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ENGENHARIA (COPPE) DA UNIVERSIDADE FEDERAL DO RIO DE

JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A
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CONTROLE ÓTIMO DOS MODELOS DE DINÂMICAS DE MERCADO DE

VIDALE-WOLFE-DEAL E TRÊS POPULAÇÕES
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O propósito desta dissertação é estudar a resposta ótima dos modelos de venda-

publicidade em duopólios utilizando modernos software de otimização (JModel-

ica.org e JuMP). Especificamente, os modelos adotados foram Vidale-Wolfe-Deal

e Três Populações (um modelo do tipo Lotka-Volterra). As análises de duopólio são

divididas em duas partes: uma, que soluciona o problema de controle ótimo com o

objetivo de maximizar o lucro ĺıquido de ambas as empresas de uma só vez, referido

como cooperação simultânea, e outra, que coloca as duas empresas como oponentes

em um jogo sequencial, cada uma com o objetivo individual de maximizar o lucro

ĺıquido durante seu turno, referido como competição sequencial.

As contribuições da dissertação são: prover análise de estabilidade do modelo

Vidale-Wolfe-Deal mostrando que qualquer controle que atinja valores constantes

positivos leva a um equiĺıbrio estável das fatias de mercado, propor uma versão do

modelo de Três Populações para o duopólio, e, por fim, propor e solucionar um jogo

sequencial baseado em iterações de Ĺıder-Seguidor para o modelo Vidale-Wolfe-Deal.
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The purpose of this dissertation is to study the optimal response of sales-

advertising models for duopolies using modern optimization software (JModelica.org

and JuMP). Specifically, the models adopted were the Vidale-Wolfe-Deal and the

Three Populations, a Lotka-Volterra type model. Duopoly analysis is split in two

parts: one that solves an optimal control problem with the objective of maximizing

the net profit of both firms in one-shot, referred to as simultaneous co-operation,

and the other that places the two firms as opponents in a sequential game, each with

the individual goal of maximizing net profit on its turn, referred to as sequential

competition.

The contributions of this dissertation are: providing a stability analysis for the

Vidale-Wolfe-Deal model, which shows that any control attaining final constant pos-

itive values leads to a stable equilibrium of market shares, proposing a duopolistic

version of the Three Populations model, and, lastly, proposing and solving a sequen-

tial game based on Leader-Follower iteration for the Vidale-Wolfe-Deal model.
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Chapter 1

Introduction

A market is any medium driven by the laws of supply and demand through which

buyers and sellers can exchange goods and services. A market does not need to be

a physical location. Auction sites and on-line shopping are examples of electronic

transactions that can take place without any party ever meeting in person. The

structure of a market is defined by the number of legitimate sellers of a particular

product and the nature of competition among them. The two simplest forms of

market are monopoly and duopoly.

Monopoly, as its Greek etymology indicates (mónos means one and pólein, to

sell), is a structure reached by legal privilege or other agreements in which a single

seller gains exclusive rights over a specific good or service. Because of the lack of

competition, a monopoly allows firms to control the market, set prices and conse-

quently hurt consumers when ill regulated. Common examples of monopoly can be

found in the utilities market of most countries. Providers of water, electricity and

natural gas are often granted exclusive rights to service municipalities through local

governments.

Duopoly refers to a situation in which two sellers control all or nearly all of

the market. Duopoly is the most basic type of oligopoly, a structure where few

firms concentrate the majority of the market share. Classic examples of duopoly are

Airbus and Boeing in the jet airliner market, DC Comics and Marvel in the superhero

genre, Nvidia and AMD in PC GPU (Graphics Processing Unit) manufacturing.

Netflix, that initially held the monopoly in streaming services, now faces competition

with Amazon Prime.

Advertising competition is both dynamic and interactive among close rivals. A

case in point is the Cola Wars, a term coined during Cold War to describe the long-

running struggle between the two biggest brands in the soft drink industry: Coca-

Cola Company and PepsiCo. In 1971, Coca-Cola experienced a massive increase in

popularity after releasing its famous “I’d Like to Buy the World a Coke” jingle (in

the most expensive commercial at the time). To regain ground, Pepsi started four
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years later its widely known “Pepsi Challenge”, an ongoing marketing campaign

where consumers are encouraged to taste both sodas and blindly select which one

they prefer (with test results leaning towards Pepsi as the consensus pick). This

just being one example of the many back and forth exchanges between these two

firms, that together account for 75% of the U.S. market [5], over the years. Since

then, Coca-Cola and Pepsi continued to invest heavily on advertising in order to set

themselves apart and dominate the soft drink market.

Optimal control theory has been employed in the theoretical studies of adver-

tising models for decades. A recurrent topic of interest has been finding or char-

acterizing an optimal advertising strategy over a defined period of time. As media

vehicles evolve and information about consumers becomes more accessible to firms,

studies of dynamic models in advertising have been growing in relevance.

More specifically, optimal control of Vidale-Wolfe [6] and related advertising dy-

namics has been studied in the context of obtaining analytical solutions in [4, 7–9].

Research has also focused on obtaining numerical solutions through the parameter-

ization of the control action [10–13]. It is also worth mentioning, as ERICKSON [5]

pointed out, that most of the work done has contemplated dynamic models operat-

ing in monopolistic markets, which often ignores important aspects of the marketing

environment such as competition.

The main purpose of this work is to use modern software tools to find numeri-

cal solutions for the Vidale-Wolfe-Deal [7] and Three Populations duopoly models.

Market dynamics are studied considering two distinct environments: co-operative

and competitive. In the first case, the objective is to maximize the net gain of two

firms simultaneously – which could be understood as a form of collusion. In the

latter, these two firms compete with each other in a sequential game, based on a

leader-follower iteration, each with the individual goal of maximizing profit on its

turn. Simulations were conducted using the Open Source software JModelica.org

[14] and JuMP [15] (Julia for Mathematical Optimization).

1.1 Motivation and objectives

Many markets which provide essential services and/or products and are not strictly

duopolies do however function as such. Most of the studies regarding market dy-

namics choose to exclude the potential collusion aspect in duopoly markets from

their analysis. When analyzing the competition between two firms, simulations are

seldom done sequentially, which means that the capability of firm to adapt and react

to its rival’s strategy is not being considered.

Furthermore, despite this digital era of smartphones, Facebook and Instagram,

most of the existing literature does not account for the effects of Word-of-Mouth

2



(WOM) – more precisely electronic Word-of-Mouth (eWOM) – on sales-advertising

models. This dissertation introduces a duopolistic version of the Three Population

model, which takes the effects of eWOM in consideration.

1.1.1 Objectives

The objectives of this dissertation are:

� To verify the Vidale-Wolfe monopoly model’s optimal response in order to

validate subsequent results.

� To study the Vidale-Wolfe-Deal duopoly model under the assumption of com-

petition and co-operation.

� To study the effects of eWOM and to propose a duopoly model based on the

Three Populations model for monopolies.

1.2 Structure of the dissertation

The dissertation is organized as follows. Chapter 1 starts by giving a brief intro-

duction to market dynamics, more specifically monopoly and duopoly models. It

contextualizes the subject of the dissertation by providing recent examples of both

practices in business. This also serves the purpose of highlighting the relevance of

studying sales-advertising models.

In Chapter 2, the Vidale-Wolfe advertising model is presented along with Deal’s

extended version for a duopoly. The Chapter also offers the stability analysis of

the Vidale-Wolfe-Deal model and recaps the Three Populations model. Dynamic

optimization problems for all these advertising models are formulated.

Chapter 3 presents the methods and software used for solving the optimal con-

trol problems, also providing a brief overview of numerical methods. The dynamic

optimization problems presented in the previous chapter are discretized and a Stack-

elberg competition based on the Vidale-Wolfe-Deal model is described.

In Chapter 4, numerical results for the Vidale-Wolfe monopoly model are dis-

cussed and compared to the theoretical solution found in [4]. The effects of eWOM

on the Three Populations model are examined. Duopoly analysis is divided in two

cases: co-operation and competition. The former discusses the obtained results for

simultaneous optimization of the Vidale-Wolfe-Deal model, while the latter exam-

ines the proposed sequential Stackelberg competition.

Finally, Chapter 5 concludes the dissertation with a few remarks, summarizing

the results and indicating some possible future work.
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Chapter 2

Models for market share dynamics

and associated optimal control

problems: old and new

2.1 Vidale-Wolfe model

The model developed by VIDALE and WOLFE [6] considers two main aspects re-

garding the relation between sales and advertising. The rate of sales decreases with

time if no advertisements are made, since consumers tend to forget about the prod-

uct, which is modeled by an exponential decay term λS in (2.1). Advertising effort

u(t) results in a proportional increase in sales, modulated by diminishing returns as

a direct consequence of marketing saturation, resulting in the term αu(t)
(

1− S(t)
M

)
in (2.1). Hence, the Vidale-Wolfe model for a monopolistic firm can be stated as:

Ṡ(t) = αu(t)

(
1− S(t)

M

)
− λS(t) (2.1)

where S(t) is the rate of sales at time t, u(t) is the advertising effort at the same

instant, α is the response constant to the advertising effort, λ is the sales exponential

decay constant and M is the market saturation – it is possible write M as a function

of time, but in this dissertation, in common with most of the literature, M is chosen

to be time-invariant.

A more convenient way to write equation (2.1) is to express the model in terms

of the market share, which represents the rate of sales as a fraction of the market

saturation. Thus, making the change of variable (x(t) = S(t)/M) yields:

ẋ(t) = ru(t)(1− x(t))− λx(t) (2.2)
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where:

r =
α

M

DEAL [7] proposes and numerically analyses a version of the Vidale-Wolfe model

for duopoly. In his model, each competitor is defined by its own particular sales

response and sales decay constants. However, rival advertising has no assumed

effect on the other firm’s market share, only affecting the untapped portion of the

market.

Similar to what was done in equation (2.2), Deal’s model for duopoly can be

normalized into the following pair of differential equations:

ẋi(t) = riui(t)(1− x1(t)− x2(t))− λixi(t); i = 1, 2. (2.3)

where subscript i indexes the ith firm.

Normalization imposes constraints on the state space. For instance, any firm

must have a nonnegative market shares at all times. Furthermore, the sum of all

firm’s market share must never surpass unity.

The state space constraints for the Vidale-Wolfe-Deal model are summarized as

follows:

x1(t) ≥ 0 (2.4)

x2(t) ≥ 0 (2.5)

x1(t) + x2(t) ≤ 1 (2.6)

2.2 Stability analysis of the Vidale-Wolfe-Deal

model

Since almost all the literature on the Vidale-Wolfe-Deal model has concentrated

on optimal control problems, it has not been subjected to the standard stability

analysis, which is an important first step in understanding any dynamical system.

