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"I think the big mistake in
schools is trying to teach (. . . )

by using fear as the basic
motivation. Fear of getting

failing grades, fear of not staying
with your class, etc. Interest can

produce learning on a scale
compared to fear as a nuclear

explosion to a firecracker.”
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Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos
necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

OTIMIZAÇÃO DA OPERAÇÃO DE TRENS DE CARGA POR CONTROLE
PREDITIVO BASEADO EM MODELO

Carolina Calvo Pose Santos Neves

Março/2018

Orientador: Alessandro Jacoud Peixoto

Programa: Engenharia Elétrica

Nas operações ferroviárias, atualmente há um padrão de condução personali-
zado para cada combinação de trem e rota. Esse plano guia os maquinistas em
termos de uma direção que seja pontual e energeticamente eficiente. No entanto,
os esforços elevados nos acopladores desses trens ainda provocam acidentes e pro-
blemas de descarrilhamentos, atrasando a cadeia logística e elevando os custos
operacionais. Esta dissertação de mestrado descreve uma proposta de modelagem,
simulação e controle de trens de carga baseada em dados reais para lidar com esse
desafio.

De fato, este trabalho propõe um modelo preditivo baseado em modelo para a
condução automática dos trens, levando em consideração uma minimização multi-
objetivo ponderada a fim de reduzir as forças nos engates e garantir uma operação
mais segura, sem que isso se traduza em relevante gasto de combustível ou au-
mento de tempo de viagem considerável. A técnica de janela móvel é adotada
para a predição do comportamento dinâmico do sistema, incluindo as forças de
conexão dos vagões decorrentes do efeito conjunto do relevo da rota e dos esforços
de tração e de freio aplicados ao trem.

Um simulador do comportamento dinâmico de trens de carga é sugerido a partir
do modelo não linear apresentado e as simulações numéricas ilustram a efetividade
do esquema considerado para reduzir as forças nos acopladores. A metodologia é
aplicada a um trem real simulado nos trilhos da Ferrovia do Aço que corta os
estados de Minas Gerais, Rio de Janeiro e São Paulo.
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Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the
requirements for the degree of Master in Science (M.Sc.)

MODEL PREDICTIVE CONTROL OF HEAVY HAUL TRAINS

Carolina Calvo Pose Santos Neves

March/2018

Advisor: Alessandro Jacoud Peixoto

Program: Electrical Engineering

In railroad operations, locomotive engineers nowadays use a personalized driv-
ing pattern for each track/train combination. This plan serves as a guide reference
for punctuality and energetically efficient travels. However, many safety issues re-
lated to the high forces experimented by the trains couplers persist, provoking
accidents and derailments, which delay the logistic chain and raise operational
costs. This Masters Dissertation describes a modeling, simulation and control
methodology for real freight trains operation dealing with the described challenge.

In fact, this work intends to propose a Model Predictive Control automatic
driving procedure taking into account a weighted multi-objective minimization
that can reduce forces in the couplings without increasing significantly the trip
time or fuel consumption. A moving horizon technique is adopted to predict
the train handling effects of the terrain forces interacting with train tractive and
braking forces.

A heavy haul train dynamic simulator is developed based on the described non-
linear model and numerical simulations illustrate the effectiveness of the considered
scheme to reduce coupler forces. The methodology is applied to the "Ferrovia do
Aço" railroad that passes through the States of Rio de Janeiro, São Paulo and
Minas Gerais in Brazil with real train configuration.
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Chapter 1

Introduction

The railway transport is a means of transporting passengers and goods in
vehicles running on a given rail network, formed by different tracks. In contrast
to the road transportation, the movements of these trains are constrained to the
steel rails. As a land transport system, the railroad industry has been considered
an economical efficient solution due to its huge capacity as multiple wagons are
coupled together.

Indeed, the weight carried by unit of energy consumed is especially high
for long distances. Importantly, not only railroads are undoubtedly useful and
efficient with respect to time, fuel and, consequently, costs, but they also provide
that benefit with a lower carbon footprint than other modes of transportation [2].

Not surprisingly, around the world, the railroad transportation is a widely
chosen manner to transport products from inland locations to ports for export
and inside the countries too, minimizing logistic costs. The United States, China,
Russia, India, Canada, Australia and South Africa, among others, largely use their
railways for freight transportation [3]. The type of cargo can vary a lot, including
ore, nickel, manganese, steel, wood, copper and coal, for example.

Particularly in Brazil, the railways are a fundamental way of conveying the
agricultural and mineral production mainly concentrated in the interior of the
country to the urban centers and seaports. The commodities transit presents a
few challenges with exceptionally long and impressively heavy trains. In fact,
freight trains in Brazil can be 3 kilometers long, with more than three hundred
cars coupled together carrying thirty thousands tons, the corresponding weight of
a hundred loaded trucks approximately [1].

The referred Heavy Haul Trains are a composition of wagons with only brak-
ing capabilities hauled by the locomotives, tractive vehicles responsible for moving
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the train forward, but also being able to brake. A diesel-electric locomotive abil-
ity to break is called dynamic braking as the electric traction motor is used as
a generator to slow down the locomotives and the train in consequence. Some
locomotives also have brake regeneration capabilities. On the other hand, when
referring to wagons ability to break, the term air brake is then applied due to its
pneumatic nature [32].

In synchronous air brakes, each car is intended to apply the same friction
brake force to its wheels at the same time. However, in traditional air brake
systems, the corresponding signal applied from the first locomotive of the train
takes some time to propagate throughout the train and different wagons receive
the compressed air brake application with delays.

In contrast, the Electronically Controlled Pneumatic (ECP) air brakes miti-
gate the delay and are able to provide completely independent and asynchronous
commands with different magnitudes for each wagon, which is the most flexible
scheme. There also exist some partially synchronous systems, in which some groups
of cars share the same brake signal and grouping strategies are adopted [52].

The wagon connections play an important role on the dynamic behavior of
the train. A common autocoupler encountered in trains is called a draft gear. Its
nonlinearities present modeling and simulation challenges that will not be detailed
in this work.

Once a few aspects of the rail industry were mentioned, as well as a brief
description on trains configuration is given, it is easier to understand the challenges
encountered in this segment. One of the first claims were to drive trains managing
the trade off between the time it took to take the train to its destination and the
fuel consumed. As a matter of fact, optimizing fuel consumption intrinsically also
represent a reduction in the CO2 emissions in the railroad operations. Thus, many
scheduling techniques were proposed to solve this problem in an optimal manner,
producing a driving plan [34], [21],[29], [57], [6] and [23].

Traditionally, trains have been driven manually by human drivers, the loco-
motive engineers, that followed a predefined sequence of power levels commands
for the locomotives. They also activated air brakes in the wagons in required
moments. In other words, the locomotive engineers had a plan of the track with
marked points to switch tractive effort commands and brakes.

With the experience of running the same train in specific tracks, they have ac-
quired some knowledge about critical segments and driving empirical rules started
to arise. Later, the technological investment in the sector sustained software de-
velopment in the direction of driving trains in an autonomous manner. In that

Carolina Calvo Pose Santos Neves | COPPE | UFRJ
Model Predictive Control of Heavy Haul Trains
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way, empirical rules on how to better drive the train started to be replaced by
mathematical and physical foundations.

Automated train operation rely heavily on accurate models that represent
with fidelity the train dynamics. For this purpose, Longitudinal Train Dynamics
(LTD) are defined as the train motion in the direction of the track, including the
whole train and any relative movement between wagons and locomotives. The
assumption of no car lateral or vertical movement is relatively common depending
on the purpose of the study [59], [32].

Longitudinal Train Dynamic Simulations [14] have always had an important
role in the railroad industry as they can reproduce the dynamic behavior of more
than a hundred coupled heavy cars in a train, weighting more than twenty thou-
sand tons when loaded in operations. These simulations provide insight in driving
strategies and allow novel studies that shape the future tendencies in freight trans-
portation, accelerating innovative designs.

For example, for costs reasons, the rail logistics has been considering for sev-
eral decades to increase the rail throughput, that is, the amount of goods trans-
ported in a given period of time. That can be done by increasing the number of
running trains or the load carried per train. As a result, the increase in the trains
number of cars and the weight is a constant tendency. Economically promising,
this idea has been pushing technological developments in the industry [33],[53],[40].

