore,

other studies have verified that humans naturally and simultaneously modulate their

arm joint stiffnesses and posture to execute movements while optimizing for sec-

ondary objectives such as precision, speed, or stabilization of unstable environment

dynamics (Burdet et al., 2001; Paul L. Gribble and Mattar, 2003). In addition, in

Bó and Poignet (2010); Bó et al. (2009), the authors have used Functional Electrical

Stimulation (FES) to co-contract the human wrist joint and attenuate pathological

tremors.
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3.2.1 Index of Co-Contraction

A common way for quantifying co-contraction is to compare the levels of activation

(obtained from normalized EMG signals) from a pair of antagonist muscles, and

then use the minimum value of both. This is equivalent to obtaining the amount of

activation that is responsible for the change in stiffness since the surplus of activation

is responsible for the joint movement. This can be summarized by the equation

introduced by Thoroughman and Shadmehr (1999) and also used in Gallagher et al.

(2014); Grafakos et al. (2016); Paul L. Gribble and Mattar (2003), where the ICC

of a joint k whose antagonist muscles are i and j is given by:

icck(t) = min
(
uinorm(t), ujnorm(t)

)
(3.2)

It is also worth mentioning that the ICC does not provide a direct measurement

of joint stiffness. It is only directly proportional to the joint stiffness. This means

that whenever a joint is more or less stiffen the ICC related to the joint will increase

or decrease.

3.3 Conclusions

EMG signals may be used to obtain information regarding motion intentions, and

to estimate human joint stiffnesses. Nonetheless, the signal acquisition has to be

taken very meticulously so that the signal does not show large noise, and can be

interpreted correctly.
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Chapter 4

Manipulation Experiments

In order to develop adequate, and efficient robot controllers for HRC, this work inves-

tigated patterns in co-manipulation scenarios. Analysis regarding kinematic data,

muscle activation data, and custom performance criteria were performed based on

the tools provided in the last chapters. This chapter follows by presenting hypotheses

about human natural behavior during co-manipulation of an object. The hypotheses

were tested by 2 manipulation experiments, one with a single human subject, and

another with a HH dyad. The chapter finishes by discussing and concluding about

the results in hand.

4.1 Human Motor Behavior Assumptions

In this work, it is considered that in a co-manipulation task, the agent behaving as

a leader will dictate the trajectory of the object being co-manipulated as much as

possible. So, assigning the role of a leader to a different agent in the dyad may have

an impact on the object trajectory. Which leads us to the first hypothesis:

Hypothesis 1. The manipulated object trajectory changes according to the agent

role (leader or follower).

In addition, since humans modulate their muscles stiffnesses based on their de-

sired level of accuracy to execute a certain task (Burdet et al., 2001; Paul L. Gribble

and Mattar, 2003), we hypothesize that the agent behaving as a leader perceives

the haptic interaction with the other agent as a disturbance to the execution of its

own desired trajectory. Therefore, he/she will increase his/her stiffness to improve

his/her own accuracy. Hence, this leads to the second hypothesis:

Hypothesis 2. A human leader manipulates the object with a higher endpoint stiff-

ness than when behaving as a follower.
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Figure 4.1: Top-down view of the experiment set-up. The black dashed line approx-
imates the pipe trajectory. The red circles are metallic rings attached to the walls
of the tubes in order to detect contact with the aluminum that is wrapped around
the end of the pipe. The red dashed line represents a curtain placed between both
participants.

4.2 Dyad Co-Manipulation Experiment

In order to verify the aforementioned hypotheses, an experiment comprising a HH

dyadic co-manipulation of an object was designed. In the experiment, the humans

were assigned different roles, and had to constantly collaborate towards a common

goal.

4.2.1 Task Description

This experiment demands a HH dyad to co-manipulate a pipe throughout a task

that requires bringing the end of a pipe from a start point to an end point (fig. 4.1).

Each participant is asked to sit on a chair, and before the experiment, he/she

may adjust the chair position to his/her better comfort. During the experiment

participants are instructed to avoid moving their backs during the task execution.

However, they are not strapped to the chair.

The participants were instructed to hold the pipe with their right hand with a

power grasp, holding the pipe on one of the designated handles (according to their

places, like in fig. 4.1).

Initially, the pipe is in contact with the back wall of tube 1 (wall farther away

from the subjects), and it has to be to be brought out of the tube 1 while avoiding

contact with the front wall (closer to the subjects).

Once out of tube 1, the pipe has to be moved around a cylindrical obstacle, and
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(a) View from subject 1 (b) View from subject 2

Figure 4.2: HH dyad experiment in execution

then inserted into tube 2, once again avoiding the front wall, until the end of the

pipe is placed in contact with the back wall of tube 2. The return motion is not

recorded nor evaluated.

The task may be classified in three phases according to its physical restrictions:

• Tube 1 restriction;

• Free space;

• Tube 2 restriction;

Although there are no clear physical restrictions to the movement in the free

space phase, the participants are instructed to move the pipe around the obstacle,

rather than moving the pipe above it.

During any HH dyadic collaboration task, mutual gaze and joint attention are

known forms of communication between the dyad agents (Ajoudani et al., 2017b;

Tomasello, 2009). In this experiment, any form of audiovisual communication in

between the participants was kept away in order to focus on haptic communication.

Hence, a curtain is placed between both participants to prevent visual contact

during the task execution (fig. 4.2). In addition, participants were instructed not

to talk during the task execution, and not to talk about the experiment in between

trials.

Participants do not see any timer during the experiment, but they are told that

the whole manipulation (from Start to End) should not take longer than 15 s. If

participants take more than 15 s, they are told so and the trial is canceled.

4.2.2 Materials

The manipulated pipe has a 3 cm diameter, a 48 cm length (fig. 4.3). The end of

the pipe is covered with aluminum foil for use with the contact sensors mounted on

the tube walls. This aluminum part is 8 cm wide, so that it is impossible for the

38



Figure 4.3: Dimensions for the manipulated pipe, for the tubes, and for the cylin-
drical obstacle

contact sensor to detect a contact at two different walls simultaneously. The handles

are 10 cm wide each. Furthermore, the pipe as a whole, weights 218 g.

Each tube is 10 cm long, with a diameter of 8 cm. The diameter of the holes in

the front and back walls of each tube is 4.5 cm. The obstacle is a vertical transparent

cylinder of diameter 8 cm. Both tubes are set 13 cm apart (distance between the

centers of the tubes).

4.2.3 Participants

This experiment was executed by 8 different dyads, therefore, 16 subjects of which

13 were male, and 3 were female. The average age of the subjects was 25.8 years old,

the youngest subject was 22 years old, and the oldest was 32 years old. Moreover,

13 subjects were right handed, and only 3 subjects were left handed.

Every subject signed consent forms for their participation and some subjects

signed forms for use of their image (photo/video). No participant claimed any

chronic motor disease, or health condition that could influence in the experiment

results.

4.2.4 Protocol

Each participant was instructed to sit on a chair at one side of the experiment’s

table according to the number he/she was assigned, either subject 1 or subject 2

(fig. 4.1). Subject 1 handles the pipe at handle 1, and subject 2 at handle 2. The

subject number is assigned randomly prior to the experiment execution.

The participants execute the task under 3 different behavior conditions:

• Natural Behavior (no leader/follower role assigned): Participants are in-

structed to manipulate the pipe as naturally as possible;

• Subject 1 Leader and Subject 2 Follower : Participants are instructed that

Subject 1 must lead the movement, while Subject 2 serves the purpose of

supporting and following Subject 1’s actions;
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Figure 4.4: Diagram with the sensors and equipment used for data collection.

• Subject 2 Leader and Subject 1 Follower : Participants are instructed that

Subject 2 must lead the movement, while Subject 1 serves the purpose of

supporting and following Subject 1’s actions;

The order of the 3 conditions is randomized across dyads to counter-balance any

possible effect of human motor learning.

Dyads perform 5 trials for each condition, resulting in a total of 15 trials. For

each of the 3 conditions, before starting the recording, the participants can practice

for 2 or 3 trials. There is an approximate 45 s break between each trial, but the

exact duration of the break is not imposed (participants decide when they want to

start the next trial).

4.2.5 Measurements

Figure 4.4 summarizes the equipments used to acquire data for this experiment. The

windows laptop synchronizes the data acquisition from Qualysis and Delsys through

their proprietary software. The Linux laptop is used to collect data from the contact

sensor, and executes a graphical interface for custom software.

