
ENFORCING CURRENT-STATE OPACITY THROUGH SHUFFLE IN EVENT

OBSERVATIONS

Raphael Julio Barcelos

Dissertação de Mestrado apresentada ao

Programa de Pós-graduação em Engenharia

Elétrica, COPPE, da Universidade Federal do

Rio de Janeiro, como parte dos requisitos

necessários à obtenção do t́ıtulo de Mestre em

Engenharia Elétrica.

Orientador: João Carlos dos Santos Basilio

Rio de Janeiro

Março de 2018

Barcelos, Raphael Julio

Enforcing current-state opacity through shuffle in event

observations/Raphael Julio Barcelos. – Rio de Janeiro:

UFRJ/COPPE, 2018.

XI, 61 p.: il.; 29, 7cm.

Orientador: João Carlos dos Santos Basilio

Dissertação (mestrado) – UFRJ/COPPE/Programa de

Engenharia Elétrica, 2018.

Referências Bibliográficas: p. 58 – 61.

1. Discrete event systems. 2. Opacity. 3. Opacity-

enforcement. 4. Event observation delay. I. Basilio,

João Carlos dos Santos. II. Universidade Federal do Rio

de Janeiro, COPPE, Programa de Engenharia Elétrica. III.

T́ıtulo.

iii

Acknowledgments

I would like to thank God for guiding and enlightening me throughout my life.

I thank my parents, Sheyla and Milton, for their love, comprehension, support

and also for always prioritizing my education.

I thank my long time friends, Manuela Sena and David Goes, for having encou-

raged me to start and finish my M.Sc. degree and for all pleasant days we spent

together.

I thank Jéssica Vieira, Waldez Júnior and Pâmela Lopes for sharing with me

their joy, lunch time and spare time whenever it was possible.

I specially thank Gustavo Viana, Marcos Vinicius and Ingrid Antunes, for the

discussions and suggestions regarding our researches.

I thank my advisor João Carlos Basilio for your dedication to teach me.

I thank the friends of Laboratory of Control and Automation (LCA), specially,

Prof. Lilian Kawakami Carvalho, Felipe Cabral, Antonio Gonzalez, Alexandre Go-

mes, Juliano Freire, Públio Lima and Wesley Silveira.

I thank all of my friends from Braśılia, specially, Alexandre Meuren, Marcos

Nihari and Bruna Castelo.

I thank Hudson Marcondes, Kadmo Keijock and Igor Cohen, for the time we

shared our home in Paradiso.

I thank the National Council for Scientific and Technological Development (CNPq)

for the financial support.

iv

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos

necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

IMPOSIÇÃO DE OPACIDADE DE ESTADO ATUAL POR MEIO DE TROCAS

DAS OBSERVAÇÕES DE EVENTOS

Raphael Julio Barcelos

Março/2018

Orientador: João Carlos dos Santos Basilio

Programa: Engenharia Elétrica

Opacidade é uma propriedade que garante que qualquer comportamento secreto

do sistema permaneça escondido de um Intruso. Neste trabalho será considerado o

problema da opacidade de estado atual e será proposto um Forçador de Opacidade

capaz de permutar adequadamente a ordem de observação dos eventos ocorridos no

sistema, de tal forma que o Intruso seja enganado e sempre estime, erroneamente,

pelo menos um estado não secreto. Condições necessárias e suficientes para a śıntese

do Forçador de Opacidade são propostas a fim de que a mesma seja fact́ıvel e são

também apresentados dois algoŕıtimos para construção do autômato que implementa

a estratégia usada pelo Forçador de Opacidade.

v

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Master of Science (M.Sc.)