In that sense, Longitudinal Train Dynamics is a powerful tool in predicting
how much length and weight can be added to the train still operating safely in a
specific track.

Also, with heavier trains, tractive effort needs increased as well and more
than one locomotive can be required in the front of conventional trains. The
locomotives put together to form a single unit operation receive the same power
reference simultaneously. A set of vehicles under multiple unit control is referred
to as a consist. The very first locomotive is called the lead unit.

In the modern rail industry, there are a couple more possible configurations
to be explored to optimize railroad operations. Indeed, weight distribution and
locomotives positioning inside the train are also a known research topic. A common
strategy adopted in that sense is further detailed in the Section 1.3.

Besides, with longer and heavier trains, the complexity of its driving strate-
gies also increase, leaving room for research in faster models as well as advanced
control and optimization strategies. Specially, as with the growing computational
power, new possibilities can be thought that were not considered with limited
simulation capabilities. Better computing schemes such as parallel computing can
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Chapter 1 1.1. TRACK CHARACTERISTICS

help LTD simulations [59].
Essentially, software inputs are the track and train characteristics, producing

an optimized control schedule for the compromise represented by the fuel consump-
tion and train speed. It generally also takes some safety criteria into account.

Certainly, that automation process requires a powerful communication net-
work as difficulties in the radio connection can be imposed for instance by the
tunnels in the trajectory. Indeed, studies on how to have an effective train com-
munication [12] are essential to transmit acquired train position via GPS and,
based on it, apply the corresponding controls. The transition to automated
trains is an active research topic but nowadays the human presence in locomotives
cannot be neglected. In the case of an unpredicted event, the transition to man-
ual control is done even though it presents a higher discrepancy performance as
different locomotive engineers can imply driving variations.

In order to exemplify automation operation gains in Brazil, a recent pilot
test in the north of country, has shown that up to 3.5% fuel can be saved in the
Estrada de Ferro Carajás (EFC), considering 892 km from Carajás Mountain in
the state of Pará to the Ponta da Madeira port in the state of Maranhão, without
increasing the trip time.

Estimated gains are about to R$35 million in diesel per year, with 9.4 million
liters of saved fuel, representing 22.7 thousands tons reduction in CO2 emissions
annually. These savings in greenhouse gases correspond to the emissions of ap-
proximately thirty one thousand popular cars running ten thousand kilometers per
year [4].

1.1 Track Characteristics

Track longitudinal slope is called grade and it is usually measured in per-
centages, indicating the vertical distance, positive or negative, for each 100 meters
of horizontal distance. An ascending or descending grade is considered light below
1% [18], which represent one meter of vertical distance increment or decrement for
each 100 meters in the horizontal. Higher grades are already said to be heavy.

In practice, there are some typically encountered territories, as listed below:

— A crest is a long ascending grade followed by a long descending grade, as
shown in Figure 1.1;

— A sag is the opposite shape, with a descending grade and, in sequence, an
ascending grade, as shown in Figure 1.2;
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Chapter 1 1.2. TRAIN MODELING AND CONTROL

— A hogback is a rapid increase in grade followed by a decreasing grade;

— An undulating profile alternates ascending and descending grades.

Lr
Wn−1

Wi

...

W
2

...

L
l

v

Figure 1.1 – Track Characteristics: an example of a crest.

L
r

W
n−1 Wi

...
W2

... L l
v

Figure 1.2 – Track Characteristics: an example of a sag.

In Figures 1.1 and 1.2, the car Ll represent a locomotive in the front, leading
the train; Lr, a locomotive in the rear and Wi the wagons in the i-th position
within the train.

1.2 Train Modeling and Control

As already stated, the train autopilots are based on reliable train models.
Two approaches are widely used for train modeling: the point mass model and the
cascade mass model.

In the former, a lumped model is adopted: all the train mass is considered
to be concentrated in the train center of mass, whereas in the cascade mass model
each car is viewed as a point mass connected by couplers. The point mass model
is generally applied to solve the time-fuel saving scheduling problem [30], [35] not
necessarily including any logic to treat forces among cars. The cascade model
takes into account these in-train forces in the couplers.

The terminal time optimal control is an approach to solve the former problem
[36]. Free terminal time optimal control methods can also be found in [38]. Differ-
ent optimal control strategies are described in [11], [20],[31],[37], [47],[48]. Train
parameter identification for optimal design is also done in [62] for high speed trains.
Adaptive control and optimal power/brake distribution is applied to high speed
trains considering uncertain nonlinear couplers in [50].
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Chapter 1 1.3. TRAIN HANDLING

In general, a time-fuel optimal plan is composed of a set of power control
levels, called the locomotives notches, scheduled for an entire trip, associated with
a speed reference to be followed by the train. Thus, for each position of the train
within the track, there is a corresponding notch and speed the train should follow
to perform an optimal travel. That power and speed reference together determines
the ideal tractive effort in every location.

Thus, the trip planner can find the speed and throttle for a targeted travel
arrival time minimizing fuel consumption. Real constraints such as speed limits,
locomotive power and tractive efforts absolute and relative rate limits are taken
into account. Closed loop speed control prevent the effects of disturbances and
model uncertainties. A model estimator can compensate for GPS failures and
satellite communication update train data [34], [21].

1.3 Train Handling

As train has only a few locomotives capable of providing tractive efforts
commands, wagons move forward pushed or pulled by the forces in the couplers
connections. Wagons movement are also influenced by the terrain gravity forces:
when a portion of the train is descending a gradient, gravity forces pull these cars
forward whereas the wagons in ascending gradients are pulled backwards.

The train dynamics induced by the action of locomotives tractive effort
and dynamic brake, coupled with wagons brakes interact with the gravity and
drag forces and produce stretched or compressed couplers forces. Referring to
a stretched coupler, this force is called a draft one. On the other hand, in the
situation of compressed stress, this is a buff force.

As heavy haul trains are considerably long, inside the same train, one can
find couplers in draft and buff situations at the same time. Indeed, in a rough
terrain, it is very likely that the train will not be entirely stretched or compressed
because it can be partially climbing and descending a hill simultaneously.

Also, steady in train forces are correlated with steady applications of power
and braking from the locomotives and air braking, combined with the terrain grade,
rolling and air resistance. It is though relevant to distinguish it from impact forces,
associated with the changes in locomotive power and braking notches, along with
variations in the terrain gradient.

The free slack in wagon connections produce a relative motion between ve-
hicles known as slack action. The slack action associated with a compression is
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Chapter 1 1.3. TRAIN HANDLING

often called a run-in, whereas a stretched slack is referred to as a run-out [32].
Considering the train weight, these in-train forces can have high magnitude

and thus deserve particular attention to maintain operation safety. The ability
to manage the experienced coupling forces is called train handling. A
proper controlled trip can avoid breaking the couplers, scheduling interruptions
and delays, derailments and accidents. When a train breaks, it can cause a large
logistic cost to the rail industry.

1.3.1 Coupler Forces Control

Nowadays, there are a number of techniques used to deal with different train
handling issues. For instance, having only locomotives in the front of the train can
impose difficulties to control in-train forces in the wagons far from the lead of the
train [25], [40].

One well known alternative to manage this is to distribute the train total
tractive force among consists in different positions within the train [41]. In this
sense, the group of cars formed by the locomotives placed in the front of the train
is called the lead consist. A common practice when distributing power in different
consists is that of placing locomotives at the tail of the train, forming a remote
consist, remotely controlled [19],[15]. If the communication is lost, the remote
locomotives are forced to stop, mitigating failures.

In this case, although locomotives in the same consist are commanded
through the same signal, different consists can be thought to be controlled sepa-
rately. When the remote consist command follow the lead one, the operation is
said to be synchronously commanded, while in the asynchronous mode they can
have independent power controls. In a typical trip, lead and remote consist can
pass from synchronous to asynchronous operation and vice-versa many times.

For instance, Figures 1.1 and 1.2 illustrate a train with distributed power
climbing and descending a hill, where different train handling situations occur. In
both pictures, a train with n cars is represented, with one lead and one remote
locomotives, to exemplify distributed power.