Motion Capture

The motion of the participants’ right arm is recorded with a Qualisys optical motion

capture system with 8 Oqus cameras recording at the rate of 150 Hz. 6 reflective
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Figure 4.5: Positions and labels of the Qualisys reflective markers placed on the
subjects: 6 markers are set on each participant right arm, and 5 markers are set on
the pipe, tubes and obstacle. Note that the obsBottom marker set on the obstacle
is not visible, because it is vertically aligned with the obsTop marker.

markers are placed on the participant arm, and their 3D positions in the operational

space are tracked. The position of the 6 arm markers are fixed on top of some of

the arm bones (fig. 4.5):

• Acromion (referred as Shoulder);

• Lateral Epicondyle of the Humerus (referred as Elbow);

• Ulnar-Styloid Process (referred as Hand1 )

• Head of the 5th Metacarpal (referred as Hand2 );

• Head of the 2nd Metacarpal (referred as Hand3 );

• Radial-Styloid Process (referred as Hand4 );

There is also a marker on the pipe to improve position tracking, and additional

markers at inertial references like the tubes and obstacle (fig. 4.5):

• At end of the pipe, opposite to the aluminum foil (referred as pipe). Partici-

pants were told to hold the pipe so that this marker is always facing up;

• At the top of the front wall of each tube (referred as tube1 and tube2 );

• At the top of the obstacle wall, farthest away from both tubes (referred as

obsTop);
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• At the bottom of the obstacle wall, farthest away from both tubes (referred

as obsBot);

EMG

During this experiment, 6 wireless Delsys Trigno EMG sensors were used on 3 pairs

of muscles to indicate stiffness at three human arm joints:

• Shoulder Joint:

– Deltoid Anterior (DA);

– Deltoid Posterior (DP);

• Elbow Joint:

– Biceps Brachii (BIC);

– Triceps (lateral head) (TRI);

• Wrist Joint:

– Flexor Carpi Ulnaris (FCR);

– Extensor Carpi Ulnaris (ECR);

The muscles were located according to Perroto (2011). And as described in the

chapter 3, a series of isometric exercises was performed for each muscle in order to

obtain a MVC prior to the actual experiment. The subjects were asked to contract

their muscles as strong and as quick as possible. There were 1 min intervals between

the contractions to avoid fatigue, which could bias the MVC acquisition.

During the MVC acquisition only the EMG signal is recorded through a custom

MVC calibration software developed especially for this experiment that can be found

in: www.github.com/inria-larsen/emg-processing. The custom software GUI

allows for quick EMG signal verification, simple MVC acquisition, and is intended

to serve as a basis for a more ambitious HRC software in the future.

For both the experiment and the MVC calibration, the EMG signal was recorded

at a sampling rate of 2 kHz.

Contact Sensor

The experiment participants are explicitly instructed to avoid touching the tube

wall with the pipe, when either exiting tube 1 or entering tube 2. This requirement

turns the first and the last phase of the experiment into tasks that require a certain

level of accuracy. To obtain a qualitative measure of how well the dyad is executing

the task, a custom contact sensor is employed.
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Figure 4.6: EMG custom software for MVC acquisition (www.github.com/
inria-larsen/emg-processing).

Figure 4.7: Custom Contact Sensor Diagram. Whenever the aluminum touches any
of the metallic rings, the Raspberry PI will log the contact onset. The board receives
commands through a SSH connection via Ethernet.

The contact sensor is implemented with a Raspberry Pi v1.0 board mounted

underneath the table of the experiment. One of the board GPIOs is connected to

the pipe via a long wire that is wrapped around the pipe end along with aluminum

foil. Additional GPIOs are connected to metallic rings mounted on the tube walls

(fig. 4.7).

The board is programmed so that only the onset of a contact between the alu-

minum foil and any of the metallic rings is logged. That is, whatever the duration

of the contact, it will only be logged once as long as it is maintained.

4.2.6 Results

Before discussing the data analysis and results of this experiment, it is important to

note that during data analysis subjects in dyad 1 did not follow the task instructions

for some trials, having moved the object over the obstacle and not around it as it was
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Figure 4.8: Trajectory of the barycenter of the position of the hand markers from
both subjects in dyad 2.

explicitly asked, therefore, it was not possible to properly compare and analyze dyad

1 data with the other dyads. For that reason, dyad 1 data analysis was discarded

of this section.

It is also important to note that even though the left handed subjects executed

the experiment with their right hand the results were similar to the results from the

right handed subjects.

The results for all analyzed dyads are explained in detail in the next sections,

however, for the trajectory and co-contraction analysis only the plots for dyad 2 are

shown. For all the plots, please refer to appendices A and C.

Trajectory

With the purpose of analyzing the object trajectory (position in time), the motion

capture marker referred as pipe was placed on one of the pipe ends, but in order to

improve the tracking robustness the centroid or geometric barycenter of the markers

placed on the subjects’ hands (fig. 4.5) was calculated at every time instant instead.

The variations in trajectory for this task are mostly planar, so the barycenter was

analyzed only on the X-Y plane.

The trajectories did change according to whom was assigned the role of the leader

of the task (as illustrated by dyad 2 in fig. 4.8). Furthermore, the trajectory was

bent towards the task leader, such that when the dyad was told to behave naturally
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the trajectory was in between the trajectories with a preassigned leader. These

patterns strongly support hypothesis 1.

Co-Contraction

For the 3 pairs of antagonist muscles whose EMG signals were acquired during the

experiment, an ICC signal was calculated as in eq. 3.2.

During preliminary analysis, it was found that the pair of muscles for the shoulder

joint (DA-DP), and for the elbow joint (BIC-TRI) showed very small values for their

respective ICCs, or no variation during the executed task, therefore, the ICC analysis

hereafter, covers only the pair of muscles at the forearm (ECR-FCR) related to the

wrist joint 1. It is also noted that in previous related works (Grafakos et al., 2016;

Peternel et al., 2016, 2017), the authors also took the decision to use only one joint

(either the wrist joint or the elbow joint) for ICC analysis.

In fig. 4.9 it is possible to see the ICC for the forearm muscles of subjects 1

and 2 that form dyad 2 while executing the experiment task. Furthermore, from

fig. 4.9 (and the other plots in appendix A) it is possible to observe a trend in

certain subjects that relates individual ICC variations that can be summarized in

the following inequality:

iccsfol < iccsnat < iccslead (4.1)

where,

• iccsfol is the ICC value for a subject s behaving as a follower in the dyad;

• iccsnat is the ICC value for a subject s behaving without any pre-assigned

behavior, as naturally as possible;

• iccslead is the ICC value for a subject s behaving as a leader in the dyad;

1Nonetheless, the EMG signals for all joints are still acquired in case they are needed for future
work.
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(a) Subject 1 in dyad 2.

(b) Subject 2 in dyad 2.

Figure 4.9: ICC acquired from forearm muscles relative to the wrist joint. Taken
from dyad 2. The average for every trial is in bold color; in light color, every trial;
and the shades represent the standard deviation from the average. The plots are
time normalized for every dyad. Furthermore, the dashed vertical line represent the
time instant when the subject hands barycenter crosses the curtain line (fig. 4.1).
With the barycenter, and the measurements from fig. 4.3, it is possible to calculate
when the aluminum end of the pipe leaves tube 1, and when it enters tube 2. Those
instants are shown in the plots as vertical lines, and they delimit the task phases:
restricted by tube 1; free space; and restricted by tube 2.

46



Figure 4.10: Box plots of task execution error measurement acquired by contact
sensor during HH dyad experiment.

Task Performance

To measure the performance of the dyads while executing the task, the number of

times the aluminum part of the pipe touches the walls of the tubes is acquired by

the contact sensor. The contacts at the start and at the end of the task trajectory

are only used to delimit the task period, while the contacts sensed when the pipe is

leaving tube 1, and entering tube 2 are counted as errors. It is worth mentioning

that whenever the aluminum part is dragged while maintaining contact with the

sensors several touches are perceived by the sensor. If this happens, the contacts

are only counted as one in this analysis.

Figure 4.10 shows box plots of the number of errors for all dyads in tube 1, tube

2, and for both tubes. As a reminder, tube 1 is closer to subject 1, and tube 2 is

closer to subject 2 (fig. 4.1).

4.2.7 Discussion

From the trajectories results, beyond supporting the hypothesis 1, it is possible that

the variation in the planar trajectory is related to every subject having his/her own

desired trajectory, to which he/she tries to follow, especially when he/she is leading

the task. This would also implicate that when both subjects are instructed to behave

as naturally as possible, their trajectories blend into a new trajectory.

In addition, the cause for the change in trajectory for different role assignments

seems to be related with the results from the co-contraction measurements, which

are summarized by the inequality (4.1). A high ICC for subject 1 (stiff behavior),
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combined with a low ICC for subject 2 (compliant behavior) would result in a

better tracking of subject 1 desired trajectory, and vice-versa. Consequently, mid-

values of stiffness/compliance for both subjects would result in the blend trajectories

perceived by the motion capture system. Furthermore, inequality (4.1) also strongly

supports hypotheses 2.

Complementary information from the task performance analysis (fig. 4.10)

showed that the number of errors significantly decreases in both tubes whenever

the subjects are not assigned a specific role. Therefore, the HH dyad was more effi-

cient when acting naturally. This evokes the idea that humans naturally modulate

their stiffness to mid values in order to generate more efficient trajectories. In addi-

tion, it is also worth mentioning that mid values of ICC mean less energy spent by

the subjects individually, and this could mean that the subjects optimize not only

for the desired trajectory tracking but also for individual energy consumption.

On the other hand, it is also possible that the desired trajectory for each of

the agents is optimal for different periods of the task, and that every agent tries to

minimize his/her stiffness while trying to execute his/her own trajectory. This is

also suggested by the fact that errors were generally smaller for the tubes closer to

the leaders.

