
SECURING CONFIGURATION, MANAGEMENT AND MIGRATION OF

VIRTUAL NETWORK FUNCTIONS USING BLOCKCHAIN

Igor Drummond Alvarenga

Dissertação de Mestrado apresentada ao

Programa de Pós-graduação em Engenharia

Elétrica, COPPE, da Universidade Federal do

Rio de Janeiro, como parte dos requisitos

necessários à obtenção do t́ıtulo de Mestre em

Engenharia Elétrica.

Orientador: Otto Carlos Muniz Bandeira

Duarte

Rio de Janeiro

Março de 2018

SECURING CONFIGURATION, MANAGEMENT AND MIGRATION OF

VIRTUAL NETWORK FUNCTIONS USING BLOCKCHAIN

Igor Drummond Alvarenga

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO

ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE

ENGENHARIA (COPPE) DA UNIVERSIDADE FEDERAL DO RIO DE

JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A

OBTENÇÃO DO GRAU DE MESTRE EM CIÊNCIAS EM ENGENHARIA

ELÉTRICA.

Examinada por:

Prof. Otto Carlos Muniz Bandeira Duarte, Dr.Ing.

Prof. Miguel Elias Mitre Campista, D.Sc.

Prof.a Fab́ıola Gonçalves Pereira Greve, Ph.D.

RIO DE JANEIRO, RJ – BRASIL

MARÇO DE 2018

Alvarenga, Igor Drummond

Securing Configuration, Management and Migration

of Virtual Network Functions Using Blockchain/Igor

Drummond Alvarenga. – Rio de Janeiro: UFRJ/COPPE,

2018.

XII, 60 p.: il.; 29, 7cm.

Orientador: Otto Carlos Muniz Bandeira Duarte

Dissertação (mestrado) – UFRJ/COPPE/Programa de

Engenharia Elétrica, 2018.

Referências Bibliográficas: p. 55 – 60.

1. Blockchain. 2. Network Function Virtualization.

3. Security. I. Duarte, Otto Carlos Muniz Bandeira.

II. Universidade Federal do Rio de Janeiro, COPPE,

Programa de Engenharia Elétrica. III. T́ıtulo.

iii

“To absent friends, lost loves, old

gods, and the season of mists;

and may each and every one of

us always give the devil his due.”

— Neil Gaiman, Season of Mists

iv

Agradecimentos

Primeiramente gostaria de agradecer à minha famı́lia pelo seu apoio incondicio-

nal. Agradeço em especial aos meus pais, sempre presentes. Agradeço aos amigos

pela motivação e companheirismo.

Agradeço também ao meu orientador, professor Otto, por todo apoio, dedicação,

compreensão e paciência dedicados a mim desde que me uni ao GTA.

Agradeço especialmente a todos os amigos e professores do Grupo de Telein-

formática e Automação pelo apoio e incentivo durante todo peŕıodo que estivemos

juntos. Também agradeço à Universidade Federal do Rio de Janeiro e a todos os

demais professores que contribúıram para minha formação.

Por fim, agradeço ao Governo Brasileiro, em especial às agências de fomento

CAPES, CNPq, RNP, FAPERJ, FAPESP e a fundação COPPETEC por terem

investido em mim.

v

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos

necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

PROTEGENDO CONFIGURAÇÃO, GERENCIAMENTO E MIGRAÇÃO DE

FUNÇÕES DE REDE VIRTUAIS UTILIZANDO BLOCKCHAIN

Igor Drummond Alvarenga

Março/2018

Orientador: Otto Carlos Muniz Bandeira Duarte

Programa: Engenharia Elétrica

As tecnologias de virtualização de funções de rede e de encadeamento de funções

de serviço de rede aumentam a agilidade na provisão de serviços e acrescentam in-

teligência no núcleo da rede. No entanto, a programabilidade do núcleo da rede e a

oferta de serviços por múltiplos fornecedores provocam novas vulnerabilidades neste

ambiente. A necessidade de provisão de funções virtuais de serviço de rede (VNFs)

seguras torna-se ainda mais cŕıtica, uma vez que uma simples modificação no núcleo

da rede pode afetar múltiplos usuários. Este trabalho propõe uma arquitetura base-

ada em correntes de blocos para gerenciamento seguro, configuração e migração de

VNFs. Esta arquitetura garante a imutabilidade, não repúdio e auditabilidade da

configuração de VNF e do histórico de gerenciamento de VNFs. Além disso, a arqui-

tetura proposta preserva o anonimato das VNFs, dos inquilinos e das informações de

configuração, a fim de evitar que estes se tornem alvos de ataques. Foi desenvolvido

um protótipo concebido para a plataforma OPNFV (Open Platform for NFV) e foi

avaliado o desempenho em relação ao custo benef́ıcio de parâmetros e aos gargalos

da arquitetura proposta.

vi

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Master of Science (M.Sc.)

SECURING CONFIGURATION, MANAGEMENT AND MIGRATION OF

VIRTUAL NETWORK FUNCTIONS USING BLOCKCHAIN

Igor Drummond Alvarenga

March/2018

Advisor: Otto Carlos Muniz Bandeira Duarte

Department: Electrical Engineering

The current technologies of network functions virtualization and network service

function chaining increase service provision agility and add intelligence at the core of

the network. However, the network core programmability and the provision of ser-

vices by multiple providers brings new vulnerabilities to this scenario. The need for

secure provisioning of virtual network service functions (VNFs) becomes even more

critical, since simple modifications at the network core can affect multiple network

users. This work proposes a blockchain-based architecture for secure management,

configuration and migration of VNFs. This architecture ensures the immutability,

non-repudiation, and auditability of VNF configuration and the management his-

tories. In addition, the proposed architecture preserves the anonymity of VNFs,

tenants, and configuration information, to mitigate the possibilities of targeted at-

tack. A prototype designed for the OPNFV (Open Platform for NFV) platform

was developed, and the proposed architecture performance was evaluated in terms

of parameters trade-offs and bottlenecks.

vii

Sumário

Lista de Figuras x

Lista de Tabelas xii

1 Introduction 1

1.1 Contributions and publications . 3

1.1.1 Blockchain related papers . 4

1.1.2 NFV and SFC related papers 5

1.1.3 Data analysis related papers 6

1.2 Organization . 7

2 Network Function Virtualization, Blockchain, and Consensus Me-

chanisms 8

2.1 Network Function Virtualization . 8

2.1.1 Virtual Network Function Security challenges 8

2.2 Blockchain . 9

2.2.1 Blockchain data structure . 10

2.2.2 Blockchain-based systems . 12

2.3 Blockchain consensus mechanisms . 13

2.3.1 Distributed agreement challenge 13

2.3.2 Eventual consistency . 14

2.3.3 Quorum-based consistency . 16

3 The Proposed System Architecture 22

3.1 Assumptions and requirements . 22

3.2 Attacker model . 25

3.3 Proposed architecture modules . 26

3.3.1 Blockchain modules . 28

3.3.2 Client modules . 31

3.4 Key management . 37

3.5 Proposed blockchain structure and transaction schemes 38

3.6 Secure migration of virtualized network functions 41

viii

4 Performance Evaluation of the Blockchain Module Prototype 44

4.1 Prototype environment and setup . 44

4.2 Evaluation of conducted experiments 45

5 Conclusion 50

Referências Bibliográficas 55

ix

Lista de Figuras

2.1 Standard blockchain data structure. This data structure functions as

a linked list, in which each block is linked to the previous block by

the previous block hash. 10

2.2 Sequence of messages/phases, from left to right, for the default case

of the Practical Byzantine Fault Tolerance (PBFT) consensus protocol. 19

2.3 Proposed signed blockchain data structure. The main difference is

that signed content hashes now link the blockchain. The header fi-

eld may carry a proof of acceptance of the block by other consensus

participants than the current block signer. 21

3.1 Blockchain module architecture. The blockchain module hosts a con-

sistent replica of the blockchain and is responsible for reaching con-

sensus with other blockchain modules, as well as answering client

requests. 29

3.2 CRB modules are located in NFV data centers and are interconnected

in a way that allows connection from any other CRB module. Both

tenant and VNF client modules are able to connect to one or more

CRB modules. No VNF created in the proposed architecture accepts

external connections and its configuration state is manage solely by

a VNF client module that requests configuration stored in the CRB

by an allowed tenant. 30

3.3 SMB modules are located in specialized NFV nodes inside NFV data

centers that share the same management domain. These SMB mo-

dules are interconnected in a way that allows connection from any

other SMB module. Both tenant and service client modules are able

to connect to one or more SMB modules. 31

3.4 VNF client module architecture. The VNF client module connects

to a CRB module to send and retrieve transactions regarding the

configuration state management of the VNF in which it is installed. . 32

x

3.5 Service client module architecture. The service client module con-

nects to a SMB module to send and retrieve transactions regarding

the configuration requests to the associated VNF management service. 34

3.6 Tenant client module architecture. The tenant client module is the

interface for configuration authors. It allows the tenant who owns

the VNFs to assign them confidential configuration information, and

interested parties to publish public configuration templates. 37

4.1 Prototype maximum transaction processing rates 46

4.2 Prototype consensus evaluation for a 400 B firewall configuration at

100 write transaction requests/s. 48

4.3 Prototype evaluation of SMB-induced time overhead. 48

xi

Lista de Tabelas

1.1 FCAPS telecommunications network management model. 2

2.1 Proposed resources for new proof-based protocols. 16

xii

Chapter 1

Introduction

Network function virtualization (NFV) and service function chaining (SFC) appear

as alternative software-based technologies to allow commercial off-the-shelf hardware

to perform functions previously delegated to proprietary hardware-specialized mid-

dleboxes [1]. The software-based approach reduces operational expenditure (OPEX)

and capital expenditure (CAPEX), enabling multiple infrastructure providers, such

as Internet service providers (ISPs), to offer customized end-to-end communication

services. These services are composed by specific virtual network functions supplied

by multiple virtual network function (VNF) vendors. Network function vendors also

benefit of reduced time to market in order to offer specific virtual network functi-

ons, when compared to the long development cycle associated to hardware-based

middleboxes.

In a network function virtualization (NFV) scenario, an Internet service provi-

der (ISP), a user or an application may request an end-to-end network service with

specific functionality. Then, this ISP establishes a customized chain of VNFs that

provides specific functionalities for this user or application demand, selecting the

appropriate VNF from several vendor implementation alternatives. These VNFs,

actuallly, make part of a pool of VNFs that reside in NFV data centers near the

network core, for which the ISP is a tenant. The use of programmable technologies

at the network core, such as NFV and SFC, exposes the Internet service provider

(ISP) to an increased number of vulnerabilities. Therefore, it is of major impor-

tance to reduce the possible VNF attack vectors and to provide secure and reliable

configuration management [2]. It is worth to note that a threat in the network core

affects a considerably greater number of traffic flows when compared to a localized

threat at the border of the network, potentially affecting much more victims [3, 4].

Hence, the main challenge faced by this new service paradigm lies on ensuring VNF

security. We can assume that, at the worst-case scenario, a compromised virtual

network function at the network core endangers all traffic forwarded through this

VNF [5].

1

To identify a faulty or compromised VNF, and how it came to be, the ability

to audit VNF configuration and management history is mandatory and, as a con-

sequence, non-repudiation and immutability of all previous VNF history are requi-

red. In addition, there is no simple solution for the immutability requirement using

conventional databases [6]. Moreover, a proposed solution must consider that the

network core and adjacent infrastructure providers are composed of high-demand

carrier grade networks. Therefore, to be feasible in these networks, a solution must

be able to adhere to strict quality of service guidelines, as carrier grade networks are

expected to have at least 99.999% uptime, while still being able to handle tremen-

dous amounts of system hand-offs, managing massive amounts of data and enforcing

service level agreements (SLAs).

In order to achieve these goals, the dominant model employed for telecommuni-

cations network management the is fault, configuration, account, performance, and

security management model (FCAPS) [7], as shown in Table 1.1. This model was

developed by the International Organization for Standardization (ISO) and further

promoted by the International Telecommunications Union telecommunication stan-

dardization sector (ITU-T) in the telecommunications management network recom-

mendation on management functions (TMN M.3400) [8].

Tabela 1.1: FCAPS telecommunications network management model.

Area of function Description

Fault Management Defines methods and processes for fast re-
cognition, isolation, logging and remedia-
tion of faults when they occur in a network.

Configuration Management Covers processes for storage, recovery,
change, management, and future planning
of networks.

Administration Management Identifies processes for tracking usage sta-
tistics and network utilization for billing of
metered resources, as well as tracking roles
and actions of credentialed users.

Performance Management Ensures that networks perform as inten-
ded, validating compliance to assurance
agreements.

Security Management Defines guidelines and processes to ensure
data, network, and access integrity.

In the last thirty years, FCAPS has become a proven approach for network

management in a centralized, single-provider environment [9]. However, current

networks function management paradigms, such as NFV, demand distributed wor-

kloads pertaining to multiple tenants across several shared data center environments.

This raises the difficulty of providing a satisfactory VNF management security solu-

tion that tend to those requirements. We argue that blockchain-based repositories

with specialized transaction schemes are a good solution to implement configura-

2

tion, administration, and security management in conformance with FCAPS model.

Furthermore, a blockchain-based proposal should be able to facilitate distributing

FCAPS capabilities across multiple shared domains [9, 10], by coupling its immuta-

bility property with suitable consensus and provenance tracing mechanisms.

This work proposes a two-fold blockchain-based architecture for the secure con-

figuration management of VNFs, as well as to provide transparent and reliable

interservice auditability to datacenter VNF management services. A configuration

repository blockchain (CRB) is devised for tackling configuration management chal-

lenges, and a service management blockchain (SMB) is devised for storing mana-

gement services requests and responses. Besides the immutability and integrity

features provided by the use of blockchain, consistency of transactions is ensured by

a proposed consensus protocol, which validates every transaction before registering

it and keeps consistency intact even under byzantine faults. Finally, the adoption

of an asymmetric encryption key identification scheme confers anonymity to VNFs

and tenants, while still allowing access management, action tracking and sensitive

information encryption when desired by the rightful parties.

The proposed architecture enables secure VNF configuration state migration,

defining a trust mechanism between different infrastructure providers and VNF ven-

dors, which may distrust each other. Furthermore, this architecture intends to cope

with compromised systems, which could act maliciously. The proposed VNF confi-

guration management and service logging mechanisms are compliant with the good

practices found in the literature [7, 8, 11, 12]. In addition, the proposed architecture

is designed to avoid any changes in the network function virtualization (NFV) and

service function chaining (SFC) orchestration platforms, and it is not restricted to a

predicted subset of VNFs. While the architecture accounts for signed configuration

templates to be shared by VNF vendors as a configuration starting point, sensitive

tenant configuration and management information is still kept private using encryp-

tion. More importantly, the proposed architecture eliminates the need for listening

services in a VNF, thus allowing the definition of policies, which automatically en-

force closure of all ports, reducing VNF exposure to possible attack vectors.

1.1 Contributions and publications

As a direct and indirect result from the contributions of this work, papers were

elaborated on the subjects of blockchain, network function virtualization, service

function chaining and data analysis.

3

1.1.1 Blockchain related papers

The following papers are direct results of the current work, and present early archi-

tectures for improving aspects of network function-virtualization security.