In Figure 1.1, the terrain tends to stretch couplers passing the highest point
of the hill. Experienced drivers would, in this case, brake the lead locomotive and
motor the remote trying to reduce the draft forces imposed on the segment. On
the contrary, a sag is responsible for compressive in-train forces and, thus, a train
in the situation represented in Figure 1.2 should have its lead locomotive with
motoring notches while keeping dynamic brake applied in the remote one.
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Chapter 1 1.3. TRAIN HANDLING

In a complete track, a lot of different terrain variations occur. In an undu-
lating track profile, as already explained, a long train can be at the same time
in a sag and a crest for instance and the best decision to handle power becomes
less intuitive. Imagining a train with the locomotives position of the described
example, the best notches to be chosen in a train placed over a hogback could
prioritize the highest absolute force, draft or buff, encountered. One could also
prefer to treat draft forces over the buff ones as the former may cause more severe
consequences, such as derailments, than the former.

However, there is another possibility used to handle such a situation, which
is to distribute power even more, placing locomotives not only in the front and
rear but also somewhere in the middle of the train, to create a middle consist.
Considering the possibility of having locomotives in the lead, mid and remote
consists, a train configuration is often referred as being a nL-nM -nR, with nL

being the number of lead locomotives, nM , the number of mid locomotives and
nR the number of remotes. For instance, a conventional unique lead locomotive
free tail train would be called a 1-0-0 and a 3-2-2 train would have three lead
locomotives, two mid ones and two remotes.

In the presence of a mid consist, it could in theory run independently from
the other two, but instead that mid locomotive usually follow either the lead
consist commands or the remote ones to simplify the power distribution scheme.
During a trip, a virtual fence can be imagined moving between consists, so that the
mid locomotives can impose the same lead or remote planned power. Thus, there
exist algorithms to automate the optimal manner of moving this virtual fence with
respect to train handling [40], [64].

The train control problem possess complex dynamics as hundreds of cars
are assembled with nonlinear couplings, carrying tens of thousands tons of freight
and multiple locomotives distributed throughout the train. The longer the trains,
the larger the control and optimization problem is, imposing difficulties in its
solution, especially concerning computational time. Different train configurations
present also various train handling problems and a number of techniques have been
employed trying to control in-train forces properly.

In [65], an open loop scheduling optimal cruise control methodology taking
into account operation safety is presented considering ECP brakes. In [25], an
LQR minimizes coupler forces at the same time it maintains velocity tracking from
reference values. Linear simplified models are adopted also in [60]. In [63] and [60],
the model predictive control strategy is considered, aiming at the state dynamic
prediction and try to act in advance avoiding breaking couplers but without loosing
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Chapter 1 1.4. OBJECTIVE

sight of a speed reference and fuel consumption. A discrete model is used to
anticipate the system behavior for every admissible actuation sequence. Nonlinear
model predictive control algorithms are also applicable [17], [24] in the context of
the train handling problem.

1.4 Objective

The objective of this dissertation is to develop a simulator for the dynamics
of heavy haul trains considering some of the involved nonlinearities, as well as
to investigate the applicability of the Model Predictive Control methodology to
manage the tradeoff among train handling, travel time and energy consumption
using real train and track data.

1.5 Dissertation Outline

This dissertation is organized as follows: in Chapter 2, the train nonlinear
model is presented, along with a proposed linear version. Then, it also shows the
most relevant aspects of a real train and the Ferrovia do Aço track, simulation data
from the operation is included as well. The main control challenge is presented in
Chapter 3 and the numerical simulation results are described in Chapter 4. Finally,
Chapter 5 presents the conclusions of this study and also gives some suggestions
for further research.
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Chapter 2

Train Dynamic Model and
Track/Train Data

In this chapter a general train dynamic model is proposed for any number of
cars, taking into account not only the whole train movement but also the in-train
dynamics. A linear simplified model is suggested, approximating the nonlinear
couplers dynamic behavior with a spring-damping scheme.

Then, available data of the Ferrovia do Aço track characteristics, along with
a real train configuration is presented. Some data of the real operation simulator
of a trip is also shown to illustrate the problem.

2.1 Nonlinear Model

In the following, a train with n connected cars (n − 1 couplers) and m lo-
comotives will be considered. Figure 2.1 illustrates the connection between cars
in the middle of a train, with the relative displacement between the i-th and
(i + 1)-th cars being represented by xini

, where i = 1, 2, ..., n. As the lead is only
connected to its successor and the last car is only connected to its predecessor,
then xin0 = xinn = 0.

i− 1 i

xini−1

i+ 1

xini

... ...

Figure 2.1 – Connected Cars in a Train.

The dynamic behavior of each connected car (wagon or locomotive) is then
analyzed separately, as Figure 2.2 illustrates, with vi and mi being respectively

10



Chapter 2 2.1. NONLINEAR MODEL

the ith car speed and mass. In addition, fini
is the in-train force between the i-th

and (i+ 1)-th cars. Similarly, fin0 = finn = 0.

m i

vi

θ

Ni

fri

fini

ui

fini−1

mig

Figure 2.2 – Forces acting on a single car

miv̇i = ui + fini−1 − fini
− fexti (2.1)

where

ui is the traction/brake force for the i-th car;
fexti is the resultant of external forces acting over each car.

From this, the dynamics in (2.1) is written, describing the relative movement
of each car with respect to the next one in a connected train.

It shall be noticed that wagons are only capable of braking, which imposes
ui < 0 for every wagon, whereas the locomotives efforts are only bounded by its
power characteristics as will be described in Section 2.3, being capable of providing
tractive and dynamic braking efforts.

fini
= ki xini

+ bi ẋini
(2.2)

where
ki is the spring constant;
bi is the linear damping coefficient, both from the i-th coupler.

In (2.1), it can be assumed that the inter-cars forces fini
and fini−1 follow

(2.2), although in general the couplers dynamics are more complex than this.

fext = fri
+ fgravi

(2.3)

fgravi
= mi g sin(θi) (2.4)
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Chapter 2 2.2. LINEAR MODEL

where fgravi
is the component of the gravity force affecting the car movement and

θi is the terrain slope on the ith car.

The resistance forces fri
represented in (2.3), can be modeled by (2.5):

fri
= mi (cai

+ cbi
vi + cci

v2
i ) (2.5)

where cai
, cbi

and cci
are each car drag davis coefficients. [59], [32].

Also, in (2.1), fexti is the resultant of external forces acting over each car. As
(2.3) states, these external forces are essentially drag forces (aerodynamic, ground
resistance), represented in fri

, and also forces related to the terrain, due to the
track slope and curvature although the latter is neglected in fgravi

.

ūi = ui − δi. (2.6)

δi = mi (cai
+ cci

v2
i ) + fgravi

(2.7)

Now, δi is defined in (2.7), in order to separate it from fext and consider a
modified control variable given by (2.6).

miv̇i = ūi + ki−1 xini−1 + bi−1 ẋini−1 − ki xini
− bi ẋini

− mi cbi
vi (2.8)

ẋini
= vi − vi+1

Then, combining (2.2), (2.3), (2.5) and (2.7) with the original dynamic (2.1),
we can describe this system through (2.8). Finally, noting also that ẋini

= vi−vi+1,
a linear state space for this system is can be deduced.

2.2 Linear Model

Hereinafter, a state x ∈ R2n−1 is considered, consisting of each car speed vi
and also the relative displacement between cars xin.

x =
[
v1, ..., vn, xin1 , ..., xinn−1

]T
(2.9)
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ẋ = Ax+B ū (2.10)
y = C x

Then, (2.9) allows to write the system in the form of (2.10), with x given by
(2.9) and ū =

[
ū1, ..., ūn

]T
∈ Rn.

where A ∈ R(2n−1)×(2n−1) and B ∈ R(2n−1)×n :

A =
A11 A12

A21 0(n−1)× (n−1)

 B =
 B11

0(n−1)×n



specifically, B11 = diag{m−1
1 , ...,m−1

n }, B11 ∈ Rn×n and

A11 =



−( b1
m1

+ cb1) b1
m1

0 . . . 0
b1
m2

−( b1+b2
m2

+ cb2) b2
m2

. . . ...
0 . . . . . . . . . 0
... . . . bn−2

mn−1
−( bn−2+bn−1

mn−1
+ cbn−1) bn−1

mn−1

0 . . . 0 bn−1
mn

−( bn−1
mn

+ cbn)



A21 =



1 −1 0 . . . 0
0 1 −1 . . . ...
... . . . . . . . . . 0
0 . . . 0 1 −1

 A12 =



−k1
m1

0 . . . 0
k1
m2

−k2
m2

. . . ...
0 . . . . . . 0
... . . . kn−2

mn−1

−kn−1
mn−1

0 . . . 0 kn−1
mn



with A11 ∈ Rn×n, A12 ∈ Rn× (n−1) and A21 ∈ R(n−1)×n. In addition, we consider
only the lead locomotive speed as measurement ŷ. Thus, C =

[
1 0 . . . 0

]
,

CT ∈ R2n−1.

x[k + 1] = Φx[k] + Γ ū[k] (2.11)
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Chapter 2 2.3. FERROVIA DO AÇO TRACK AND THE MRS TRAIN

Φ = eATs and Γ =
∫ Ts

0 eAτBdτ [63].