4.3 Single Human Manipulation Experiment

The dyad experiment raised some questions, one of which was related to the form

of the ICC signal (fig. 4.9), that changed more noticeably during free space phase

of the task, increasing for subject 1, and decreasing for subject 2. This variation

could be related to dyad impedance communication similar to what was studied in

Mojtahedi et al. (2017), or it could also be related to kinematic constraints of the

task, and to the individual arm manipulability.In order to try to answer some of

those questions a second experiment was designed.

4.3.1 Task Description

This experiment is similar to the first one but with some key differences. The manip-

ulation task is not shared, so there is only one human executing the experiment; and

EMG sensors are only placed in the forearm of the participants. The participants

were also asked to grab the pipe in the middle of both handles instead of grabbing

the handles for subject 1 or 2. The other equipments and measurements are the

same from the HH dyad experiment.
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4.3.2 Participants

There were 6 participants. They were in average 26.7 years old, the oldest was 29

years old, and the youngest was 23 years old. This time, every participant was right

handed. The participants were not aware of the preliminary results from the HH

experiment.

Once again, every subject signed consent forms for their participation and some

subjects signed forms for use of their image (photo/video). No participant claimed

any chronic motor disease, or health condition that could influence in the experiment

results.

4.3.3 Protocol

There were no role assignments since there is only one participant. However, there

were two different conditions: participant sat at the position of the subject 1; par-

ticipant sat at the position of subject 2 (fig. 4.1). The conditions were assigned

at random. There were 5 trials for each condition, two learning trials in between

conditions, and approximately a 45 s break between trials.

4.3.4 Results

The results for all participants are described in detail in the next sections, however,

for the trajectory and co-contraction analysis only the plots for participant 4 are

shown. For all the plots, please refer to appendices B and D.

Planar Trajectory

With only one participant, the trajectory is the geometric barycenter of the markers

on the single participant hand. The planar trajectory for participant 4 is shown in

figure 4.11.

In this experiment, the object trajectory still deviates toward the participant,

but this time the deviation is much more accentuated. This reinforces the initial

hypothesis 1, and the discussed idea that every person has its own desired trajectory.

Co-Contraction

The ICC levels during task execution (fig. 4.12) for all dyads varied inconsistently

regarding the object trajectory. For some participants, the ICC level varied when

moving the pipe away or inserting it in the tubes, and for other participants it did

not change during the whole task.
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Figure 4.11: Trajectory of the barycenter of the position of the hand markers from
participant 4 in single human experiment.

Figure 4.12: ICC acquired from forearm muscles relative to the wrist joint of par-
ticipant 4 in the single human experiment.
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Figure 4.13: Box plots of task execution error measurement acquired by contact
sensor during single human experiment

Task Performance

The contact sensor measurement for all participants can be seen on fig. 4.13. This

time, the errors on the tube that it is closer to the participant are fewer than errors

measured on the tube further away. In the dyad experiment, this happened only for

one of the dyads. The total number of errors, however, is larger than for the dyad

experiment.

4.3.5 Discussion

The results from the trajectory analysis indicate that for this experiment, the posi-

tion on which a human is sitting is decisive to his/her desired trajectory. Further-

more, even though the experiments’ setup was designed so that in any position the

human participant would be able to properly view the object and the tubes at all

times, the task performance results (better performance when closer to the tube)

indicate that the participant has a better expertise of the task when closer to the

tubes. However, when the task performance results are compared to the dyad ex-

periment the participants did not perform as well as the dyads without preassigned

roles. Therefore, it is possible that even though humans may perceive each other as

disturbances to their own desired trajectories, the final result of the dyad is generally

better than when compared to a single person acting alone.

The inconsistency regarding the variation of co-contraction may be related to

changes in manipulability instead of the desired object trajectory, or the position

in which the participant was sitting. Future work should define manipulability
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measures and verify their relationship with ICC variations both for a HH dyad and

for a single participant.

4.4 Conclusions

Although more trials for both experiments are needed to ensure statistical signifi-

cance, it is already possible to infer that a human subject in a dyad increases his/her

arm endpoint stiffness when acting as a leader, and decreases it when acting as a

follower.

The results also support that each human has its own desired trajectory for

the object manipulation and the object trajectory is a blend between the desired

trajectories of both agents in the dyad.

And it is likely that the change in stiffness for each agent in the dyad is the cause

for the change in the object trajectory.
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Chapter 5

Admittance Robot Controller for

Human-Robot Co-Manipulation

The previous chapter presented a situation in which a HH dyad behave naturally

when co-manipulating an object, and how a HH dyad could be more efficient with

respect to a custom performance criteria than a single human manipulating the

same object. To replicate this behavior in a HR dyad, this chapter delves into the

development of an admittance robot controller designed to provide the robot either

a follower or a leader behavior based on a scalar parameter. The stability of the

desired admittance is also evaluated by Lyapunov theory.

To illustrate the controller usage, simulations are done with a 3DoF kinematic

planar robot, and with a 7DoF robot in a dynamic simulation. Furthermore, a real

7Dof robot is used with a virtual human force.

5.1 Robot Controller Design

The experiments in chapter 4 may suggest that humans in a HH dyad modulate

their endpoint stiffness differently when they have been preassigned different roles

(leader or follower). Furthermore, for not preassigned roles, the object trajectory

seems to be an interpolation between the desired trajectories of both agents because

of the humans’ mid value endpoint stiffnesses.

Inspired by the stiffness variation with respect to the change in role assignments

observed in chapter 4, it is proposed a continuously differentiable scalar role factor

α(t) ∈ [0, 1] ∀t ≥ 0 such that α = 0 assigns to the robot a total leader desired

stiffness, α = 1 assigns to the robot a total follower stiffness, and the condition

0 < α < 1 assigns mid value stiffness comparable to the mid value stiffness from the

HH dyad experiment, i.e:
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Robot Role Behavior :


α(t) = 0, Total Leader

α(t) = 1, Total Follower

0 < α(t) < 1, Mixed

(5.1)

The purpose of the role factor α(t) is to define a role to the robot. The role can

be defined in different ways, for example, from a manipulability measure (section

2.3.3), or any intention of motion metric (section 1.1.3) from the human partner in

the HR dyad. To replicate the results from the HH dyad experiment, α(t) is defined

here proportional to the ICC levels around the wrist joint of the human partner,

and since the human ICC is bound by individual minimum and maximum values of

ICC (respectively acting as a follower or as a leader), α is given by:

α(t) =
icc(t)− iccmin
iccMAX − iccmin

(5.2)

where the individual ICC limits (iccmin, iccMAX) are obtained from a calibration

task prior to the co-manipulation task, and after the isometric exercises that acquire

MVC values for each muscle.

Now, let the robot EEF real position1 be xe(t), and the desired robot trajectory

be described by xr(t), ẋr(t), ẍr(t), then the robot position error defined as:

er(t) := xe(t)− xr(t) (5.3)

Even though for most case scenarios it is not possible to know the human desired

trajectory, xh(t), the human position error is defined as:

eh(t) := xe(t)− xh(t) (5.4)

The desired robot behavior defined by (5.1) aims a total leader behavior (α = 0)

characterized by:

lim
t→∞

er(t) = 0 (5.5)

and the total follower behavior (α = 1) characterized by:

lim
t→∞

eh(t) = 0 (5.6)

Let the robot equation of motion in the operational space (R3 or R2) be:

Λ(q)ẍe + µ(q, q̇)ẋe + Fg(q) = Fh (5.7)

1Similar to the manipulation experiments, the task here is described by its position only, without
considerations on orientation
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where Λ(q) ∈ R3×3 is the EEF apparent inertia matrix, µẋe represents the forces

at the EEF correspondent to the Coriolis matrix in joint space, Fg the force at the

EEF correspondent to the gravitational torques, and Fh is the force applied by the

human at the robot EEF.

Similarly to Li et al. (2015a,b), an impedance model in the operational space

with a varying desired stiffness and damping is proposed in order to adapt the robot

role:

Λdër(t) +Dd(t)ėr(t) +Kd(t)er(t) = Fh(t) (5.8)

where Λd ∈ R3×3, Dd ∈ R3×3, Kd(t) ∈ R3×3 are the desired inertia, damping, and

stiffness matrices, such that all of them are positive definite and symmetric for all

t ≥ 0. In addition, Λd is a decoupled inertia matrix such that:

Λd =

md 0 0

0 md 0

0 0 md

 (5.9)

Then, a varying stiffness profile dependent on α(t) is proposed as:

Kd(t) = Kd0(1− α(t)) +Kd1 (5.10)

where Kd1 ∈ R3×3 is the minimum robot stiffness matrix, and Kd0 ∈ R3×3 bounds

the maximum robot stiffness. Furthermore, Kd0, Kd1 stiffness matrices are known

to produce very stiff, and very compliant behaviors respectively.