In this section, we study the stability of the dynamic system described by the

differential equations shown in (2.3) when subjected to a constant input, ūi. The

dynamic system is written as follows:ẋ1 = r1ū1(1− x1 − x2)− λ1x1
ẋ2 = r2ū2(1− x1 − x2)− λ2x2

where r1, r2, ū1, ū2, λ1 and λ2 are all positive real values.
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Grouping terms in x1 and x2 on the right hand side yields:ẋ1 = −(r1ū1 + λ1)x1 − (r1ū1)x2 + r1ū1

ẋ2 = −(r2ū2)x1 − (r2ū2 + λ2)x2 + r2ū2
(2.7)

Since the advertising efforts, ū1 and ū2, were assumed to be positive constants,

it is easy to see that the Vidale-Wolfe-Deal model behaves as a linear system.

An equilibrium point is a state of the system that once reached does not change

with time. Consequently, all state variables’ derivatives must be equal to zero at

any equilibrium point. Solving the dynamic system (2.7) when ẋ1 = ẋ2 = 0 yields:

x1 =
r1ū1λ2

(r1ū1λ2 + r2ū2λ1 + λ1λ2)
(2.8)

x2 =
r2ū2λ1

(r1ū1λ2 + r2ū2λ1 + λ1λ2)
(2.9)

Given that r1, r2, ū1, ū2, λ1 and λ2 were assumed to be positive real numbers, it

is easy to verify that the solution shown in equations (2.8) and (2.9) ensures x1 ≥ 0,

x2 ≥ 0 and x1 + x2 < 1.

This result shows that the equilibrium point for the Vidale-Wolfe-Deal model

lies within the state space delimited by the constraints stated in equations (2.4 -

2.6).

To verify whether the equilibrium point given by equations (2.8) and (2.9) is

stable, let J denote the Jacobian matrix of the dynamic system (2.7), which can be

expressed as:

J =

[
−(r1ū1 + λ1) −(r1ū1)

−(r2ū2) −(r2ū2 + λ2)

]

Consequently its determinant, det(J ), and trace, tr(J ), are given by:

det(J ) = r1ū1λ2 + r2ū2λ1 + λ1λ2 >0

tr(J ) = −(r1ū1 + r2ū2 + λ1 + λ2)<0

and this pattern of signs guarantees that the real part of its eigenvalues is strictly

negative. Therefore, the equilibrium point of the dynamic system is locally asymp-

totically stable.

Furthermore, the discriminant of the characteristic polynomial of second degree

can be written as:
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tr2(J )− 4det(J ) = [(r1ū1 + λ1) + (r2ū2 + λ2)]
2 − 4[(r1ū1 + λ1)(r2ū2 + λ2)− (r1ū2)(r2ū1)]

= (r1ū1 + r2ū2)
2 + (λ1 − λ2)2 + 2(λ1 − λ2)(r1ū1 − r2ū2)

For the particular case where both firms have the same sales decay constant, i.e.

λ1 = λ2, we have:

tr2(J )− 4det(J ) = (r1ū1 + r2ū2)
2 > 0

Thus, both eigenvalues are distinct negative real numbers and the critical point

is a stable node.

For λ1 6= λ2, the critical point can be either a stable node, if tr2(J )−4det(J ) ≥ 0,

or a stable focus, tr2(J ) − 4det(J ) < 0. Control literature may sometimes refer

to the critical point as a star rather than a node when the discriminant is equal to

zero. Regardless, the critical point is clearly an equilibrium point.

Therefore, not only an equilibrium point exists, it is also locally asymptotically

stable and lies in the nonnnegative quadrant,i.e., is feasible.

As a conclusion of the stability analysis of the Vidale-Wolfe-Deal model, any

control that attains final constant positive values leads to stable equilibrium of

market shares.

2.3 Optimal control problem for the Vidale-

Wolfe-Deal model

In this section we formulate an optimal control model associated to the Vidale-

Wolfe-Deal model. It is assumed that the objective of the company is to maximize

the net gain, i.e. profit accrued from market share (=state) minus the advertising

expense (=control), for a defined period of time, Tf . Thus, the cost function can be

formulated as:

Ji(xi, ui, Tf ) =

Tf∫
0

cixi(t)− ui(t)dt; i = 1, 2. (2.10)

where ci denotes the maximum revenue potential of a particular firm, which assumes

a constant margin per unit product.

In a cooperative duopoly, both firms have the objective of maximizing their

individual net gains. It is possible to introduce a nonnegative weight µ such that if

µ = 1, then both gains are weighted equally. If not, then one firm is favored over

the other. This weighted cost function can be written as:

J12(x1, x2, u1, u2, Tf ) = J1(x1, u1, Tf ) + µJ2(x2, u2, Tf ) (2.11)

7



The optimal control problem can be summarized as follows:

maximize
u1, u2

J12(x1, x2, u1, u2, Tf ) (2.12a)

subject to ẋi(t) = riui(t)(1− x1(t)− x2(t))− λixi(t); i = 1, 2, (2.12b)

ui(t) ≤ uimax i = 1, 2, (2.12c)

ui(t) ≥ 0 i = 1, 2, (2.12d)

xi(t) ≥ 0 i = 1, 2, (2.12e)

x1(t) + x2(t) ≤ 1 (2.12f)

where equation (2.12b) expresses the dynamics, equations (2.12c - 2.12d) are con-

straints on the controls, with uimax being the maximum budget available for ad-

vertising to the ith company, and equations (2.12e - 2.12f) are the normalization

constraints on the state space.

Rewriting the problem for a monopolistic firm is straightforward, as equations

(2.13a - 2.13f) show. It only requires replacing equation (2.12b) with (2.2) and

modifying the cost function and its constraints accordingly.

maximize
u

J(x, u, Tf ) =

Tf∫
0

cx(t)− u(t)dt (2.13a)

subject to ẋ(t) = ru(t)(1− x(t))− λx(t), (2.13b)

x(t) ≤ 1, (2.13c)

x(t) ≥ 0, (2.13d)

u(t) ≤ umax, (2.13e)

u(t) ≥ 0 (2.13f)

2.4 Three Populations model

This section proposes a duopolistic version of the model proposed by BHAYA and

KASZKUREWICZ [1]. Their model is “inspired by Lotka-Volterra type models

of three interacting populations of customers: one that is satisfied with the brand

that the model seeks to describe, its market share at time t (fraction of the total

costumer population) being denoted xb(t), the fraction of defectors from the brand,

denoted xd(t), and the fraction of undecided customers being denoted xi(t)” [1]. In

accordance with the terminology in [1], the three populations are referred to brand,

defectors and undecided respectively. In addition, the corresponding normalized

market share of each costumer population must sum to unity at all times, i.e.:
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xb(t) + xd(t) + xi(t) = 1 (2.14)

This model assumes that the advertising effort u made by the brand increases its

market share by depleting the undecided and, possibly, defector populations. More-

over, the undecided fraction of costumers is treated as prey and is, thus, subjected

to predation by both brand and defectors. As in Lotka-Volterra type models, all

predation terms are proportional to the encounters between any two populations,

and this assumption is also similar to the one made made in word-of-mouth (WOM)

or electronic word-of-mouth (eWOM) models [16], and also in competitive dynamics

of web sites [17].

The system describing the Three Populations model is expressed by the following

set of equations: 
ẋb = kbu+ kbixbxi − kbdxbxd
ẋd = −kdu+ kdixdxi + kbdxbxd

ẋi = (kd − kb)u− kdixdxi − kbixbxi

(2.15)

with u denoting positive advertising effort by the brand and parameters kb, kd, kbd,

kbi, kdi expressing the rates at which populations grow or diminish.

Brand

b

Defector

d

Undecided

i

kbdxbxd

kbd < 0

kbd > 0

kbdxbxd

kdixdxi

kdu

kbu

kbixbxi

Figure 2.1: Graph showing interactions among brand, defector and undecided populations

(nodes). Arrows are labeled with a term that indicates the rate at which the population

at the tail is depleted, and, correspondingly, the population at the head of the arrow is

growing. Figure based on [1].

The interaction graph among the three populations is shown in Figure 2.1. Ad-

vertising is assumed to have a positive effect on the brand by swaying undecided

costumers and, possibly, depleting the defector population. Hence, constants kb and

kd are respectively positive and nonnegative. Because the undecided population

is modeled as prey, constants kbi and kdi can only take positive values. The sign
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of kbd determines the flow between brand and defectors after each encounter. If

kbd = 0, it is being assumed that interactions have no effect on the growth rates of

the respective populations.

An inspection of the equations describing the dynamic system (2.15) shows that

the sum of all population’s derivatives (size variations) is zero, which implies that

the total customers population is time-invariant. Therefore, as long as the initial

conditions are chosen such that xb(0) + xd(0) + xi(0) = 1, constraint (2.14) holds

true for all time.

We now propose a duopolistic version of the Three Populations model by replac-

ing the defectors with a second rival brand, hereafter referred to rival and denoted

xr(t). Competition is introduced by allowing the rival to counter the advertising

effort of the brand with an effort of its own, denoted ur(t). Furthermore, it is

assumed that encounters between rival and brand result in clients of both brands

becoming undecided, which depletes both brand and rival populations and lead to

corresponding increases in the undecided market share. The Three Populations

model for duopolies is written as follows:
ẋb = kbub + kbixbxi − αkbrxbxr
ẋr = krur + krixrxi − (1− α)kbrxbxr

ẋi = −kbub − krur − kbixbxi − krixrxi + kbrxbxr

(2.16)

where parameter kr is a positive growth constant similar to kb and α is a parameter

between 0 and 1 that determines the proportion in which brand and rival populations

are depleted. For α = 0.5, both decrease equally on each encounter. Figure 2.2 shows

the new interaction graph among the three populations.

As in the previous model, the sum of the differential equations describing the

dynamic system (2.16) is also zero. Thus, the modified Three Populations model

still satisfies the basic invariance assumption, i.e., the non-violation of constraint

(2.14).

The invariance constraint, however, does not guarantee that the market shares

of brand, rival and undecided populations always remain nonnegative. In order to

avoid any market share taking negative values, there is still need to enforce the set

of non-negativity constraints:

xb(t) ≥ 0 (2.17)

xr(t) ≥ 0 (2.18)

xi(t) ≥ 0 (2.19)
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Brand

b

Rival

r

Undecided

i

(1− α) kbrxbxr

αkbrxbxr

krixrxi

krur

kbub

kbixbxi

Figure 2.2: Graph showing interactions among brand, rival and undecided populations

(nodes) for the duopoly model. Arrows are labeled with a term that indicates the rate

at which the population at the tail is depleted, and, correspondingly, the population at

the head of the arrow is growing. The duopolistic model assumes that all interactions

between brand and rival lead to an increase of the undecided population. Corresponding

decreases to the brand and rival populations are modeled according to a parameter α that

determines the proportion in which each population is depleted.