Then, this continuous time-domain state space is discretized with the zero
order hold method and a sampling time of Ts, as represented in (2.11).

In Section 2.3, the Ferrovia do Aço track and a real train configuration are
introduced.

2.3 Ferrovia do Aço Track and the MRS Train

In this section, we present a typical trip in the Ferrovia do Aço track with the
MRS train. Real data presented in this chapter is from a real simulator currently
used for this operation and was gently provided to enrich this work by MRS Logís-
tica S.A. The data collected was treated inside R studio, using the R language
useful for treating large amounts of data [44].

The MRS train is led by two GE AC 44 locomotives, followed by 67 double
wagons and more two equal locomotives in the rear of the train. In total, 138
vehicles are coupled together forming a train. Each double wagon has a rigid bar
connecting single wagons as illustrated in Figure 2.3.

L4 L3 W134 W133 Wi Wi−1 W2 W1 L2 L1

v

Figure 2.3 – MRS train representation

GE AC 44 are diesel electric locomotives with alternating current traction
whose effort and braking curves are presented in Figures 2.4 and 2.5.

These locomotives allow the choice of eight different levels of power, repre-
sented by eight throttle positions, called notches. Notch 1 (N1) is the lowest level
of power and notch 8 (N8) the highest. Similarly, there are eight power levels for
the dynamic braking, with DB1 being the weakest brake and DB8 the highest one.
Also, there exists an idle position where there is no tractive nor braking effort
being employed by the locomotive. In total, there are seventeen power locomotive
levels: DB8, DB7, DB6, DB5, DB4, DB3, DB2, DB1, N0, N1, N2, N3, N4, N5,
N6, N7 and N8, called the locomotive notches.

The traction effort or brake that a locomotive is capable of applying into a
train relies on the chosen throttle position, combined with the locomotive speed,
as in Figures 2.4 and 2.5. From Figure 2.4, one can notice that, at low speeds,
the tractive force is independent of the locomotive speed, being proportional to
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Figure 2.4 – GE AC44 Locomotive Traction Effort based on its speed and notch. Data
gently provided by MRS Logística.

the notch position. On the hand, for higher speeds, the tractive effort available
decreases as the locomotive speed increases.

From the ordinate scale in Figure 2.5, one can notice that locomotives
dynamic brakes magnitudes are lower than the ones encountered for its tractive
efforts.

2.3.1 Real Available Data of a Typical Trip

The Ferrovia do Aço elevation and angles are represented in Figure 2.6 from
the city of Mariana, excerpt of the road known as the kilometer 293, in the State
of Minas Gerais, until Saudade, which represents the kilometer zero in reality. For
the simulation purpose though, as the train will run from Mariana to Saudade,
in Figure 2.6, the abscissa is inverted: kilometer zero represents Mariana and
kilometer 293 is located in Saudade, as will be reforced in Chapter 4.

MRS Logística S.A has gently provided one trip data from the simulator
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Figure 2.5 – GE AC44 Locomotive Dynamic Brake Effort based on its speed and notch.
Data gently provided by MRS Logística S.A.

they currently have in operation. In this simulation data, their train takes around
five hours and nine minutes in a 193 kilometer trip from Mariana in the direction
of Saudade. Figure 2.7(a) presents first the train mean speed, i.e.: the mean of
every car speed, in function of the lead locomotive position. The lead and remote
notches and lead locomotive effort within the track are also represented in Figure
2.7.

In Figure 2.7, we notice the train startup from zero speed and back to stop
at its final destination. During the track, the locomotives consists pass from
synchronous operation to asynchronous notches and vice-versa in different seg-
ments. The lead consist assumes both tractive efforts and dynamic braking notches
whereas the remote consist do not go into dynamic braking.

Also, the animation in Figure 2.8 shows the registered maximum steady and
impact forces during this trip. Each frame represent one kilometer in the referred
travel: every force collected data inside the same trip kilometer is represented in the
same snapshot. Thus, every blue point represent the maximum draft steady force
encountered for different time instants, in which data was collected. Its abscissa
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Figure 2.6 – Ferrovia do Aço Elevation and angles. Data gently provided by MRS Logística
S.A.

is the corresponding coupler of this occurrence inside of the train. Similarly, red
points are the maximum buff forces, with its respective couplers in the x-axis.
Finally, black points are the impact forces, including run-ins and run-outs along
the train.

Given this representation of the real forces extracted from the operation
simulator, in the animation frames, sometimes blue and red lines are present, as
in the first animation frames. A line of vertical points means that, in a given
kilometer, a certain number of maximum forces inside the train were registered for
the same coupler. In the trip startup, it happens usually in couplers adjacent to
the locomotives as they are imposing the traction effort needed to move the train
from the inertia. On the other hand, horizontally spread points interpretation is
related to the forces waves traveling throughout the train couplers as the maximum
forces occur sequentially along the train. Note also that steady forces have a higher
magnitude than impact forces (the transient ones).
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Figure 2.7 – (a) Train mean speed [m/s] (b) Lead and remote locomotives notches (c) lead
locomotive effort [kN] in function of the lead locomotive position Data gently provided
by MRS Logística S.A.
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Figure 2.8 – Train steady and impact forces in the Ferrovia do Aço Track Data gently
provided by MRS Logística S.A

Carolina Calvo Pose Santos Neves | COPPE | UFRJ
Model Predictive Control of Heavy Haul Trains

19



Chapter 3

Model Predictive Control

Model Predictive Control (MPC) is a promising optimal control strategy that
proposes the use of a dynamical model of the process to predict its evolution and
choose the best control action [13], [56], [39],[46],[16]. For this, the control and
state variables are concatenated to form an augmented prediction model, which
can be multivariable, time-varying, with delays and disturbances. A simplified
model would then anticipate the likely dynamic evolution and choose the control
action accordingly [10].

Also, Model Predictive Control can be seen as an implementation of the
Dynamic Programming (DP) solution, yielding a receding horizon control law al-
though a DP solution might be difficult to obtain if the state dimension is consid-
erably high [46]. MPC may also be considered to solve open loop optimal control
problems. In this work, though, we study the MPC in its closed loop form, having
in mind the model uncertainties, but considering that the complete state is known.

Despite the simplicity of this latter assumption for practical purposes, when
the state must be estimated, the estimation associated error makes the future
trajectory not precisely predicted. Thus, the optimal cost function minimization,
on which the proof of stability is founded, relies on the assumption that the global
solution can be computed based on the exact state anticipation.

In general, this optimal control strategy considers a quadratic cost function
in the form of (3.1) similarly to the one of a Linear Quadratic Regulator. In fact,
an infinite horizon unconstrained offline MPC is equivalent to an LQR [9],[46].
However, Model Predictive Control is advantageous for constraint handling as it
can compute the optimal trajectory already taking into account input, output and
state constraints.

Besides, in a finite horizon scheme, the control action can be determined
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online at each sampling instant by moving the horizon sequentially and considering
the new initial state as the current state. A finite sequence of controls is obtained
and, in a classical MPC scheme, only the first control action is effectively applied
to the plant before moving the window and the rest of the sequence is ignored.
When the next time interval is taken into account, a more recent state of the model
is considered to calculate the new feedback controller gain. As it becomes clear
in this procedure, the moving horizon scheme computes a time variant feedback
controller gain as opposed to the infinite horizon case.