In addition, the varying damping profile is defined as the critical damping, i.e.:

Dd(t) = 2
√
Kd(t)md (5.11)

As in section 2.6.2, in order to implement (5.8) with an admittance controller

block, er is substituted by (xref − xr), i.e:

Λd (ẍref − ẍr) +Dd (ẋref − ẋr) +Kd(t) (xref − xr) = Fh(t) (5.12)

and the internal kinematic controller, similar to (2.53), is given by:

q̇ = J†(ẋref −Kp (xe − xref )) (5.13)

The admittance control strategy is summarized in fig. 5.1.
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Figure 5.1: Diagram for robot admittance control in a HR dyadic co-manipulation
with online robot adaptation based on an ICC signal from the human partner

5.2 Effect on Object Trajectory

The experiments in chapter 4 suggest that the change in stiffness from both subjects

is the cause for the change in the object trajectory. In addition, the robot admittance

controller proposed aims to replicate the same patterns (eq. (5.3), (5.4)). Therefore,

the system in fig. 5.1 needs to be verified analytically for its effects on the object

trajectory, which is done in the remainder of this section.

It is hard to simulate perfectly the human natural behavior analytically, but

with the purpose of a qualitative analysis, the human force, Fh(t) is considered here

to be based on the role factor α(t). The definition of α(t) used in this work (eq.

5.2) states that α(t) is proportional to the ICC around the wrist joint. Moreover,

from the discussion in chapters 3 and 4 it is considered that the ICC is an image of

the actual joint and human endpoint stiffness. Therefore, it is possible to estimate

the human endpoint stiffness Kh ∈ R3×3 using a maximum value for the stiffness

Kh0 ∈ R3×3, and α(t):

Kh(t) = α(t)Kh0 (5.14)

Furthermore, assuming that every human agent has its own desired trajectory

for manipulation tasks, the force that the human applies at the robot EEF is similar

to a spring with an equilibrium point at the human desired trajectory:

Fh(t) = −Kh(t)eh(t) (5.15)

Substituting eq. 5.15 into 5.8, i.e:

Λdër(t) +Dd(t)ėr(t) +Kd(t)er(t) = −Kheh(t) (5.16)

In the remainder of this section, with the sole purpose of enabling a simple

verification at the boundary conditions of the role switching (total leader, and total

follower), α is considered to be constant. With the role factor constant it is possible

to apply the Laplace transform at (5.16):
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s2Λd(Xe −Xr) + sDd(Xe −Xr) +Kd(Xe −Xr) = −KHXh (5.17)

Then, isolating Xe:

Xe = (s2Λd + sDd +Kd +Kh)
−1 ((s2Λd + sDd +Kd)Xr +KhXh

)
(5.18)

Finally, the EEF position can be verified for two conditions: α = 0 (robot as

total leader); and α = 1 (robot as total follower).

• if α = 0

Substituting (5.14) and ((5.10)):

Xe = (s2Λd + sDd +Kd0 +Kd1)
−1 ((s2Λd + sDd +Kd0 +Kd1)Xr

)
(5.19)

implies that when α = 0 the EEF position depends only on the robot desired

trajectory.

• if α = 1

Substituting (5.14) and ((5.10)):

Xe = (s2Λd + sDd +Kd1 +Kh)
−1 ((s2Λd + sDd +Kd1)Xr +Kh0Xh

)
(5.20)

which implies that if the stiffness terms generate the highest forces in the system

(5.16), and Kd1 defines a small stiffness value (which are usually reasonable condi-

tions), the term in (5.20) associated with Xh has a much higher value than the term

associated with Xr. This means, that when α = 1 the EEF position depends mostly

on the human desired trajectory.

5.3 Stability Analysis

The impedance model (with only one equilibrium point) in eq. (5.16), is guaranteed

to be globally asymptotically stable only if the desired stiffness, apparent inertia,

and damping matrices are constant, symmetrical, and positive definite. However,

in this chapter a varying desired stiffness profile was proposed, so other stability

conditions for the system in eq. (5.16) must be found.

In Kronander and Billard (2016), the authors proposed a method to verify stabil-

ity of mechanical impedance relationships with varying stiffness and damping which

is based on the following theorem:
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Theorem 1 (Stability Conditions Under Dynamic Decoupling). Let Λd be a con-

stant, symmetric, and positive definite matrix, and Kd(t), Dd(t) be symmetric, posi-

tive definite, and continuously differentiable varying stiffness and damping profiles.

Then, given Fe = 0, the system in eq. (2.66) with varying stiffness and damping

profiles is globally asymptotically stable if there exists a γ ∈ R+, such that ∀t ≥ 0:

1. γΛd −Dd(t) is negative definite;

2. K̇d(t) + γḊd(t)− 2γKd(t) is negative definite

The proof for theorem 1 is given in appendix E.

The method in Kronander and Billard (2016) considers that the varying stiffness

and damping profiles with respect to time are known a priori, which is not the case

for this work since α(t) depends on icc(t), that is a signal that depends exclusively

on the human agent. So, here, the stability conditions are verified during a HR

simulation for 2 different impedance profiles: varying stiffness (5.10); and varying

stiffness and damping (5.10),(5.11).

5.3.1 Varying Stiffness

If only the desired stiffness profile varies with time the global asymptotic stability

conditions that need to be verified turn into:

γΛd −Dd < 0 (5.21)

K̇d(t)− 2γKd(t) < 0 (5.22)

Then, a value of γ that complies with the condition (5.21) ∀t ≥ 0 may be chosen

as:

γ = min

(
λmin(Dd)

λMAX(Λd)

)
− 1 (5.23)

where λmin(·), λMAX(·) are the minimum and maximum eigenvalue operators respec-

tively.

5.3.2 Varying Stiffness and Damping

If both the desired stiffness and damping have varying profiles, to comply with the

proposed varying damping profile in (5.11), the stability conditions can be rewritten

as:
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γΛd −Dd < 0 (5.24)

k̇y(t)

(
1 +

γmd√
kymd

)
− 2γky < 0 (5.25)

such that Kd(t) = kyI3. Note that for this case the γ is chosen as in (5.23).

5.4 Human-Robot Simulation

A human-robot simulation partly inspired in the work in Li et al. (2015a) is devised

in which a HR contact at a planar robot EEF is expected, and the robot trajectory,

xr(t), and the human trajectory, xh(t) diverge in certain periods. Moreover, both

trajectories are known a priori. This emulates situations when the robot is executing

a task, but it is not fully aware of its environment and possible obstacles. In this

scenario, the human partner would allow the robot to take the leadership of the

task while the robot desired trajectory is correct in the eyes of the human, but

as soon as the robot desired trajectory becomes problematic for any reason (poor

trajectory execution, sudden appearance of obstacles, etc.) the human partner takes

the leadership of the task by increasing his/her arm endpoint stiffness.

Firstly, a generic planar 3R robot is kinematically simulated under 4 conditions

for α(t): α = 0; α = 1, α = 0.5, and α(t) is adaptive, simulating human motor

behavior. For the adaptive α condition, two impedance profiles are simulated: vary-

ing stiffness, and varying stiffness and damping. Those conditions with constant α

are supposed to give qualitative insight about the controller, and verify the results

obtained analytically in the section 5.2. Afterwards, a dynamic simulation of a 7

DoF robot is done under the adaptive α condition.

5.4.1 Planar 3R Robot

In this case, the robot used is a planar robot with 3 revolution joints (fig. 5.2)

described by the DH parameters in table 5.1. It is noted that with only the DH

parameters of a robot, it is possible to calculate its forward kinematics (Siciliano

et al., 2008).

Desired Trajectories

Similarly to (Li et al., 2015a), the robot trajectory is a circular trajectory in the

~xb, ~yb plane of the orthogonal frame Fb placed at the robot base, and it is given by:
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Figure 5.2: Planar robot with 3 revolution joints simulated using the Matlab robotics
toolbox (Corke, 2011)

Link i θi di ai αi

1 θ1 0 0.5 0
2 θ2 0 0.5 0
3 θ3 0 0.5 0

Table 5.1: DH parameters for planar robot

xr(t) =

[
0.1 cos(ω0t+ π/2)

0.4 + 0.1 sin(ω0t)

]
(5.26)

where ω0 = 2π
10

, and the robot trajectory period is 10 s. Meanwhile, the human

desired trajectory is given by:

xh(t) =



xr(t), t < 1.25

(t− 1.25)p2−p1
1.25

+ p1, 1.25 ≤ t < 2.5

(t− 2.5)p3−p2
1.25

+ p2, 2.5 ≤ t < 3.75

(t− 3.75)p4−p3
2.5

+ p3, 3.75 ≤ t < 6.25

xr(t), 6.25 ≤ t < 10

(5.27)

where p1 = xr(1.25), p2 = [−0.15; 0.4]>, p3 = xr(3.75), and p4 = xr(6.25) are fixed

reference points. And the human trajectory ends at the same time as the robot

trajectory. Both trajectories can be seen in fig. 5.3.

Human Stiffness

In this simulation, the human force is once again assumed to correspond to eq.