Similarly to what was done in Section 2.3, the optimal control problem associated

with the duopolistic version of the Three Populations model can be written as:

maximize
ub, ur

Jbr(xb, xr, ub, ur, Tf ) (2.20a)

subject to ẋb = kbub + kbixbxi − αkbrxbxr, (2.20b)

ẋr = krur + krixrxi − (1− α)kbrxbxd, (2.20c)

ẋi = −kbub − kdud − kdixdxi − kbixbxi + kbrxbxr, (2.20d)

xb ≥ 0, (2.20e)

xr ≥ 0, (2.20f)

xi ≥ 0, (2.20g)

ub ≤ ubmax , (2.20h)

ub ≥ 0, (2.20i)

ur ≤ urmax , (2.20j)

ur ≥ 0 (2.20k)

where ubmax and udmax are the maximum advertising effort achievable for brand and

rival populations respectively. For brevity, the time arguments of all advertising and

market share were omitted.
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The cost function in equation (2.20a) was chosen as:

Jbr(xb, xr, ub, ur, Tf ) =

Tf∫
0

[cbxb(t)− ub(t) + crxr(t)− ur(t)] dt,

which is equivalent to the unweighted cost function adopted for simultaneous com-

petition in equation (2.11).
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Chapter 3

Mathematical formulations and

numerical solution methods for

optimal control problems of

market share dynamics

In this chapter, we give a brief overview on the use of software JModelica.org [14] and

JuMP [15] to solve the dynamic optimization problem presented in the last section of

chapter 2. A sequential Game based on a Leader-Follower approach for the Duopoly

Competition using the Vidale-Wolfe-Deal advertising model is also discussed.

3.1 Solving dynamic optimization problems with

JModelica.org

JModelica.org is a tool targeting model-based analysis of large-scale dynamic sys-

tems, in particular dynamic optimization [2]. It uses the modeling language Modelica

to describe system dynamics, and Optimica, a Modelica language extension, to for-

mulate the optimization problem. Optimica allows the formulation of a continuous-

time optimal control problem in its natural form, with the tool handling the details

of the discretization in a manner that is transparent to the user, which can be rather

complex. The user’s job, thus, is considerably simplified.

3.1.1 Numerical methods for optimal control problems

In optimal control theory, there are many approaches to numerically solve optimiza-

tion problems. The earliest numerical methods date back to the late 50s and stem

from the works of Bellman [18–21] in Dynamic Programming. Since then, the com-
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plexity and variety of optimal control applications has vastly increased. Nowadays,

the most widely used numerical methods for solving optimal control problems are

based on first-order necessary conditions for local optimality, and fall into two major

categories: direct and indirect methods.

Indirect methods start by establishing the optimality conditions. The ensuing

differential equations are then discretized and a numerical solution is found. The

optimality conditions are based on calculus of variations and Pontryagin’s maximum

principle [22, 23], and appear in the form of boundary value problems. The solution

of a boundary value problem is found by solving a system of difference equations

that satisfies endpoint and/or interior point conditions.

In an alternative approach, direct methods first discretize the dynamics and then

establish the optimality conditions. They reduce an infinite-dimensional problem

(continuous state space) to a finite-dimensional one (discrete state space) by tran-

scribing the original optimal control problem into a nonlinear programming problem

(NLP). The optimality conditions for the NLP are then given by the Karush-Kuhn-

Tucker (KKT) conditions.

Regardless of the approach, both direct and indirect methods require the solution

of difference equations in order to solve dynamic optimization problems. Therefore,

it is not uncommon to find the same numerical techniques being employed in both

approaches. An overview of numerical methods, based on [2], is presented in Figure

3.1.

Figure 3.1: Overview of decomposition of a continuous-time dynamic optimization prob-

lem, in the direct and indirect approaches, into discrete-time problems, solvable by the

numerical methods denominated shooting and collocation. Figure from [2], used with

permission.

Shooting and collocation are two of the most widespread methods often used

in direct and indirect approaches. The simplest form of shooting is called single

shooting and consists of making an initial guess of either the control parameters

(direct method) or the unknown boundary conditions at one end of the interval

(indirect method), and then integrating the resulting IVP (Initial Value Problem)

along the time horizon. If the specified conditions at the other end are not attained,

14



the initial guess is adjusted and the process is repeated. The name of the method

comes from the fact that it can be understood as basic feedback control employed

to set the angle of a cannon in order to hit a target [24]. If the target is missed, the

angle is adjusted based on the previous shot and the cannon is fired again.

Single shooting is an appealing method due to its simplicity, but can present

significant numerical difficulties since it is highly sensitive to the initial guess, prop-

agating its error as time marches. This may cause instability even when the bound-

ary value problem itself is well conditioned. The numerical robustness of single

shooting can be improved by dividing the time horizon into several subintervals.

This method is called multiple shooting, and essentially decouples the dynamics by

introducing interior point boundary values as variables and imposing linking con-

straints between adjacent subintervals. Single shooting is then applied within each

new subinterval. Despite the increased size of the problem due to the extra vari-

ables, multiple-shooting is an improvement over single shooting because integration

is performed over a significantly smaller time period, thus reducing the sensitivity

to errors in the initial guess. Nevertheless, even multiple shooting can present issues

unless a sufficiently good guess is given.

Collocation methods, on the other hand, consist on choosing a number of points

in the domain, called collocation points, and fitting a polynomial solution, up to a

chosen degree, while satisfying the imposed constraints at each collocation point.

There are different ways to choose collocation points, each resulting in a particular

stability and order of convergence. The most common ones are based on Gauss,

Radau and Lobatto quadratures [25].

In an indirect collocation method, state and adjoint variables are parameter-

ized using piecewise polynomials. The collocation procedure leads to a root-finding

problem where the dynamic constraints can be written as an algebraic vector of

the coefficients of the piecewise polynomial. This system of nonlinear equations is

then solved using an appropriate root-finding technique. The region of convergence

of indirect methods tends to be quite narrow, thus requiring good initial guesses,

including guesses of the adjoint functions. When a problem has inequality path

constraints, a priori estimates of the sequence of constrained arcs are needed, which

may be hard to find[3].

In a direct collocation method, the differential equations are discretized by defin-

ing a grid of N collocation points covering the time interval [t0, tf ] and the resulting

difference equations become a finite set of equality constraints of the NLP problem.

Figure 3.2 [3] illustrates the idea of a discretized control u and state x in the interval

t ∈ [t0, tf ], with t0 < t1 < t2 < · · · < tN = tf . The NLP problems that arise from

direct collocation can be very large, having possibly hundreds of thousands of vari-

ables and constraints. However, they are usually quite sparse, making them easier
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to solve than boundary value problems. Moreover, there is no need to explicitly

derive the necessary conditions of the continuous problem, which is more attractive

in complex cases, and they do not require an a priori specification of the sequence

of constrained arcs in problems with inequality constraints [3].

Figure 3.2: Control u and state x discretized in the interval t ∈ [t0, tf ]. Figure from [3],

used with permission (please see Appendix C).

When using Runge-Kutta methods for discretization, collocation is said to si-

multaneously solve differential equations because all the unknown parameters are

determined at the same time. Furthermore, collocation methods simulate the dy-

namics of the system implicitly because the values of the state at each collocation

point are obtained simultaneously rather than sequentially [24].

Collocation methods can be either local, where the time horizon is divided into

subintervals and low-order polynomials are used to approximate the trajectories

within each time frame, or global, where a single high-order polynomial is used over

the entire time horizon.

JModelica.org uses a method based on direct local collocation, with support for

Gauss and Radau points, to transcribe the problem into a NLP. A local optimum

to the NLP is then found by solving the first-order KKT conditions, using iterative

techniques based on Newton’s method [2]. JModelica.org uses CasADi [26] (Com-

puter algebra system with Automatic Differentiation) in order to obtain first and

second-order derivatives of the NLP cost and constraint functions with respect to

its variables. CasADi offers interfaces to third-party numerical optimization solvers
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such as IPOPT [27].

Figure 3.3 shows the compilation process in JModelica.org. It starts with the

user-provided Modelica and Optimica code. The Modelica model is then flattened in

order to get a representation that is closer to a differential algebraic equation (DAE)

system. The flat representation essentially consists of only variable declarations and

equations. The compilation process ends with a symbolic representation of the NLP

in CasADi [2].

Figure 3.3: Compilation Process in JModelica.org for Dynamic Optimization Problems.

Figure from [2], used with permission

3.2 Solving dynamic optimization problems with

JuMP

JuMP is an AML (Algebraic Modeling Language) – a computer programming lan-

guage that allows users to express a wide range of optimization problems (linear,

mixed-integer, quadratic, conic-quadratic, semidefinite, and nonlinear) in a high-

level algebraic syntax – embedded in Julia [28], which is a general purpose high

level language for scientific computation. It provides not only an efficient open-

source alternative to commercial systems but also takes advantage of a number

of features of Julia which are unique among programming languages for scientific

computing [15].

For instance, in most languages other than Julia, the most common approach to

capture user’s input is operator overloading. Essentially, it extends the language’s

definition of basic arithmetical operators to build data structures representing ex-

pressions. Unfortunately, this method leads to an increase in complexity as it needs

to store, for example, constants, coefficient vectors, index sets and decision variables

in order to build math like statements. As a result, simple operations like addition

and subtraction are no longer fast, constant-time operations; a property which is

usually overlooked in the case of floating-point numbers. JuMP, on the other hand,

does not rely on operator overloading when capturing a user’s input, instead turning

to an advanced feature of Julia called syntactic macros.
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As in Lisp, the input of a macro is a data structure of the language itself, not

just a string of text. By defining variables, constraints and objective as macros,

JuMP provides a natural syntax for algebraic modeling without the need of a cus-

tom text-based parser and drawbacks related to operator overloading. Moreover,

JuMP is able to efficiently process large-scale problems by exploiting well-known

structural properties since the code is represented by objects that can be created

and manipulated from within the language

JuMP uses techniques from automatic differentiation (AD) to evaluate deriva-

tives of user-defined expressions and is designed to be extensible, allowing for devel-

opers both to plug in new solvers, such as IPOPT, for existing problem classes and

to extend the syntax of JuMP itself to new classes of problems. This also allows

users to test the efficiency of different solvers for a specific problem, without the

need to rewrite the whole code.

Due primarily to the compilation time, JuMP has a noticeable start-up cost of

a few seconds even for the smallest instances. However, if a family of models is

solved multiple times within a single session, this cost of compilation is only paid

for the first time that an instance is solved. Therefore, when solving a sequence

of instances in a loop, the amortized cost of compilation is negligible. This is a

particularly attractive feature considering the Stackelberg competition described in

Section 3.3 will essentially require solving two different models that differ only on

the right-hand side coefficients of the constraints at each iteration.