1. Alvarenga, I. D., Rebello, G. A. F., and Duarte, O. C. M. B. “Securing Con-

figuration Management and Migration of Virtual Network Functions Using

Blockchain”, to be published in IEEE/IFIP Network Operations and Mana-

gement Symposium - NOMS 2018, April 2018. English, A4 size, 9 p.

2. Alvarenga, I. D., Sanz, I. J., Rebello, G. A. F., Mattos, D. M. F., and Duarte,

O. C. M. B. - “Gerenciamento, configuração e migração seguros de funções de

rede virtualizadas utilizando corrente de blocos”, Technical Report, Electrical

Engineering Program, COPPE/UFRJ, July 2017. Portuguese, A4 size, 14 p.

3. Rebello, G. A. F., Alvarenga, I. D., Sanz, I. J., Andreoni Lopez, M., Mattos,

D. M. F, and Duarte, O. C. M. B. - “SINFONIA: uma Ferramenta para o En-

cadeamento Seguro de Funções Virtualizadas de Rede Através de Corrente de

Blocos”, Technical Report, Electrical Engineering Program, COPPE/UFRJ,

December 2017. Portuguese, A4 size, 8 p.

The first two blockchain related papers propose a blockchain-based architec-

ture for the secure management and migration of virtual network function (VNF)

configuration, while still relying on the network virtual function (NFV) platform

to perform VNF management operations. These papers present a new approach to

allow for auditability through immutability of configuration of VNFs in multi-cloud-

vendor and multi-tenant VNF environment. The immutability is achieved by using

blockchain with a consensus protocol acting as a mediator between the configuring

tenants and the configured VNFs. In particular, the specific structure and method

applied to the NFV environment are presented.

The paper entitled “Gerenciamento, configuração e migração seguros de funções

de rede virtualizadas utilizando corrente de blocos”proposes a blockchain consen-

sus protocol based on an election-less variant of the Raft protocol [13, 14] that is

able to achieve fast transaction effectuation time, while still resistant to consensus

member failures. The major shortcomings of this approach are the vulnerability to

collusion and malicious behavior attacks, which are inherent to Raft-based proto-

cols, and non-deterministic number of necessary message exchange rounds to reach

consensus in case of major failure of consensus participants. The paper entitled

“Securing Configuration Management and Migration of Virtual Network Functions

Using Blockchain”improves on this shortcoming by proposing a practical byzantine

fault tolerance (PBFT) [15] inspired blockchain consensus protocol that accounts

4

for collusion attacks and other types of malicious behavior, and is able to complete

consensus in a fixed number of message exchange phases in all supported failure

or attack scenarios. While the former demonstrates its proposed consensus mecha-

nism through mathematical validation, in the latter the proposed architecture and

PBFT-based consensus mechanism were prototypically implemented and evaluated

regarding blockchain transaction performance.

The last paper proposes SINFONIA, a first attempt of a blockchain-based

system that provides security to virtualized networks, ensuring auditability, non-

repudiation, and integrity of VNF and SFC orchestration operations. SINFONIA is

a modular stateless architecture that allows the orchestration of VNFs in a simple

and agile way, offering a web interface front-end for intuitive manipulation of archi-

tectural facilities. A prototype of the proposed system for the Open Platform for

Network Function Virtualization (OPNFV) was developed, with the implementa-

tion of a specific operation logging blockchain and a collusion-resistant PBFT-based

consensus protocol. The results show that SINFONIA provides security with low

overhead on the performance of the cloud orchestrator. The current work builds

upon SINFONIA contributions to devise a blockchain-based mechanism to enable

auditing of all NFV data-center management-service interaction.

1.1.2 NFV and SFC related papers

The following papers are indirect results of the current work, and present contribu-

tions on NFV security, NFV performance evaluation and security provision through

service function chains (SFC). The studies on those papers were of utmost impor-

tance to the identification of the security and configuration challenges pertaining to

NFV environments that were tacked in the present work.

1. Sanz, I. J., Alvarenga, I. D., Andreoni Lopez, M. E., Mauricio, L. A. F., Mat-

tos, D. M. F., Rubistein, M. G., and Duarte, O. C. M. B. - “Uma Avaliação

de Desempenho de Segurança Definida por Software através de Cadeias de

Funções de Rede”, published in Anais do XVII Simpósio Brasileiro em Segu-

rança da Informação e de Sistemas Computacionais - SBSeg’17, Brasilia, DF,

Brazil, November 2017. Portuguese, A4 size, 14 p.

2. Mauricio, L. A. F., Alvarenga, I. D., Rubinstein, M. G., and Duarte, O. C. M.

B. - “Uma Arquitetura de Virtualização de Funções de Rede para Proteção

Automática e Eficiente contra Ataques”, in XXII Workshop de Gerência e

Operação de Redes e Serviços (WGRS’2017) - SBRC’2017, Belém, PA, Brazil,

May 2017. Portuguese, A4 size, 14 p.

3. Andreoni Lopez, M., Lobato, A. G. P., Mattos, D. M. F., Alvarenga, I. D.,

5

Duarte, O. C. M. B., and Pujolle, G. - “Um Algoritmo Não Supervisionado

e Rápido para Seleção de Caracteŕısticas em Classificação de Tráfego”, in

XXXV Simpósio Brasileiro de Redes de Computadores e Sistemas Distribúıdos

- SBRC’2017, Belém, PA, Brazil, May 2017. Portuguese, A4 size, 14 p.

The first paper presents a performance evaluation of different software-defined

security-oriented service function chain topologies, and was fundamental for the

understanding of emerging configuration and security issues on a NFV platform

environment, highlighting the necessity of service and inter-service communication

logging. This paper also investigates and proposes the use of intrusion detection sys-

tems (IDS) as virtual function. To this end, real time threat detection in live traffic

is made possible by fast feature selection algorithms, such as the one we proposed

in the last paper. While the proposed IDS architecture is effective in leveraging

cluster power outside of service function chain to cope with real time traffic analy-

sis, it has shortcomings in exposing an additional communication channel between

the real time IDS cluster and the IDS VNF. Attackers through a denial of service

(DoS) attack could potentially target this channel in an attempt to deny the correct

operation of the IDS. The second paper furthers this understanding by proposing

modifications to OPNF architecture in order to provide more efficient security, and

specially raised awareness of issues that could arise if the attacker is able identify

and target specific VNFs or systems. The improved architecture on the proposed

work mitigates these issues by anonymizing VNF and services identity, as well as

providing a secure indirect configuration mechanism that reduces VNF attack vec-

tor exposure. In special, DoS attacks are mitigated by the increased availability of

configuration sources.

1.1.3 Data analysis related papers

The following papers are indirect results of the current work, and were paramount

in ascertaining traffic behavior, attack distribution, and the increased threat reach

as threats move from near access networks to the network core. Nevertheless, these

research efforts unveiled a high necessity of providing fast-updating security network

services near threat origin, to cope with newly developed threats before they could

reach their intended targets. As NFV is a technology that employs software based

network devices, the time to market to update security solutions is far shorter than

the one for hardware middleboxes. Hence, NFV is a technology suitable to enhance

security in the present threat landscape, providing flexible rapid-reacting real-time

protection against network attacks even close to the network core.

1. Andreoni Lopez, M., Silva, R. S., Alvarenga, I. D., Mattos, D. M. F., and

Duarte, O. C. M. B. - “Coleta e Caracterização de um Conjunto de Dados

6

de Tráfego Real de Redes de Acesso em Banda Larga”, in XXII Workshop de

Gerência e Operação de Redes e Serviços (WGRS’2017) - SBRC’2017, Belém-

Pará, PA, Brazil, May 2017. Portuguese, A4 size, 14 p.

2. Andreoni Lopez, M., Silva Souza, R., Alvarenga, I. D., Rebello, G. A. F.,

Sanz, I. J., Lobato, A. P., Mattos, D. M. F., and Duarte, O. C. M. B. and Pu-

jolle, Guy - “Collecting and Characterizing a Real Broadband Access Network

Traffic Dataset”, in 1st Cyber Security in Networking Conference (CSNet’17)

- Best Paper Award - Rio de Janeiro, Brazil, October 2017. English, A4 size,

8 p.

1.2 Organization

The remainder of this work is organized as follows. Chapter 2 presents de Network

Function Virtualization concept, the main aspects of blockchain data structure and

associated technologies, then discusses the main consensus algorithms applicable to

distributed blockchains. Chapter 3 presents the proposed architecture. Chapter 4

presents the implemented prototype evaluation results for the proposed architecture.

Finally, Chapter 5 concludes the work.

7

Chapter 2

Network Function Virtualization,

Blockchain, and Consensus

Mechanisms

2.1 Network Function Virtualization

Network function virtualization (NFV) and service function chaining (SFC) ap-

pear as alternative software-based technologies to enable commercial off-the-shelf

hardware to perform and replace functions previously delegated to proprietary

hardware-specialized middleboxes [1]. The software-based approach reduces ope-

rational expenditure (OPEX) and capital expenditure (CAPEX) enabling multiple

infrastructure providers to offer end-to-end communication services, and multiple

virtual network function vendors to offers specific virtual network functions.

2.1.1 Virtual Network Function Security challenges

Previous works [1, 4, 5, 11] investigate the problem of security vulnerabilities due to

co-location of multiple tenant virtual network functions (VNF) on the same service

functions chaining (SFC) platform. They state that compromising a single VNF at

the core of the network endangers entire service function chains and their network

users. Firoozjaei et al. and Lal et al. investigate security threats and propose

taxonomies for vulnerabilities in NFV [12, 16].

Several solutions are proposed in the recent literature for the problem of VNF

secure configuration. Coughlin et al. propose the use of secure hardware through

a Trusted Platform Module (TPM) to protect privacy of VNF configuration [17].

While achieving its purpose, this approach relies on specific hardware and centrali-

zed remote attestation, impacting up to 50 % of the available bandwidth. Massonet

et al. propose an architecture for global configuration of security VNFs in federated

8

networks with automated deployment [2]. This architecture, however, is dependent

on a centralized controller and on agreement between clouds, resulting in a single

point of failure and configuration delays when in situations of great competition. A

variation of this architecture is proposed by Massonet et al. in which the configura-

tion of a security virtual network function (VNF) is performed by the cloud platform

VNF orchestrator and configuration parameters are encoded in the service function

description file in [18]. This approach requires modification of various components of

the orchestrator and is restricted to pre-established types of VNF. Additionally, one

cannot modify the security configuration of the VNF after it is booted by the same

mechanism. Pattaranantakul et al. propose a similar mechanism to control access

to VNFs through service function description files [19]. Reynauld et al. find, howe-

ver, that such approaches render VNF configurations susceptible to cloud platform

information access vulnerabilities [20].

Firoozjaei et al. and Lal et al. discuss the challenge of transferring configurations

and states securely during VNF migration. Reynaud et al. point out that VNFs are

built on software from different vendors, with different vulnerabilities, and mentions

attacks that can be carried out against VNFs through privileged terminal access

on cloud platforms[20]. The architecture we proposed is capable of performing

VNF configuration and migration through a secure configuration repository, while

preserving information confidentiality. Besides, the proposed configuration update

mechanism eliminates VNF listening services, thus mitigating threats from terminals

and from the network.

2.2 Blockchain

Blockchain related technologies are heavily reliant in cryptography, and first surfaced

to enable anonymous, trustless monetary transactions [21], because even if parties do

not trust each other, they may make deals. The usual path to secure a deal with one

that is not trusted is to ask a common trusted party for intermediation. Nevertheless,

this signifies the concession of some liberties, because the intermediation of a third

party means that one may lose anonymity, privacy and time, moreover, one definitely

loses control. Blockchain-enabled systems are trustless, which means there is no

trusted party or intermediary to a transaction between two unknown and untrusting

entities.

Several works explore the state of the art regarding the application of block-

chains in communication network problems [22–24]. These works focus on the use

of blockchain as a replicated incremental data repository, in which all past tran-

sactions are signed and recorded with asymmetric cryptographic keys. Xu et al.

present blockchain as a mechanism of communication and service coordination th-

9

rough transactions while demonstrating its applicability as a repository of distribu-

ted information [6]. Boudguiga et al. present a solution for updating IoT devices

through blockchain-stored information [25]. The architecture proposed in the pre-

sent work uses similar mechanisms to configure VNFs. However, our proposal takes

into account the needs for confidentiality, anonymity and auditing, not addressed by

previous works. Hence, we propose a slightly modified blockchain to be used with a

proposed practical byzantine fault tolerance (PBFT)-based algorithm.

2.2.1 Blockchain data structure

Blockchain is a term used broadly in the current literature to refer to applications,

distributed systems, networks, databases, transaction schemes, and so forth. In fact,

blockchain can be leveraged to create all of those technologies. However, ultimately,

blockchain is a data structure in its original form, proposed by Nakamoto [21],

a pseudonym, as part of his Bitcoin cryptographic currency system proposal. A

blockchain is a linked list of smaller data structures, known as blocks. Each block

is linked to its predecessor by pointing to its cryptographic hash, as depicted in

Figure 2.1.

Figura 2.1: Standard blockchain data structure. This data structure functions as a
linked list, in which each block is linked to the previous block by the previous block
hash.

Besides the hash of the last inserted block, a block in a blockchain may have

any content that makes sense to an application. There are many examples in the

literature, for instance: Azaria et al. propose the use of blockchain to register

and control access to medical records [26]; Frantz et al. [27] and Wood et al. [28]

propose the utilization of a blockchain to store and execute contracts; Fujimura

et al. propose the utilization of blockchain content block to store digital rights

management (DRM) information [29]; Zyskind et al. propose the utilization of

blockchain to store files [30]; and, Bozic et al. [23], Mukhopadhyay et al. [22] 2016,

and Christidiset al. [24] propose storing virtual machine or network related resource

information on blockchain.

10

The main type of blockchain content is the transaction, that represents an action

that goes from one entity to another [31]. The original type of transaction, was the

cryptocurrency exchange from Bitcoin [21]. But most of new blockchain application

deal with some kind of exchange, that is registered on the form of a transaction.

A transaction has four main parts: a sender, a recipient list, the content that is

being transferred, and a signed hash of all preceding transaction fields. When the

immutability property of blockchain is combined with a signed transaction, a system

that works like a ledger is created. A ledger is an ordered immutable sequence

of transactions that describe all deals made in a system from the last one, until

the first in its conception. Signed hashes provide authenticity to each transaction

claim, as well as non-repudiation and integrity to a transaction. Anonymity is

obtained without sacrificing other properties, by utilizing the public counterpart of

an asymmetric key pair as means of identifying the sender and recipient portion of a

transaction. If the content of a transaction is classified and meant to be exchanged

only between the sender and the recipient, the same key pair may be used to encrypt

the transaction content, hence conferring privacy to the transaction.

After a block is validated and added to the chain, the preceding block becomes

immutable, as any modification to a block other than the last breaks the chain

of hashes that links the blocks. Consequently, the only operations allowed on the

immutable part of a blockchain are to add a block, and to read the data stored in

blocks. It is worth noticing that at this point one can remove blocks starting from

the newest one or create a fork in the chain by pointing another blockchain to a

block that already has a successor. The solutions to these pitfalls are replication

and consensus. Replication ensures, besides eliminating single point of failure issues

and providing availability of the blockchain contents, that there is a shared truth

between blockchain system participants. This shared truth mitigates the possibility

of unilateral modification of blockchain contents. As discussed by Saito et al. and

Vukolić et al., blockchain replication is a distributed consensus problem due to the

need of consistent transaction ordering in a trustless public environment [32, 33].