ENFORCING CURRENT-STATE OPACITY THROUGH SHUFFLE IN EVENT

OBSERVATIONS

Raphael Julio Barcelos

March/2018

Advisor: João Carlos dos Santos Basilio

Department: Electrical Engineering

Opacity is a property that ensures that a secret behavior of the system is kept

hidden from an Intruder. In this work, we deal with current-state opacity, and

propose an Opacity-Enforcer that is able to change, in an appropriate way, the

order of observation in the event occurrences in the system, so as to mislead the

Intruder to always wrongly estimate at least one non-secret state. A necessary and

sufficient condition for the feasibility of the Opacity-Enforcer synthesis is presented

and also two algorithms to build the automaton that realizes such an enforcement.

vi

Contents

List of Figures viii

Lista de Śımbolos ix

1 Introduction 1

2 Background 6

2.1 Discrete Event Systems . 6

2.1.1 Language . 7

2.1.2 Automaton . 9

2.2 Opacity . 15

3 Opacity-Enforcement methodology 23

3.1 Problem Formulation . 24

3.2 The Opacity-Enforcement Strategy 25

3.3 Algorithms . 33

3.3.1 Computation of automaton D 34

3.3.2 An Algorithm for Opacity Enforcement Checking 39

3.3.3 An Algorithm for Finding Minimal Delay Bounds 45

3.4 Example . 48

4 Conclusion and future works 56

Bibliography 58

vii

List of Figures

2.1 Graph of an automaton. 10

2.2 Automata used in Examples 2.5, 2.6 and 2.7. 13

2.3 Accessible part of automaton G2, Ac(G2). 13

2.4 Parallel composition G = G1||G2. 13

2.5 Observer automaton Gobs = Obs(G3,Σo). 14

2.6 System related to the examples 2.10, 2.13, 2.14 and 2.15. 18

2.7 System related to the examples 2.11 and 2.12. 18

2.8 Observer of automaton depicted in Figure 2.6. 20

3.1 The Opacity-Enforcement architecture. 23

3.2 Automata used in Examples 3.2. 28

3.3 Automaton D. 38

3.4 Mouse in a Maze problem structure. 49

3.5 Automaton G that models the system dynamics. 49

3.6 Observer automaton Gobs = Obs(G,Σo). 49

3.7 Part of V that shows undesirable states. 51

3.8 Part of V that shows decision conflicts. 52

3.9 Automaton Roe that realizes the opacity enforcement strategy. 52

3.10 Estimator Automaton E . 54

3.11 Automaton G. 55

3.12 Opacity-Enforcer automaton of G. 55

viii

Lista de Śımbolos

Ac(G) Accessible part of an automaton G, p. 10

D Automaton which models changes in the order of event obser-

vation, p. 36

Gint Automaton which models the Intruder’s state estimates, p. 39

Gobs Observer automaton Obs(G,Σo), p. 12

Gsys Automaton which models the observable event occurrence in

the system, p. 39

L(G) Language generated by automaton G, p. 9

L/s Post-language of L after a sequence s, p. 8

Le Extended language generated by the action of the Opacity En-

forcer, p. 29

Lobs Language generated by the observer automaton Gobs, p. 21

OE(se) Opacity-Enforcement function over the extended sequence se,

p. 28

Obs(G,Σo) Observer automaton of G with respect to Σo, p. 11

Pa,b(s) Projection of sequence s of Σa over Σb, p. 7

P−1
a,b (s) Inverse projection of sequence s, p. 7

ix

Pre(s) Prefix-closure of a sequence s, p. 7

R(σ) Rename operation over event σ, p. 28

Roe Opacity-Enforcer automaton, p. 38

SD Step delay bounds, p. 30

Sp Sequence permutation of s, p. 26

T (s) Tuple mapping of a sequence s, p. 25

T−1(t) Inverse tuple mapping of a tuple t, p. 25

UR(x,Σo) Unobservable reach of state x with respect to Σo, p. 11

V Verifier automaton used to check CSO enforcement, p. 39

Vobs Observer automaton of V with respect to Σo, p. 39

Xs Set of secret states with respect to automaton G, p. 16

Xs,obs Set of secret states with respect to automaton Gobs, p. 21

Σ∗ Kleene-Closure of event set Σ, p. 7

Σn Tuple of order n whose elements are events, p. 25

Σe Extended set of events, p. 28

Σo,s Set of event observations with respect to Σo, p. 28

Σo Set of observable events, p. 11

Σuo Set of unobservable events, p. 11

Z∗+ Positive Integers, p. 34

Z+ Non negative integers, p. 6

E Estimator Automaton, p. 53

x

P(t) Permutation mapping of a tuple t, p. 25

ε Empty sequence, p. 7

cut(q) Elimination function, p. 34

rep(q, i) Replacement function, p. 34