(5.15), and the closed-loop impedance model is given by eq. (5.16). In addition,
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Figure 5.3: Human and robot desired trajectories

Authors Kh min (N/m) Kh max (N/m)

Tsumugiwa et al. (2002) 0 2400
Duchaine and Gosselin (2008) 1871 5587
Campeau-Lecours et al. (2016) - 550

Ott et al. (2010) 10 3200
Ficuciello et al. (2015) - 200

Table 5.2: Human endpoint stiffness values, estimated, or measured in literature

based on the average of the impedance values for the human endpoint stiffness found

in literature (table 5.2), a value for the maximum arm endpoint stiffness is defined

as:

Kh0 = 2000I2 (N/m) (5.28)

where I2 ∈ R2×2 is the identity matrix.

Kinematic Controller Parameter

The kinematic controller used by the robot (2.53) has the gain Kp:

Kp = 50I2 (5.29)

Controller Parameters for Varying Stiffness

The robot desired stiffness was defined so that the robot complies with the stability

condition in (5.22), and to obtain fast and precise tracking of xh(t):

Kd =

[
kx 0

0 ky

]
= 1000I2(1− α(t)) + 10I2 (5.30)
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The following desired apparent inertia, and damping matrices are also chosen in

such a way that it satisfies the stability condition (5.22) :

Λd = 2I2
(
Ns2/m

)
(5.31)

Dd =

[
dx 0

0 dy

]
= 32I2 (Ns/m) (5.32)

With these parameters, considering that kx = ky, the constant damping ratio, ζ

is given by:

ζ =
dy

2
√
kymd

(5.33)

and ζ varies from ζ = 0.32 (α = 0) to ζ = 3.58 (α = 1), which means that the

desired impedance is underdamped for low human stiffness, and overdamped for

high human stiffness.

Varying Stiffness

For the fixed α conditions, the varying stiffness profile is used, and for the adaptive

α condition both profiles are used: varying stiffness (varying ζ); and varying stiffness

and damping (constant ζ=1). In the latter case, the alpha is adapted through a

simulated icc(t) activated by a sigmoid function. The results are shown below.

• Fixed α:

First, the qualitative analysis is verified by simulating the experiment with 3

different fixed values for α: α = 0, α = 0.5, and α = 1.0

For α = 0, it can be seen on fig. 5.4 that the EEF almost perfectly follows the

robot desired trajectory.

For α = 1, it can be seen on fig. 5.5 that the EEF follows the human desired

trajectory very closely (as expected from eq. 5.6). The trajectory discontinuities

generate some oscillations slightly perceived at the EEF position and trajectory

error as well.

For α = 0.5, it can be seen on fig. 5.6 that the EEF trajectory is now between

the human desired trajectory and the robot desired trajectory. Such behavior highly

resembles the mixture of the desired trajectories from the HH dyad experiments

when the dyad was asked to behave as naturally as possible.

• Adaptive α with varying stiffness profile:
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(a) Trajectories on the plane (b) Norm of the errors associated with the
robot and human desired Trajectories

Figure 5.4: EEF position for α = 0

(a) Trajectories on the plane (b) Norm of the errors associated with the
robot and human desired Trajectories

Figure 5.5: EEF position for α = 1

(a) Trajectories on the plane (b) Norm of the errors associated with the
robot and human desired Trajectories

Figure 5.6: EEF position for α = 0.5
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Figure 5.7: Variation of α(t), icc(t) during the adaptive alpha simulation

(a) Trajectories on the plane (b) Norm of the errors associated with the
robot and human desired Trajectories

Figure 5.8: EEF position for adaptive α with varying stiffness

When α is adaptive, the icc(t) signal also has to be simulated. For that matter,

a sigmoid function that depends on ||eh(t)|| is used:

icc(t) =
(iccMAX − iccmin)

1 + exp(−(600 ||eh(t)||)− 6)
+ iccmin (5.34)

It is noted, however, that this model is used here solely for the purpose of

verifying the feasibility of the proposed admittance controller for dyadic HR co-

manipulation.

When varying only the stiffness (5.10), in fig. 5.7, we can see the activation of

the icc(t) signal, and its correspondence to the role factor α(t). While the icc(t)

is smoothly being activated, the robot EEF smoothly moves from robot desired

trajectory to human desired trajectory (fig. 5.8).

Then, it is verified that the condition for global asymptotic stability (5.22) is

also met by looking at fig. 5.9. Note that only ky is plotted, since kx = ky for this

simulation.
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Figure 5.9: Stability condition during adaptive α simulation with varying stiffness

(a) Trajectories on the plane (b) Norm of the errors associated with the
robot and human desired Trajectories

Figure 5.10: EEF position for adaptive α with varying stiffness and damping

In the simulation shown in fig. 5.8, since the role factor α(t) depends on the

human desired trajectory there is a larger error when the robot leaves the point p3

until the α(t) smoothly reaches the full activation, but in spite of that, the stability

conditions are still met in great part due to the smooth adaptation of the role factor.

• Adaptive α with varying stiffness and damping profiles:

For the varying stiffness and damping profile that uses (5.10), and (5.11), the

stiffness profile is modified in order to comply with the stability condition (5.25),

i.e.:

Kd =

[
kx 0

0 ky

]
= 1000I2(1− α(t)) + 100I2 (5.35)

and since the damping profile is the critical damping, the constant damping ratio

will be ζ = 1,∀α. In addition, the desired inertia is the same as in (5.31).

When varying both the stiffness (5.10), and damping (5.11), in order to maintain

the damping ratio ζ = 1, the robot trajectory (fig. 5.10a) is similar to the trajectory
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Figure 5.11: Stability condition during adaptive α with varying stiffness and damp-
ing

when the desired damping is fixed. However, it is possible to see a slight increase in

the error norms when the human and robot desired trajectories diverge (fig. 5.10b).

The stability condition (5.25) is also verified graphically in the fig. 5.11.
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(a) Robot being simulated in ROS/Gazebo (b) Real robot

Figure 5.12: Baxter robot

5.4.2 Baxter Robot

To further evaluate the variation stiffness profile proposed by (5.10), a similar sim-

ulation to the one in the previous section is done, but now with the Baxter robot

(Rethink Robotics) in the manufacturer’s simulation environment that also takes

into account the Baxter robot dynamics (5.7). In addition, an experiment with the

real robot with virtual human forces is also executed.

Baxter Description

The Baxter robot has 7 DoF per arm. Each arm has torque, velocity, and position

sensors for each joint. In this work, only the left arm of the robot is used. Fur-

thermore, the manufacturer provides software for the robot simulation (fig. 5.12)

alongside the open-source Robot Operating System (ROS) (Quigley et al., 2009),

and the physics simulator Gazebo (Koenig and Howard, 2004).

5.4.3 Desired Trajectories

For this simulation, the desired trajectories are redefined so that the kinematic

controller (5.13) does not require to get close to the Baxter singularity configurations,
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or to its joint limits, i.e.:

xr(t) =

 0.7 + 0.05 cos(ω0t)

0.25 + 0.05 sin(ω0t)

0.15

 (5.36)

where ω0 = 2π
30

, and the robot trajectory period is 30 s. Meanwhile, the human

desired trajectory is given by:

xh(t) =



xr(t), t < 3.75

(t− 3.75)p2−p1
3.75

+ p1, 3.75 ≤ t < 7.5

(t− 7.5)p3−p2
3.75

+ p2, 7.5 ≤ t < 11.25

(t− 11.25)p4−p3
7.5

+ p3, 11.25 ≤ t < 18.75

xr(t), 18.75 ≤ t < 30

(5.37)

where p1 = xr(3.75), p2 = [0.7; 0.325; 0.15]>, p3 = xr(11.25), and p4 = xr(18.75) are

fixed reference points. And as in the last simulation the human trajectory ends at

the same time as the robot trajectory.

5.4.4 ICC simulation

Since the desired trajectories are redefined, the ICC definition is also redefined to

produce high levels of activation in the appropriate periods of time:

icc(t) =
(iccMAX − iccmin)

1 + exp(−(2000 ||eh(t)||)− 6)
+ iccmin (5.38)

5.4.5 Simulation Parameters

The Kinematic control parameter is given by Kp = 50I3.

The maximum human stiffness is Kh0 = 400I3, which is also within the limits of

human arm stiffness values in table 5.2.

5.4.6 Varying Stiffness Profile

For the varying stiffness profile, the desired admittance parameters are initially

defined as: Λd = 6I3; Dd = 200I3; Kd0 = 800I3;Kd1 = 10I3. These parameters lead

to the desired damping ratio varying from ζ = 1.48 (α = 0) to ζ = 12.91 (α = 1).

Therefore, with this choice of Dd the desired impedance is overdamped for the entire

simulation. In another simulation, the damping is fixed at Dd = 139.43 in order for
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(a) Role factor variation with Dd = 200I2 (b) Role factor variation with Dd = 139.43I2

(c) Human, and robot position error norms
with Dd = 200I2

(d) Human, and robot position error norms
with Dd = 139.43I2

(e) Trajectories with Dd = 200I2. (f) Trajectories with Dd = 139.43I2.

Figure 5.13: HR simulation with Baxter robot with varying stiffness profile and
fixed damping

the desired impedance to have ζ = 1 when α = 0. For this configuration, ζ = 9

when α = 1.