Consensus is the mechanism that is used so that this shared truth may be reached,

hence it is used to establish an agreement on the contents of a new block and their

order, to prevent every participant in a blockchain network adds the exact same

new block on their blockchain copy at the same time. A set of system rules is

agreed upon by every participant of a blockchain-based system, in order to avoid

that transactions may be validated in an unambiguous fashion. All the information

on a blockchain can be verified and trusted solely relying in blockchain contents,

without assistance or confirmation of any third party. This is a major advantage

of blockchains when compared to other data storage systems, such as versioning

systems or distributed databases [6, 24].

11

2.2.2 Blockchain-based systems

Blockchain-based systems implement a replicated state machine for the consistent

preservation of a shared global state between distributed peers on a network. Howe-

ver, as discussed before, blockchain data structures themselves do not meet all re-

quirements for its proposed usage scenarios. Systems built based on blockchain

need to consider carefully all features and configurations to be implemented to the

base blockchain data structure, as well as all available supporting technologies to

complete a full featured blockchain system. Based on the taxonomy for blockchain-

based systems for architecture design [31], and main researched blockchain appli-

cations [6, 24] we can pinpoint the main decisions defining an adopted blockchain

architecture: centralization and configuration.

While there is no benefit of employing blockchain in a fully centralized network,

there are varying degrees of possible decentralization. Centralization is the main

defining aspect of a blockchain system, and can be classified in three main types:

• Partially centralized: This type of centralization is also known as permis-

sioned blockchain with fine-grained permission. Every operation is controlled,

including who can write to the blockchain, who con read from the block chain,

what types of information one is authorized to read, what types of information

one is authorized to write, and who can participate in the consensus and write

blocks. In some cases, a special party may be elected to sign, authorizing,

specific types of transaction.

• Partially decentralized: This type of centralization is similar to the par-

tially centralized blockchain in regards to consensus and, sometimes, writing

permissions. This type of blockchain, however, is permission-less in regards to

reading operations.

• Fully decentralized: This type of centralization is also known as permission-

less blockchain, which means no authorization is required to perform any ope-

ration or role.

Configuration of a blockchain system defines finer aspects of its management and

operation. The main configuration decision are on the blockchain scope, anonymity

and incentive. Regarding blockchain scope, a blockchain can be:

• Public: A public blockchain can be accessed by everyone in the Internet, and

anyone is free to join the network and fully participate in all available system

features.

• Federated: A federated blockchain defines its rules and participation decision

by a managing consortium or federation. A consortium is defined as group

12

of collaborating organizations, a federation is defined as a specially created

management organization to oversee a blockchain.

• Private: A private blockchain work in the confines of a single organization

and the general public has no access to stored information.

Anonymity is a configuration decision that defines the manner a user of a block-

chain system is identified. Most blockchain implementations use the public coun-

terpart of an asymmetric key pair as a form of identification. This kind of identi-

fication allows one to authenticate transactions while retaining anonymity, as well

as to replace the last identity should it be compromised. Nevertheless, there is the

possibility to tie a subset of public keys, or even all of them, to real identities by

means of public certificates, or identity to public key dictionaries maintained by a

federation or consortium in case of a federated blockchain. Such an approach is

essential when there is the need to avoid duplicated actions by the same individual

on a system, such as in blockchain assisted elections [34].

Incentive is a configuration decision with the main objective of attracting parti-

cipants to aid in blockchain replication, validation and consensus that are essential

to maintain a blockchain-based system. Incentive is necessary when these activities,

or the utilization of the system, would not otherwise provide any direct benefit to

the ones performing them, such as in cryptocurrency blockchains [21, 28, 35]. Public

permission-less systems usually are based on incentives, while private or federated

blockchains do not need incentives as the system existence in itself offer benefits to

the ones managing it [24, 30, 31, 36].

2.3 Blockchain consensus mechanisms

Regarding the consensus protocols utilized by blockchain, there are two main classes

of consensus protocols, eventual consistency protocols and quorum based consistency

protocols [24, 31, 37]. Eventual consistency protocols aim at providing a secure

consistency mechanism that works without knowing the total available number of

consensus participants, while quorum based consistency protocols requires a list

of participants to enable consensus. Hence, eventual consistency protocols are well

suited for public permission-less networks, while quorum based consistency protocols

are well suited for private and federated networks [37]

2.3.1 Distributed agreement challenge

Consensus is the process by which a group of communicating systems reach distribu-

ted agreement. The main challenge lies in that there is no distributed computational

13

system that is completely safe from failures or misuse [33, 38, 39]. The consistency-

availability-partition (CAP) theorem [38] proves that one can not have consistency,

availability and a network partition at the same time. Consistency means that the

same information will be retrieved for the same request to any distributed system

participant. Availability means that one distributed system participant will always

answer a request. Partition tolerance means that the system stays working even if

the distributed system participants are split in disconnected groups due to a network

failure. As the theorem states, when designing a distributed system, for when a par-

tition occurs, one must decide between consistency or availability. When deciding

on consistency, the entire system must time out and not respond, as it will not be

sure of the last state when answering due to loss of communication to all its peers,

hence forgoing availability. When deciding on availability, any system participant

will answer a request with the most recent known data, even if it is not sure if there

is a newer version, hence forgoing consistency. In the absence of a partition, both

consistency and availability are satisfied.

The partition then availability-consistency else latency-consistency (PACELC)

theorem [40] states that when there is a network partition, the CAP theorem applies,

else the distributed system designer must decide between latency and consistency.

This happens because replication is not instantaneous. Hence, if a system must

respond promptly at all times, it must forgo consistency, else a received request

must wait consensus to be reached before answering, therefore, creating latency.

2.3.2 Eventual consistency

Eventual consistency means that, without any new transactions, any participants

eventually maintains the same blockchain in its storage [35]. Eventual consistency

protocols do not rely in any information about total participating members of con-

sensus, they are based on forwarding their decided known truth to other participants,

while keeping track of possible truth and deciding between them based on a set of

agreed upon rules. In blockchain case, it means generating or receiving a block that

carries current known transactions, validating it against the network agreed upon

validation rules, and forwarding the validated block to other participants of the

network. When there is more than one valid block, this is called a fork in the chain,

and the participant keeps track of all possible chains until a new block that solves a

tiebreaker arrives. The most common rule to decide which block is correct is the first

known block rule, and the most common tiebreaker rule is that the longest chain is

the correct one [21, 24, 28]. Which means that an eventual consistency blockchain

participant will append the first block they see to their local blockchain, consider it

correct and forward it, but will keep track of other possible chains. When a chain

14

is longer than all other by a a number of blocks, the participant discard other chain

known and keep the decided one as their current chain.

In blockchain eventual consistency systems, the most common type of block

creation algorithm is the proof-based [31, 35]. A proof-based algorithm relies in a

derived proof of expending a local resource to find a valid block. A valid block is

one that conforms to the agreed upon blockchain rules, points to the last known

valid block in the chain, has a valid list of not previously recorded transactions,

and solves a lottery based resource spending challenge [37]. This challenge does

not depend on any external information besides the last version of the blockchain.

Blockchain eventual consistency systems usually set a desired mean consensus time,

and adjust the difficulty of the necessary challenge based on the recorded solution

times of an agreed upon number of blocks. Participants need to increase or decrease

the challenge difficulty in a deterministic way to reach the target value. Once the

challenge is cleared, the created block is submitted together with the related proof

to all locally known participants of the network. Any participant may attempt to

generate a new block at any time. Eventual proof-based consistency mechanisms

usually reward the participant that succeed in creating a block appended to the

chain with some sort of cryptocurrency, to account for the expended resources and

incentive continued participation in the system consensus. This cryptocurrency

value can be fixed, or complemented by transaction emitting participants as a way

to offer incentive for their transaction inclusion on the current block. This incentive

is necessary as the block size has a maximum value, and the consensus participant

has the autonomy to decide which transactions to include.

Most of the proposed challenges in the literature for blockchain proof-based con-

sistency mechanisms are based on the original challenge from Bitcoin proposal [37],

the proof-of-work challenge [21]. Proof-of-work consists in adding a nonce field to

block data, and then trying to find a random string, which results in a block hash

starting with a set number of zeros. This number of zeros is the target difficulty.

This is a brute force process deemed to be completely aleatory, hence the lottery

comparisons, and gets extremely costly as more nodes compete for rewards. Other

proof-based algorithm build upon this idea with the objective of reducing energy

consumption by decreasing challenge difficulty according to a new expended or pos-

sessed resource, or replacing the challenge completely with the new resource. A

non-exhaustive list of new proposed resources can be found on Table 2.1. There is

often more than one challenge type proposed for each resource in the literature [41].

Eventual consistency is the predominant consensus algorithm for public

permission-less blockchains, because proof-based consensus does not care about par-

ticipant number, as such, in relation to PACELC theorem, it is not possible to deter-

mine when there is a partition on the network. Hence proof-based consensus results

15

in an always available system that is consistent only eventually and has no response

delay.

Tabela 2.1: Proposed resources for new proof-based protocols.

Protocol Resource Description
Proof-of-Stake Currency The amount of currency a participant has

on the blockchain. A common security me-
asure to avoid abuse, such as producing
blocks for different forks at the same time,
is to remove part of the staked currency in
case of misbehavior.

Proof-of-Deposit Currency Just as proof-of-stake, but the currency is
locked while the participant is partaking in
consensus.

Proof-of-Burn Currency Just as proof-of-stake, but instead of de-
positing currency, this resource is measu-
red by the total amount of currency des-
troyed for this purpose. Currency is des-
troyed usually by sending it to an invalid
or null address.

Proof-of-Coin-age Wighted currency Just as proof-of-stake, but currency pos-
session is weighted by their age.

Proof-of-Capacity Storage The amount of disk space dedicated by the
participant to allocate chain information.
It is suited to systems where the block-
chain points to associated large data sets,
which are not necessarily copied to all par-
ticipants.

Proof-of-Elapsed time Computational Uses Intel software guard extensions
(SGX) hardware-enabled devices and pro-
cessors in order to generate a wait-time-
proof. The smallest the wait-time-proof,
the better. Intel proof generating mecha-
nism is designed to be tamper-proof1.

2.3.3 Quorum-based consistency

Quorum based consistency is defined by the necessity of reaching an agreement

of a certain percentage of consensus participants before they all modify the local

replicated copy of the system data. Which means that every consensus participant

is known by all others, and each one votes to agree or to refute an all proposed

modifications to the system data. Quorum based consistency is designed to provide

sequential consistency at standard operation, which means that the registering of

information happens at the same time and in the same order for all replicas, hence

all replicas will respond the same way to the same request at all times. In case of a

failure, or malicious behavior of a consensus participant, the sustained consistency

type depends on the consensus algorithm.

1Hyperledger Sawtooth. https://intelledger.github.io/introduction.html

16

Common fault tolerance

Paxos [42] and Raft [13] are equivalent protocols that aim to manage a replicated

log on data entries. The main idea of those protocols is to perform a leader election,

so that all system data-modification proposals are sent to this leader, who shares the

modification with all others and ask for their opinions. Then the leader shares the

collective decision with all other consensus participants and, everyone performs the

write operation at the same time. Both protocols account for all possible instances

of participant or network failure, in order to ensure consensus, and are resilient to

N failures in 2N + 1 total participants [13]. To this end, the protocol assumes a

controlled environment where the following set of assumptions hold true:

• Each participant operates at arbitrary speed.

• Each participant may experience failures.

• All participants can exchange messages.

• Messages are asynchronous and may take arbitrary time to be delivered.

• Messages may be lost, reordered or duplicated.

• Messages are delivered without corruption.

• All participants act on their best effort to perform consensus.

• All participants are honest.

Fault-resistant consensus protocols are designed to be used in trusted environ-

ments, as they account for consensus participant failures, but not to consensus

participant malicious behavior. Hence, they are only suited to private blockchains

where the consensus participants belong to the same organization and are trusted

at all times [37]. In relation to PACELC theorem, Paxos and Raft based blockchain

systems prioritize consistency above all else.

Byzantine fault tolerance

The Byzantine generals problem, is an agreement problem proposed by Lamport et

al. in which a group of generals, each one responsible for the command of a portion

of the total Byzantine army prepare to attack a city [42]. Each general has the op-

tion to attack or retreat, and the group of generals must reach a common decision,

as an uncoordinated attack or retreat is the worse outcome. The problem must

take into account that some of the generals could be traitorous, working alone or in

groups. They may selectively lie to each other in order to disrupt the decision pro-

cess. Furthermore, the problem is complicated by the fact that all communication is

17

performed by messages delivered by a courier, who also cannot be trusted. This pro-

blem translates to computer science as a consensus problem in which, assumptions

on the environment are changed so that [15, 39, 43]:

• Each participant operates at arbitrary speed.

• Each participant may experience failures.

• All participants can exchange messages.

• Messages are asynchronous and may take arbitrary time to be delivered.

• Messages may be lost, reordered or duplicated.

• Messages can be delivered with corruption or arbitrary modification

by a third party.

• Any participant may act maliciously and lie in a selective way.

• There is no way to ensure that a participant is honest.

Bizantine fault tolerant (BFT) protocols solve this in a way that is similar to

common fault tolerant protocols in their default case, but the leader role is di-

minished as all consensus participants send their confirmation to each other, and

then share all received responses with all consensus members [15]. Moreover, all

exchanged messages are cryptographically signed. BFT protocols also require that

all participant network addresses, as well as their public keys, are known to each

other. Castro and Liskov proposed a practical byzantine fault tolerance (PBFT)

protocol, an asynchronous BFT protocol suited for state machine replication [15],

which provides high efficiency in the default case when compared to eventual con-

sistency protocols. PFBT is expected to perform hundreds of write operations and

thousands of read operations per second, while reaching consensus with hundreds

of participants in a few seconds [33]. PBFT protocol is able to tolerate Byzantine

failures of N nodes from a total of 3N + 1 nodes, because, even if N nodes are mali-

cious, it is still possible to reach a quorum between the remaining 2N + 1 consensus

participants. The PBFT default operation case is depicted in Figure 2.2, and the

following steps are performed:

1. Request: A new request is sent by a client to a consensus participant. If it

is not sent to the current consensus leader, it is forwarded to the leader.

2. Pre-prepare: The leader, known as primary participant, informs all replicas

of the request.

18

3. Prepare: Each participant answer the request based on local knowledge and

inform their answer to all other participants using signed messages, that in-

cludes the received request.

4. Commit: When more than two thirds of participants agree to the new re-

quest and answer, they send a signed commit message including all received

signatures to all participants.

5. Reply: When more than two thirds of all signed commit messages are verified,

the request and answer are appended to the consensual replicated request

database. Then every consensus participant sends the request answer to the

client.

6. Post-consensus, the client accepts the result if more than two thirds of con-

sensus participants return the same result.

Figura 2.2: Sequence of messages/phases, from left to right, for the default case of
the Practical Byzantine Fault Tolerance (PBFT) consensus protocol.