xi

Chapter 1

Introduction

In recent years, opacity has emerged in the Discrete Event Systems (DES) commu-

nity [1] as a convenient way to deal with certain security issues. It is a property that

ensures that a secret behavior of the system is kept hidden from external observers,

usually referred to as Intruders. Different definitions of opacity and the character-

ization of all of these notions have been proposed in the literature, most of them

recalled in a overview over opacity by JACOB et al. [2], which contains also some

reviews on verifications and on extensions of opacity to probabilistic models.

It is worth remarking that there exists different notions of opacity, depending

on how the secret behavior of the system is defined, the most usual ones being as

follows: strong/weak opacity [3], language-based opacity (LBO) [4, 5], current-state

opacity (CSO) [1, 6], initial-state opacity (ISO) [1, 7], initial-and-final-state opacity

(IFO) [8], K-Step Opacity [6], and ∞-Step Opacity [9].

Several works have addressed different problems related to opacity. Opacity ver-

ification has been considered in [10],[11], [12], [13], [14], [9] and [15], where, given

a system and a secret behavior, its main concern is to check whether opacity holds

or not. These works differ in respect to which opacity notion is being considered,

what strategy is being used to verify opacity, and the computational cost to achieve

the proposed verification. Another opacity problem addressed is the so called opac-

ity enforcement, which has been considered by YIN and LAFORTUNE [16], WU

and LAFORTUNE [17, 18, 19], FALCONE and MARCHAND [20, 21], DUBREIL

1

et al. [5], SABOORI and HADJICOSTIS [22], CASSEZ et al. [23], TONG et al.

[24]. Supervisory control theory was used in DUBREIL et al. [5], SABOORI and

HADJICOSTIS [22], YIN and LAFORTUNE [16], and TONG et al. [24] in order to

restrict the system behavior to the non-secret behavior only, being, therefore, a con-

servative approach. In a different context, opacity is enforced by manipulating the

observable behavior [17–19, 23]. To this end, CASSEZ et al. [23] propose an opacity

enforcement strategy by means of static and dynamic mask, where, in the static

case, a maximum subset of the observable events that makes the system opaque is

computed, and, in the dynamic case, a dynamic mask is synthesized with a view to

turning on and off the events observations, depending on the previously observed

behavior and also on the secrets.

Another opacity enforcement strategy, through insertion function, was developed

in WU and LAFORTUNE [17], and enhanced in WU and LAFORTUNE [18] for the

case where the intruder discovers the insertion function, and, optimized in WU and

LAFORTUNE [19] with respect to the developed algorithms. This strategy consists

of inserting fictitious event signals in the output of the system so as to make the

secret behavior look like the non-secret behavior from the Intruder’s perspective.

With respect to other notions of opacity, FALCONE and MARCHAND [20, 21]

proposed a strategy to enforce K-Step Opacity, where, depending on the already

observed behavior, it would hold the incoming event signals for an exact amount of

steps such that the system becomes opaque.

As far as opacity enforcement is concerned, an strategy which is performed

through manipulations of the observable behavior, the so-called edit function was

proposed in [25]. The edit function is an extension of the insertion functions, in

the sense that it also allows events to be erased, being proposed in the context of

enforcing privacy while preserving utility. Privacy is a more general concept that

embeds opacity and utility means that a given behavior must not have any other

observationally equivalent behavior, from the point of view of external observers.

In contrast to the strategies that use supervisory control theory, where the system

2

behavior is constrained, when manipulating the observable behavior, the system is

allowed to run freely, while the Intruder is misled by the observation changes.