The role factor variation in time is not smooth (fig. 5.13a, and 5.13b), as both

simulations suffer from noise throughout the entire execution inside Gazebo which

takes into account the robot dynamic equation of motion. This causes some noise in

the human desired trajectory tracking, but most of all, the human desired trajectory
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error, eh, (5.13c, and 5.13d) shows that when xh, and xr diverge, xe does not track

xh at any period of time (fig. 5.13e and 5.13f).

5.4.7 Varying Stiffness and Damping Profiles

For the varying stiffness and damping profile the desired admittance parameters are

Λd = 6I3; Kd0 = 800I3;Kd1 = 10I3, and the damping is given by :

Dd = 3
√
kymd (5.39)

which guarantees the overdamped desired damping ratio ζ = 1.5 throughout the

simulation.

In this simulation, the role factor variation is once again not smooth (fig. 5.14a),

and it is similar to the variation from the last section. However, with the varying

desired critical damping, more accentuated oscillations appeared both in the error

norms (fig. 5.10b), and in the robot trajectory (fig. 5.14c).

5.4.8 Robot Experiment with Virtual Force

This time, a real Baxter robot is used instead of a simulation inside Gazebo.

However, a virtual human force is still used. The kinematic controller parame-

ter is now set as Kp = 2000; the human stiffness parameter Kh0 = 250 while the

desired admittance parameters are initially defined as: Λd = 6I3; Dd = 200I3;

Kd0 = 800I3;Kd1 = 100I3, and result in a ζ variation from ζ = 1.44 to ζ = 4.08,

therefore, always a desired overdamped impedance (to decrease oscillations). In the

first experiment, only the desired varying stiffness is used (fig. 5.15e), this results

in a similar behavior to the one from fig. 5.13e.

For the second experiment the varying stiffness and damping profile is used, in

which the desired damping is defined here as:

Dd = 3
√
kymd (5.40)

Note, that this time, the varying desired damping results in an overdamped,

instead of a critical ζ, to try to decrease oscillations further at the EEF. However,

in order to obtain fewer oscillations (fig. 5.15f), the stiffness for α = 1 had to be

increased to Kd1 = 200.
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(a) Role factor variation

(b) Human, and robot position error norms

(c) Trajectories

Figure 5.14: HR simulation with Baxter robot with varying stiffness and damping
profiles
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(a) α with fixed Dd (b) α with varying Dd

(c) Error norms with fixed Dd (d) Error norms with varying Dd

(e) Trajectory with fixed Dd (f) Trajectory with varying Dd

Figure 5.15: Baxter experiment results
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5.4.9 Discussion

The simulation results for the planar 3R robot behavior as a total leader or follower

(α = 0, or α = 1), the norm of the human error, eh, and of the robot error er were

correctly predicted by the eq.’s (5.19) and (5.20). Furthermore, the mid value of

α = 0.5 also generated an object trajectory that was in between xr and xh. Those

results corroborate that the proposed controller is not only able to assign roles by

just varying the desired stiffness, but it is also able to generate similar trajectory

patterns as seen on the HH dyads acting naturally in the dyad experiment of chapter

4.

Furthermore, in the simulations with fixed desired damping there is a variation

of the damping ratio ζ, in such a way that the desired impedance goes from un-

derdamped to overdamped with the variation of α. This can generate acceptable

results (as shown in the simulations) even if oscillations appear when the robot is

a follower, because the human stiffness increases when oscillations appear, and this

is exactly one of the situations in which the robot should start behaving as a fol-

lower which for this case implies the overdamped desired impedance, resulting in

less oscillations.

In the simulation with an online adaptation of α(t), other issues came to light

when α was transitioning from total leader to total follower and vice-versa. The

control strategy may present problems for the stability conditions depending on

how quickly the human deactivates the role factor α(t). This is a concern especially

when the human and robot desired trajectories overlap in just a few points in a

neighborhood, like around the point p3 in fig. 5.8, where both trajectories overlapped

only at p3.

In a real HR dyadic co-manipulation the human agent could have suddenly de-

creased his/her ICC in order to better track its own desired trajectory, which would

have resulted in very high values for k̇y, and possibly created instability for the

system. On the other hand, sudden ICC increases would quickly decrease the robot

stiffness, which would not generate instability according to (5.22), and would quickly

give the task leadership to the human agent.

Moreover, both impedance profiles, varying stiffness; and varying stiffness and

damping profiles, once they are validated by the stability conditions, they show

very similar trajectory results, even though in the latter case ζ = 1 and the desired

damping is critical.

The simulation executed with the Baxter robot in the Gazebo physics engine,

presented noisy values of α due to its definition based on the norm of eh (5.38).

Because of the noisy α, the robot never constantly reached the role of total follower,

therefore, whenever xr, and xh diverged, eh was never null. Furthermore, The noisy
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α also implies that theorem 1 can not be applied, as the smoothness of the time-

varying stiffness profile is a requisite. In spite of the noisy role adaptation, the

overdamped desired impedance was able to reduce the number of oscillations when

Dd was fixed (fig. 5.13). However, when Dd was a function of the critical damping

(fig. 5.14), the damping would decrease enough to produce oscillations as α started

approaching the total follower behavior.

In the real robot experiment with virtual human force, the kinematic controller

parameter Kp had to be increased in order for the robot to properly track the desired

trajectories from the admittance control. The trajectory execution was not as good

as in the previous simulations, but it was well within the 5 mm precision advertised

by the robot manufacturer.

For the robot experiment, both the fixed damping and varying damping profiles

resulted in similar trajectories to the one in fig. 5.13. Note that for the varying

damping profile this was only possible due to the increase in the minimum value of

stiffness, Kd1. This strategy is exactly the same as the one validated by the stability

conditions in the planar 3R robot simulation.

5.5 Conclusions

The admittance controller proposed in this chapter provides a way to continuously

change the desired stiffness at the robot EEF while maintaining stability conditions

given a smooth variation in a scalar role factor. The change in desired stiffness

affects the robot trajectory, and effectively interpolates the robot desired trajectory

and the human desired trajectory, providing leadership of the task to the human

or the robot. However, this control strategy depends highly on the choice of the

role factor α adaptation to have more efficient role switching, and therefore, better

human desired trajectory tracking.

In addition, as it was verified in the Baxter robot simulations and experiment,

noisy values of α that cause noisy stiffness adaptation and thus noisy trajectories

can be compensated by increasing the desired apparent inertia and desired damping

matrices (Dimeas and Aspragathos, 2016).
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Chapter 6

Discussion and Conclusions

6.1 Summary

In recent years, human-robot collaboration (HRC) has been a very active topic in

the academic research community. This is mainly due to the fact that robots and

humans may generally provide complementary skills to task execution. The robots

may provide high power generation, and excellence at repetitive tasks, while the

humans may provide learning capabilities and superior environment awareness.

When designing a HRC, the most important aspects are related to the robot’s

human partner: His/her comfort; ergonomic aspects of the task; how the robot

and the human intercommunicate; and most importantly, the safety of the human

partner. With those aspects in mind, the focus of this work was to develop a

robot controller that would enable a robot not only to follow, but also to lead the

co-manipulation of a shared object alongside its human partner. But in order to

design such a controller, it was necessary to know exactly what are the requisites

for a human-robot (HR) dyadic co-manipulation. To solve this issue, the approach

used in this work was to study how a human-human (HH) dyad behaves in the

face of different leadership assignments for each human partner, and then apply the

knowledge obtained to propose a novel controller.

The study done on humans consisted of two experiments, one where a HH dyad

co-manipulates an object around obstacles, and another where a single participant

does the same. Surface EMG sensors were used along with a motion capture sys-

tem, and custom contact sensors to provide data regarding the arm stiffness of the

humans, the object trajectory and a performance criteria for both dyads and single

participants.

The study on HH dyad behavior suggests that humans modulate their own arm

endpoint stiffness in order to negotiate roles of leadership. The changes in the ob-

ject trajectory are likely to be strongly related to the changes in the human agents’
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stiffness. Moreover, the study also indicated that every agent in a certain position

in a dyad has its own desired trajectory for the shared object, which it tries to track

closely when assigned the role of a leader. The assumption that every agent has its

own desired trajectory was further reinforced by the manipulation experiment with

a single human. In addition to the stiffness/trajectory discussion, the performance

criteria revealed that HH dyads performed better than single participants at execut-

ing the manipulation task, this a very important result that may imply that both

humans in the HH dyad modulate their stiffness and trajectory while cooperatively

optimizing for a better trajectory.

Experiments of this kind, with HH dyads and few position restrictions, to the

best of the author’s knowledge have not been extensively executed or analyzed, and

possess a great potential not only to the human motor behavior community, but

also to the robotics community.

The execution of those experiments presented many challenges, one of which

was to develop software that could encapsulate all the necessary procedures for

the use of surface EMG in a HRC. The developed software is now made available

as open-source in https://www.github.com/inria-larsen/emg-processing. It

is expected to be continuously improved in the future, and to be helpful for the

academic community.