3.2.1 Discretization of the Vidale-Wolfe-Deal advertising

model

Unlike JModelica.org, that allows the optimal control problem to be formulated in

its continuous form, JuMP requires the formulation to be discretized.

Discretization of the optimal control problem for both monopoly and duopoly

models, presented in section 2.3, is a fairly straightforward procedure that can be

done using different techniques. In this work we used the Forward Euler Method,

that adopts the following approximation:

ẏ =
dy

dt
≈ y(k + 1)− y(k)

∆t
(3.1)

Applying the approximation shown in (3.1) to the equation (2.3) results in the

discretized version of equation (2.12b):
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xi(k + 1) = xi(k) + fi,k(x1, x2, ui); i = 1, 2.

where:

fi,k(x1, x2, ui) = ∆t[riui(k)(1− x1(k)− x2(k))− λixi(k)].

Discretization of the net gain cost function, equation (2.10), can be achieved by

simply approximating the integration to the sum of the net gain at all N intervals

as shown:

Ji(xi, ui, N) =
N∑
k=1

(cixi(k)− ui(k)); i = 1, 2.

Consequently equation (2.11) becomes:

J12(x1, x2, u1, u2, N) = J1(x1, u1, N) + µJ2(x2, u2, N)

Thus, the optimal control problem can be described by equations (2.12a - 2.12f)

can be discretized as:

maximize
u1, u2

J12(x1, x2, u1, u2, N) (3.2a)

subject to x1(k + 1) = x1(k) + f1,k(x1, x2, u1); k = 1, ..., N, (3.2b)

x2(k + 1) = x2(k) + f1,k(x1, x2, u2); k = 1, ..., N, (3.2c)

x1(k) + x2(k) ≤ 1 k = 1, ..., N + 1, (3.2d)

x1(k) ≥ 0; k = 1, ..., N + 1, (3.2e)

x2(k) ≥ 0; k = 1, ..., N + 1, (3.2f)

u1(k) ≤ u1max ; k = 1, ..., N, (3.2g)

u1(k) ≥ 0; k = 1, ..., N, (3.2h)

u2(k) ≤ u2max ; k = 1, ..., N, (3.2i)

u2(k) ≥ 0; k = 1, ..., N (3.2j)

The formulation (3.2a - 3.2j) is easy to understand and natural; however, it is

not in the standard form acceptable as input to most mathematical programming

solvers. When using a solver for such problems, the latter should be rewritten in

standard NLP form [29], i. e., writing all constraints for all variables at all instants.

For this particular and relatively small discrete NLP, it means writing all 9N + 3

constraints explicitly. This can become quite a tedious task for problems with a

large number of variables or with small sampling time, even when taking advantage

of block matrix notation as shown below.

The corresponding NLP can be written compactly in matrix form as follows:
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maximize
z

cT z

subject to r(z) = 0̄,

Az ≤ U ,

Az ≥ L

where:

c =



c1
...

c1

0

c2
...

c2

0

−1

...

−1



z =



x1(1)
...

x1(N)

x1(N + 1)

x2(1)
...

x2(N)

x2(N + 1)

u1(1)
...

u1(N)

u2(1)
...

u2(N)



r(z) =



x1(2)− x1(1)− f1,1(x1, x2, u1)
...

x1(N + 1)− x1(N)− f1,N(x1, x2, u1)

x2(2)− x2(1)− f2,1(x1, x2, u2)
...

x2(N + 1)− x2(N)− f2,N(x1, x2, u2)



L =



0

...

0


A =


IN+1 IN+1

IN+1

IN+1

IN

IN

 U =



1
...

1

uN1max

uN2max


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such that A is a sparse matrix with all elements left in blank being equal to zero, IN

is the N ×N identity matrix and uNimax
is the N × 1 vector with all elements equal

to uimax .

In this context, the most attractive feature of JuMP is that it allows optimization

problems to be formulated not only in its matrix form above, which can be advan-

tageous for simpler problems, but also in its concise and more natural form (3.2a -

3.2j), which includes handling constraints inside a loop. In this work, we will tran-

scribe all the optimization problems studied into standard form NLPs for the sake

of completeness. However, all coding in Julia was done using natural formulation

(3.2a - 3.2j).

Analogously, the optimization problem for a monopolistic firm described by equa-

tions (2.13a - 2.13f) can be discretized as:

maximize
u

J(x, u,N) =
N∑
k=1

(cx(k)− u(k)) (3.3a)

subject to x(k + 1) = x(k) + fk(x, u); k = 1, ..., N, (3.3b)

0 ≤ x(k) ≤ 1; k = 1, ..., N + 1, (3.3c)

0 ≤ u(k) ≤ umax; k = 1, ..., N (3.3d)

where:

fk(x, u) = ∆t[ru(k)(1− x(k))− λx(k)],

wich can be transcribed into the following NLP:

maximize
z

cT z

subject to r(z) = 0̄,

Az ≤ Ub,

Az ≥ Lb

c =



c1
...

c1

0

−1
...

−1


z =



x(1)
...

x(N)

x(N + 1)

u(1)
...

u(N)


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r(z) =


x(2)− x(1)− f1(x, u)

...

x(N + 1)− x(N)− fN(x, u)



L = 0 2N+1 A = I2N+1 U =

[
1
N+1

uNmax

]

where 0N and 1
N denote the N × 1 vectors with all elements equal to 0 and 1,

respectively.

Clearly, constraints (3.2b) and (3.2c) in the duopoly model and (3.3b) in the

monopoly model are nonlinear. This knowledge leads to two questions: Is the

feasible region convex? If the feasible region is non-convex, how does it affects the

optimal solution?

To answer these questions we will analyze the simpler of the two models, the

Vidale-Wolfe monopoly model.

Let us write equations (3.3a - 3.3d) for N = 2. For brevity, it is assumed ∆t = 1.

Cost function J in equation (3.2a) can be written as:

J = cx(2) + cx(1)− u(2)− u(1)

The dynamic constraint stated in equation (3.2b) becomes:

x(2) = x(1) + ru(1)− ru(1)x(1)− λx(1)

Lastly, the box constraints given by equations (3.2c) and (3.2d) can be summa-

rized as follows:

0 ≤ x(1)≤1

0 ≤ x(2)≤1

0 ≤ u(1)≤umax

0 ≤ u(2)≤umax

Since u(2) has a negative effect on the cost function that we seek to maximize

and it does not appear in the market share dynamics (as we limited N = 2 and

u(2) only affects the future state x(3), which is not considered), its optimum value

is obviously zero.
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To simplify the analysis, let the optimization variables be renamed as:

x(1) = z1, x(2) = z2, u(1) = z3, u(2) = z4 = 0

The optimization problem to be solved can then be written as:

maximize
z1, z2, z3

cz1 + cz2 − z3 (3.4a)

subject to z2 − (1− λ)z1 + rz1z3 − rz3 = 0, (3.4b)

0 ≤ z1 ≤ 1, (3.4c)

0 ≤ z2 ≤ 1, (3.4d)

0 ≤ z3 ≤ umax (3.4e)

Writing equation (3.4b) in its algebraic form yields:

zTAz + bT z = 0,

where:

z =

z1z2
z3

 , A =

 0 0 1
2
r

0 0 0
1
2
r 0 0

 , b =

λ− 1

1

r


Matrix A is symmetric with zeros on the principal diagonal. Since its principal

diagonal is null, matrix A can, at best, be positive semi-definite. To show that this

can not be the case, consider its sub-matrix:[
0 1

2
r

1
2
r 0

]

This sub-matrix has eigenvalues ±1
2
r, violating the necessary condition for pos-

itive semi-definiteness. This guarantees the indefiniteness of matrix A, which could

imply non-convexity of the zero set (3.4b).

Examining further the dynamic constraint (3.4b), note that, since the optimiza-

tion variable z2 occurs by itself in the constraint, it can be chosen as a free parameter

(called, say, σ ∈ [0, 1]) in order to investigate the relation between z1 and z3. This

leads to:

σ − (1− λ)z1 + rz1z3 − rz3 = 0

Rearranging z1 as a function of z3 and the parameter σ yields:
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z1 =
rz3 − σ

rz3 − (1− λ)

Renaming rz3 = φ, such that φ ∈ [0, r], and (1 − λ) = γ, such that γ ∈ [0, 1],

leads to the simplified expression:

z1 =
φ− σ
φ− γ

Since z1 ∈ [0, 1], if σ < γ, then φ ≤ σ. Otherwise, if σ > γ, then φ ≥ σ.

Therefore, in summary:

∀z1 ∈ [0, 1] : z2 < (1− λ) =⇒ rz3 ≤ z2

∀z1 ∈ [0, 1] : z2 > (1− λ) =⇒ rz3 ≥ z2

Nonetheless, z1 is the initial market share of a firm. Because it assumes a fixed

value, the optimization variable can be replaced by a constant (called δ ∈ [0, 1]).

Because z1 is fixed, the feasible region is given defined by the line:

z2 = r(1− δ)z3 + (1− λ)δ (3.5)

delimited by the box constraints.

Substituting equation (3.5) in the cost function (3.4a) yields:

J = αz3 + β

where:

α = cr(1− δ)− 1

β = c(2− λ)δ

For α ≤ 0, i.e δ ≥ 1 − 1/cr, the performance index J is maximum when z3 is

equal to zero. Otherwise, the maximum value of J occurs when z3 is maximum.

It is important to observe that the advertising effort z3 not only is limited by the

available budget (umax) but it is also constrained by the dynamics, i.e it can not

assume values that lead the final market share, z2, to be greater than unity. For

brevity, we refer to this threshold as udyn, which is given as follows:

udyn =
1− (1− λ)δ

r(1− δ)

Hence, for α > 0, i.e δ < 1 − 1/cr, the performance index J is maximum when

z3 is equal to min (udyn, umax).

24



Although a little tedious, this argument can be generalized to the case when

N > 2. The general conclusion is that, for this particular problem, despite the

possible non-convexity of the zero set defined by the equality constraints (dynamics),

the analysis of the resulting mathematical programming problem is possible and

there are a finite number of possibilities, determined by the initial conditions and

parameters (c,r,λ) of the problem.