Two recent works also deals with opacity enforcement [26, 27]. Following along

the line of insertion functions, JI and LAFORTUNE [26] explore the edit function

and propose an enforcement strategy such that intruders cannot infer the secrets

even though they know about the used enforcement policies. In addition, constraints

are jointly used with edit functions in order to avoid trivial solutions. However, opac-

ity enforceability may not hold depending on the chosen constraints. In contrast

with the previous works concerning insertion functions, KEROGLOU and LAFOR-

TUNE [27] propose a new insertion function which is embedded into the system and

acts based on the real location of the system, being a more powerful strategy than

the previously related ones.

Other problems related to this opacity were addressed, for example, in SABOORI

and HADJICOSTIS [11], where the sensor selection problem is considered in order

to ensure opacity. Another important results were presented by BEN-KALEFA and

LIN [28], where opacity closure under union and intersection was explored, and,

hence, the problems of finding opaque sublanguages and superlanguages were also

addressed.

The extension of opacity notions to timed DES was presented by CASSEZ [10],

where it has been shown that opacity verification is undecidable, even for a restrictive

class of Timed Automata.

Among the most usual notions of opacity we chose to work here with CSO

(current-state opacity), i.e., for every secret state that can be reached from an

initial state trough some sequence, there must exist a non-secret state reached from

the same or another initial state through some sequence, having these two sequences

the same observation from the Intruder’s point of view. We propose a new opacity

enforcement strategy that is based on changes in the order of observations of the

events occurred in the system, so as to mislead the Intruder to always wrongly

estimate at least one non-secret state.

3

The proposed opacity enforcement strategy works as follows. When the Opacity-

Enforcer receives a signal associated with an event occurrence, it may release im-

mediately this signal or hold it until one or more events occur. In other words,

the Opacity-Enforcer is responsible for, after receiving an event, to choose, based

on preset rules, either to release or hold it until the arrival of other events, with a

view to changing the order of the observation of the events. The events released by

the Opacity-Enforcer are transmitted either through a second set of channels or a

wifi connection susceptible to leak information to Intruders. The idea behind the

opacity enforcement strategy proposed here is to shuffle the event observations in

the same way as that modeled by the automaton, first presented by NUNES et al.

[29], to address delays in communication channels between the system and a diag-

noser to synchronize all possible changes in the order of observations, in order for

the Intruder to always believe that it is in at least one non-secret state by means of

its estimates.

This works differs from [17, 20, 23, 25] in the following sense: (i) since we only

delay the observation of certain events in order to mislead the Intruder’s estimations,

our work differs from [20] in the sense that, in [20], all event releases are held in the

imminence of leaking a secret and, once the system has entered in the non-secret

behavior, all of the held information is released; (ii) as far as [23] is concerned, we

do not choose a minimal set of observable events as static masks and we cannot

turn off the observation of any observable event as the dynamical masks proposed

in [23] can; we do not insert fictitious events, as in [17], but shuffle the order of

event observations; and, (iv) being able to insert and delete event signals without

any constraints except for the existence of the utility behavior, as performed in [25],

give us enough degree of freedom to simulate any behavior we want, thus, the lack

of the utility behavior makes the edit function a powerful but not realistic tool.

This work is organized as follows. Chapter 2 presents a brief review on DES

theory and the notation used throughout the work, as well as a short overview

on opacity containing its most usual notions. Chapter 3 embeds the problem for-

4

mulation, the opacity-enforcement strategy and the algorithms developed here to

synthesize the Opacity-Enforcer, and, hence, enforce CSO over the system. Finally,

Chapter 4 summarizes all of the contributions of this work and suggests possible

extensions.

5

Chapter 2

Background

This chapter is intended to ensure a better comprehension of the results presented

in this work. The main definitions of DES will be explained, some basic concepts

concerning finite-state automaton (FSA) used throughout the text will be recalled

and an overview of opacity will be presented. This chapter is structured as follows.