With the human motor behavior results in hand, a novel adaptive admittance

controller was proposed. The controller aimed to emulate the same behavior of hu-

mans by modulating a desired robot stiffness in a HR dyad based on a single scalar

role factor that depends on the human stiffness. The influence of the controller

for different desired behaviors was predicted and validated through numerical sim-

ulations. Moreover, stability conditions for the desired stiffness variation were also

found. The results from simulation are very promising since the effect on the object

trajectory in the HH dyad experiment was observed in the HR simulation as well,

especially the interpolations of desired trajectories for middle value stiffnesses.

The proposed controller, however, has some limitations. It expects the ICC

signal from the human arm to be always smooth, which may not be the case in a

real HR dyad experiment even if the ICC signal is processed in a more sophisticated

form than it was processed in this work. And it also does not account for directional

variations of stiffness, since when it changes the robot desired stiffness it always

changes the stiffness in every direction.

6.2 Future Work Perspective

Despite the very good indications given by the HH dyad and the single human

manipulation experiments, their results need to be further validated through a more
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intricate statistical analysis. For this, more trials of each experiment may have to

be done.

Furthermore, the HH co-manipulation experiment still has potential to offer more

insight into the human natural behavior. In Sabes and Jordan (1997) for instance,

the authors investigated the human planning for hand reaching movements while

avoiding obstacles, and associated the hand trajectory with kinematic metrics like

the velocity manipulability of the arm, and other metrics that took into account the

inertia of the human arm. This type of study may be extended to HH dyads. One

way of doing it would be to calculate the manipulability of the entire dyad after

modeling them as a closed kinematic chain formed by two open chain manipulators,

which are restricted by each other (Freitas et al., 2011). Manipulability is of partic-

ular interest because it is associated with more comfort, and finer arm control for

humans acting alone, and as partners in a HR dyad (Gopinathan et al., 2017).

Another possibility already hinted in recent related works (Grafakos et al., 2016;

Peternel et al., 2017) is to use the motion capture data alongside the ICC data for

every human joint to obtain human arm endpoint stiffness in the operational space

(for every direction). This study could even help to verify the findings from Mojta-

hedi et al. (2017) which state the existence of the haptic communication of motion

intentions between humans during a co-manipulation task through the directional

modulation of stiffness.

This could result in a readily augmentation of the proposed admittance con-

troller, that could then feature a directional stiffness adaptation to both improve

the desired trajectory tracking, and to communicate the robot intention of motion

(legibility) more effectively to the human agent, hopefully improving the intuitive-

ness of the task as well. Furthermore, as presented in chapter 1, a secondary goal

such as maximization of velocity manipulability, may be used in the internal kine-

matic controller of the admittance controller proposed here. It is also possible to

control the robot with a quadratic program (QP) (Bouyarmane and Kheddar, 2011)

or other optimization based controller (Spyrakos-Papastavridis et al., 2018) in order

to optimize for many different restrictions, and secondary goals, like the decoupling

of apparent inertia in Ficuciello et al. (2015), while maintaining a desired admittance

behavior.

Many control problems and design requirements are formulated with linear ma-

trix inequalities (LMI) in such a way that the control problem may be solved by

optimization techniques (Boyd et al., 1994). Since the stability conditions in (5.21)

and (5.22) also form a LMI, instead of defining desired impedance terms by trial

and error, it could be possible to apply LMI solving techniques in order to obtain

the desired impedance terms for the admittance controller.

The natural next step into the advance of the role factor adaptive admittance
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controller is to test it in a real HR experiment. This has the potential to showcase

issues, and suggest straightforward ideas for further development of the controller.

In addition, it is worth mentioning that the approach used here was to build a

solid fundamental block with novel human motor behavior knowledge in which a

new robot controller could be efficiently developed. Naturally, the more is known

about the HH dyad behavior, the more control goals may be included in the robot

control strategy. But this is not necessarily a one way direction. The results from

controllers that mimic human motor behavior can be used to simulate human motor

control and learning, which has the potential to help understanding human motor

behavior as well. This is what Yang et al. (2011) called a virtuous human–machine

motor learning cycle.
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Peternel, L., Babič, J., 2013, “Learning of compliant human–robot interaction using

full-body haptic interface”, Advanced Robotics, v. 27, n. 13, pp. 1003–1012.

doi: 10.1080/01691864.2013.808305.

Punnett, L., Wegman, D. H., 2004, “Work-related musculoskeletal disor-

ders: the epidemiologic evidence and the debate”, Journal of Elec-

tromyography and Kinesiology, v. 14, n. 1, pp. 13 – 23. ISSN:

1050-6411. Available at: <http://www.sciencedirect.com/science/

article/pii/S1050641103001251>.

Quigley, M., Conley, K., Gerkey, B. P., et al., 2009, “ROS: an open-source Robot

Operating System”. In: ICRA Workshop on Open Source Software.

88

http://www.sciencedirect.com/science/article/pii/S1050641103001251
http://www.sciencedirect.com/science/article/pii/S1050641103001251


Reed, K. B., 2012, “Cooperative Physical Human-Human and Human-Robot In-

teraction”. In: Peer, A., Giachritsis, C. D. (Eds.), Immersive Multimodal

Interactive Presence, pp. 105–127, London, Springer London. ISBN: 978-

1-4471-2754-3. doi: 10.1007/978-1-4471-2754-3 7.

Rozo, L., Calinon, S., Caldwell, D. G., 2014, “Learning force and position con-

straints in human-robot cooperative transportation”. In: The 23rd IEEE

International Symposium on Robot and Human Interactive Communica-

tion, pp. 619–624, Aug. doi: 10.1109/ROMAN.2014.6926321.

Sabes, P. N., Jordan, M. I., 1997, “Obstacle Avoidance and a Perturbation Sensi-

tivity Model for Motor Planning”, Journal of Neuroscience, v. 17, n. 18,

pp. 7119–7128. ISSN: 0270-6474. doi: 10.1523/JNEUROSCI.17-18-07119.

1997. Available at: <http://www.jneurosci.org/content/17/18/

7119>.

Santis, A. D., Siciliano, B., Luca, A. D., et al., 2008, “An atlas of physi-

cal human–robot interaction”, Mechanism and Machine Theory, v. 43,

n. 3, pp. 253 – 270. ISSN: 0094-114X. doi: https://doi.org/10.1016/j.

mechmachtheory.2007.03.003.

Siciliano, B., Khatib, O., 2016, Springer Handbook of Robotics. 2nd ed. Ger-

many, Springer Publishing Company, Incorporated. ISBN: 3319325507,

9783319325507.

Siciliano, B., Sciavicco, L., Villani, L., et al., 2008, Robotics: Modelling, Plan-

ning and Control. Springer Publishing Company, Incorporated. ISBN:

1846286417, 9781846286414.

Slotine, J.-J. E., Li, W., 1991, Applied nonlinear control. Upper Saddle River, NJ,

Pearson.

Spong, M., Hutchinson, S., Vidyasagar, M., 2005, Robot Modeling and Control.

Wiley. ISBN: 9780471649908.

Spyrakos-Papastavridis, E., Kashiri, N., Childs, P. R., et al., 2018, “On-

line impedance regulation techniques for compliant humanoid balanc-

ing”, Robotics and Autonomous Systems, v. 104, pp. 85 – 98. ISSN:

0921-8890. doi: https://doi.org/10.1016/j.robot.2018.03.001. Avail-

able at: <http://www.sciencedirect.com/science/article/pii/

S0921889017306176>.

89

http://www.jneurosci.org/content/17/18/7119
http://www.jneurosci.org/content/17/18/7119
http://www.sciencedirect.com/science/article/pii/S0921889017306176
http://www.sciencedirect.com/science/article/pii/S0921889017306176


Stegeman, D., Hermens, H., 2007, “Standards for suface electromyography: The

European project Surface EMG for non-invasive assessment of mus-

cles (SENIAM)”, (01). Available at: <https://www.med.uni-jena.de/

motorik/pdf/stegeman.pdf>. Accessed: 21-02-2018.

Stulp, F., Grizou, J., Busch, B., et al., 2015, “Facilitating intention prediction for

humans by optimizing robot motions”. In: 2015 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pp. 1249–1255,

Sept. doi: 10.1109/IROS.2015.7353529.

Takagi, A., Ganesh, G., Yoshioka, T., et al., 2017, “Physically interacting indi-

viduals estimate the partner’s goal to enhance their movements”, Nature

Human Behaviour.

Thoroughman, K. A., Shadmehr, R., 1999, “Electromyographic Correlates of

Learning an Internal Model of Reaching Movements”, Journal of Neu-

roscience, v. 19, n. 19, pp. 8573–8588. ISSN: 0270-6474. doi: 10.1523/

JNEUROSCI.19-19-08573.1999.

Tomasello, M., 2009, Why We Cooperate. Boston review book. MIT Press. ISBN:

9780262013598.

Townsend, E. C., Mielke, E. A., Wingate, D., et al., 2017, “Estimating Human In-

tent for Physical Human-Robot Co-Manipulation”, ArXiv e-prints, (may).