3.3 Sequential Game

This work proposes to study the sequential game based on leader-follower itera-

tion for duopoly competition using Vidale-Wolfe-Deal advertising model. The game

starts in a monopoly, with a single player, labeled Firm A, having an initial market

share equal to zero. Firm A will then select an advertising strategy that maximizes

its own net gain, ending the round. After the first round is over, Firm A becomes

the leader with a known (public) advertising strategy, u1a, and a final market share,

x1a(N + 1); where the notation x{u}ji reads market share {advertising strategy} for

firm i at round j. In the following round, a second player, labeled Firm B, joins the

market, which now becomes a duopoly. Firm B, the follower, knows u1a but starts

with an initial market share, x2b(1) = 0. Firm A, the leader, does not know Firm

B’s advertising efforts, repeats its previous successful strategy, u2a = u1a, and starts

the round with its latest achieved market share, x2a(1) = x1a(N + 1). Firm B will

then pick an advertising strategy, u2b , that maximizes its own net gain, taking into

account Firm A’s former strategy. For every subsequent round, the roles are re-

versed, the previous leader becomes the follower and the previous follower becomes

the leader. The follower always knows the leader’s strategy but the opposite is not

true. The leader will always repeat its previous advertising strategy and both will

start with the same market share they finished in the last round. The game ends if

equilibrium is reached, the optimal control problem becomes infeasible or a number

of predefined rounds is exceeded, whichever comes first. Figure 3.4 shows the block

diagram of the game just described.

The above sequential game is equivalent to solving one of three different, yet

similar, discrete optimization problems at specific rounds. The game begins with

Firm A, in a monopolistic market, maximizing its net gain by solving the problem

described by equations (3.3a - 3.3d). Then, whenever taking the role of follower,

Firm B maximizes its profit by adopting the optimal solution of the duopoly problem

given by equations (3.6a - 3.6j). Analogously, when roles are reversed and Firm A

becomes the follower, it adopts the optimal advertising strategy given by the solution

of the duopoly problem described by equations (3.7a - 3.7j).

Discretization of the optimal control problem for duopoly when Firm B takes
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the role of follower can be written as:

maximize
ujb

Jb(x
j
b, u

j
b, N) =

N∑
k=1

(cbx
j
b(k)− ujb(k)) (3.6a)

subject to xja(k + 1) = xja(k) + fa,k(xja, x
j
a, u

j
a); k = 1, ..., N, (3.6b)

xjb(k + 1) = xjb(k) + fb,k(xjb, x
j
b, u

j
b); k = 1, ..., N, (3.6c)

xja(1) = xj−1
a (N + 1), (3.6d)

xjb(1) = xj−1
b (N + 1), (3.6e)

uja(k) = uj−1
a (k); k = 1, ..., N, (3.6f)

xja(k) + xjb(k) ≤ 1 k = 1, ..., N + 1, (3.6g)

0 ≤ xja(k) ≤ 1; k = 1, ..., N + 1, (3.6h)

0 ≤ xjb(k) ≤ 1; k = 1, ..., N + 1, (3.6i)

0 ≤ ujb(k) ≤ ubmax ; k = 1, ..., N (3.6j)

Constraints (3.6d) and (3.6e), guarantee both initial market shares to be equal to

the final market shares in the last round (when firm B is first introduced, x1b(N+1) =

0). Meanwhile, constraint (3.6f) forces Firm A to repeat its previous advertising

strategy.

Similarly, the discretized optimization problem for duopoly when Firm A be-

comes the follower is given by:

maximize
uja

Ja(x
j
a, u

j
a, N) =

N∑
k=1

(cax
j
a(k)− uja(k)) (3.7a)

subject to xja(k + 1) = xja(k) + fa,k(xja, x
j
a, u

j
a); k = 1, ..., N, (3.7b)

xjb(k + 1) = xjb(k) + fb,k(xjb, x
j
b, u

j
b); k = 1, ..., N, (3.7c)

xja(1) = xj−1
a (N + 1), (3.7d)

xjb(1) = xj−1
b (N + 1), (3.7e)

ujb(k) = uj−1
b (k); k = 1, ..., N, (3.7f)

xja(k) + xjb(k) ≤ 1 k = 1, ..., N + 1, (3.7g)

0 ≤ xja(k) ≤ 1; k = 1, ..., N + 1, (3.7h)

0 ≤ xjb(k) ≤ 1; k = 1, ..., N + 1, (3.7i)

0 ≤ uja(k) ≤ ubmax ; k = 1, ..., N (3.7j)
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The only differences aside from the objective, that now maximizes the net gain

of Firm A, are constraints (3.7f) and (3.7j), which mirror equations (3.6f) and (3.6j).

Their respective NLPs are given by:

maximize
z

bT z

subject to r(z) = 0̄,

Az ≤ Ub,

Az ≥ Lb

where

b =



0
...

0

cb
...

cb

0

...

0

−1
...

−1



z =



xja(1)
...

xja(N)

xja(N + 1)

xjb(1)
...

xjb(N)

xjb(N + 1)

uja(1)
...

uja(N)

ujb(1)
...

ujb(N)



r(z) =



xja(2)− xja(1)− fa,1(xja, x
j
b, u

j
a)

...

xja(N + 1)− xja(N)− fa,N(xja, x
j
b, u

j
a)

xjb(2)− xjb(1)− fb,1(xja, x
j
b, u

j
b)

...

xjb(N + 1)− xjb(N)− f2,N(xja, x
j
b, u

j
b)


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Lb =



0N+1

xj−1
a

0N

xj−1
b

0N

uj−1
a 1

N

0N


A =


IN+1 IN+1

IN+1

IN+1

IN

IN

 Ub =



1
N+1

xj−1
a

1
N

xj−1
b

1
N

uj−1
a 1

N

uNbmax


And:

maximize
z

aT z

subject to r(z) = 0̄,

Az ≤ Ua,

Az ≥ La

where:

a =



ca
...

ca

0

...

0

−1
...

−1

0
...

0



z =



xja(1)
...

xja(N)

xja(N + 1)

xjb(1)
...

xjb(N)

xjb(N + 1)

uja(1)
...

uja(N)

ujb(1)
...

ujb(N)


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r(z) =



xja(2)− xja(1)− fa,1(xja, x
j
b, u

j
a)

...

xja(N + 1)− xja(N)− fa,N(xja, x
j
b, u

j
a)

xjb(2)− xjb(1)− fb,1(xja, x
j
b, u

j
b)

...

xjb(N + 1)− xjb(N)− f2,N(xja, x
j
b, u

j
b)



La =



0N+1

xj−1
a

0N

xj−1
b

0N

0N

uj−1
b 1

N


A =


IN+1 IN+1

IN+1

IN+1

IN

IN

 Ua =



1
N+1

xj−1
a

1
N

xj−1
b

1
N

uNamax

uj−1
b 1

N


As can be seen, the differences between the two NLPs lie in the boundary values

and the elements of the constant vectors.

Start

Scenario: Monopoly

Scenario: Duopoly

Folllower: Firm A

Leader: Firm B

Leader: Firm A

Folllower: Firm B

Scenario: Duopoly

fuAg, xA(N + 1),
xB(N + 1)

fuBg, xB(N + 1)
xA(N + 1),

Optimize

Net Gain of

Firm A

Optimize

Net Gain of

Firm B

Figure 3.4: Block diagram of the Leader-Follower iteration.
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Chapter 4

Numerical results of market share

optimization using mathematical

software JModelica and JuMP

In the previous chapter, we detailed the mathematical methods and software used

to solve the optimal control problem based on the Vidale-Wolfe model for monopoly

and Deal’s extended version for duopoly. In this chapter, we present and analyze

the numerical results obtained for these optimal control problems. In addition, we

examine the word-of-mouth and electronic word-of-moth effects on duopolies using

the modified Three Populations model discussed in Section 2.4.

Simulations were conducted as follows: Numerical results for monopoly and si-

multaneous co-operation in duopoly, including studies on the Three Populations

model, were obtained using JModelica.org. The sequential game based on Leader-

Follower iteration proposed in Section 3.3 was implemented in Julia, using the pack-

age JuMP. The choice of JuMP was made because we could not find a way, when

using JModelica.org, to force one firm to repeat its previous advertising strategy

in the following round – despite JModelica.org also allowing an easy, natural and

concise formulation of the optimal control problem and not requiring discretization.

Solver IPOPT was used with both JModelica and JuMP software in all simulations.

4.1 Monopoly results

While the scope of this work is to study the optimal control of the Vidale-Wolfe-Deal

advertising model in duopolies, we begin our analysis by simulating the dynamic

optimization problem for monopoly, which also happens to be the opening round in

our sequential game, and then comparing our results to those proved by SETHI and

THOMPSON[4] using Green’s Theorem.
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The initial conditions and parameters adopted in the simulation, such as maxi-

mum revenue potential (c), response to the advertising effort (r), sales exponential

decay (λ), maximum advertising budget (umax) and initial market share (x0), are

displayed in Table 4.1.

Table 4.1: Initial Conditions and Parameters for the Monopoly.

Initial Conditions and Parameters Value
Maximum revenue potential c 100

Response to advertising effort r 1.2
Sales decay λ 0.2

Maximum advertising budget umax 10
Initial market share x0 10%

Figure 4.1 portrays the optimal solution [4] when x0 ≤ xS and xS ≥ xT . As

can be seen, the optimal trajectory can be divided into three different regions:

convergence, stability and decay. During convergence, the market share goes from its

initial state to an equilibrium point and the optimal advertising, u∗, takes the value

of Q which is equivalent to the maximum advertising budget, umax. At stability,

the control action becomes constant and the dynamic system enters steady-state.

Lastly, the advertising is suspended and the market share starts to decay due to the

effect of λ.

Figure 4.1: Optimal trajectory solution when x0 ≤ xS and xS ≥ xT . Figure from [4],

used with permission (please see Appendix C).
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Figure 4.2: Evolution of the Advertising (control action) in a monopoly. The firm initially

spends its maximum advertising limit (u∗ = umax = Q = 10) in order to reach the

optimal market share as fast as possible. Then, it reduces advertising investments to

u∗ = uS = 3.9160 in order to maintain equilibrium. In the end, it ceases investments

altogether (u∗ = 0) to increase its profit since decay of the market share is slow. This

behavior matches the analytical solution portrayed in in Figure 4.1.
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Figure 4.3: Evolution of the Market Share in a monopoly. The market share of the firm

starts at x0 = 0.1, stabilizes at xS = 0.9592 (= optimal market share) and finishes at

xT = 0.92. This behavior matches the analytical solution portrayed in Figure 4.1.

32



0.0 0.2 0.4 0.6 0.8 1.0
Time

0

20

40

60

80

100

N
et
 G

ai
n 
D
er
iv
at
iv
e 
(J

′ )

Figure 4.4: Profit curve in a monopoly. The area below the curve gives the total Net

Gain (J). As can be seen, ceasing to advertise near the end of the time window (t ≈ 0.78)

increases the performance index J .

Figure 4.3 shows the evolution of the market share in response to the simulated

optimal advertising strategy, depicted in Figure 4.2.