In Section 2.1 we present a brief review on discrete event systems theory focusing

mainly on the topics necessary for the comprehension of the work developed here.

In Section 2.2, we present and explain the main notions of opacity, defining formally

each one of these notions.

2.1 Discrete Event Systems

In contrast to the Continuous Variable Systems (CVS) which are characterized by

continuous-states and time-driven transitions, Discrete Event Systems are charac-

terized by having its state space as a discrete set and the transitions between the

states are event-driven [30].

Definition 2.1 (Discrete Event System) A Discrete Event System (DES) is a

discrete-state, event-driven system, that is, its state evolution depends entirely on

the occurrence of asynchronous discrete events over time.

Example 2.1 shows the difference between modeling a system in CVS and in

6

DES:

Example 2.1 Assume that the system under consideration is a water tank being

the water level the variable we want to analyze. Besides the tank, the system is

also composed of a pump to fill it and a drain to empty it. The state is the water

level, which is clearly a continuous variable, since the water level goes up and down

according to the control laws; note also that the change in the water level takes place

over the time, thereafter a time-driven transition. Thus the system behavior must be

modeled as a CVS. Now, let the system be a warehouse where we want to get track

of the its number of packages in the store. Notice that this numbers increases as

packages arrives and decreases as they are delivered. Thus, the state space of the

variable, that represents the number of stored packages in the warehouse, is a discrete

variable, and in addition the change of state is dictated by the arrival or delivery of

packages, bearing no time dependence, i.e., state transitions are now event-driven,

which implies that the warehouse must be modeled as a DES.

2.1.1 Language

One way to formally model the behavior of DES is by using “languages”. To un-

derstand the concept of languages, we must first define the “set of events” Σ =

{σ1, σ2, ...σn}, n ∈ Z+, where Z+ := {z ∈ Z : z ≥ 0} and each element of Σ is

associated with an event occurrence in the system, and then define a “sequence”

s = σ1σ2 . . . σn (also called “word”, “string” or “trace” in the literature) as a con-

catenation of events and the “length of a sequence”, denoted as |s| = n, as the

number of events in the sequence. A sequence with no events is denoted by ε and

has zero length. The formal definition of a language is as follows:

Definition 2.2 A language L defined over an event set Σ is a set of finite-length

sequences formed from events σi ∈ Σ, i = 1, 2, . . . , n.

In order to build sequences, we “concatenate” events with events or sequences

with events, as it is explained in the following example.

7

Example 2.2 Let Σ = {a, b, c}, and assume that a system has its language L de-

fined by all possible sequences with length 3 neither starting nor finishing with event

“c”. Then we know that the sequences of L can start and finish with either “a” or

“b”, and the second event occurrence can be any event from Σ. Thus we can first

create all sequences of L with length 2 by concatenating events “a” and “b” with all

events in Σ, generating “aa”, “ab”, “ac”, “ba”, “bb” and “bc”. Then we generate

the sequences of length 3 by concatenating the previous sequences with events “a”

and “b”, obtaining L = {aaa, aab, aba, abb, aca, acb, baa, bab, bba, bbb, bca, bcb}.

Remark 2.1 The empty sequence ε is the identity element of the concatenation

operation, i.e., sε = εs = s.

The Kleene-Closure of an event set Σ is denoted by Σ∗ and represents all possible

sequences with finite length formed with the events of Σ and it includes ε. For

example, if we have Σ = {a, b}, then Σ∗ = {ε, a, b, aa, ab, ba, bb, aaa, aab, . . . }. Note

that Σ∗ is infinitely countable.

Before moving on to the operations that can be performed on sequences, we must

first clarify some terms. Let s = tuv, where s, t, u, v ∈ Σ∗, we call t a prefix of s,

u a substring of s and t a suffix of s. We now present some useful operations on

sequences used throughout the text:

• Prefix-closure of a sequence s, defined as Pre(s) := {u ∈ Σ∗ : (∃v ∈ Σ∗)[uv =

s]}.