Tsumugiwa, T., Yokogawa, R., Hara, K., 2002, “Variable impedance control based

on estimation of human arm stiffness for human-robot cooperative cal-

ligraphic task”. In: Proceedings 2002 IEEE International Conference on

Robotics and Automation (Cat. No.02CH37292), v. 1, pp. 644–650 vol.1.

doi: 10.1109/ROBOT.2002.1013431.

van der Wel, R. P. R. D., Knoblich, G., Sebanz, N., 2011, “Let the force be with us:

Dyads exploit haptic coupling for coordination.” Journal of Experimental

Psychology: Human Perception and Performance, v. 37, n. 5, pp. 1420–

1431. doi: 10.1037/a0022337.

Vanderborght, B., Albu-Schaeffer, A., Bicchi, A., et al., 2013, “Variable impedance

actuators: A review”, Robotics and Autonomous Systems, v. 61, n. 12,

pp. 1601 – 1614. doi: https://doi.org/10.1016/j.robot.2013.06.009.

Wen, J. T. Y., Kreutz-Delgado, K., 1991, “The attitude control problem”, IEEE

Transactions on Automatic Control, v. 36, n. 10 (Oct), pp. 1148–1162.

ISSN: 0018-9286. doi: 10.1109/9.90228.

90

https://www.med.uni-jena.de/motorik/pdf/stegeman.pdf
https://www.med.uni-jena.de/motorik/pdf/stegeman.pdf


Whitsell, B., Artemiadis, P., 2017, “Physical Human-Robot Interaction (pHRI) in

6 DOF With Asymmetric Cooperation”, IEEE Access, v. 5, pp. 10834–

10845. ISSN: 2169-3536. doi: 10.1109/ACCESS.2017.2708658.

Yang, C., Ganesh, G., Haddadin, S., et al., 2011, “Human-Like Adaptation of Force

and Impedance in Stable and Unstable Interactions”, IEEE Transactions

on Robotics, v. 27, n. 5 (Oct), pp. 918–930. ISSN: 1552-3098. doi: 10.

1109/TRO.2011.2158251.

Yoshikawa, T., 1985, “Manipulability of Robotic Mechanisms”, The Interna-

tional Journal of Robotics Research, v. 4, n. 2, pp. 3–9. doi: 10.1177/

027836498500400201.

Zhou, A., Hadfield-Menell, D., Nagabandi, A., et al., 2017, “Expressive Robot Mo-

tion Timing”. In: Proceedings of the 2017 ACM/IEEE International Con-

ference on Human-Robot Interaction, HRI ’17, pp. 22–31, New York, NY,

USA. ACM. ISBN: 978-1-4503-4336-7. doi: 10.1145/2909824.3020221.

91



Appendix A

Human-Human Dyad

Co-Manipulation Experiment -

ICC

Figures A.1,A.2, A.3 display all the ICC signals acquired from 7 dyads during the

HH dyad experiment described in detail in chapter 4.
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(a) Subject 1 in dyad 2. (b) Subject 2 in dyad 2.

(c) Subject 1 in dyad 3. (d) Subject 2 in dyad 3.

(e) Subject 1 in dyad 4. (f) Subject 2 in dyad 4.

Figure A.1: ICC acquired from forearm muscles relative to the wrist joint. Taken
from dyad 2 to dyad 4
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(a) Subject 1 in dyad 5. (b) Subject 2 in dyad 5.

(c) Subject 1 in dyad 6. (d) Subject 2 in dyad 6.

(e) Subject 1 in dyad 7. (f) Subject 2 in dyad 7.

Figure A.2: ICC acquired from forearm muscles relative to the wrist joint. Taken
from dyad 5 to dyad 7
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(a) Subject 1 in dyad 8. (b) Subject 2 in dyad 8.

Figure A.3: ICC acquired from forearm muscles relative to the wrist joint. Taken
from dyad 8
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Appendix B

Single Human Manipulation

Experiment - ICC

Figure B.1 displays all the ICC signals acquired from 6 participants during the single

human experiment described in detail in chapter 4.
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(a) Participant 1. (b) Participant 2.

(c) Participant 3. (d) Participant 4.

(e) Participant 5. (f) Participant 6.

Figure B.1: ICC acquired from a given participant
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Appendix C

Human-Human Dyad

Co-Manipulation Experiment -

Planar Trajectory

Figures C.1, C.2 displays all of the planar trajectories from the barycenter of the po-

sition of the hand markers acquired from every dyad during the HH dyad experiment

described in detail in chapter 4.
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(a) Subjects in dyad 2. (b) Subjects in dyad 3.

(c) Subjects in dyad 4. (d) Subjects in dyad 5.

(e) Subjects in dyad 6. (f) Subjects in dyad 7.

Figure C.1: Trajectory of the barycenter of the position of the hand markers from
both subjects in dyads 2 to 7.
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(a) Subjects in dyad 8.

Figure C.2: Trajectory of the barycenter of the position of the hand markers from
both subjects in dyad 8.
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Appendix D

Single Human Manipulation

Experiment - Planar Trajectory

Figure D.1 displays all of the planar trajectories from the barycenter of the posi-

tion of the hand markers acquired from every participant during the single human

experiment described in detail in chapter 4.
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(a) Participant 1. (b) Participant 2.

(c) Participant 3. (d) Participant 4.

(e) Participant 5. (f) Participant 6.

Figure D.1: Planar trajectory (X-Y) of the barycenter of the position of the hand
markers from a given participant in the single human experiment
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Appendix E

Stability in

Impedance/Admittance Control

The control objective of a impedance/admittance controller is to obtain a desired

dynamic relationship between a external wrench (force and torque) applied to the

robot EEF, and the EEF pose (position and orientation). Hereafter, it is considered

only the dynamic relationship between the external force and the EEF position.

The closed loop dynamic is defined by (see also 2.66):

Λdër +Ddėr +Kder = Fext (E.1)

where Λd ∈ R3×3 is the desired apparent inertia; Dd ∈ R3×3 is the desired damping;

and Kd ∈ R3×3 is the desired stiffness, and er(t) = xe(t) − xr(t). If Λd, Dd, Kd are

constant, symmetric, and positive definite, then (E.1) is stable by the Routh-Hurwitz

criteria.

E.1 Varying Desired Stiffness and Damping

If Kd(t) and Dd(t) are time-varying, the desired impedance is given by:

Λdër +Dd(t)ėr +Kd(t)er = Fext (E.2)

It is possible to try to verify the stability of (E.2) with the Lyapunov candidate

function V1:

2V1(er, ėr, t) = e>r Kd(t)er + ė>r Λdėr (E.3)

Then, deriving V1 with respect to time, along the solution of (E.2), and consid-
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ering Fext = 0:

V̇1 = −ė>r Ddėr +
1

2
e>r K̇d(t)er (E.4)

Therefore, V̇1 is only negative definite if K̇d also is. In addition, if er 6= 0, and

K̇d > 0, there is a potential energy injection into the system which could cause

unstable behavior (Kronander and Billard, 2016).

In Kronander and Billard (2016), the authors proposed the following Lyapunov

candidate function, V2:

2V2(er, ėr, t) = (ėr + γer)
>Λd(ėr + γer) + e>r β(t)er (E.5)

where γ ∈ R+, and β(t) ∈ R3×3 is symmetric and positive definite. V2 is then used

to verify the stability of eq. (E.2). And the derivative of V2(t) is given by:

V̇2 = (ėr + γer)
>ΛD(ër + γėr) + e>r β(t)ėr +

e>r β̇er
2

(E.6)

V̇2 = (ėr + γer)
>ΛDër + (ėr + γer)

>ΛDγėr + e>r β(t)ėr +
e>r β̇er

2
(E.7)

Substituting eq. (E.1) with Fe = 0 into eq. (E.7):

V̇2 = (ėr + γer)
>(−Dd(t)ėr −Kder)+

(ėr + γer)
>ΛDγėr + e>r β(t)ėr +

e>r β̇er
2

(E.8)

V̇2 = −ė>r Dd(t)ėr − ė>r Kd(t)er − e>r γDd(t)ėr − e>r γKd(t)er

+ ė>r Λdėr + e>r γ
2Λdėr + e>r β(t)ėr +

e>r β̇er
2

(E.9)

Rewriting and rearranging terms:

V̇2 = ė>r (−Dd(t) + γΛd)ėr + e>r (−Kd(t)γ +
β̇

2
)er

+ e>r (−Kd(t)− γDd(t) + γ2Λd + β(t))ėr (E.10)

In order to eliminate the cross-terms in eq. (E.10), β(t) is defined as:

β(t) := Kd(t) + γDd(t)− γ2Λd (E.11)

whose derivative is

β̇(t) = K̇d(t) + γḊd(t) (E.12)

104



Substituting β(t), β̇(t) into V̇2:

V̇2 = ė>r (−Dd(t) + γΛd)ėr + e>r

(
−Kd(t)γ +

K̇d(t)

2
+
Ḋd(t)γ

2

)
er (E.13)

Therefore, V̇2 is negative definite if, and only if:

−Dd(t) + γΛd < 0 (E.14)

−2γKd(t) + γḊd(t) + K̇d(t) < 0 (E.15)

which according to the Lyapunov’s stability theorem (Khalil, 2002) are also sufficient

conditions for the global asymptotic stability of the closed-loop impedance model

with varying desired stiffness and damping (E.2).
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