Both simulated advertising and market share behave similarly to the analytical

solution in Figure 4.1. Aside from the transient oscillations when moving to a

different region, the optimal advertising strategy took the value of umax = 10 during

convergence, stabilized at approximately uS = 3.9160 and became zero at the end

of simulation. This last behavior is explained because the slow decay of market

share while ceasing advertising completely results in a momentary bigger profit than

keeping the system in steady-state until the end, as shown in Figure 4.4. In response

to this optimal advertising strategy, market share quickly converged from the initial

value of 10% to approximately xS = 95.92%, finishing around xT = 92% after the

decay.

The equilibrium point xS and the final market share xT , adopting Sethi notations,

depend on parameters c, r and λ. To better understand the effects of each parameter

we ran a series of simulations varying one of them at a time while fixing the other

two at the values presented in Table 4.1. Figures 4.5 through 4.10 plot the results

of varying c, r and λ against xS and the gap between xS and xT .
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Figure 4.5: Maximum Revenue Potential (c) × Equilibrium Point
(
xS
)
. Plot shows how

the equilibrium point (xS) changes as the maximum revenue potential constant (c) varies

from 10 to 110.
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Figure 4.6: Maximum Revenue Potential (c) × Gap
(
xS − xT

)
. Plot shows how the

distance (gap) between the equilibrium point (xS) and the final market share (xT ) narrows

as the maximum revenue potential constant (c) is increased from 10 to 110.
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Figure 4.7: Response Constant (r) × Equilibrium Point
(
xS
)
. Plot shows how the

equilibrium point (xS) changes as the response constant (r) varies from 0.5 to 1.5.
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Figure 4.8: Response Constant (c) × Gap
(
xS − xT

)
. Plot shows how the distance (gap)

between the equilibrium point (xS) and the final market share (xT ) narrows as the response

constant (r) is increased from 0.5 to 1.5.
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Figure 4.9: Sales Decay (λ) × Equilibrium Point
(
xS
)
. Plot shows how the equilibrium

point (xS) changes as the sales decay constant (λ) varies from 0 to 1.
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Figure 4.10: Sales Decay (c) × Gap
(
xS − xT

)
. Plot shows how the distance (gap)

between the equilibrium point (xS) and the final market share (xT ) widens as sales decay

constant (λ) is increased from 0 to 1.
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4.2 Duopoly results

After validating the simulated results obtained for monopoly, we extend our anal-

ysis to optimal control problems using Vidale-Volfe-Deal and Three Populations

advertising models for duopoly. The analysis is split into two different parts: simul-

taneous co-operation (for both models) and sequential game competition (only for

the Vidale-Wolfe-Deal model).

4.2.1 Simultaneous co-operation

Vidale-Wolfe-Deal model

The optimal control problem described by equations(2.12a - 2.12f) can be understood

as a co-operation between two equivalent firms, labeled Firm A and Firm B, because

its objective is maximizing both net profits. Co-operation between the two is said

to be simultaneous because both firm’s net profits are maximized at the same time.

Limitation of both firms being equivalent comes from the nature of the optimization

problem itself. If both profits are weighted equally and one is more profitable (better

parameters) than the other, optimal solution will pursue the more favorable goal

while neglecting the other entirely. This happens because the final objective is

not affected by which firm the profit comes from. Thus, the problem would behave

similarly to a monopoly unless constraints that regulate the market and/or a penalty

for such behavior are imposed. This limitation may look strict at first, however, the

manner in which companies are perceived by consumers changes within each local

market. Hence, one can view two firms that share the same parameters as two firms

that perform similarly on average in a more sizable market.

Table 4.2: Initial Conditions and Parameters for the Duopoly Co-op (Vidale-Wolfe-Deal).

Initial Conditions and Parameters 1 2
Firm A maximum revenue potential (ca) 100 100
Firm B maximum revenue potential (cb) 100 100

Cost function weight (µ) 1 1
Firm A response to advertising effort (ra) 1.2 1.2
Firm B response to advertising effort (rb) 1.2 1.0

Firm A sales decay (λa) 0.2 0.1
Firm B sales decay (λb) 0.2 0.2

Firm A maximum advertising budget (uamax) 10 5
Firm B maximum advertising budget (ubmax) 10 20

Firm A initial market share (xa0) 10% 10%
Firm B initial market share (xb0) 10% 10%
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Simulation of the Vidale-Wolfe-Deal duopoly model regarding co-operation were

conducted adopting the parameters displayed column 1 of Table 4.2. Figures 4.11

and 4.12 show respectively the simulated market share and optimal advertising strat-

egy for firm A when both firms are equivalent. The corresponding results for firm B

can be seen in Figures 4.13 and 4.14. Both firms displayed identical results for adver-

tising at steady-state
(
uSa = uSb = 1.9624

)
and, consequently, shared the same market

share at equilibrium
(
xSa = xSb = 47.96%

)
and final market share (xaT = xbT = 46%).

While it is not surprising that firms A and B displayed the same behavior, it is in-

teresting to observe that each firm employed a strategy almost equal to half the

optimal advertising effort found for monopoly (uS = 3.9160), thus, achieving half

the monopoly equilibrium (xS = 95.92%) and final market share (xT = 92%).

To verify the limitation of both firms being equivalent, we considered a sce-

nario (column 2 of Table 4.2) were Firm A has a faster response to advertising

(ra > rb), a slower sales decay (λa < λb) but a smaller maximum advertising budget

(uamax < ubmax) compared to Firm B. Figure 4.15 shows the evolution of the market

shares of both firms, starting at (xa0 = xb0 = 10%). The market share of Firm B

experiences a brief and rapid grow due to the bigger maximum budget, which allows

to increase the joint profit (objective) early. Then, advertising of Firm B is ceased,

its market share exponentially decreases as a direct result of the sales decay and the

optimal control problem behaves similar to a monopoly of Firm A.
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Figure 4.11: Market Share of Firm A in a duopoly: Co-operative scenario where ra = rb,

λa = λb and uamax = ubmax . The values of parameters are displayed in column 1 of Table

4.2. Market share of A stars at xa0 = 0.1 per initial condition, stabilizes at xSa = 0.4796

(= optimal market share) and finishes at xaT = 0.46.
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Figure 4.12: Advertising of Firm A in a duopoly: Co-operative scenario where ra = rb,

λa = λb and uamax = ubmax . The values of parameters are displayed in column 1 of Table

4.2. The optimal advertising strategy begins with u∗a = umax = 10, is brought down to

u∗a = uSa = 1.9264 as the dynamic system enters steady-state, and is ceased (u∗a = 0) near

the end in order to increase its profit since decay of the market share is slow.
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Figure 4.13: Market Share of Firm B in a duopoly: Co-operative scenario where ra = rb,

λa = λb and uamax = ubmax . The values of parameters are displayed in column 1 of Table

4.2. Market share of B starts at xb0 = 0.1 per initial condition, stabilizes at xSb = 0.4796

(= optimal market share) and finishes at xbT = 0.46.
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Figure 4.14: Advertising of Firm B in a duopoly: Co-operative scenario where ra = rb,

λa = λb and uamax = ubmax . The values of parameters are displayed in column 1 of Table

4.2. The optimal advertising strategy begins with u∗b = umax = 10, is brought down to

u∗b = uSa = 1.9264 as the dynamic system enters steady-state, and is ceased (u∗b = 0) near

the end in order to increase its profit since decay of the market share is slow.
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Figure 4.15: Market shares of firms A and B in a duopoly: Co-operative scenario where

ra > rb, λa < λb and uamax < ubmax , resulting in crossover of market share dominance

from firm B to firm A at around 2.5 time units. Parameters adopted for both firms are

displayed in column 2 of Table 4.2.
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Figure 4.16 shows the results of varying µ in equation (2.12a). We considered

µ ∈ [0.5, 1.5] and used a step of 0.01 to explore the interval. It is worth noticing

that even small changes in µ tilt the scales in favor of one firm or the other. For

µ = 1 both firms accounted for half of the total net gain (profit). For µ < 1, the

optimal control problem became similar to the monopoly of Firm A. Conversely, for

µ > 1, it became similar to the monopoly of Firm B.
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Figure 4.16: Variation of the µ parameter when ra = rb, λa = λb and uamax = ubmax .

The plot on the left side shows how small variations of µ affect the normalized net gains

of Firm A (ordinate) and Firm B (abscissa). For µ = 1, each firm accounts for 50% of the

total net gain. Plots on the right detail the changes on both net gains for µ < 1 (top) and

µ > 1 (bottom).

Three Populations model

Results obtained for the simultaneous co-operation in duopoly using the Vidale-

Wolfe-Deal model showed that the total market share of firms A and B was 95.92%(
xSa = xSb = 47.96%

)
at equilibrium. Even when discarding the assumption of both

firms being equivalent (same parameters), the sum of both market shares never

surpassed 97.54%. This raises the question as to where the remaining costumers

went. The Three Populations model answers the question by modeling a third

population of undecided costumers and by implicitly imposing constraint (2.14),

since its dynamics result in a zero-sum game (see Section 2.4).

The optimal control problem for simultaneous co-operation using the duopolis-

tic version of the Three Populations model is described by equations(2.20a-2.20k).

Repeating the methodology adopted for the Vidale-Wolfe-Deal model, we start our

analysis by first investigating the optimal response to the system dynamics when

both firms are considered equivalent. Column 1 of Table 4.3 comprise the initial
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conditions and parameters adopted in our simulations for this scenario.

Table 4.3: Initial Conditions and Parameters for the Duopoly Co-op (Three Populations).

Initial Conditions and Parameters 1 2
Brand maximum revenue potential (cb) 100 100
Rival maximum revenue potential (cr) 100 100

Brand growth rate (kb) 1.0 1.2
Rival growth rate (kr) 1.0 1.0

Undecided-to-Brand flow rate (kbi) 1.0 1.0
Undecided-to-Rival flow rate (kri) 1.0 1.0

Brand-Rival decay rate (kbr) 1.0 1.0
Brand-Rival decay proportion(α) 0.5 0.5

Brand maximum advertising budget (ubmax) 1 5
Rival maximum advertising budget (urmax) 1 20

Brand initial market share (xb0) 10% 10%
Rival initial market share (xr0) 10% 10%

Undecided initial market share (xi0) 80% 80%

Figures 4.17, 4.19 and 4.21 show the market share’s evolution for the brand,

rival and undecided populations respectively. Albeit starting with 80% of the to-

tal market, the undecided population quickly became extinct due to the predation

of both brand and rival. The two co-operating firms (brand and rival) split the

market evenly, each firm finishing with 50%, which is fairly reasonable given both

firms share the exact same parameters. Furthermore, the optimal advertising ef-

fort of brand and rival, shown in Figures 4.18 and 4.20, exhibited a pattern similar

to the responses obtained for the Vidale-Wolfe monopoly model (Figure 4.2) and

Vidale-Wolfe-Deal duopoly model (Figures 4.12 and 4.14), i.e., full advertising until

reaching the optimal point of operation, followed by reducing the advertising ef-

fort just enough to stabilize the system at that optimal point (turnpike) and, then,

ceasing advertising near the end of the time window in order to increase the profit

without losing too much market share, due to the slow decay of the latter.