• Natural projection, or simply projection, of a larger event set Σa over a smaller

event set Σb, i.e., Σb ⊆ Σa, is defined as Pa,b : Σ∗a → Σ∗b , where Pa,b(ε) = ε,

Pa,b(σ) = σ if σ ∈ Σb, Pa,b(σ) = ε if σ ∈ Σa \Σb and Pa,b(sσ) = Pa,b(s)Pa,b(σ),

where s ∈ Σ∗a, σ ∈ Σa.

• Inverse projection, defined as P−1
a,b : Σ∗b → Σ∗a, where P−1

a,b (t) := {s ∈ Σ∗a :

Pa,b(s) = t} and Σb ⊆ Σa.

8

The prefix-closure, projection and inverse projection can be extended over a

language L by applying them to each sequence of L. Another useful operation on

languages used throughout the text is the post-language.

• Post-language of L after a sequence s is defined as L/s := {t ∈ Σ∗ : st ∈ L}.

Notice that if s /∈ L, then L/s = ∅.

The following shows these operations on languages.

Example 2.3 Let L1 = {abc, abb, acb, c}, Σ1 = {a, b, c}, Σ2 = {a, b}. We have

then Pre(L1) = {ε, a, c, ab, ac, abc, abb, acb}, P1,2(L1) = {ε, ab, abb} and L1/a =

{bc, bb, cb}. Now, assume that L2 = {ε, ab, abb}, then P−1
1,2 (L) = {c∗, c∗ac∗bc∗, c∗ac∗bc∗bc∗}

2.1.2 Automaton

Different formalisms can be used in the modeling of DES, such as Automaton,

Petri Nets, Transition Systems, Timed Automaton, etc. Among these formalisms,

only automata and Petri nets have the capability to model DES whose dynamics

are expressed by languages. Although Petri net formalism is a tool more powerful

than automaton (e.g., some classes of infinite languages cannot be modeled by finite

state automata but by Petri nets), automaton formalism is more intuitive and easier

to understand. It is important to remark that infinite-state automaton do exists,

although it would require infinite memory for its graphical representation. In our

context, the finite-state automata are enough for our goals. Formally, automata can

be defined as:

Definition 2.3 (Automaton) A automaton, denoted by G, is a six-tuple G :=

(X,Σ, f,Γ, x0, Xm) where X is the finite set of states, Σ is the finite set of events,

f : X × Σ → X is the state transition function, Γ : X → 2Σ is the active event

set function, being defined as Γ(x) := {σ ∈ Σ : f(x, σ)!}, where f(x, σ)! denotes

that f(x, σ) is defined, x0 ∈ X is the initial state and Xm ⊆ X is the set of marked

states.

9

Figure 2.1: Graph of an automaton.

Such an automaton is usually referred to as deterministic automaton.

The transition function can be extended to f : X × Σ∗ → X by the following

recursion: f(x, sσ) = f(f(x, s), σ), f(x, ε) = x, where σ ∈ Σ and s ∈ Σ∗.

The graphical representation of an automaton, also known as state transition

diagram, is composed by nodes, representing the states, and labeled arcs, repre-

senting the transitions between these states. Note also that the marked state is

represented by double circles and the initial state is represented by the states with

a single arrow pointing to it. Figure 2.1 shows a state transition diagram of au-

tomaton G = (X,Σ, f,Γ, x0, Xm), where X = {x, y}, Σ = {σ1, σ2}, f(x, σ1) = y,

f(y, σ2) = y, Γ(x) = σ1, Γ(y) = σ2, x0 = x and Xm = {y}.

When modeling a system, we use the state marking in order to highlight states

with special meaning, be it because these states are important in some way, or

because they represent the completion of a desired task for example. When these

pieces of information are not necessary, marked states can be omitted, which is the

case of the present work. Therefore, we will explicitly omit Xm from the automaton

tuples throughout the text.