The tunning parameters are the same Q and R matrices from the LQR
regulator plus the horizon size. It is important to keep in mind that the controller
tries to find a gain to minimize the cost function J in (3.1). That means its action
will be focused on the highest term in the sum represented in the integral.

Thus, if one specific variable is meant to remain small over time, it is rea-
sonable to choose a high coefficient for it so that the solver will work on the
corresponding parcel. Nevertheless, each coefficient has its influence in the others
in the sense of the criteria, which means that it is the relative value of the weights
in comparison with others that will overall catch the solver’s attention. Variables
normalization is a key factor in that sense, in order to have a clear idea of the real
priority given to each in the tunning methodology.

Therefore, increasing Q/R weights will penalize more the corresponding
state/control. The described tunning logic works for each sampling instant. How-
ever, for the finite horizon Model Predictive Control, the overall objective function
is summed over all sampling instants inside the referred window.

In other words, the cost function to be minimized is composed of more than
one term of the form of (3.1). One individual parcel can be higher in the whole
sum if compared to other sampling instants. In that sense, the size of horizon also
becomes an important tunning parameter.

Indeed, short horizons will certainly imply an increased number of windows
to be considered in the same trajectory optimization although the computational
time in each of them is reduced as the decision variable size is shorter. A shorter
horizon will surely prioritize the optimization in the short term as it considers less
parcels of the form of (3.1) in the overall cost function. On the other hand, a
drawback of this choice is that it can limit the state prediction capacity and the
calculated control action to be applied will have limited influence in long term
time samplings.

Depending on the actuator limits, though, it might be necessary to consider
acting in advance to achieve the desired performance in the medium/long terms
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with higher time prediction and correction capacity even if it might mean abdicat-
ing better results in the immediate next sampling instants. As one can imagine,
less windows would be taken into account in this case at the price of a longer
computational time in each, although not necessarily in the overall scheme.

Indeed, the increase in the optimization horizon implies in an augmented
problem scale and difficulties also arise in handling the overall objective function
behavior in terms of local minima for example, possibly imposing also the need
for good initial guesses. A prediction horizon Np can also be distinguished from
a control horizon Nc in the MPC literature although it is considered just one
N = Nc = Np in this dissertation.

The model predictive control technique was firstly employed back in the sev-
enties for process control due to its longs time constants but it is now widespread
among the automotive industry, aerospace and unmanned aerial vehicles, informa-
tion and communication technologies, energy, finance and industrial productions.

In the railroad, the MPC has also been already studied in the context of auto-
matic train operation (ATO) [58] and for trajectory planning of multiple high speed
train movements [61]. In [64], the MPC is investigated in the context of finding
an optimal application of the fence methodology in distributed power trains with
mid consists. To manage the trade-off among coupler forces, trajectory tracking
and energy consumption as proposed in this dissertation, [63] presents the closest
developed approach.

3.1 Optimization Control Problem

The MPC performance index of interest for this application is represented
(see also [63]), highlighting the trade off among train handling, fuel (energy) con-
sumption and speed tracking:

J =
∫ tf

t0
(
n−1∑
i=1

Kff
2
in +

n−1∑
i=1

Kuu
2
i +

n−1∑
i=1

Kv(vi − vr)2)dt (3.1)

where n is the number of cars, vr is the plan reference speed to be tracked,
t0 and tf define the time interval the cost function (3.1) is applied to. Besides,
Kf [1/N2],Kv[1/(m/s2)2] and Ku[1/N2] penalize the in-train forces, the reference
speed tracking and the energy consumption respectively.

Note that, if every car follows the reference speed as the optimal cost function
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(3.1) imposes, then there is no relative speed and displacement between cars and
coupler forces are handled.

Also, energy minimization is actually represented by the integral of power,
i.e: the product of the cars effort ui and speed vi. As there is already a term
to track the predefined plan speed, the effort ui is included for the energy
minimization purpose instead of the power itself [63].

Rewriting (3.1) to consider the linear state space in (2.9), one can obtain:

J =
∫ tf

t0
(xTQx+ u′TRu′ + F T

1 x+ F T
2 u
′)dt (3.2)

where

Q = KfQf +KvQv

Qf = LLT

L =



b1 −b1 0 k1 0 . . . 0
0 b2 −b2 0 k2 0 ...
... . . .

. . . . . . . . .
. . . 0

0 . . . 0 bn−1 −bn−1 0 kn−1

 Qv =
 In 0n×(n−1)

0(n−1)×n 0(n−1)×(n−1)



with R = KeIn, F T
1 = −2KvvrIss, F T

2 = 2Ke

[
δ1, ..., δn

]
, In is a n-size

identity matrix and Iss =
[
Iv Ixin

]T
∈ R2n−1, with Iv =

[
1, ..., 1

]T
∈ Rn and

Ixin
=

[
0, ..., 0

]T
∈ Rn−1.

The considered constraints are the upper and lower bounds on the control
signal, i.e., the locomotives tractive effort and dynamic braking as well as the
wagons air braking. Note that the wagons are only capable of braking, so the
wagons upper bound effort is already limited at zero by definition.

uli ≤ ū+ δi ≤ uui , i = 1, 2, ..., n (3.3)
f l ≤ fink

≤ fu, k = 1, 2, ..., n− 1 (3.4)
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As the decision variable for the formulated problem is the ū as in (2.7),
in order to design our controller satisfying these constraints, the actual control
constraints are transformed as (3.3) to account for δi deviations.

Considering that the main objective of this work is to achieve performance
improvements in terms of train handling, one could think of including in-train
forces constraints, as the adjacent car forces can be expressed as a function of the
state as in (2.2). Then, considering upper and lower limits for these forces, (3.4)
can be derived.

The more restrictions are added, the greater the dimension of the optimiza-
tion problem for the solver to handle. In this case, for each sampling instant,
(2n− 1) constraints are active.

The optimization control problem formulation for each sampling instant is
then to optimize (3.1) satisfying (2.10) subject to (3.3) and, possibly, (3.4), as we
shall discuss later.

3.2 Augmented State Space for the Optimiza-
tion Horizon

The augmented state space considering the horizon N is represented.

X = Fx(kc) + ΘU (3.5)

where x(kc) is the current state in the beginning of the referred horizon, U
is the control vector for the window and the decision variable for the optimization
procedure. Also,

F =



A

A2

A3

...
AN


Θ =



B 0 . . . 0
AB B . . . 0
... ... . . .

...
A2B AB . . . 0
AN−1B AN−2B . . . B


(3.6)

The corresponding matrices dimensions are F ∈ RN(2n−1)×(2n−1), Θ ∈
RN(2n−1)×nN and
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X =
[
x(kc + 1) x(kc + 2) ... x(kc +N)

]T
∈ RN(2n−1), (3.7)

U =
[
ū(kc) ū(kc + 1) ... ū(kc +N − 1)

]T
∈ RnN .

(3.8)

3.3 MPC Constraints

In order to assure the constraints in (3.3) and (3.4) for all the optimization
horizon, it would be necessary to consider the augmented state space for the whole
window.

For that purpose, to satisfy (3.4), the vector Fini
is defined contain-

ing every in-train force on the ith coupler for the horizon N : Fini
=[

fini
(kc + 1|kc) fini

(kc + 2|kc) ... fini
(kc +N |kc)

]T
.