The maximum advertising budget for brand (ubmax) and rival (urmax) firms were

set at 1 for the sole purpose of improving the visualization of the optimal control

response. Setting the values at 10, in accordance to previous simulations, only causes

the optimal equilibrium, which remains the same (xb = xr = 50%), to be reached

faster.

For comparison and completeness, we also considered a scenario where brand an

rival are no longer equivalent: kb > kr and (ubmax) < (urmax). This means brand

population increases faster per unit of advertising spent meanwhile the rival firm

has a bigger budget to work with. The values adopted for all parameters are shown

in column 2 of Table 4.3. Figure 4.22 displays the market share’s evolution for the
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three populations. Again, the undecided population is preyed upon by brand and

rival populations and quickly driven to extinction. In agreement with the numerical

results shown in Figure 4.15, we also notice a initial surge of the rival population,

which is explained by the bigger advertising budget available. As the undecided

population vanishes, the dynamics shift entirely in favor of the brand (the most

profitable of the two firms). Consequently, the rival population is also extinct and the

whole market is comprised solely of the brand population, resulting in a monopoly.

This dissertation concludes its studies on the Three Population model for

duopolies by analyzing the effects of varying the parameter α. Recapitulating Sec-

tion 2.4, the parameter α determines the proportion of which brand and rival pop-

ulations are depleted after each encounter between the two. At the extremes, α = 0

indicates only the rival population is depleted and, conversely, α = 1 indicates

only the brand population is depleted. For α = 0.5, both populations are depleted

equally. Figure 4.23 shows how varying α between 0 and 1, using a step of 0.01

to explore the interval, affects the normalized net gain (profit) of each firms. Even

under the premise of brand and rival being equivalent, any small deviation from

α = 0.5 tilted the scales in favor of a firm or the other.
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Figure 4.17: Market share of the Brand in a duopoly: Co-operative scenario where kb = kr
and ubmax = urmax . Parameters adopted for both firms are displayed in column 1 of Table

4.3.
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Figure 4.18: Advertising effort of the Brand in a duopoly: Co-operative scenario where

kb = kr and uamax = ubmax . Parameters adopted for both firms are displayed in column 1

of Table 4.3. The pattern of the optimal advertising response is similar to those obtained

using Vidale-Wole monopoly model and Vidale-Wolfe-Deal duopoly model.
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Figure 4.19: Market share of the Rival in a duopoly: Co-operative scenario where kb = kr
and ubmax = urmax . Parameters adopted for both firms are displayed in column 1 of Table

4.3.
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Figure 4.20: Advertising effort of the Rival in a duopoly: Co-operative scenario where

kb = kr and uamax = ubmax . Parameters adopted for both firms are displayed in column 1

of Table 4.3. The pattern of the optimal advertising response is similar to those obtained

using Vidale-Wole monopoly model and Vidale-Wolfe-Deal duopoly model.
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Figure 4.21: Market share of the Undecided in a duopoly: Co-operative scenario where

kb = kr and ubmax = urmax . Parameters adopted for both firms are displayed in column 1

of Table 4.3.
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Figure 4.22: Evolution of the market shares of Brand, Rival and Undecided populations in

a duopoly: Co-operative scenario where kb > kr and ubmax < urmax . Parameters adopted

for both firms are displayed in column 2 of Table 4.3.
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Figure 4.23: Variation of the α parameter when kb = kr and ubmax = urmax . The plot

on the left side shows how small variations of α affect the normalized net gains of Brand

(ordinate) and Rival (abscissa). For α = 0.5, both populations are depleted equally at

every encounter and each firm accounts for 50% of the total net gain. Plots on the right

detail the changes on both net gains for α < 0.5 (top) and α > 0.5 (bottom).
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4.2.2 Sequential game competition

Competition, as described in Section 3.3, was simulated considering three different

scenarios. In Scenario I, Firms A and B are considered equivalent, sharing the same

maximum potential revenue (ca = cb), response to advertising (ra = rb), sales decay

(λa = λb) and maximum advertising budget (uamax = ubmax). In Scenario II, Firm A

is considered having a more recognizable brand which results in a faster response to

advertising (ra > rb) and a slower sales decay (λa < λb). Lastly, In Scenario III, Firm

A still has a more recognizable brand but Firm B has unlimited advertising budget

(uamax << ubmax). Table 4.4 summarizes the parameters and initial conditions for

each scenario.

Table 4.4: Initial Conditions and Parameters for the Duopoly Competition (Stackelberg).

Initial Conditions and Parameters
Scenarios

I II III
Firm A maximum revenue potential (ca) 100 100 100
Firm B maximum revenue potential (cb) 100 100 100

Cost function weight (µ) 1 1 1
Firm A response to advertising effort (ra) 1.2 1.2 1.2
Firm B response to advertising effort (rb) 1.2 1.0 1.0

Firm A sales decay (λa) 0.1 0.1 0.1
Firm B sales decay (λb) 0.1 0.15 0.15

Firm A maximum advertising budget (uamax) 25 25 25
Firm B maximum advertising budget (ubmax) 25 25 ∞

Firm A initial market share at round 1 (x1a(1)) 0% 0% 0%
Firm B initial market share at round 2 (x2b(1)) 0% 0% 0%

Figure 4.24 depicts the initial market share for Firm A and Firm B in Scenario

I at the beginning of each round, from rounds 1 through 150. Since their initial

market share at each round is their final market share at the previous one, it is

possible to observe that competition leads to an equilibrium around 50% (47.18%

for Firm A and 47.13% for Firm B) market share for both firms A and B, when they

adopt the strategy of maximizing their net gains. This result is not only strikingly

close to the result obtained for simultaneous competition but is also supported by

the results obtained by DEAL [7].

Figure 4.25 shows the average advertising effort of each firm in Scenario I at

every round. We can see that the average optimal advertising of Firm A and Firm

B converged at ūa = ūb = 1.

Next, we investigated what would happen when the two firms in the duopoly are

not equivalent anymore. Figures 4.26 and 4.27 illustrate the results of initial market

share and average advertising at every round, considering Scenario II. As one would
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have expected, the equilibrium no longer is at midpoint. Firm A, which has a faster

response to advertising and a slower sales decay finished with approximately 67.94%

of the available market, meanwhile Firm B secured only 26.45%. The averages of

both optimal advertising strategy converged, with Firm A spending 50% more than

Firm B. It is worth noting that Firm B’s strategy in Scenario II resembled the one

seen in Scenario I, meanwhile Firm A took a more aggressive strategy, knowing it

was better than the competition.

Finally, still under the premise that both firms are not in the same tier, we inves-

tigated what would change in the previous case if the lesser competitor with respect

to the Vidale-Wolfe-Deal model had a much bigger advertising budget. Figure 4.28

displays the initial market share at every round for Firm A and Firm B in Scenario

III. Under these circumstances, it is shown that firm B, despite having a less recog-

nizable brand, was able to dominate the market, achieving approximately 57.43% of

the final market share. Firm A, on the other hand, was strong-armed into settling

for meager 36.36% of the market, even though it was considered more attractive

to consumers, i.e. faster response to advertising (ra > rb) and a slower sales decay

(λa < λb). Figure 4.29 shows the result of the average optimal advertising effort

employed by both firms in Scenario III. It can be seen that in order for Firm B

to overcome a better competitor, it needed to invest approximately three times the

amount Firm A spent in advertising.
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Figure 4.24: Market Share of firms A and B in a duopoly: Competitive scenario. The

curves represent the evolution of market share after 150 rounds for each firm under the

assumptions of Scenario I (ra = rb, λa = λb, uamax = ubmax) of Table 4.4.
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Figure 4.25: Advertising effort of firms A and B in a duopoly: Competitive scenario.

The curves represent the average advertising made by the firms at each of the 150 rounds

under the assumptions of Scenario I (ra = rb, λa = λb, uamax = ubmax) of Table 4.4.
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Figure 4.26: Market Share of firms A and B in a duopoly: Competitive scenario. The

curves represent the evolution of market share after 150 rounds for each firm under the

assumptions of Scenario II (ra > rb, λa < λb, uamax = ubmax) of Table 4.4.
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Figure 4.27: Advertising effort of firms A and B in a duopoly: Competitive scenario.

The curves represent the average advertising made by the firms at each of the 150 rounds

under the assumptions of Scenario II (ra > rb, λa < λb, uamax = ubmax) of Table 4.4.

� �� �� �� �� ��� ��� ���


�����

���

���

���

���

���

���

�
��

��
���

��
��

���������������������	���xa(1)
���������������������
���xb(1)

Figure 4.28: Market Share of firms A and B in a duopoly: Competitive scenario. The

curves represent the evolution of market share after 150 rounds for each firm under the

assumptions of Scenario III (ra > rb, λa < λb, uamax << ubmax) of Table 4.4.
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Figure 4.29: Advertising effort of firms A and B in a duopoly: Competitive scenario.

The curves represent the average advertising made by the firms at each of the 150 rounds

under the assumptions of Scenario III (ra > rb, λa < λb, uamax << ubmax) of Table 4.4.
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Chapter 5

Concluding Remarks

Numerical results obtained from the Vidale-Wolfe monopoly model 4.1 were able to

verify the analytical solution found by SETHI and THOMPSON[4]. This was par-

ticularly important since the monopoly case served as cornerstone for all subsequent

duopoly models, also being the starting round in the proposed sequential differential

game.

The proposed duopolistic version of the Three Populations advertising model,

a Lotka-Volterra type model, introduced a novel assumption that encounters be-

tween two competing brands have a negative effect on both populations and thus

provoke indecision among customers, therefore increasing the undecided fraction of

the market.