As we mentioned before, languages and automata are strictly related, being

the latter a way to graphically represent the former, when it is regular. In this

regard, we have that the extraction of the language generated by an automaton can

be obtained by inspecting the automaton state transition diagram and looking for

sequences generated by all possible paths starting from the initial state. The formal

definition is as follows:

Definition 2.4 (Generated language) The language generated by an automaton

G = (X,Σ, f,Γ, x0, Xm) is defined as L(G) := {s ∈ Σ∗ : f(x0, s)!}.

10

Example 2.4 Let automaton G be the one depicted in Figure 2.1. It is not difficult

to check that the language generated by G is L(G) = Pre(σ1σ
∗
2).

In this work we will denote the language generated by an automaton L(G) simply

as L. We now present a few operations with automata, used throughout Chapter 3

and whose knowledge is required to understand the proposed opacity-enforcement

strategy.

Definition 2.5 (Accessible part) The accessible part operation of an automaton

G = (X,Σ, f,Γ, x0) deletes all states not reachable by any sequence from the initial

state and is defined by: Ac(G) := (XAc,Σ, fAc,ΓAc, x0), where XAc := {x ∈ X :

(∃s ∈ Σ∗)[f(x0, s) = x]} and fAc : XAc×Σ∗ → XAc, fAc(x, σ) = f(x, σ) if f(x, σ) ∈

XAc and f(x, σ) is not defined otherwise.

Taking the accessible part of an automaton is the same as checking which states

are reachable from the initial state and then deleting those states that are not

reachable. In order to compute the accessible part of an automaton, we must start

from the initial state x, put it in a FIFO list, and search for all next states that are

reached from x0. We, then, put the states that were found in the list. The next

step is to remove the initial state from the list and analyzing the next element of it,

searching for all next states reached from it, and putting them on the list, if they

do not belong to it yet. We carry out this process for all states in the list until it

becomes empty. The states which have not ever been an element of the list are the

states not reachable, and so, must be deleted.

Definition 2.6 (Parallel composition) The parallel composition between automata

creates a new automaton where the common behaviors of the previous automata are

synchronized and their individual characteristics run freely, being formally defined

by G1||G2 := Ac(X1 ×X2,Σ1 ∪ Σ2, f1||2,Γ1||2, x0,1 × x0,2), where:

11

f1||2((x1, x2), σ) :=



(f1(x1, σ), x2), if σ ∈ Γ1(x1) \ Σ2

(x1, f2(x2, σ)), if σ ∈ Γ2(x2) \ Σ1

(f1(x1, σ), f2(x2, σ)), if σ ∈ Γ1(x1) ∩ Γ2(x2)

undefined, otherwise.

When modeling a system, events determine state changes and, in order to ac-

knowledge that change, sensors are used in the system, being responsible for record-

ing event occurrences and for sending signals to the data acquisition system. Note

that the fact that an event occurrence makes the state change does not imply that

it necessarily has a sensor attached to it. We call observable events those events

whose occurrences are noticeable to an outside watcher and, to this end, have sensors

to record their occurrences. On the other hand, unobservable events are invisible

to an outside watcher and, thus, there are no sensors to record their occurrences.

Thus, from this point onwards, we will assume that the event set Σ is partitioned as

Σ = Σo∪̇Σuo, where Σo and Σuo are the sets of observable and unobservable events,

respectively.

The outside watcher is also named “observer”, being modeled by an “observer

automaton”, which captures all the observable behavior of a system. In order to

completely define the observer of G, here denoted as Obs(G,Σo), the definition of

unobservable reach UR(x,Σo) is required, i.e., UR(x,Σo) := {x′ ∈ X : (∃s ∈

Σ∗uo)[f(x, s) = x′]}. The concept of unobservable reach can be extended to a set of

states Y ∈ 2X as UR(Y,Σo) :=
⋃
x∈Y

UR(x,Σo). Now that the unobservable reach

was defined, we present the observer automaton Gobs as follows [30]:

Definition 2.7 (Observer Automaton) The observer of automaton G with

respect to a set of observable events Σo is defined by Gobs = Obs(G,Σo) := (Xobs,Σo, fobs,Γobs, x0,obs),

where Xobs ∈ 2X , fobs(xobs, σ) :=
⋃

x∈xobs∧f(x,σ)!