We also consider the state space variables from (2.9) on the horizon inside
respective vectors, i.e: X =

[
Vin Xin

]T
, where

Xini
=

[
xini

(kc + 1|kc) xini
(kc + 2|kc) ... xini

(kc +N |kc)
]T

(3.9)

Vini
=

[
vini

(kc + 1|kc) vini
(kc + 2|kc) ... vini

(kc +N |kc)
]T

Therefore, Fini
= KXini

+BVini
, with K and B being the augmented corre-

sponding spring constant and damping vectors.
In other words, for the forces constraints, one should consider satisfying the

in-train forces upper and lower bounds in the whole horizon:

F l
ini
≤ KXini

+BVini
≤ F u

ini
(3.10)

We then define the matrices Zx,ZX,Zv and ZV to extract correspondingly
Xin and Vin from the augmented state space in 3.5. The matrix Dδ ∈ Rn×n is also
defined to obtain the cars relative speed performing the difference in cars speeds
from the state space 2.10.
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xin = Zxx(k)
Xin = ZXX

vin = DδZvx(k)
Vin = DδZVX

(3.11)

where

Dδ =



1 −1 0 . . . 0
0 1 −1 . . . ...
... . . . . . . . . . 0
0 . . . 0 1 −1



Zx =
[
0(n−1)×n I(n−1)×(n−1)

]
Zv =

[
In×n 0n×(n−1)

]
ZX =

[
Zx ... Zx

]
ZV =

[
Zv ... Zv

]

ZX ∈ RN(n−1)×N(2n−1) and ZV ∈ RnN×N(2n−1)

With the set of equations defined in (3.11), we can write

Xin = Fxx(kc) + ΘxU (3.12)
Vin = Fvx(kc)+ΘvU

where
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Chapter 3 3.3. MPC CONSTRAINTS

Fx = ZxF,∈ RN(n−1)×(2n−1)

Fv = ZvF,∈ RnN×(2n−1)

Θx = ZxΘ,∈ RN(n−1)×Nn

Θv = ZvΘ,∈ RnN×Nn

(3.13)

Rewriting (3.10) with the set defined in (3.13):

F l
in ≤ K(Fxx(kc) + ΘxU) +BDδ(Fvx(kc)+ΘvU) ≤ F u

in

becomes

F l
in ≤ (KFx +BDδFv)x(kc) + (KΘx +BDδΘv)U ≤ F u

in

Taking this equation in the form of a decision variable inequality constraint:

MrU ≤ γ (3.14)

where

Mr =
 (KΘx +BDδΘv)
−(KΘx +BDδΘv)

 γ =
F u

in − (KFx +BDδFv)x(kc)
F l
in + (KFx +BDδFv)x(kc)



Nevertheless, if these in-train forces constraints are considered, the upper
and lower limits F l

in and F u
in should be carefully chosen for each track-train con-

figuration in combination with the horizon N selected. They should be designed
as a really prohibitive condition to represent a true restriction, as the objective
function already accounts for the desired reduction in forces magnitudes.

If too strict constraints are applied, it might be the case that, for a given
initial condition inside the selected horizon, the solver will not be able to find a
feasible solution because the forces magnitude set is not attainable.

The Model Predictive Control optimization problem is then to compute the
future state trajectory behavior (3.7) resulting from the application of the control
determined by the decision variable in (3.8), optimizing the objective function (3.1)
summed over the whole horizon.
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The optimization problem is solved with the quadprog solver inside
MATLAB® and the simulations results are presented in the next chapter.
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Numerical Simulations

This chapter presents the numerical simulations performed with real track
data provided by MRS Logística. The terrain geometry is illustrated in Figures
4.1 and Figure 4.2. The former present track elevation while the slopes are shown
in the latter.
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Figure 4.1 – Experimental data. The terrain elevation (h) of the terrain as a function of
the track distance (s).
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Figure 4.2 – Experimental data. The slope (θ) of the terrain as a function of the track
distance (s).

In the real experimental data, the train starts to move from the track distance
labeled as kilometer 293 to the one known as kilometer zero. For simulation
purposes, the original data had to be reflected so that track data could be treated
as monotonically increasing in the developed simulator, see Figures 4.3 and 4.4.
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Figure 4.3 – Experimental data. The terrain elevation (h) as a function of the track
distance (s), reflected for simulation purposes.
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Figure 4.4 – Experimental data. The terrain slope (θ) as a function of the track distance
(s), reflected for simulation purposes.

A record of one Ferrovia do Aço trip experimental data from the operations
simulator, provided gently by MRS Logística, is also presented. The mean value
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of the whole train speed recorded in one the trip is illustrated in Figure 4.5. In
the simulations performed in this work, the real train mean speed is assumed to
be the reference speed to be tracked.
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Figure 4.5 – Experimental data. Mean value of the train speed as a function of the lead
locomotive position (p). The assumed reference speed plan.

The recorded lead locomotive gravity forces due to the terrain geometry are
illustrated in Figure 4.6.
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Figure 4.6 – Experimental data. The projection of the gravity force in the lead locomotive
plan of movement as a function of its position p.

.

4.1 Speed Tracking Controller

In order to illustrate the applicability of the chosen strategy, we consider the
linear system (2.10), with a change in the control as in (2.6) to account for the
presence of the nonlinear term Fp in (2.7) due to the terrain slope.

The coupler stiffness coefficient considered is Ks = 4.2× 106 (Nm/rad) and
the damping coefficient B = 1 × 106 (Nm/rad/s) were obtained from [63],[60].
The wagons length Lw = 52.6280 (m) and mass mw = 260 × 103 (kg) are the
same as in real MRS operation. The locomotive length Ll = 22.3 (m) and mass
ml = 195×103 (kg) are taken from GE 44 locomotive public data. The total train
mass M =

[
ml mw mw . . . mw

]T
is then available to evaluate the model

forces.
First, a conventional train is considered with no remote locomotive. The first

train configuration considered is composed of a lead locomotive and 14 wagons.
The state initial condition is: x(0) =

[
0 . . . 0

]T
and the step size for the

numerical simulation was of 0.1 with the Euler integration method.
For academic purposes, wagons air brakes were neglected and, in the first

simulations, a flat terrain is imposed in order to illustrate later the relevance of
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gravity forces. In addition, we did not use the operational notches in Figure 2.7
but instead a simple proportional speed controller was implemented after feedback
linearization to assure the lead locomotive is able to track the proposed reference
signal. The proportional gain was kp = 10000.

One can verify from Figure 4.7 that the lead locomotive tracks successfully
the first desired constant velocity vr = 30 Km/h. The train cars also follow the
lead locomotive. Since the terrain is flat, in-train forces in Figure 4.8 appear
to be more significant during the transient, i.e, taking the train from inertia to
the desired movement, and a considerable coupler forces reduction is observed in
steady state. Figure 4.9 illustrates the corresponding the lead locomotive tractive
effort.

0 1 2 3 4 5 6 7 8

(a
)

0

10

20

30
Train Speed (Km/h)

t(min)

4.5 5 5.5 6 6.5 7 7.5 8

(b
)

29.92

29.94

29.96

29.98

30

Figure 4.7 – Simulation results of a 15 cars train with a flat terrain. The time history of
the train cars speed. A simple proportional speed controller with feedback linearization
is applied in the lead locomotive. A constant speed reference is considered.
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Figure 4.8 – Simulation results with 15 cars and a flat terrain. The couplers forces time
history. A simple proportional speed controller with feedback linearization is applied on
the lead locomotive.
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Figure 4.9 – Simulation results of 15 cars train and a flat terrain. A simple proportional
speed controller with feedback linearization is applied on the lead locomotive.

Notice that, due to the large coupler stiffness and damping coefficients, small
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deviations in cars speed and relative displacement implies in significant in-train
forces, as illustrated in Figure 4.8. The cars position are given in Figure 4.10.
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Figure 4.10 – Simulation results with 15 cars train and a flat terrain. The train cars
position time history. A simple proportional speed controller with feedback linearization
is applied on the lead locomotive.

Now, including the terrain real data (instead of considering a flat terrain), one
can verify from Figure 4.11 that the couplers forces increase since the components
of gravity forces in Figure 2.2 due to the terrain elevation and slope are now
affecting the train dynamics intensively. Even a slope of 5°, which corresponds
to a grade of around 1%, is already significant when regarding coupler forces
magnitude. In this case, only the gravity force applied to the lead locomotive is
completely canceled in the feedback linearization control law.
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Figure 4.11 – Simulation results of a 15 cars train in the Ferrovia do Aço terrain. The
coupler forces time history. A simple proportional speed controller with feedback lin-
earization is applied on the lead locomotive.

The gravity forces in the lead locomotive are given in Figure 4.12 for this
case.
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Figure 4.12 – Simulation results of a 15 cars train with the real terrain. The gravity
forces in the lead locomotive due to the terrain geometry. A simple proportional speed
controller with feedback linearization is applied on the lead locomotive.