As federated blockchains are designed to be under the control of a consortium or

a federation, they have means to identify the consensus participants, and to control

writing rights of its permissioned users, hence federated blockchains need to address

many of the common problems of distributed computing systems. As the target

environment is trustless, the most prominent category of problems related to fede-

rated blockchais lie in the BFT research field, that has been active over a decade [37].

Federated blockchains can use many well known techniques to reach consensus, bro-

adcast transactions or replicate states in asynchronous error prone environments.

This suitability between federated blockchains and BFT protocols has sparked new

research, and BFT protocols are specially well suited to leverage the asymmetric

key infrastructure commonly found in blockchain architectures [33]. Schwartz et al.

propose the Ripple protocol for distributed consensus in federated blockchains [36].

19

This protocol is byzantine fault tolerant (BFT) and achieves robustness against col-

lusion attacks by creating trust zone subsets where collusion is not expected to occur.

However, the use of Ripple presents scalability problems regarding the number of

nodes designated to reach consensus [37]. Miller et al. propose a novel asynchronous

BFT protocol that achieves low-latency consensus with higher scalability [44], but

it still lacks a compliant computational implementation [37].

The consensus protocol adopted in our proposed architecture is based on the

PBFT protocol, with modifications to account to blockchain properties. We also

propose slight modification to the traditional blockchain data structure, to better

leverage PBFT protocol capabilities and to confer auditability of past consensus

decisions. The modified blockchain data structure is depicted in Figure 2.3. The

main difference of the proposed blockchain data-structure and the traditional one

depicted in Figure 2.1 is that the blocks are now linked by a signed hash of the

content part of the structure, performed by consensus participant identified by its

public key in a hashed content field. The default operation case phases of the

proposed PBFT-based blockchain consensus protocol are the following:

1. Request: Transactions are sent by blockchain clients to a consensus parti-

cipant. If it is not sent to the current consensus leader, it is forwarded to

the leader. These transactions are accumulated by the consensus leader in

a pending transactions list. Different from PBFT, the request phase in our

PBFT-based consensus happens asynchronously in relation to the other pha-

ses.

2. Pre-prepare: After waiting a fixed time since the last concluded consensus,

if there are pending transactions, the consensus leader creates a block with

all valid transactions received. This block points to the signed hash of the

current blockchain last block. The leader sends the new proposed block to all

consensus participants.

3. Prepare: Each participant validates the transactions within the block, as

well as the block structure locally, and then inform their decision to all other

participants, using signed messages containing the signed hash of the received

block content part.

4. Commit: When more than two thirds of participants agree to the new block,

they send a signed commit message including all received signed hashes and

decisions to all participants.

5. Post-consensus, if more than two thirds of all signed commit messages are

verified, the commit messages content is registered on the block header proof

20

of acceptance field, and the the new block is appended to the local blockchain

of consensus participants.

Our modified blockchain PBFT-based consensus eliminates the reply phase. The

block just needs to be locally stored in the blockchain, and leverages the new intro-

duced signed hash scheme as a means of tracking accepted block consensus history

and reducing data exchanged in pre-prepare phase. Just the signed content hash

is enough to ensure that everyone received the same block. Later, when a tran-

saction is retrieved by a client, this client can be sure if the transaction is correct

and authentic without further confirmation, because the transaction is signed by its

sender.

In case of a network partition, if the partition does not segregate more than

a third of participants, the consensus protocol can still be performed. When the

segregated participants come back, the request of a blockchain copy from any con-

sensus participant is sufficient for all previous validation to be performed locally.

Moreover, as soon as the returned participants receive the first block proposal, they

can verify if their current blockchain is correct. Regarding PACELC theorem, the

proposed system always decides on consistency, introducing a little delay to transac-

tion registration due to consensus. Nevertheless, leveraging blockchain immutability

property, even on network partitions which partially stopped consensus, there is the

guarantee that if a read request can be answered, then the answer is always consis-

tent. On partition that stop the consensus on every remaining connected group, the

system responds consistently to all requests, even if it cannot write.

Figura 2.3: Proposed signed blockchain data structure. The main difference is that
signed content hashes now link the blockchain. The header field may carry a proof
of acceptance of the block by other consensus participants than the current block
signer.

21

Chapter 3

The Proposed System

Architecture

This work proposes an architecture that focuses on secure virtual network function

(VNF) configuration and inter-service communication logging. We consider a sce-

nario in which a user or application requires a network service to a network service

provider, an Internet Service Provider (ISP), in a network function virtualization

environment. This tailored specific service is composed, on the fly, by a chain of

virtual network functions (VNF), using service function chaining technology. The

virtual network functions (VNF) are offered by multi-vendors and reside on data

centers. Our proposal makes assumptions and defines requirements.

3.1 Assumptions and requirements

Our architecture assumes that the network function virtualization (NFV) data center

provider, in which the virtual network functions (VNF) reside, is not malicious.

Actually, we can not provide security when an owner of a data center is malicious

and compromise the virtual network functions that are hosted. This is a common

assumption for cloud systems. Nevertheless, an attacker could compromise the NFV-

data-center management services or other systems under that provider. It is also

assumed that the infrastructure providers, tenants of the NFV data center provider,

build their computational structure in a shared, but isolated, virtual environment.

In order to the proposed architecture confer the desired security and features,

each virtual network function (VNF) configuration update request and each NFV

management service request is required to be:

• confidential, to not expose nor reveal confidential information or facilitate the

exploitation of known vulnerabilities by an informed attacker;

• authenticated, to enable verification of sender request permissions;

22

• anonymous, to not expose VNF or tenant identity that can facilitate targeted

attacks;

• permanent, to keep historical records to enable auditability in case of an attack

or dispute;

• immutable, to guarantee that the subject data has not been tampered, bea-

cause auditability is only meaningful if there is verifiable proof;

• traceable, to pinpoint an event of interest in the overall sequence of events, as

well as the ability to identify the related parties involved.

In short, we need a management system with a generic data repository that pre-

sents the above mentioned desired properties. Cryptographic signature and cypher

schemes provide the confidentiality and authentication requirements. The anony-

mity requirement can be achieved using a private counterpart of an asymmetric key

pair as an identifier decoupled from party identity, while still maintaining the first

two requirements. The permanence requirement implies disabling deletion operation

over registered, and, analogously, immutability requirement implies disabling upda-

ting operations over the same data. Traceability over an immutable and permanent

data repository is achievable by the careful recording of the time, the order and the

ownership of each recorded request. Hence, in a first analysis, one can conclude that

a generic data repository with only the data inclusion and data reading operations,

coupled with a careful request recording scheme is enough to fulfill these require-

ments. Nevertheless, even though common data repositories such as distributed

databases or versioning systems could be properly configured and administrated to

confer permanency and immutability properties, that implies trust in a third party

to maintain this data repository. That also means trust in that third party that

when a record is retrieved from this data repository it is the unadulterated original

record, and when it is missing, it never existed. Hence, trust is essential for these

common data repositories, as there is no way to verify that the required properties

are met at ones discretion without believing in the third party [6, 24]. This result

in a series of serious security risks. For instance, this third party is able to remove

records at its discretion, or to allow an specific author of a request to modify previ-

ously recorded information. Those modifications would go unnoticed by any user of

the system. If a third party is found to be compromised or misbehaving, all trust

in previous recorded information would be lost.

This work solves the trusted party problem by completely removing the neces-

sity of trust. Hence, a trustless approach using blockchain-based data repositories

is proposed. Blockchain is a data structure that is able to solve immutability and

permanency requirements in an easily verifiable way to anyone that can read the

23

data structure. Furthermore, this work proposes a transaction model that employs

asymmetric keys to provide anonymous authentication [21] of tenants, VNFs and

services, as well as confidentiality of configuration data through encryption. When

combined to a blockchain data structure, this signed transaction context intrinsi-

cally provides traceability, as well as non-repudiation, of all recorded information.

The proposed architecture takes into consideration that some parties need to have

their identities disclosed, such as the NFV data center management services and

configuration template proponents.

The proposed blockchain data repositories are linked lists of blocks that act

as a log of ordered entries, best known as transactions. The signed result of a

hash function uniquely identifies a block and guarantees integrity of its contents,

which includes the preceding block signed hash. The blockchain data structure

achieves immutability of past stored block order and block contents due to the use

of cryptographic hash linking. Thus, this blockchain-based proposal guarantees the

non-repudiation property by combining the immutability property with signed tran-

sactions, which ensures traceability and accountability requirements. To guarantee

availability, this work replicates the blockchain in several locations. Moreover, to

provide resiliency against faulty systems and collusion attacks, a consensus protocol

is used to validate every transaction before storing it in a block of the blockchain,

keeping consistency intact even under byzantine faults.

In order to mitigate threats to the VNFs, all VNF listening services are disabled,

requiring a proactive VNF configuration model, i.e. the VNF initiates all requests

for configuration update. This feature eliminates open ports, avoiding connection

from attackers to a VNF. Furthermore, VNF access terminals are also completely

disabled or used solely as unclassified anonymous displays of simple information.

Therefore, there is no possibility of direct configuration input and all configuration

updates must be retrieved by the VNF at fixed intervals from a trusted configuration

repository. This secure repository must accommodate both configuration update

requests and configuration templates.

The adopted consensus algorithm defines criteria on which consensus participant

closes a block at each round and the manner transactions are distributed and va-

lidated. Public blockchains, such as the one for Bitcoin virtual currency, usually

employ proof-of-work (PoW) based approaches [21], which rely on verifiable expen-

diture of computational power to solve a cryptographic challenge. This approach is

ideal for public networks with an unknown number of participants and complete lack

of trust. Proof-of-work (PoW) based approaches, however, imply too much compu-

tational power and may take a long time to finally register a transaction [32, 35].

Moreover, PoW approach is based on rewarding the consensus participants that clo-

ses a block for its computational power expenditure, as a means of sustaining interest

24

in voluntary consensus participation. Our proposal is based on a federated private

blockchain model, as such, it does not rely on virtual currency, rewarding partici-

pants is not necessary. In addition, a number of blockchain applications requires

strict transaction registering latency and, then, a different consensus mechanism is

needed. Private and federated blockchains (i.e. blockchains owned by a single party

or multiple collaborating parties) may relax trustlessness requirements by assuming

its set of participants is known [24].

The proposed architecture assumes and implements a federated consensus model

where, consensus participants are known, and a certificate issuing party, previously

agreed upon by all the federation members, certifies their asymmetric key pair.

The literature on the aforementioned topic has shown that byzantine fault tolerant

(BFT) protocols enable low-latency consensus for applications up to a few hundred

validating participants [33, 44] and accept erratic or malicious behavior from up

to one third of the consensus participants. PBFT consensus protocol uses a list

of agreed upon neighbor addresses and public keys, which is provided by certifi-

cate issuing party. The cost of neighbor list modification depends on federation

governance rules. The implemented consensus protocol is inspired by the PBFT

(Practical Byzantine Fault Tolerance) protocol and is modified for the blockchain

consensus case. A PBFT-based consensus enables a blockchain-based system to be

robust against collusion attacks performed by up to one third of consensus partici-

pants. In addition, the PBFT protocol leverages the consensus leader participant

key pair to sign closed blocks in a way that is easily verifiable by other participants.

For the blockchain use case, all transactions sets received by all participants during

a given interval are forwarded to the current elected leader, which closes, signs and

proposes a new block. There is no reply phase in blockchain consensus.

3.2 Attacker model

This architecture considers a Dolev et al. attacker model, that is, the attacker is

able to read, send, and discard a transaction addressed to the blockchain, or any

packet of the network [45]. The attacker can act passively, by connecting to the

network and capturing all message exchanges, or actively, by injecting, repeating,

filtering or exchanging information. Tenants, VNFs, the blockchain itself, and the

network can be attacked.

Blockchain attacks are an attempt to prevent a legitimate transaction or block

from being embedded in the blockchain. In order for a blockchain attack to succeed,

the attacker must control a significant portion of the network to affect the consensus

algorithm. This type of attack is mitigated by the adopted consensus mechanism.

Attacks that try to modify or corrupt a transaction are not possible because a

25

correspondent signed hash accompanies every transaction.

Attacks on tenants or VNFs consist on attempting to obtain either confi-

guration information or personification of the target. Personification attacks are

not possible because every transaction sent to the blockchain is signed by its issuer.

Attacks that seek to obtain configuration information are mitigated by sensitive

information encryption, where the attacker needs to obtain the private key of the

targeted recipient. This work does not address the case where a tenant or VNF was

compromised through tenant terminal invasion, or tenant stored key pair hijacking.

However, the proposed architecture mitigates attack vectors by avoiding any active

listening services in a VNF, and by only allowing use of a terminal in read-only

mode [46].

In addition, the proposed architecture permits auditing of all past transactions

at will. Therefore, if an attacker tries to modify the blockchain using stolen key

pairs, the attempt will be logged. Upon discovery of an incident, the stolen key

pairs can be easily replaced by the tenant, reestablishing security and preventing

further damage.

Network attacks represent the attempt to isolate a single tenant, a group of

tenants or a group of VNFs from the network, thus preventing the network from per-

forming transactions or reading content from the blockchain. This attack category

contemplates classic network attacks which can be mitigated by establishing redun-

dant paths between the distributed blockchain and VNFs or tenants. The proposed

architecture assumes a redundant public network, e.g. the Internet, interconnects

all participants. The aforementioned assumption hardens single entity targeting if

the attacker is not in its adjacent network. Complete mitigation of network attacks

is outside the scope of this work. The proposed architecture focus on blockchain

attacks and anticipated transactions. However, by eliminating listening services in

VNFs, this architecture eradicates application-layer denial-of-service attacks, which

are a common threat in shared cloud environments [5].

3.3 Proposed architecture modules

The proposed architecture is composed of two types of modules:

• Blockchain modules, responsible for building a replicated trusted repository

fabric of historical information pertaining their roles.

• Client modules, that enable the retrieval of information from blockchain

modules, and the issuing of transactions that add information to a blockchain.

Considering module interaction, the proposed modules could be organized in two

pairs, one for each proposed blockchain, and a client module that connects to both

26

blockchains. Each module pair has a specific transaction scheme tailored to the

functional needs of the pair, and the client module is compatible with both transac-

tion schemes. There is the configuration-repository blockchain (CRB) module, that

is paired with the VNF client module to perform the configuration management

roles in the proposed architecture. And there is the service-management block-

chain (SMB) module, that is paired with the service client module to perform NFV

data center management and auditing roles in the proposed architecture. Finally,

the tenant client module holds the tenant facilities necessary to interact with both

blockchains and perform the tenant administrative roles.

The proposed modules are composed of smaller components, such as functional

blocks, data stores, layers and services. Functional blocks perform a specific function

set. Data stores are used to preserve data, such as databases or blockchains. Layers

perform data encapsulation, decapsulation, conversion, and transmission. Services

are structures that exposes discrete units of functionality that can be accessed by

other layers and acted upon independently. All modules share a set of common

components:

• RPC/TLS communication layer: This layer performs inter-module com-

munication using remote procedure calls (RPC) via transport layer security

(TLS) protocol.

• Encoding/Decoding layer: This layer performs encoding and decoding of

data sent via the RPC/TLS communication layer. Data is exchanged using bi-

nary JavaScript object notation (BSON) encoding, that is suitable for signing

and hashing operations because it always has the same exact binary represen-

tation.