For both Vidale-Wolfe-Deal and Three Populations advertising models, unless

the two firms are equivalent, i.e. share identical parameters, the optimal solution

for the simultaneous co-operation leads to a monopoly of the firm with more fa-

vorable parameters. This result indicates that if two firms are not identical, which

is usually the case, cooperation is not an optimal solution even under the adopted

“cooperative” cost function because the end result is complete market domination,

which might be summarized in the popular expression “business is business” (even

among cooperators). When the two firms are considered equivalent, however, the

numerical results for both models showed the market being evenly split between

them. Furthermore, the optimal advertising effort for both models exhibited the

same pattern, namely, full advertising effort until reaching the optimal point of

operation, followed by reducing the advertising effort just enough to stabilize the

system at that optimal point (turnpike) and, then, ceasing advertising near the end

of the time window in order to increase the profit without losing too much market

share, due to the slow decay of the latter. The turnpike in advertising, leading to

a market share equilibrium, for the Vidale-Wolfe-Deal duopoly model is expected

and is consistent with the stability analysis discussed in Section 2.2 for constant

advertising effort.
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In this dissertation, a sequential game based on Leader-Follower iteration was

proposed and solved for the Vidale-Wolfe-Deal duopoly model. Three different sce-

narios were studied: Scenario I, where the two opposing firms are considered equiva-

lent, sharing identical parameters, Scenario II, in which one of the firms has a faster

response to advertising and a slower sales decay, and, lastly, Scenario III, where the

firm with slower response to advertising and faster sales decay is given unlimited

funds to try to compensate. Unlike the case of simultaneous co-operation, market

share equilibrium was reached for all three scenarios without any firm turning the

market into a monopoly. Moreover, numerical results for Scenario III showed that a

bigger advertising budget under the rules established in the sequential game allows

a firm to overcome its less favorable parameters. Finally, it is worth noting that si-

multaneous co-operation and sequential competition achieve the same market share

equilibrium when both firms share identical parameters.

5.1 Contributions

The main contributions of this dissertation are as follows:

� Providing a stability analysis for the Vidale-Wolfe-Deal model showing that

any control attaining final constant positive values leads to a stable equilibrium

of market shares.

� Proposing a duopolistic version of the Three Populations model.

� Proposing and solving a sequential game based on Leader-Follower iteration

for the Vidale-Wolfe-Deal model.

5.2 Future work

Future research directions may include:

� Studying the response, state dynamics and possible equilibria of the Three

Populations advertising model for duopolies in a differential game.

� Studying the effects of modeling the Brand-Rival decay proportion, α, of the

Three Populations advertising model (equation 2.16) for duopolies as a func-

tion of the type:
xr

xb + xr
,

instead of assuming a constant value. Adopting such a function would cause

the depletion of brand and rival populations (with the corresponding growth
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of the undecided population) to be inversely proportional to their size at each

encounter, which might be a more reasonable assumption.

� Considering the interactions between brand and rival populations in the

duopolistic model as a Markov chain with the following possible outcomes:

increase of the brand population followed by a corresponding decrease of the

rival population, increase of the rival population followed by a corresponding

decrease of the brand population and increase of the undecided population

followed by corresponding decreases of both brand and rival populations.

� Proposing a multi-criterion cost function for the simultaneous co-operation

problem in order to obtain a Pareto front.
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Appendix A

JModelica.org codes

A.1 Monopoly example

A.1.1 VW Opt.mop

optimization VW_Opt (objectiveIntegrand = u - c*x, startTime = 0,

finalTime = 1)

// The states

Real x(start =0.1, fixed=true);

// Parameters

parameter Real c = 100;

parameter Real lambda = 0.2;

parameter Real r = 1.2;

parameter Real u_max = 10;

// The control signal

input Real u;

// System Dynamic

equation

der(x) = r*u*(1 - x) - lambda*x;

// Box Constraints

constraint

u >= 0;

u <= u_max;

x >= 0;

x <= 1;

end VW_Opt;
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A.2 Duopoly examples

A.2.1 VWD Opt.mop

optimization VWD_Opt (objectiveIntegrand = (u1 - c*x1) +

mu*(u2 -c*x2), startTime = 0,

finalTime = 1)

// The states

Real x1(start =0.1, fixed=true);

Real x2(start =0.1, fixed=true);

// Parameters

parameter Real c = 100;

parameter Real lambda1 = 0.2;

parameter Real lambda2 = 0.2;

parameter Real mu = 1.0;

parameter Real r1 = 1.2;

parameter Real r2 = 1.2;

parameter Real u1_max = 10;

parameter Real u2_max = 10;

// The control signals

input Real u1;

input Real u2;

// System Dynamics

equation

der(x1) = r1*u1*(1 - x1 -x2) - lambda1*x1;

der(x2) = r2*u2*(1 - x1 -x2) - lambda2*x2;

//Box Constraints

constraint

u1 >= 0;

u1 <= u1_max;

u2 >= 0;

u2 <= u2_max;

x1 >= 0;

x2 >= 0;

x1 + x2 <= 1;

end VWD_Opt;
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A.2.2 D3pops Opt.mop

optimization D3pops_Opt (objectiveIntegrand = (ub - c*xb) +

mu*(ur -c*xr), startTime = 0,

finalTime = 2)

// The states

Real xb(start =0.10, fixed=true);

Real xr(start =0.10, fixed=true);

Real xi(start =0.80, fixed=true);

// Parameters

parameter Real c = 100;

parameter Real mu = 1;

parameter Real alpha = 0.5;

parameter Real ub_max = 1;

parameter Real ur_max = 1;

parameter Real kb = 1.2;

parameter Real kbi = 1;

parameter Real kbr = 1;

parameter Real kr = 1;

parameter Real kri = 1;

// The control signals

input Real ub;

input Real ur;

// System Dynamics

equation

der(xb)= kb*ub + kbi*xb*xi - alpha*kbr*xb*xr;

der(xr)= kr*ur + kri*xr*xi - (1- alpha)*kbr*xb*xr;

der(xi)=-kb*ub -kr*ur - kbi*xb*xi - kri*xr*xi + kbr*xb*xr;

//Box Constraints

constraint

ub >= 0;

ub <= ub_max;

ur >= 0;

ur <= ur_max;

xb >= 0;

xr >= 0;

xi >= 0;

end D3pops_Opt;
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Appendix B

Julia code

B.1 Sequential Game

1 using JuMP
2 using Ipopt
3
4 # Parameters and initialization
5 c = 100;
6 lambda1 = 0.1;
7 lambda2 = 0.1;
8 n = 50;
9 dt = 0.01;
10 r1 = 1.2;
11 r2 = 1.2;
12 ua_max = 25;
13 ub_max = 25;
14 xa_0 = 0.0;
15 stop = 150;
16
17 # Optimization (Monopoly)
18 VW = Model(solver = IpoptSolver())
19 @variable(VW, 0 <= x[1:n+1] <= 1)
20 @variable(VW, 0 <= u[1:n] <= ua_max)
21 @constraint(VW, x[1] == xa_0)
22 for k = 1:n
23 @constraint(VW, x[k+1] == x[k] + dt*(r1*u[k]*(1-x[k]) - lambda1*x[k]))
24 end
25
26 @objective(VW, Max, (sum(c*x[1:n] - u))*dt)
27 solve(VW)
28
29 xa = getvalue(x);
30 ua = getvalue(u);
31 marketA = xa;
32 investA = ua;
33 marketB = zeros(n + 1);
34 investB = zeros(n);
35
36 xb = marketB;
37
38 obj = getobjectivevalue(VW);
39
40 feasibleA = true;
41 feasibleB = true;
42
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43 counter = 0;
44 countA = 0;
45 countB = 0;
46
47 #Leader-Follower Loop
48 while (counter < stop)&&(feasibleA)&&(feasibleB)
49
50 #Optimize Net Gain of Firm B (Duopoly)
51 VWDB = Model(solver = IpoptSolver())
52 @variable(VWDB, 0 <= x1[1:n+1] <= 1)
53 @variable(VWDB, 0 <= x2[1:n+1] <= 1)
54 @variable(VWDB, 0 <= u1[1:n] <= ua_max)
55 @variable(VWDB, 0 <= u2[1:n] <= ub_max)
56 @constraint(VWDB, x1[1] == xa[n+1])
57 @constraint(VWDB, x2[1] == xb[n+1])
58 for k = 1:n
59 @constraint(VWDB, u1[k] == ua[k])
60 @constraint(VWDB, x1[k+1] == x1[k] + dt*(r1*u1[k]*(1-x1[k]-x2[k]) -

lambda1*x1[k]))
61 @constraint(VWDB, x2[k+1] == x2[k] + dt*(r2*u2[k]*(1-x1[k]-x2[k]) -

lambda2*x2[k]))
62 @constraint(VWDB, x1[k+1] + x2[k+1] <= 1)
63 end
64 @objective(VWDB, Max, (sum(c*x2[1:n]- u2))*dt)
65 solve(VWDB)
66
67 objB = getobjectivevalue(VWDB);
68 feasibleB = !(isnan(objB));
69
70 if feasibleB
71 ub = getvalue(u2);
72 xa = getvalue(x1);
73 xb = getvalue(x2);
74
75 marketA = hcat(marketA,xa);
76 marketB = hcat(marketB,xb);
77 investA = hcat(investA,ua);
78 investB = hcat(investB,ub);
79
80 countB += 1;
81 counter += 1;
82 end
83
84 #Optimize Net Gain of Firm A (Duopoly)
85 VWDA = Model(solver = IpoptSolver())
86 @variable(VWDA, 0 <= x1[1:n+1] <= 1)
87 @variable(VWDA, 0 <= x2[1:n+1] <= 1)
88 @variable(VWDA, 0 <= u1[1:n] <= ua_max)
89 @variable(VWDA, 0 <= u2[1:n] <= ub_max)
90 @constraint(VWDA, x1[1] == xa[n+1])
91 @constraint(VWDA, x2[1] == xb[n+1])
92 for k = 1:n
93 @constraint(VWDA, u2[k] == ub[k])
94 @constraint(VWDA, x1[k+1] == x1[k] + dt*(r1*u1[k]*(1-x1[k]-x2[k]) -

lambda1*x1[k]))
95 @constraint(VWDA, x2[k+1] == x2[k] + dt*(r2*u2[k]*(1-x1[k]-x2[k]) -

lambda2*x2[k]))
96 @constraint(VWDA, x1[k+1] + x2[k+1] <= 1)
97 end
98 @objective(VWDA, Max, (sum(c*x1[1:n]- u1))*dt)
99 solve(VWDA)
100
101 objA = getobjectivevalue(VWDA);
102 feasibleA = !(isnan(objA));
103
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104 if feasibleA
105 ua = getvalue(u1);
106 xa = getvalue(x1);
107 xb = getvalue(x2);
108
109 marketA = hcat(marketA,xa);
110 marketB = hcat(marketB,xb);
111 investA = hcat(investA,ua);
112 investB = hcat(investB,ub);
113
114 countA += 1;
115 counter += 1;
116 end
117 end
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Appendix C

Figures permissions

C.1 Figure 3.2

Figure C.1: Permission to use figure 2.1 of [3] located on page 39.
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C.2 Figure 4.1

Figure C.2: Permission to use figure 7.5 of Chapter 7: Applications to Marketing of [4]

located on page 200.
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