One can also verify from Figure 4.13 that the lead locomotive tracks the
desired constant speed and the train position time evolution is given in Figure 4.14
illustrating that the whole train follows the lead locomotive as expected.
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Figure 4.13 – Simulation results of a 15 cars train with the real terrain. The train cars
speed time history. A simple proportional speed controller with feedback linearization
is applied on the lead locomotive. A constant speed reference signal is considered.
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Figure 4.14 – Simulation results of a 15 cars train on the real terrain. The train cars
position time history. A simple proportional speed controller with feedback linearization
is applied only for the lead locomotive.

Figure 4.15 illustrates that the corresponding control effort, applied only on
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the lead locomotive, increases to compensate the terrain gradient.
Then, the same experiment was performed considering a remote locomotive

in the place of the last wagon. In that case, the lead locomotive is followed by 13
wagons and then by a remote locomotive. In that case, the train mass is M =[
ml mw mw . . . mw ml

]T
. The train total length L = 766 m corresponds

to the 15 coupled cars. The remote locomotive center of mass is assumed to be in
the zero simulation track distance at t = 0 s, so that the lead locomotive center of
mass is around the position 728 km at t = 0 s.

Lead and remote consists were considered to be synchronously commanded,
i.e: the remote locomotive follows the lead tractive effort. In Figure 4.16, one can
notice that the lead locomotive effort magnitude is reduced as expected due to the
distributed power scheme: the remote locomotive helps the lead one the task of
moving the train forward.
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Figure 4.15 – Simulation results of a 15 cars train on the real terrain. The lead locomotive
control effort. A simple proportional speed controller with feedback linearization is
applied on lead locomotive.
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Figure 4.16 – Simulation results of a 15 cars train on the real terrain. The lead locomo-
tive control effort when the remote locomotive is added. A simple proportional speed
controller with feedback linearization is applied only on lead locomotive. The same
control is applied to the remote one.

Moreover, due to the distributed power, the couplers forces are also attenu-
ated as illustrated in Figure 4.17.
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Figure 4.17 – Simulation results of a 15 cars train running on the real terrain. The
coupler forces time history when distributed power is considered. A simple proportional
speed controller with feedback linearization is applied on the lead locomotive and the
same control is applied to the remote one.

In order to illustrate a more real reference speed to be tracked, consider the
one in Figure 4.5. This is the original train mean speed from real experimental
data as described previously. In the case the train follows an optimal planned
speed, that mean speed is also the reference speed. In this case, we assume that
the planned speed accounts for the travel time and fuel consumption minimization
for the 2-0-0 train described in Section 2.3.

The 71 cars train mean speed will be applied here, though, as a reference
speed for our example of a 15 cars train just to verify the controller ability to track a
more real reference speed. In this case, one can also verify from Figure 4.18 that the
lead locomotive indeed tracks it and the whole train follows it. The corresponding
couplers displacement are also illustrated in Figure 4.19.
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Figure 4.18 – Simulation results of the 15 cars train simulated on the real terrain and a
time varying reference speed. The train cars speed time history. A simple proportional
speed controller with feedback linearization determines the lead locomotive control ac-
tion, also applied for the remote one.
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Figure 4.19 – Simulation results of the 15 cars train simulated on the real terrain and a
time varying reference speed. The coupler forces time history with the distributed power
train. A simple proportional speed controller with feedback linearization determines the
lead locomotive control action, also applied for the remote one.
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Figure 4.20 illustrates the locomotives tractive effort while the component of
the terrain gravity forces on the lead locomotive plan of movement are shown in
Figure 4.22.
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Figure 4.20 – Simulation results of a 15 cars train with the real terrain and a time
varying speed reference. The lead locomotive control effort when the remote locomotive
is added. A simple proportional speed controller with feedback linearization determines
the lead locomotive control action, also applied for the remote one.
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Figure 4.21 – Simulation results of a 15 cars train with the real terrain and a time varying
speed reference. The train cars position time history. A simple proportional speed
controller with feedback linearization determines the lead locomotive control action,
also applied for the remote one.

The train cars position is illustrated in Figure 4.21 and again we observe the
train cars following the lead locomotive as expected.
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Figure 4.22 – Simulation results of a 15 cars train with the real terrain and a time
varying speed reference. The terrain gravity forces acting on the lead locomotive. A
simple proportional speed controller with feedback linearization determines the lead
locomotive control action, also applied for the remote one.

Now consider a longer train composed by 71 cars, i.e., one lead and an-
other locomotive between 69 wagons. First, by applying to the lead locomotive
the proportional speed controller with feedback linearization as before, large cou-
plers forces are observed, in particular around t = 180 which corresponds to the
kilometer 120 in the simulation, see Figure 4.23 and Figure 4.24.
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Figure 4.23 – Simulation results for the 71 cars train on the real terrain and a time
varying speed reference. The coupler forces time history with the distributed power
scheme. A simple proportional speed controller with feedback linearization is used to
determine the lead locomotive control and applied on the remote locomotive.
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Figure 4.24 – Simulation results for the 71 cars train on the real terrain and a time
varying speed reference. The coupler forces time history with the distributed power
scheme. A simple proportional speed controller with feedback linearization is used to
determine the lead locomotive control and applied on the remote locomotive.
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Figure 4.25 illustrates the corresponding control effort synchronously com-
manded for both lead and remote locomotives. The train position is illustrated in
Figure 4.26.
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Figure 4.25 – Simulation results for the 71 cars train on the real terrain and a time
varying speed reference. The lead locomotive control effort with the distributed power
scheme. A simple proportional speed controller with feedback linearization is used to
determine the lead locomotive control and applied on the remote locomotive.
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Figure 4.26 – Simulation results for the 71 cars train on the real terrain and a time
varying speed reference. The train cars position time history. A simple proportional
speed controller with feedback linearization is used to determine the lead locomotive
control and applied on the remote one.

One can also verify from Figure 4.27 that the lead locomotive indeed tracks
the reference speed and the remaining cars follow it.
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Figure 4.27 – Simulation results for the 71 cars train on the real terrain and a time
varying speed reference. The train cars speed time history. A simple proportional speed
controller with feedback linearization is used to determine the lead locomotive control
and applied on the remote one.

The longer the train, more relative speed and displacement are found. Be-
sides, small relative speed between cars will imply deviations around the plan
speed and result in large in-train forces as stated before. In general, car air brakes
are also active is some descending slopes to help locomotives dynamic braking in
avoiding stretched couplers. In this case, very large coupler forces are encountered
because this reference speed plan was calculated considering also the air brakes
application although we did not included it in this first controller.

Trying to find a combined solution for locomotives efforts and air brakes, the
MPC scheme is employed.

4.2 Numerical Simulations with MPC

Regarding the MPC scheme, after the complete cost function weight tuning,
the results presented in this section were obtained. The first term penalizes the
amplitude of the in-train forces with weight Kf ∈ IR, while the second term
penalizes the energy consumption with weigh Ke ∈ IR via the amplitude of the
control signal and the third term penalizes each car deviation from the reference
speed with weight Kv ∈ IR [63].
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The prediction and control horizons were set to N = Np = Nc = 3 and the
MPC performance index of interest is implemented with: Kv = 10, Ke = 1×10−15

and Kf = 2.4 × 10−12. The decision variable initial guess is set to zero in every
MPC window U(0) =

[
0 . . . 0

]T
.

Lead and remote locomotives tractive efforts upper bounds were set to 659.3
(kN) while its lower bounds were 377.2 (kN). Those are real values, maximum
and minimum efforts extracted from data on the Figures 2.4 and 2.5 although no
difference in the bounds is set depending on the train speed, notches are also not
considered.

With the MPC approach first for the 15 cars train, couplers forces are reduced
as shown in Figure 4.28 in comparison to Figure 4.19. In this case, the MPC
generates the control effort for the lead and remote locomotives and for the wagons
brakes. It is clear that the control signal in Figure 4.29 remains on a limited region
having a suitable profile to track speed reference changes while reducing couplers
forces. Air braking is exploited when descending hills.
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Figure 4.28 – Simulation results of a 15 cars train with the real terrain and a time
varying speed reference. The couplers force time history. The speed reference is tracked.
Distributed power and air braking are exploited.
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Figure 4.29 – Simulation results of a 15 cars train with the real terrain, a time varying
speed reference and the MPC approach. The lead/remote locomotives control effort and
the wagons brakes.