• Blockchain query service: This service exposes blockchain querying func-

tionalities that enable other layers to access blockchain-stored information.

When associated directly to a blockchain and index database, it will answer

the queries promptly, otherwise it will forward the request to a known block-

chain module.

• Key pair management: This functional block manages the key pairs asso-

ciated with the current module instance, and performs all hashing and signing

operations. The architecture is planned in such way that this is the only com-

ponent that needs to be adapted if there is the need to use physical security

like trusted platform modules or smart cards.

27

3.3.1 Blockchain modules

The configuration-repository blockchain (CRB) and the service-management block-

chain (SMB) modules have the same structure, illustrated in Figure 3.1. A block-

chain module is responsible for hosting the blockchain; for receiving, validating, and

propagating transactions of client modules; and for responding to client module re-

quests for stored information. These modules are connected to other modules of the

same type in order to perform these tasks while maintaining consensus on the con-

tent of their replica of the blockchain. Prior to the initialization of this module, a list

of addresses of neighbor blockchain modules of the same type is provided. During

module initialization, it requests the latest blockchain version from its neighbors,

and then updates its local copy with any pending approved blocks. Upon initiali-

zation completion, a local relational database containing indexes is constructed to

facilitate the search for stored blockchain content. This database is always rebuilt

at the module initialization, so that there is the guarantee that it has not been tam-

pered with. Once fully initialized, each blockchain module responds to requests for

information from a client module based on its local copy of the blockchain, taking

into account only consensus-validated information.

Each blockchain module has to verify three conditions for each transaction re-

ceived:

• whether the transaction format corresponds to the identified type;

• if the transaction has no recipient, whether the transaction signature is correct;

• whether there is no transaction duplication.

If any of these checks fail, the transaction is promptly discarded. Once the

conditions are cleared, the transaction is sent to the neighbor blockchain modules

through the consensus mechanism. Each time a round of the consensus algorithm is

completed, the new block is appended to the local blockchain and the information

pertaining to the transactions contained in the closed block is inserted into the

local relational database. The blockchain modules are executed by their federation

authorized members at the NFV data centers at its data centers, in a number of

instances sufficient to meet the requests of client modules.

Blockchain modules feature a blockchain management layer that expose services

enabling client modules to send transactions and to query information, as well as

other blockchain modules to perform consensus. This layer houses the key pair

management functional block and blockchain query service common components in

a blockchain module, and contain five new components besides the common ones:

• Blockchain: This component maintains blockchain data in permanent storage

devices.

28

Figura 3.1: Blockchain module architecture. The blockchain module hosts a consis-
tent replica of the blockchain and is responsible for reaching consensus with other
blockchain modules, as well as answering client requests.

• Chain building: This functional block is the only component that is able to

write to the blockchain, and writes only blocks agreed upon by the consensus

service.

• Transaction indexing: This structure is responsible for building and up-

dating the indexes and transactional database that is used at run time to

facilitate access to blockchain information. It updates indexes every time it

detects blockchain.

• Consensus service: This service exposes the necessary functionalities to

interact with other blockchain modules and perform all consensus related ope-

rations. Upon reaching a consensus, this service decides if a block is to be sent

to the chain building service, or discarded.

• Transaction inclusion service: This service exposes the functionality that

enables client modules to propose new transactions addition to the current

block. Each proposed transaction goes through policy and format validation.

An approved transaction is then forwarded to the consensus service if the cur-

rent blockchain module is the current consensus leader. If not, it is forwarded

to the transaction inclusion service of the consensus leader.

29

CRB and SMB modules are differentiated by two key aspects: their main interes-

ted party, and the distribution of the modules in relation to location and ownership.

The CRB is conceived to tend primarily to tenant interests in security and audi-

tability, hence the main interested party in the security and correctness of stored

information is the tenant. In addition, the main adversary of tenants are other

tenants, that may as well compete with each other. Therefore, to establish a dis-

tributed consensual blockchain with reduced risk of collusion, a federation must be

built and operated by a collective group of tenants. This federation will authorize

tenants to own and manage a single CRB module instance, which tenants will al-

locate inside, or near, a convenient NFV data center, as depicted in Figure 3.2.

This federation will manage an authorized CRB module public key list, but will not

hold any CRB module private key. Federation policies may manage CRB module

placement.

Figura 3.2: CRB modules are located in NFV data centers and are interconnected
in a way that allows connection from any other CRB module. Both tenant and VNF
client modules are able to connect to one or more CRB modules. No VNF created
in the proposed architecture accepts external connections and its configuration state
is manage solely by a VNF client module that requests configuration stored in the
CRB by an allowed tenant.

SMB modules are conceived to guarantee auditability of inter-service commu-

nication inside a single management domain of a NFV data center. This domain

could be composed of one or more NFV data centers under a federated administra-

tion. This auditability is important to identify the causes of security breaches, or

solve disputes with tenants and other federation members. In this case, the main

interested party in the correctness and availability of stored information is the ow-

ner of the NFV data center. The management services of a NFV data center are

autonomous programs or systems that are executed in the different machines that

are members of the NFV platform, those services will only misbehave if an attacker

30

compromises them, or purposely modified by an authorized administrator. So the

main adversaries of consensus are these administrators subordinated to the NFV

data center domain and possible attackers that can steal their credentials or obtain

access to their managed systems. Hence, for the SMB, this work envisions each NFV

management domain as the federation responsible for issuing certificates to operate,

as well as placement rules, for SMB modules associated to their infrastructure. This

federation will manage an authorized SMB module public key list, but will not hold

any SMB module private key. These SMB modules would be under different ad-

ministrative credentials and installed in independent physical machines. Therefore,

there is a SMB for each management domain of a NFV data center. SMB modu-

les would be deployed in machines inside this management domain, as depicted in

Figure 3.3, and in quantity and locations sufficient to answer to the internal NFV

service management requests.

Figura 3.3: SMB modules are located in specialized NFV nodes inside NFV data
centers that share the same management domain. These SMB modules are intercon-
nected in a way that allows connection from any other SMB module. Both tenant
and service client modules are able to connect to one or more SMB modules.

The use of the CRB and SMB parts of the proposed architecture is designed to

be conjoined, however their use can be independent. In fact, the CRB part of the

architecture does not depend on the NFV provider for endorsement or provisioning,

nor requires any modification to the NFV platform used by VNFs.

3.3.2 Client modules

Client modules enable the retrieval of information from blockchain modules, and

the issuing of transactions that add information to a blockchain. There are three

client modules in the proposed architecture, from which two of them, the VNF

client module and the service client module, are autonomous and interact with a

31

specific blockchain; and one of them, the tenant client module, is tenant operated

and interacts with all blockchains. All clients share a transaction management layer

that houses the key pair management functional block and blockchain query service

common components. This layer also houses the new transaction management ser-

vice that exposes to other layers the functionality to validate queried transactions in

relation to format and policies, as well as the functionality to construct transactions

to be sent to blockchain modules. The blockchain query service is able to access the

transaction validation functionality internally.

Figura 3.4: VNF client module architecture. The VNF client module connects to
a CRB module to send and retrieve transactions regarding the configuration state
management of the VNF in which it is installed.

The VNF client module, shown in Figure 3.4, is responsible for sending

transactions originating from a VNF to a CRB module; carrying out periodic VNF

configuration requests for the VNF that hosts the module; applying the received

configuration to the VNF; and managing local VNF key pairs and logical VNF

group key pairs. This module connects to one or more CRB modules, depending on

their configuration. A VNF client module has the following specific components in

addition to the common ones for its type:

• Configuration management layer: This layer contains different configura-

tion managers. Each of these managers targets a different software or service

installed in the current VNF with functions to retrieve and send configuration

32

information to its target, and to the blockchain via the transaction manage-

ment layer.

• VNF interaction layer: This structure is responsible for enabling commu-

nication and performing the appropriate data format conversions, between

the configuration management layer and current VNF software configuration

interfaces.

Prior to the initialization of the VNF client module, some variables must be

configured through the cloud orchestration platform, such as tenant public keys,

addresses of CRB modules and the configuration request interval. During the ini-

tialization of this module, the VNF client module generates a pair of asymmetric

keys for the current VNF in which the module is installed. The generated public key

pair is sent to the client via an encrypted configuration transaction. Afterwards, the

VNF client module will issue a request to a registered CRB module for the latest

configuration assigned to the local VNF public key by a tenant whose public key the

VNF recognizes. This configuration request is performed periodically at the interval

specified in the module configuration, and is answered by a transaction set, even if it

is an empty one. Upon the retrieval of a set of transactions, the VNF client module

will perform local validation of each one. If a configuration transaction is retrieved

and passes validation, the configuration transaction is applied, and the transaction

timestamp and header are recorded. If a configuration request transaction is retri-

eved and passes validation, the VNF client module sends the current configuration

state to a CRB module through a configuration transaction. Transaction validation

consists of:

• checking whether the received transaction is addressed to the current VNF’s

client module instance public key or a VNF logical group public key for a

group the current VNF is a member of;

• verifying that the sender of the transaction corresponds to a tenant public key

registered in the local VNF client module;

• verifying that transaction signature is correct and belongs to transaction sen-

der;

• verifying that the transaction header is different from an already processed

transaction;

• verifying that the transaction timestamp is newer than the last applied tran-

saction.

33

The use of the VNF client module requires modifications to the VNF software,

so that it is able to manage the local VNF components configuration state. These

modifications could be performed by the tenant, or ideally, are implemented by the

VNF vendor. A VNF client module runs on each VNF that adopts the proposed

configuration management architecture.

Figura 3.5: Service client module architecture. The service client module connects
to a SMB module to send and retrieve transactions regarding the configuration
requests to the associated VNF management service.

The service client module, shown in Figure 3.5, is responsible for carrying

out periodic queries for pending service transactions for the NFV data center mana-

gement service associated with the module, executing the requests contained in the

retrieved service transactions and sending response transactions originating from a

NFV management service to a SMB module. This module connects to one or more

SMB modules, depending on their configuration. A service client module has the

following specific components in addition to the common ones for its type:

• Service management layer: This layer decomposes valid service transacti-

ons in appropriate requests for the data center management service associated

with the current service client module instance. Then retrieves the result and

error information from request execution, in order to enable the construction

of an appropriate response transaction. This structure is also responsible for

34

keeping track of already processed transactions to avoid duplicate request exe-

cution

• Service interaction layer: This layer enables communication, as well as per-

forms appropriate data format conversions, between the management services

of a NFV data center and the service management layer.

The service module requires the configuration of its key pair, issued by the SMB

managing federation, addresses of SMB modules and the query interval. It is worth

to notice that the SMB managing federation has all authorized services key pairs,

necessary for auditability purposes, and must maintain a public list of authorized

service module public keys, so that the services are recognizable and addressable by

the tenants. During operation, the service client module will issue a request to a

registered SMB module for the latest unanswered service transactions addressed to

its public key. This query is performed periodically at the interval specified in the

module configuration, and is answered by a transaction set, even if it is an empty

one. Upon the retrieval of a set of service transactions, the service client module

will perform local validation of each one. If a service transaction is retrieved and

passes validation, the service client module performs the contained request. Then

it creates a response transaction to be sent to a SMB module containing the result

and associated errors for the performed request. Service transactions containing

performed requests have their timestamp and header are recorded to avoid request

duplication. Transaction validation consists of:

• checking whether the received transaction is addressed to the current service

client module public key;

• verifying that transaction signature is correct and belongs to transaction sen-

der;

• verifying that the transaction header is different from an already processed

transaction.

The use of the service client module requires no modifications to the services

of the NFV data center platform, but requires modifications to the service module

interaction layer, so that it is able to execute requests using the associated mana-

gement service, as well as retrieve request results and associated execution errors.

These modifications are intended to be performed by NFV data center provider ad-

ministrators, or implemented by the NFV platform vendors. A service client module

is run for each management service instance in an NFV data center that adopts the

proposed management service logging architecture.

35

The tenant client module, illustrated in Figure 3.6, is responsible for ena-

bling the tenants to manage their VNFs and SFCs by sending transactions to an

adequate blockchain module, for querying information from blockchain modules and

for managing tenant key pairs. This module can be run in any station, concomitan-

tly or not with a blockchain module. If the tenant does not have a local blockchain

module, the tenant client module must be configured with one or more network

addresses of blockchain modules. A tenant client module has a tenant interaction

layer in addition to the common ones for its type that contain the following specific

components:

• Public key database: This component stores known public keys and their

owners identity in order to aid configuration management and transaction

addressing.

• Configuration database: This component stores VNF configurations retri-

eved or created by the tenant.

• VNF management service: This service exposes functionality that allows

the tenant to manage, create or edit VNF configurations, as well as manage

their VNFs and SFCs through the NFV datacenter services. The transaction

management layer is used to query, retrieve and create the necessary transac-

tions to perform user requests in a way that is transparent to the user. The

exposed service functionalities are reachable to the tenant via RPC, hence,

it facilitates the client do devise an interface that suits his needs, such as a

graphical or command line based one.

The tenant client module is used by VNF owners, which are NFV data center te-

nants instantiating SFC services based on service software provided by VNF vendors,

and by VNF vendors and other parties that wish to offer predefined configuration

sets.

It was an architectural option to not store a copy of a blockchain in each VNF

client module and service client module, as this would result in high disk space

requirements and setup delays for VNFs and management services. This decision

does not imply a significant decrease in security, since messages transmitted between

client modules and blockchain modules contain signed, and usually encrypted, tran-

sactions. A possible attack resulting from this choice is a denial of service performed

by a malicious blockchain module. In this attack, a malicious module would stop

answering queries from specific client modules, or even all of them. The configura-

tion of multiple blockchain module addresses in the client modules is recommended

as a way to mitigate this type of attack.

36

Figura 3.6: Tenant client module architecture. The tenant client module is the
interface for configuration authors. It allows the tenant who owns the VNFs to
assign them confidential configuration information, and interested parties to publish
public configuration templates.

3.4 Key management

The proposed architecture adopts a key management scheme that decouples en-

tity identity from their associated key pairs, anonymizing tenant identity and VNF

identity [47]. This mitigates targeted attacks based on blockchain public informa-

tion. However, transaction execution transparency is preserved [48], and transaction

history auditing is possible for an authorized observer with shared tenant private

information. In some cases, a tenant may be interested in disclosing their public key.

Accounted cases stand for predefined VNF configuration, published by VNF manu-

facturers, or VNF best configuration practices, shared by the tenant community and

service providers. These predefined configurations may aid the initial configuration

of tenant VNFs. The architecture uses four logical groups of asymmetric key pairs:

• A VNF key pair aims at uniquely identifying a VNF as the sender or recipient

of transactions and at signing transactions emitted by a VNF client module.

The VNF client module generates this key pair during its initialization, and

then sends an encrypted configuration transaction addressed to the tenant

public key containing its key pair. A tenant may change this key pair via a

configuration transaction.

37

• A logical VNF group key pair enables simultaneous addressing of VNFs by

a single transaction. A VNF can belong to multiple groups, so it can store mul-

tiple VNF group key pairs. Tenants set these key pairs as part of an encrypted

transaction, to avoid any chance of private key leaking as virtual machine con-

figuration data. Although the functionality performed by VNF logical group

key pairs could be implemented using a symmetric group key, we choose to use

asymmetric key pairs to maintain the uniformity of the transaction recipient

field as a public key. This decision conserves the anonymity of VNFs, as an

uninformed observer is unable to distinguish between a transaction intended

for a VNF group or a specific VNF.