In Figure 4.30, we selected to show the first wagon air brake being applied in
descending hills although in Figure 4.29 we can see that in general all air braking
wagons are actioned simultaneously, similar to a synchronous application.
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Figure 4.30 – Simulation results of the 15 cars train on the real terrain, a time varying
speed reference and the MPC approach. The first wagon brake activation.

Once again, speed tracking can be seen in Figure 4.31 and cars position in
Figure 4.32.
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Figure 4.31 – Simulation results of the 15 cars train and the MPC approach. The
train speed time history tracking its reference. Distributed power and air braking are
exploited.
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Figure 4.32 – Simulation results of the 15 cars train and the MPC approach. The train
cars position time history.

Now, by applying the MPC approach for the 71 cars train with the same
weights for the cost function used in the 15 cars case, one can verify that the
coupler forces have an improved behavior in comparison to the previous case, see
Figure 4.24 and Figure 4.33.
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Figure 4.33 – Simulation results of the 71 cars train with the MPC approach and a time
varying speed reference. The coupler forces time history. Distributed power and air
braking are exploited.

The control signals are presented in Figure 4.34.
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Figure 4.34 – Simulation results of the 71 cars train on the real terrain, time varying
plan speed and the MPC approach. The lead/remote locomotives control effort and the
wagons brakes.
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Figure 4.35 and Figure 4.36 shows again the expected speed tracking of the
train.
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Figure 4.35 – Simulation results of the 71 cars train on the real terrain, time varying
plan speed and the MPC approach. The train speed time history. Distributed power
and air braking are exploited.
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Figure 4.36 – Simulation results with 71 cars and MPC approach. The train cars position
time history.
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In order to further reduce the in-train forces, the corresponding weight Kf in
the cost function is increased four times. In Figure 4.37 we see the expected result
after the tuning change at the price of more chattering braking efforts, according
to Figure 4.38 as the control reacts to the chosen cost function weights.
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Figure 4.37 – Simulation results of the 71 cars train on the real terrain, time varying
reference speed and the MPC approach. The coupler forces time history with Kf =
9.6× 10−12. Distributed power and air braking are exploited.
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Figure 4.38 – Simulation results of the 71 cars train on the real terrain, time varying
reference speed and the MPC approach. The lead/remote locomotives control effort and
the wagons brakes with Kf = 9.6× 10−12.

However, the plan speed tracking error increases as expected, see Figure 4.39.
The final tuning should then accommodate the desired train handling performance,
with the allowed deviation from the planned speed and fuel consumption expec-
tations.
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Figure 4.39 – Simulation results with 71 cars, time varying reference speed and the
MPC approach is applied with Kf = 9.6 × 10−12. The train cars speed time history.
Distributed power and air braking are exploited.
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Chapter 5

Conclusions and Future Work

This dissertation proposed an automatic driving procedure for Heavy Haul
Trains via the Model Predictive Control methodology. First, a modeling and
simulation scheme is applied to real freight trains operations. Then, the objective
of evaluating the applicability of a moving horizon strategy optimizing the tradeoff
among couplers forces, travel time and fuel consumption is successfully achieved.
A train dynamics short term prediction is performed, especially to investigate the
train handling consequences of the terrain forces effect combined with train tractive
and braking efforts trying to avoid breaking couplers and train derailments that
increase operational costs.

The numerical simulations in this work apply the described nonlinear and
linearized model to the "Ferrovia do Aço" with a real train configuration. The
important benefit of Distributed Power (DP) for train handling in freight trains
operations is ratified once again with the adopted speed tracking controller.

Besides, Chapter 4 demonstrates how the terrain forces are a relevant factor
in the study of train dynamics even if only modest slopes are present as the train
mass is in the order of thousands tons. Also, train length is significant, which
makes different cars to be placed in various gradients simultaneously, producing
relative displacement and speed between them. Small deviations in cars relative
displacement and speed can have a significant impact on train handling due to the
high order of couplers parameters.

The obtained results allow us to conclude that the model predictive control
is a promising strategy to solve the trade off associated with heavy haul trains
operation. It can successfully treat the train handling problem by choosing appro-
priate weights in the objective function. Since a previously plan speed from real
operation is tracked in the proposed performance index, a reference speed can also
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take into account the travel time schedule and fuel consumption, while treating
train handling issues.

Generally speaking, the model predictive controller logic brakes the train
when it is mainly descending a hill to avoid the natural effect of stretched couplers.
In contrast, for ascending slopes, tractive efforts on the locomotives are needed to
assure speed tracking.

Model predictive control can be applied independently of the track or train
characteristics. Its flexibility of choosing an objective function in accordance with
the desired performance is an advantage as one can change the cost function and
its weights to prioritize what is more important in different situations.

However, the MPC tunning process has revealed to be difficult without a par-
ticular methodology for choosing a suitable horizon N and weight gains Kv,Ke,Kf .
The computational time implied in the MPC scheme is another drawback of this
strategy, especially for real time implementation. In addition, in this simulation
environment, the whole state was assumed to be available so that a reliable pre-
diction could be accessible, although in practice a state estimator should be in
place.

In terms of robustness with respect to uncertain parameters, a few tests with
variations in the train mass were performed and the presented controller was still
able to track the planned speed, suggesting that the model does not have to be
necessarily perfectly known. Robust Model Predictive Controllers is discussed in
[51].

5.1 Future Work

In terms of modeling the large scale train problem, during the development of
this work, it was suggested to investigate the possibly inspiring connection of this
problem with the string stability concept [5] and the vibration model of mechanical
systems [49], [45].

In this dissertation, the tractive effort was considered to be the decision
variable for the optimization loop. In practice, though, the power level (throttle)
would be chosen and, depending on the train speed, it would be converted into
the effective tractive effort or dynamic braking applied to the locomotives. Thus,
the locomotives notches should be included in the analysis respecting Figures 2.4
and 2.5 as not every possible optimal tractive effort can be applied in reality.

Furthermore, it was assumed that the reference speed vr and the δ term
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in (2.7) were constants inside each horizon in the linear MPC adopted. This
assumption might be reasonable in the case of short horizons. Nevertheless, with
more real constraints to be considered, such as rate limits of change, train handling
desired real performance might require longer horizons to be achieved. As the time
horizon increases, the considered objective function in the presented form would
no longer include correctly the terrain forces prediction, which is truly relevant in
the analyses as already shown.

Also, Model Predictive Control ability to find the optimal sequence of com-
mands already taking into account the involved constraints is a powerful charac-
teristic to be explored with real operation restrictions such as the track maximum
speed, notches rate limits, etc. In this work, real world constraints were relaxed
and, for example, air braking efforts models were not explored. Also, fuel con-
sumption models should be used in order to properly evaluate the tradeoff in rail
operations, core of this study. Then, with the addition of more real constraints, it
would be interesting to proceed the investigation of the advantages of a constrained
MPC in comparison to the unconstrained but saturated implementation.

In addition, there is still room for research in computationally efficient ways
of implementing the proposed control in real time. A linearized model was imple-
mented in the expectation that it could reduce the algorithm calculation time but
a natural extension of this work is to treat the problem as a nonlinear model pre-
dictive control, substituting the coupler simplified model for its nonlinear version.
For this, the continuous time optimal control problem can be solved in different
manners.

Just to mention a few, some continuous time optimal problems can be op-
timized indirectly in the continuous time and then discretized for implementation
while others direct methods in the literature suggest to perform the discretization
first and then optimize, transforming the original infinite optimal control problem
into a finite nonlinear programming problem (NLP).

In the latter approach, which resumes the most widespread used techniques
for constrained real world optimal control problems, one can choose a sequential
methodology with only discretized controls in the decision variable, which is called
the direct single shooting method. In contrast, simultaneous ways of solving the
problem consider the discretized controls and states in the decision variable such
as the direct multiple shooting or collocation methods. More numerical optimal
control theory can be found in [16].

Finally, some packages as the ACADO Toolkit and CasADi are indicated for
numerical optimization and optimal control problems in general [26], [28], [8], [27],
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[22], [55], [54], [43], [42] and [7]. In particular, they can possibly be able to provide
computationally efficient solutions to the model predictive control strategy applied
to the train large scale problem. Automatic differentiation can help, the sparsity
of the optimization problems can be exploited and model reduction strategies can
also be tried to help working around the challenges in its efficient implementation.
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