• A tenant key pair identify the tenant as senders of transactions, and enable

transaction signing. It is important to remember that a VNF client module

will only accept transactions from a known sender.

• A blockchain module key pair enables the identification of SMB and CRB

module instances, as well as the signing of a closed block and the consensus

protocol messages. A federation-appointed party certifies this key pair and is

ties it to the blockchain node identity. It is important to note that this type

o key pair is not used in transactions. Although the proposed architecture

assumes software-generated key pairs for simplicity, any module key pair may

be stored in smart cards, trusted platform modules or other tamper-proof

hardware devices that are compatible with the targeted data center platform.

As in most blockchain implementations, there is no default public key infrastruc-

ture (PKI) for key pairs used in transactions [22]. Client modules generate keys on

the fly and can replace them promptly in VNFs through an encrypted VNF confi-

guration transaction. In addition, there is no key pair revocation mechanism. This

scheme mitigates attacks commonly related to PKIs because trust is explicit. Once

used, the public keys will remain as transaction identifiers in the blockchain. In

this way, it is not possible for a blockchain observer to track transactions between

tenants and VNFs, unless the observer knows tenant and VNFs related key pair

information in advance.

3.5 Proposed blockchain structure and transac-

tion schemes

The proposed blockchains are a linked lists of blocks that store transactions. Each

block is identified by the signed hash of its contents, which includes the preceding

block signed hash. Hence, each block is uniquely identified in such a way that any

38

observer is promptly able to verify block integrity and sequence integrity. Further-

more, the inclusion of a block in the chain turns the previous block immutable and

irreplaceable. A block structure is as follows:

• Header field: The header contains block identifying information and the

proof of consensus validation.

– Identifier: This field contains the block signed hash of the content field

data. This signature is to be verified against the public key in the signer

field of current block content.

– Proof : This field contains a list of tuples containing each consensus

participant public key, current block content signed by said consensus

participant, and his decision regarding current block acceptance.

• Content: This field contains all data pertaining to the current block.

– Timestamp: This field contains the date and time of block signing.

– Signer: This field contain the public key of the blockchain module who

proposed the block.

– Previous: This field contain the previous signed block content hash.

– Transaction list: This field contains a list of transactions to be stored.

A transaction represents an atomic piece of information to be stored in a block-

chain. The proposed architecture defines two transaction classes for each block-

chain. The configuration-repository blockchain (CRB) has the configuration tran-

saction class and the configuration request transaction class. Tenant or VNF client

modules issue configuration transactions to assign configurations to VNFs, or to

define a configuration reference. Only tenant client modules can issue configuration

request transactions to request the configuration state of a particular VNF. The

service-management blockchain SMB has the service transactions class and response

transactions class. Tenant client modules issue a service transaction to request an

action from a NFV data center management service. Then the management service

responds each service transaction with exactly one response transaction. Every tran-

saction consists of a header and a set of content fields. The header of a transaction

is its signed transaction hash. Signing is performed with the transaction sender’s

private key to ensure the authenticity of the content field set, and the hash function

ensures transaction data integrity. All transactions carry common data fields:

• Type: This field identifies the type of transaction issued.

• Timestamp: This field contains the date and time of transaction signing.

39

• Sender: This field identifies the transaction sender by its public key.

• Recipient: This field identifies the transaction recipient by its public key.

Configuration-repository blockchain (CRB) transactions are devised to store and

retrieve configuration information from the blockchain. As such, they contain the

following additional fields:

• CID (Configuration IDentifier): This field defines a unique identifier for

a configuration.

• VID (Version IDentifier): This field defines a unique configuration for a

specific CID.

• Description: This field may contain a descriptive text for the associated

configuration.

• Configuration: This field figures solely in configuration transactions, and

contains configuration data.

• Next Recipient: This field figures solely in configuration request transacti-

ons, and identifies the recipient of the corresponding configuration transaction

by its public key.

A VNF client module must answer each configuration request transaction ad-

dressed to it with a configuration transaction addressed to the public key in its next

recipient field. In a configuration request transaction, the sender fills the CID, VID

and description fields with the values to be used in the correspondent configuration

transaction. If a configuration transaction has a recipient, the sender must encrypt

all CRB specific fields and the sender field with the recipient public key. In this

way, confidential information that could aid attackers is protected, without loss of

auditability for the tenant, who holds the necessary key pairs to trace his own tran-

saction. In order to define a public default configuration, the sender must create it

with an empty recipient field and unencrypted transaction data.

The service-management blockchain (SMB) acts as an intermediary between a

tenant and a NFV data center management service, as such, both transactions are

straightforward. The service transaction contains two additional fields:

• Request: This field contains the desired command, parameters and authori-

zed credential of a VNF or SFC management action. The request field format

is dependent on the NFV data center platform used, and must match what is

expected by the service client modules.

40

• Response Key: This field contains a symmetric key to be used in the response

transaction.

The response transaction has three additional fields:

• Service Transaction: This field identifies the correspondent service transac-

tion by its header;

• Result: This field contains the result from a correspondent request performed

by the appropriate NFV data center management service;

• Error: This field contains any error channel output originated by the NFV

data center management service process.

A service transaction has all its specific fields and the sender field encrypted

with the recipient public key. A response transaction has all its specific fields and

the sender field encrypted with the symmetric key contained in the associated re-

quest transaction. In this way, the content of the service management operation

is protected, avoiding tenant exposure, but with no loss of the intended auditabi-

lity functionality for the SMB managing federation, as it will be able to read all

transaction information exchanged between a tenant and a service. It is worth to

notice that an attacker cannot change the service client key pair without turning

the service inactive, as the tenant clients have no other way to access the services.

It is the duty of the SMB managing federation to maintain an accurate data center

management services public key list and to ensure the provenience of its service list,

which could be easily accomplished with a signature.

The validation of a transaction by a CRB or SMB module must observe if all

the rules and field semantics described above are obeyed. An invalid transaction is

discarded immediately. The validation of the transactions is performed locally at

each module and is essential for the correct operation of the consensus algorithm.

A consensus participant votes for the acceptance of a transaction if and only if the

transaction is valid locally and does not conflict with any other transaction already

accepted by that consensus participant. Such a requirement is important for the

employed PBFT consensus algorithm [15, 43].

3.6 Secure migration of virtualized network func-

tions

Migration of a virtualized network function (VNF) consists in copying its confi-

guration and states to another machine on the network. The use of conventional

41

migration mechanisms, commonly used to migrate virtual machines, implies expo-

sing the system to its security vulnerabilities [16]. Even though the communication

from the origin to the destination may be encrypted, data is not encrypted from

VNF origin to VNF destination, because they need to be understood by the hyper-

visor [12]. However, a VNF migration procedure can be treated differently from the

migration of a traditional virtual machine due to its simpler scope of use. VNFs

are special purpose non-persistent virtual machine instances, created on-demand

and based on a predefined read-only service image. As such, VNFs do not retrieve

past state information from a stored volume and are permanently destroyed when

shut down. VNFs do not receive connections either and, therefore, there is no cli-

ent session information associated with a VNF or links to be reestablished. What

differentiates one VNF from another VNF based on the same image is solely its

configuration state. Therefore, a tenant can migrate a VNF, without loss of functi-

onality, by creating a new VNF instance on the intended location, transferring its

latest configuration state. Finally, requesting the service function chaining (SFC)

platform configuration to switch from the current VNF instance to the new VNF

instance on its service path.

This work proposes carrying out the migration of the service performed by a

VNF through transactions on the proposed blockchain architecture. In fact, the

owner of the NFV, a tenant, migrates a VNF from one location to another by

executing a service transaction. Hence, a VNF migration is sequence transactions

in which the configuration of the origin VNF is written in the CRB, and then

accomplished by reading this configuration at the destination VNF. VNF migration

is an operation performed on both configuration-repository blockchain (CRB) and

service-management blockchain (SMB). The steps to perform a VNF migration are:

1. The tenant client module sends a service transaction to the service-

management blockchain (SMB) requesting a new VNF at the desired des-

tination.

2. The tenant watches the SMB waiting for a response transaction that signals the

new VNF is ready, and then watches the CRB for a configuration transaction

that contains the VNF key pair.

3. The tenant client module sends a configuration request transaction to the CRB

addressed to the source VNF public key, with the destination VNF public key

in the next recipient field.

4. The destination VNF checks the CRB periodically and detects the new confi-

guration, then it retrieves it and load the new configuration state.

42

5. The tenant client module sends a service transaction to the SMB switching

his SFC path to utilize the destination VNF.

6. The tenant client module sends a service transaction to the SMB terminating

the source VNF.

As it does not depend on the data center NFV platform used, this migration

mechanism is compatible with VNFs running on separate cloud platforms, even if

the virtualization architecture is different. In addition, the process could be fully

automated.

43

Chapter 4

Performance Evaluation of the

Blockchain Module Prototype

A prototype of the proposed architecture was implemented as a proof of concept,

and a suitable blockchain were developed and implemented in the Python 2.7 lan-

guage, using pyCryptodome library for cryptography related operations. The main

objective of the prototype is to evaluate the trade-offs of the proposed architecture

in a controlled environment with the essential functionality set. Production imple-

mentations of this architecture can be constructed, without loss of functionality,

in Ethereum [28] or Hyperledger1 based blockchains. However the specific consen-

sus constraints, blockchain structure and transaction schemes must be ported to

the desired environment. We implement a specific prototype to obtain a complete

control of all variables and parameters and, consequently, facilitating performance

measurements.

4.1 Prototype environment and setup

The main evaluation targets are the transaction writing and retrieving rates, and

the request time overhead introduced by the utilization of a blockchain module

(CRB module or SMB module). We will evaluate the transaction times for the

CRB, because the SMB transaction size is small and it can be compared to a CRB

transaction with a data size between 10 B and 1 kB. We evaluate the request time

overhead for the SMB because we estimate that the impact of a delay would be

more critical, as management operations tend to require more than one service

transaction. In most experiments, the number of blockchain modules was varied

from one up to ten, which would correspond to ten NFV data centers for the CRB.

We decided to stop our evaluation at ten blockchain modules because it represents

1https://www.hyperledger.org/

44

enough consensus participants for highly utilized systems and the results point to

predictable behavior should more consensus participants be added.

Our prototype uses Rivest–Shamir–Adleman (RSA) public key cryptography sys-

tem with a 2048-bit key length parameter. For the signatures, our prototype uses the

Public Key Cryptography Standard #1 Probabilistic Signature Scheme (PKCS#1-

PSS), which produces 256-bit signatures based on a RSA key pair. The prototype

of the proposed architecture runs and is evaluated in the Open Platform for NFV

(OPNFV)2. Although OPNFV is used for the prototype evaluation, it is important

to note that the proposed architecture, as well as the prototype, is platform agnos-

tic. The blockchain modules were evaluated in Intel Core i7-4770 3.4 GHz based

computers with 32 GB RAM, the VNF client modules were evaluated in OPNFV

VNFs, executing a dummy forwarding service, and the tenant client modules are

executed in Core i5-2410M 2.30GHz notebooks for the writing experiments, and at

the same machine of the blockchain modules for the reading experiments, to account

for high speed data center networks.

4.2 Evaluation of conducted experiments

Two experiments are conducted in order to evaluate the variables that may impact:

i) the transaction processing behavior, ii) the consensus delay, and iii) the total

message data exchanged between blockchain modules.

The first experiment aims at measuring the maximum sustained transaction re-

quest rate from one to ten configuration-repository blockchain (CRB) modules. The

transaction request rate is a close estimate of the number of client module (VNF cli-

ent module and tenant client module) requests that can be answered simultaneously.

As mentioned before, the number of blockchain modules is varied from one up to

ten, which we deem sufficient because it corresponds to up to ten NFV data centers

for the CRB. During the measure of request rate, configuration transactions were

requested as fast as possible by ten VNF client modules, which are sufficient to reach

the maximum transaction read rate for ten CRB modules. The write rate measures

were performed by constantly issuing pre-computed configuration transaction from

the tenant module, so that transaction generation time does not affect the results.

In Figure 4.1a we fixed configuration size in 1 B, and varied block data size

between 1 B and 1 MB to evaluate the impact the transaction seek time in function

of the number of transactions inside a block. It is important to note the bigger is

block data size, the bigger the number of transactions in a block. Transactions were

requested randomly from block contents using a uniform distribution because the

first transactions in a block are accessed significantly faster than the last transaction

2https://www.opnfv.org/

45

0 2 4 6 8 10

CRB Modules

0

50

100

150

200

250

R
e

a
d

 R
a

te
 (

k
T

ra
n

s
a

c
ti
o

n
s
/s

)
1B to 1kB

10kB

100kB

1MB

(a) Read requests/s for a fixed configuration
size of 1 B, and block data size between 1 B
and 1 MB.

0 2 4 6 8 10

CRB Modules

0

1

3

5

7

R
e

a
d

 R
a

te
 (

k
T

ra
n

s
a

c
ti
o

n
s
/s

)

1MB

1B to 100kB

(b) Read requests/s for a fixed block data
size of 1 MB, and a configuration size
between 1 B and 1 MB.

0 2 4 6 8 10

CRB Modules

0

50

100

150

200

250

W
ri
te

 R
a

te
 (

T
ra

n
s
a

c
ti
o

n
s
/s

)

1MB

1B

10B to 100kB

(c) Write requests/s for a configuration size
between 1 B and 1 MB.

Figura 4.1: Prototype maximum transaction processing rates

on an uncached block. The results demonstrate that block sizes up to 1kB do not

pose significant decreases in performance. That is explained by the utilization of a

disk sector size of 4kB, which allows blocks up to this size to be retrieved in a single

read operation. Greater block sizes affect request rates more severely as continuous

memory placement is necessary. We consider these results satisfactory as the read

rates scale linearly with the number of consensus participants, and the prototype is

able to handle 50 thousand requests per second, even with large configuration data

sizes.

In Figure 4.1b we fixed block data size in in 1 MB, and varied configuration size

between 1 B and 1 MB to evaluate the impact of transaction size in its retrieval

time from storage o delivery. In this case, the retrieved transaction was always the

first one inside a block, so that transaction seek times are constant. Results shows

that block size dominates read request time up to 100 kB transactions. On the

other hand, for large-size transactions, network bandwidth limits the rate because

46

we have to send a lot of packets that cause link (or switch) congestion. Furthermore,

our prototype scales linearly with the number of blockchain modules, as illustrated

in Figures 4.1a and 4.1b. We consider these results satisfactory as the read rates

scale linearly with the number of consensus participants, and the prototype is able

to handle 5 thousand requests per second, even with large configuration data sizes.

In Figure 4.1c we varied configuration sizes between 1 B and 1 MB to evaluate

the impact of the transaction size in the sustained CRB block writing rate. Re-

sults show that the maximum request write rate is stable and does not increase

with blockchain module addition. This is due to the adopted consensus algorithm,

which centralizes block creation and thus imposes the consensus leader’s writing

capacity as a bottleneck for the system. A second bottleneck lies in consensus

participants transaction validation rate, that is processor intensive operation. Ne-

vertheless, unprocessed transactions remain in the transaction log to be included in

the next consensus round, implying the architecture is tolerant to processing rate

peaks up to the buffering capacity of blockchain consensus participant. Transac-

tion rates for 1B transactions provide an upper bound for write request rates and

the disparity between the write and read request rates is a consequence of crypto-

graphic transaction verification. Transaction sizes from 10B to 100kB offer a small

linear performance degradation for geometric size increases. For larger transactions

of 1MB, write request rate is affected by process memory constraints. We argue

that configuration updates to VNF configuration are not very frequent, and that a

stable transaction write rate of more than 150 transactions per second written to

the blockchain is enough to sustain optimal CRB operation. As a reference, Bitcoin

sustains its network with a rate of at most3 seven transaction written per second,

and Ethereum network has a historical peak4 of 15 written transaction per second.

The second experiment consists in verifying consensus delay and data exchanged

in relation to the number of consensus participants, Figure 4.2. To this end, a batch

of 100 configuration transactions, 400 B in size each, was sent to the consensus

leader for each experiment setup. Results show that consensus delay slowly incre-

ases with the number of nodes, but remains under 2 seconds for ten participants,

Figure 4.2a. Hence, we succeed to obtain a short consensus time as desired and

we consider this an excellent result. As a reference, even though the comparison

is unfair due to the difference in consensus algorithm type, Bitcoin consensus takes

around ten minutes, in which only a single 1 MB block with up to 4200 transactions

is validated. In addition, our analysis of total data exchanged during consensus,

Figure 4.2b, shows that the pre-prepare and prepare phases of the adopted consen-

sus algorithm scale linearly, while commit phase data exchange requirements scales

3Bitcoin transaction rate chart. https://blochchain.info/
4Ethereum transaction chart. https://etherscan.io/

47

2 4 6 8 10

CRB Modules

0

0.5

1

1.5

2

C
o
n
s
e
n
s
u
s
 t
im

e
 (

s
)

(a) Consensus time

2 4 6 8 10

CRB Modules

10
2

10
4

10
6

T
o
ta

l
d
a
ta

 t
ra

n
s
fe

rr
e
d
 (

b
y
te

s
)

Pre-prepare Phase

Commit Phase

Prapare phase

(b) Total message data exchanged

Figura 4.2: Prototype consensus evaluation for a 400 B firewall configuration at 100
write transaction requests/s.

quadratically with the number of consensus participants. This results demonstrate

that the blockchain-adapted PBFT consensus algorithm behaves as exactly as ex-

pected in a PBFT-based consensus in relation to the message exchange rate, and

close enough in relation to consensus behavior time [33]. Hence the modifications

introduced to PBFT in this proposal do not affect the expected algorithm behavior

in the evaluated scenario. However, when the communication overhead nears the

configuration data volume, a noticeable data transmission bottleneck would be veri-

fied for the consensus leader, who is responsible for configuration data propagation

for all other consensus participants.

No Yes

Using SMB

2

2.1

2.2

2.3

R
e

q
u

e
s
t

P
ro

c
e

s
s
in

g
 T

im
e

 (
s
)

(a) Data center management service request
processing time for one SMB module

0 5 10

Chained VNFs

30

100

450

C
h
a
in

 C
re

a
ti
o
n
 T

im
e
 (

s
)

[9,7,5,3,1]

SMB Modules20s
[

[

(b) SFC creation time as a function of chain
length, varying from 1 to 9 SMB modules

Figura 4.3: Prototype evaluation of SMB-induced time overhead.

In the next experiment, we want to evaluate the delay introduced by our pro-

posal in guaranteeing a secure environment. We evaluate the impact of the indirect

service management approach introduced by the service-management blockchain

(SMB). Figure 4.3a shows the request processing time for the NFV data center

48

management services when using our proposed architecture, compared with direct

native service interface usage. Results show that, considering the 95% confidence

interval, the mean delay added to request processing time in NFV data center ma-

nagement requests is of less than 0.02 seconds, and up to 0.13 second at the worst

case. Hence, this result demonstrates that the delay introduced by the proposed

architecture approach is insignificant. In Figure 4.3b we evaluate the total service

function chain creation time to evaluate the impact of the overhead introduced by

the proposed architecture in normal VNF data center operation. In the evaluated

scenario, we varied the number of SMB modules from one (no consensus) up to nine

to ascertain the impact of consensus-introduced delay in the overall chain creation

time. Results for the case of a chain with one VNF show a small, but noticeable,

delay introduced to chain creation time. This delay varies from one to 20 seconds

added to the original 30 seconds. As the number of VNFs in the chain increase,

while the consensus-introduced delay remains constant, chain creation time over-

takes the delay introduced by consensus by more than 20 times. This experiment

demonstrates that the impact of consensus overhead, estimated as the ratio between

the chain creation time of the evaluated case and the case with one SMB node, varies

from medium to insignificant as the number of VNFs in a chain grows.

49

Chapter 5

Conclusion

Network function virtualization (NFV) and service function chaining (SFC) are al-

ternative software-based technologies to leverage commercial off-the-shelf hardware

to perform and replace hardware-specialized middleboxes roles. While reducing CA-

PEX and OPEX, the software-based approach enables multiple infrastructure pro-

viders to provide highly customized end-to-end communication services. Network

function vendors also benefit of reduced time to market (TTM) in order to offer

specific virtual network functions, when compared to the long development cycle

associated to hardware-based middleboxes. Nevertheless, the resulting programma-

bility of the network core, exposes all traffic that is forwarded by it to an increased

number of threats. Therefore, new solutions are necessary to fault, configuration,

account, performance, and security (FCAPS) management that reduce the possible

virtual network function (VNF) attack vectors to mitigate the new threats.

In this context, this work proposed a two-fold blockchain-based architecture for

the secure configuration management of VNFs, as well as to provide transparent and

reliable interservice auditability to datacenter VNF management services. Our two

blockchains are called configuration repository blockchain (CRB) and service ma-

nagement blockchain (SMB). Furthermore, we demonstrated through experimental

results that our proposed blockchain-based repositories and specialized transaction

schemes, coupled with our proposed PBFT-based consensus mechanism, are a good

solution to implement configuration, administration, and security management in

conformance with FCAPS model at multiple federated NFV data centers. The pro-

posed architecture is resilient to collusion attacks or faults from up to a third of the

blockchain modules, and no information is compromised even during a successful

collusion attack, multiple blockchain module faults or network partitions.

This work also proposed a platform-agnostic VNF migration scheme that levera-

ges the capabilities of both proposed blockchains, and preserves the confidentiality

of VNF information. This migration scheme is able to recreate VNFs even when

different NFV platforms or processor architectures are used. This was accomplished

50

analyzing the main differences of usage scope between a general purpose virtual

machine and a virtual network function (VNF), then eliminating redundant steps of

conventional migration mechanisms to derive only the necessary core functionality.

Thus, we decomposed a VNF migration in a sequence of operations, and translated

that sequence to transactions in which the configuration of the origin VNF is trans-

posed to the destination VNF using configuration repository blockchain (CRB) tran-

sactions. Meanwhile, the orchestration of the involved NFV data center platforms

is performed through transactions in one or more service management blockchains

(SMBs).

A prototype of the proposed architecture was developed to with the main ob-

jective of evaluating the trade-offs of the proposed architecture in a controlled en-

vironment with the essential functionality set. We carefully implemented a specific

prototype to obtain complete control of all variables and parameters involved and,

consequently, facilitating the performance measurements and analysis. In most ex-

periments, the number of blockchain modules was varied from one up to ten, which

would correspond to ten NFV data centers for the CRB, or a high utilized datacenter

federation for the SMB, with as much management requests per seconds expected as

VNF configuration changes per second in ten data centers. The experimental beha-

vior with more than ten consensus participants seems highly predictable, and should

maintain the same behavior up to network link capacity exhaustion. We decided to

limit our evaluation at ten blockchain modules because it represents enough con-

sensus participants for highly utilized systems and the results point to predictable

behavior should more consensus participants be added.

Transaction writing and retrieving rates were evaluated for the CRB module,

while the request time overhead introduced by the utilization of indirect blockchain-

assisted operations was evaluated for the SMB module. The results were very sa-

tisfactory, and further analysis has shown that experimental results from one block-

chain are indeed representative of the approximate behavior of the other. As the

SMB transaction size is small, SMB module sustained transaction rates can be esti-

mated from CRB experimental results. Using total transaction size as an estimate,

SMB transactions rates should be close to CRB transactions rates for transactions

between 10 B and 1 kB. Meanwhile, all CRB operations require a single transaction

and, therefore, even if the connection method used as a baseline comparison for a

native direct configuration time may vary, the expected configuration time overhead

introduced by the indirect CRB approach should still be within ten seconds.

Experimental results demonstrate that the disk sector size directly impacts in

the performance blockchain information retrieval, and careful planning and archi-

tectural evaluation is necessary to find an optimal disk sector size that reduces the

number of operations necessary to access the contained information. We conjecture

51

that larger disk sectors would be beneficial to performance, but they must not be

so large that their memory placement negatively affects blockchain block caching

in memory. Furthermore, the experimental results uncovered important aspects of

the relation between block size, transaction size and network bandwidth pertaining

stored transaction retrieval rates. This culminates in implementation trade-offs that

should be observed when planning an implementation of the proposed architecture.

The definition of a maximum block size also sets the maximum transaction size,

limiting the maximum configuration potential of a single transaction and, there-

fore, a block should not be so small that would break configuration transactions

in many smaller parts. For a block of fixed size, transaction retrieval performance

is defined by two main factors: transaction seek time, proportional to the number

of transactions in a block. Hence inversely proportional to transaction size; and

the available network bandwidth, that degrades after the transaction size surpasses

a certain threshold, because if seek time is null, the blockchain module transac-

tion retrieval rate is approximately constant despite transaction size, as results have

shown. On the other hand, transaction-writing performance decreases sharply at

a certain block size threshold, because it is bounded by network bandwidth during

consensus in a way analogous to transaction-retrieval rates is affected by the tran-

saction size. Hence, we advise the experimental measurement of transaction write

rates to determine the ideal maximum block size for a target federation, suggested

as the inflection point of a write rate for block size curve. Then adjusting disk sector

size to the largest divider of block size that does not require increased instruction

cycles to be loaded to memory. Then a minimal transaction size should be set based

on the transaction seek time performance and network bandwidth trade-off. It is

worth to notice that the network bandwidth upper bound for consensus is based on

the bandwidth between blockchain modules, while the network bandwidth for tran-

saction retrieval is based on the bandwidth available to the client of a blockchain.

SMB and CRB parameter trade-offs can be estimated by the same process, however

requirements on maximum available transaction size are less stringent, because ma-

nagement commands are usually smaller than configuration files, hence transaction

size requirements on the overall parameter trade-offs can be relaxed.

Consensus related results were deemed especially good. Experimental results

demonstrate that the PBFT-based proposed protocol for the blockchain case beha-

ves exactly as its distributed processing original counterpart in regards to expected

performance curves behavior and message exchange data volume. Furthermore,

when compared to eventual consistency proof-based protocols such as the ones from

Bitcoin or Ethereum, the transaction write rate and consensus times achieved are

excellent, with mean sustained write rate more than twenty times and ten times the

rate of the former at their best possible rate, respectively. Although the usage pat-

52

terns are different, as an estimate, the proposed architecture could tent to a tenant

community at least ten times greater than the one from Bitcoin. In addition, consen-

sus time remains approximately constant even with the addition of more consensus

participants. This should remain true until the consensus-message exchange-data

volume surpasses the underlying network bandwidth capacity. Hence, consensus

message-validation speed of consensus participants and the block creation speed of

the consensus leader are the main performance bottlenecks for consensus. Neverthe-

less, this bottlenecks do not impact the proposed scenarios, because the achieved

performance during stress conditions is still greater than the estimated write rate

requirements. Write rate bottlenecks are due to the adopted consensus algorithm,

which centralizes block creation and is heavily reliant on cryptography operations

for message authentication, in order to resist collusion attacks and byzantine faults.

However, the most computationally expensive consensus operations are sequential

hashing and signature validation. Both operations are fully parallelizable, hence

these operation should scale linearly with the addition of multiprocessing capabili-

ties and processor cores, to enable much shorter consensus times. It is worth to note

that even if the leader centralizes block creation, this does not constitute a single

point of failure, as the leader can be promptly replaced by any consensus participant

as soon as it detects the failure, what happens in a few seconds consensus of inacti-

vity. Moreover, if the consensus leader fails after the pre-prepare PBFT consensus

phase, the consensus round finishes with no issues. Nevertheless, this result points

to new research directions, such as investigating the impact of specialized hardware

to perform cryptography operations on PBFT-based consensus algorithms.

Further experimentation was conducted regarding blockchain indirect approach

to management operations and consensus time impact on request time overhead,

when compared to NFV data center native interfaces. Results show that the block-

chain indirect approach has insignificant sub-second impact on request times, and

that the major impact on request times results from consensus time. For single

transaction operations, this consensus time overhead is of a few seconds and do

not pose significant concerns. For multi-transaction operations,however, such as the

establishment of a service function chain and accompanying VNFs, the introdu-

ced operation delay may become noticeable. Nevertheless, this introduced delay is

overshadowed by the total necessary time for the creation of a service chain, which

is proportional to chain size, while the introduce delay is constant for the same

transaction number. Our experimental data show that the consensus delay becomes

minimal for a service function chain of three VNFs and insignificant for a service

function chain of six VNFs or more.

In conclusion, besides eliminating single points of failure and providing high

availability to NFV management information, the proposed architecture ensures

53

the confidentiality and anonymity of all sensitive VNF management information. In

addition, even with the enforced confidentiality and anonymity security features, the

proposed architecture maintains and further enhances the auditing capabilities of

authorized entities. Furthermore, the aggregate benefits of the proposed architecture

are obtained without significant performance compromises for the evaluated NFV

data center platform.

Finally, we envision a few future research directions that would aid the field

of blockchain-enabled NFV security, such as the investigation of the portability of

configuration update functionality to other service function chaining (SFC) platform

elements, and the impact of different machine hardware and system architectures

in blockchain performance. Furthermore, we would like to measure the trade-off

of different consensus algorithms on the proposed architecture, the performance

of different cryptography algorithms on prototype implementations, the benefits of

hardware-assisted cryptography on consensus time and blockchain transaction write

rate, and the impact of hardware-based endpoint security technologies on further

enhancing the architecture.

54

Referências Bibliográficas

[1] BHAMARE, D., JAIN, R., SAMAKA, M., et al. “A Survey on Service Function

Chaining”, J. Netw. Comput. Appl., v. 75, n. C, pp. 138–155, nov. 2016.

ISSN: 1084-8045. doi: 10.1016/j.jnca.2016.09.001.

[2] MASSONET, P., DUPONT, S., MICHOT, A., et al. “Enforcement of global

security policies in federated cloud networks with virtual network functi-

ons”. In: 2016 IEEE 15th International Symposium on Network Compu-

ting and Applications (NCA), pp. 81–84, Oct 2016. doi: 10.1109/NCA.

2016.7778597.

[3] JOHN, W., PENTIKOUSIS, K., AGAPIOU, G., et al. “Research Directions in

Network Service Chaining”. In: 2013 IEEE SDN for Future Networks and

Services, pp. 1–7, Nov 2013. doi: 10.1109/SDN4FNS.2013.6702549.

[4] BOURAS, C., KOLLIA, A., PAPAZOIS, A. “SDN & NFV in 5G: Advan-

cements and challenges”. In: 2017 20th Conference on Innovations in

Clouds, Internet and Networks (ICIN), pp. 107–111, March 2017. doi:

10.1109/ICIN.2017.7899398.

[5] MIJUMBI, R., SERRAT, J., L. GORRICHO, J., et al. “Management and orches-

tration challenges in network functions virtualization”, IEEE Communi-

cations Magazine, v. 54, n. 1, pp. 98–105, January 2016. ISSN: 0163-6804.

doi: 10.1109/MCOM.2016.7378433.

[6] XU, X., PAUTASSO, C., ZHU, L., et al. “The Blockchain as a Software Connec-

tor”. In: 2016 13th Working IEEE/IFIP Conference on Software Archi-

tecture (WICSA), pp. 182–191, April 2016. doi: 10.1109/WICSA.2016.21.

[7] RAMAN, L. “OSI systems and network management”, IEEE Communications

Magazine, v. 36, n. 3, pp. 46–53, Mar 1998. ISSN: 0163-6804. doi: 10.

1109/35.663327.

[8] ITU-T STUDY GROUP 4. “ITU-T Recommendation M.3400”. In: ITU-

T Series M: TMN and Network Maintenance: International Trans-

55

mission Systems, Telephone Circuits, Telegraphy, Facsimile and Lea-

sed Circuits, International Telecommunication Union, February 2000.

https://www.itu.int/rec/T-REC-M.3400-200002-I/en.

[9] NANNRA, A. “Blockchain Enabled Industrial Strength Trust for Mo-

dern Business Environments”. In: Cisco Innovation Blog, April

2017. https://blogs.cisco.com/innovation/blockchain-enabled-industrial-

strength-trust-for-modern-business-environments. Last accessed February

3rd 2018.

[10] MATTHEWS, S. “Is Blockchain the Silver Bullet of IoT?” In: Internet of

Things World Forum - IoTWF’2017, London, United Kingdom, May

2017.

[11] PATTARANANTAKUL, M., HE, R., MEDDAHI, A., et al. “SecMANO:

Towards Network Functions Virtualization (NFV) Based Security MANa-

gement and Orchestration”. In: 2016 IEEE Trustcom/BigDataSE/ISPA,

pp. 598–605, Aug 2016. doi: 10.1109/TrustCom.2016.0115.

[12] FIROOZJAEI, M. D., JEONG, J. P., KO, H., et al. “Security challenges with

network functions virtualization”, Future Generation Computer Systems,

v. 67, pp. 315 – 324, 2017. ISSN: 0167-739X. doi: https://doi.org/10.

1016/j.future.2016.07.002.

[13] ONGARO, D., OUSTERHOUT, J. “In Search of an Understandable Consensus

Algorithm”. In: 2014 USENIX Annual Technical Conference (USENIX

ATC 14), pp. 305–319, Philadelphia, PA, 2014. USENIX Association.

ISBN: 978-1-931971-10-2.

[14] MATTOS, D. M. F., DUARTE, O. C. M. B., PUJOLLE, G. “Um Proto-

colo Simples e Eficiente para Atualização Consistente de Poĺıticas em

Redes Definidas por Software com Controle Distribúıdo”. In: XXXV

Simpósio Brasileiro de Redes de Computadores e Sistemas Distribúıdos

- SBRC’2017, Belém, PA, Brazil, May 2017.

[15] CASTRO, M., LISKOV, B. “Practical Byzantine Fault Tolerance”. In: Pro-

ceedings of the Third Symposium on Operating Systems Design and Im-

plementation, OSDI ’99, pp. 173–186, Berkeley, CA, USA, 1999. USENIX

Association. ISBN: 1-880446-39-1.

[16] LAL, S., TALEB, T., DUTTA, A. “NFV: Security Threats and Best Practices”,

IEEE Communications Magazine, v. PP, n. 99, pp. 2–8, 2017. ISSN: 0163-

6804. doi: 10.1109/MCOM.2017.1600899.

56

[17] COUGHLIN, M., KELLER, E., WUSTROW, E. “Trusted Click: Overcoming

Security Issues of NFV in the Cloud”. In: Proceedings of the ACM Inter-

national Workshop on Security in Software Defined Networks & Network

Function Virtualization, SDN-NFVSec ’17, pp. 31–36, New York, NY,

USA, 2017. ACM. ISBN: 978-1-4503-4908-6. doi: 10.1145/3040992.

3040994.

[18] MASSONET, P., DUPONT, S., MICHOT, A., et al. “An architecture for

securing federated cloud networks with Service Function Chaining”. In:

2016 IEEE Symposium on Computers and Communication (ISCC), pp.

38–43, June 2016. doi: 10.1109/ISCC.2016.7543711.

[19] PATTARANANTAKUL, M., TSENG, Y., HE, R., et al. “A First Step

Towards Security Extension for NFV Orchestrator”. In: Proceedings

of the ACM International Workshop on Security in Software Defined

Networks & Network Function Virtualization, SDN-NFVSec ’17, pp. 25–

30, New York, NY, USA, 2017. ACM. ISBN: 978-1-4503-4908-6. doi:

10.1145/3040992.3040995.

[20] REYNAUD, F., AGUESSY, F. X., BETTAN, O., et al. “Attacks against

Network Functions Virtualization and Software-Defined Networking:

State-of-the-art”. In: 2016 IEEE NetSoft Conference and Workshops

(NetSoft), pp. 471–476, June 2016. doi: 10.1109/NETSOFT.2016.

7502487.

[21] NAKAMOTO, S. “Bitcoin: A peer-to-peer electronic cash system”. 2008.

http://bitcoin.org/bitcoin.pdf.

[22] MUKHOPADHYAY, U., SKJELLUM, A., HAMBOLU, O., et al. “A brief

survey of Cryptocurrency systems”. In: 2016 14th Annual Conference on

Privacy, Security and Trust (PST), pp. 745–752, Dec 2016.

[23] BOZIC, N., PUJOLLE, G., SECCI, S. “A tutorial on blockchain and appli-

cations to secure network control-planes”. In: 3rd Smart Cloud Networks

Systems, pp. 1–8, Dec 2016. doi: 10.1109/SCNS.2016.7870552.

[24] CHRISTIDIS, K., DEVETSIKIOTIS, M. “Blockchains and Smart Contracts

for the Internet of Things”, IEEE Access, v. 4, pp. 2292–2303, 2016. ISSN:

2169-3536. doi: 10.1109/ACCESS.2016.2566339.

[25] BOUDGUIGA, A., BOUZERNA, N., GRANBOULAN, L., et al. “Towards Bet-

ter Availability and Accountability for IoT Updates by Means of a Block-

chain”. In: 2017 IEEE European Symposium on Security and Privacy

57

Workshops (EuroS PW), pp. 50–58, April 2017. doi: 10.1109/EuroSPW.

2017.50.

[26] AZARIA, A., EKBLAW, A., VIEIRA, T., et al. “MedRec: Using Blockchain

for Medical Data Access and Permission Management”. In: 2016 2nd

International Conference on Open and Big Data (OBD), pp. 25–30, Aug

2016. doi: 10.1109/OBD.2016.11.

[27] FRANTZ, C. K., NOWOSTAWSKI, M. “From Institutions to Code: Towards

Automated Generation of Smart Contracts”. In: 2016 IEEE 1st Inter-

national Workshops on Foundations and Applications of Self* Systems

(FAS*W), pp. 210–215, Sept 2016. doi: 10.1109/FAS-W.2016.53.

[28] WOOD, G. “Ethereum: A secure decentralised generalised transaction ledger”.

2014. http://bitcoinaffiliatelist.com/wp-content/uploads/ethereum.pdf.

[29] FUJIMURA, S., WATANABE, H., NAKADAIRA, A., et al. “BRIGHT: A con-

cept for a decentralized rights management system based on blockchain”.

In: 2015 IEEE 5th International Conference on Consumer Electronics -

Berlin (ICCE-Berlin), pp. 345–346, Sept 2015. doi: 10.1109/ICCE-Berlin.

2015.7391275.

[30] ZYSKIND, G., NATHAN, O., PENTLAND, A. S. “Decentralizing Privacy:

Using Blockchain to Protect Personal Data”. In: Proceedings of the 2015

IEEE Security and Privacy Workshops, SPW ’15, pp. 180–184, Washing-

ton, DC, USA, 2015. IEEE Computer Society. ISBN: 978-1-4799-9933-0.

doi: 10.1109/SPW.2015.27.

[31] XU, X., WEBER, I., STAPLES, M., et al. “A Taxonomy of Blockchain-Based

Systems for Architecture Design”. In: 2017 IEEE International Confe-

rence on Software Architecture (ICSA), pp. 243–252, April 2017. doi:

10.1109/ICSA.2017.33.

[32] SAITO, K., YAMADA, H. “What’s So Different about Blockchain? Blockchain

is a Probabilistic State Machine”. In: 2016 IEEE 36th International Con-

ference on Distributed Computing Systems Workshops (ICDCSW), pp.

168–175, June 2016. doi: 10.1109/ICDCSW.2016.28.

[33] VUKOLIĆ, M. “The Quest for Scalable Blockchain Fabric: Proof-of-Work

vs. BFT Replication”. In: Camenisch, J., Kesdoğan, D. (Eds.), Open

Problems in Network Security: IFIP WG 11.4 International Workshop,

58

iNetSec 2015, Zurich, Switzerland, October 29, 2015, Revised Selected Pa-

pers, pp. 112–125, Cham, Springer International Publishing, 2016. ISBN:

978-3-319-39028-4. doi: 10.1007/978-3-319-39028-4 9.

[34] BISTARELLI, S., MANTILACCI, M., SANTANCINI, P., et al. “An End-to-

end Voting-system Based on Bitcoin”. In: Proceedings of the Symposium

on Applied Computing, SAC ’17, pp. 1836–1841, New York, NY, USA,

2017. ACM. ISBN: 978-1-4503-4486-9. doi: 10.1145/3019612.3019841.

Dispońıvel em: <http://doi.acm.org/10.1145/3019612.3019841>.

[35] TSENG, L. “Bitcoin’s Consistency Property”. In: 2017 IEEE 22nd Pacific

Rim International Symposium on Dependable Computing (PRDC), pp.

219–220, Jan 2017. doi: 10.1109/PRDC.2017.39.

[36] SCHWARTZ, D., YOUNGS, N., BRITTO, A. “The Ripple pro-

tocol consensus algorithm”, Ripple Labs Inc White Paper, 2014.

https://ripple.com/files/ripple consensus whitepaper.pdf.

[37] CACHIN, C., VUKOLIC, M. “Blockchain Consensus Protocols in the Wild”,

CoRR, v. abs/1707.01873, 2017.

[38] GILBERT, S., LYNCH, N. “Perspectives on the CAP Theorem”, Computer,

v. 45, n. 2, pp. 30–36, Feb 2012. ISSN: 0018-9162. doi: 10.1109/MC.2011.

389.

[39] CACHIN, C., KURSAWE, K., PETZOLD, F., et al. “Secure and Efficient Asyn-

chronous Broadcast Protocols”. In: Kilian, J. (Ed.), Advances in Cryp-

tology — CRYPTO 2001: 21st Annual International Cryptology Confe-

rence, Santa Barbara, California, USA, August 19–23, 2001 Proceedings,

pp. 524–541, Berlin, Heidelberg, Springer Berlin Heidelberg, 2001. ISBN:

978-3-540-44647-7. doi: 10.1007/3-540-44647-8 31.

[40] ABADI, D. “Consistency Tradeoffs in Modern Distributed Database System

Design: CAP is Only Part of the Story”, Computer, v. 45, n. 2, pp. 37–42,

Feb 2012. ISSN: 0018-9162. doi: 10.1109/MC.2012.33.

[41] BANO, S., SONNINO, A., AL-BASSAM, M., et al. “Consensus in the Age of

Blockchains”, CoRR, v. abs/1711.03936, 2017. Dispońıvel em: <http:

//arxiv.org/abs/1711.03936>.

[42] LAMPORT, L. “The Part-time Parliament”, ACM Trans. Comput. Syst.,

v. 16, n. 2, pp. 133–169, maio 1998. ISSN: 0734-2071. doi: 10.

1145/279227.279229. Dispońıvel em: <http://doi.acm.org/10.1145/

279227.279229>.

59

http://doi.acm.org/10.1145/3019612.3019841
http://arxiv.org/abs/1711.03936
http://arxiv.org/abs/1711.03936
http://doi.acm.org/10.1145/279227.279229
http://doi.acm.org/10.1145/279227.279229

[43] LISKOV, B. “From Viewstamped Replication to Byzantine Fault Tolerance”.

In: Charron-Bost, B., Pedone, F., Schiper, A. (Eds.), Replication: Theory

and Practice, pp. 121–149, Berlin, Heidelberg, Springer Berlin Heidelberg,

2010. ISBN: 978-3-642-11294-2. doi: 10.1007/978-3-642-11294-2 7.

[44] MILLER, A., XIA, Y., CROMAN, K., et al. “The Honey Badger of BFT

Protocols.” In: Weippl, E. R., Katzenbeisser, S., Kruegel, C., et al. (Eds.),

ACM Conference on Computer and Communications Security, pp. 31–42.

ACM, 2016. ISBN: 978-1-4503-4139-4. doi: 10.1145/2976749.2978399.

[45] DOLEV, D., YAO, A. “On the security of public key protocols”, IEEE Tran-

sactions on Information Theory, v. 29, n. 2, pp. 198–208, Mar 1983. ISSN:

0018-9448. doi: 10.1109/TIT.1983.1056650.

[46] BALLANI, H., CHAWATHE, Y., RATNASAMY, S., et al. “Off by default!”

2016.

[47] KOSBA, A., MILLER, A., SHI, E., et al. “Hawk: The Blockchain Model of

Cryptography and Privacy-Preserving Smart Contracts”. In: 2016 IEEE

Symposium on Security and Privacy (SP), pp. 839–858, May 2016. doi:

10.1109/SP.2016.55.

[48] ZHANG, Y., WEN, J. “An IoT electric business model based on the protocol of

bitcoin”. In: 2015 18th International Conference on Intelligence in Next

Generation Networks, pp. 184–191, Feb 2015. doi: 10.1109/ICIN.2015.

7073830.

60

	Lista de Figuras
	Lista de Tabelas
	Introduction
	Contributions and publications
	Blockchain related papers
	NFV and SFC related papers
	Data analysis related papers

	Organization

	Network Function Virtualization, Blockchain, and Consensus Mechanisms
	Network Function Virtualization
	Virtual Network Function Security challenges

	Blockchain
	Blockchain data structure
	Blockchain-based systems

	Blockchain consensus mechanisms
	Distributed agreement challenge
	Eventual consistency
	Quorum-based consistency

	The Proposed System Architecture
	Assumptions and requirements
	Attacker model
	Proposed architecture modules
	Blockchain modules
	Client modules

	Key management
	Proposed blockchain structure and transaction schemes
	Secure migration of virtualized network functions

	Performance Evaluation of the Blockchain Module Prototype
	Prototype environment and setup
	Evaluation of conducted experiments

	Conclusion
	Referências Bibliográficas