UR(f(x, σ),Σo), Γobs(xobs) :=
⋃

x∈xobs
Γ(x)∩

Σo, x0,obs := UR(x0,Σo). Finally, L(Gobs) = Po(L(Gobs)) will be denoted by Lobs,

where Po : Σ∗ → Σ∗o.

12

(a) Automaton G1. (b) Automaton G2.

Figure 2.2: Automata used in Examples 2.5, 2.6 and 2.7.

Figure 2.3: Accessible part of automaton G2, Ac(G2).

The next three examples show the afore mentioned operations applied to au-

tomata G1 and G2, depicted in Figures 2.2a and 2.2b, respectively.

Example 2.5 Let us compute Ac(G1). Notice that, in automaton G1, the initial

state x reaches y and state y reaches x, that has already been checked. Therefore, all

states of G1 are reachable, and so, Ac(G1) = G1. Now, let us compute the accessible

part of automaton G2. Firstly, we start from the initial state 0, which reaches state

1 only, and then, we check state 1, which has a unique transition to state 0 (already

checked). Finally, since all states reached from the initial state 0 have been checked,

we finish the operation. Note that state 2 has never been checked, since it was never

reached from 0, thus, we must delete state 2 and all the transitions attached to it.

The state transition diagram of automaton Ac(G2) is shown in Figure 2.3.

Example 2.6 Let us compute G = G1||G2, where G1 and G2 are depicted in Figures

2.2a and 2.2b, respectively. Assume that the event sets of G1 and G2 are Σ1 =

Figure 2.4: Parallel composition G = G1||G2.

13

Figure 2.5: Observer automaton Gobs = Obs(G3,Σo).

{a, b, c} and Σ2 = {a, c}. In order to compute automaton G, we first need to compare

the sets of events to determine which events are “common” and which ones are

“private”. Since Σ1 = {a, b, c} and Σ2 = {a, c}, the “common events” between the

automata are events “a” and “c”. Event “b” is a “private event” of G2. In order

to ensure that the resulting automaton is already accessible, then we start building

the parallel composition from the initial states of G1 and G2, forming the G, which

is given by (x, 0). We now check the possible transitions from states x and 0. Since

there is only one transition in each automaton and both of them are labeled with

the common event “a”, we have that state x evolves to y and state 0 evolves to 1,

i.e, state (x, 0) evolves to (y, 1) with event “a”. Again, in state (y, 1), we check the

possible transitions from states y and 1. It can be seen that state y has a “self loop”

with event “c” and that state 1 goes to 0 with event “c” too; then state (y, 1) goes to

(y, 0) with event “c”. Still analyzing state (y, 1), we have that state y evolves to x

with event “b”, which is a private event, and so, state y goes to x while state 0 does

not evolve. Thus, state (y, 1) evolves to (x, 1) with “b”. In state (x, 1) we have that

event “a” is in the active event set of x, i.e., Γ1(x) = {a}, but it is not defined in the

active event set of 1, since Γ2(1) = {c}. Since “a” and “c” are common events, they

are not defined in state (x, 1). Proceeding in this way for states (y, 0) and (x, 1), we

obtain automaton G, whose state transition diagram is depicted in Figure 2.4.

Example 2.7 In this example, we want to build the observer automaton of G, de-

picted in Figure 2.4, with respect to the set of observable events Σo = {a, b}, which

will be denoted as Gobs = Obs(G,Σo). First we take the initial state x0 = (x, 0)

and compute its unobservable reach, which is UR(x0,Σo) = {x0}, and so, the ini-

tial state of the observer is x0,obs = {(x, 0)}. After that, for all events σ ∈ Σo,

we set fobs({(x, 0)}, σ) = UR(f((x, 0), σ),Σo). Since only event “a” is defined in

14

{(x, 0)}, we have that fobs({(x, 0)}, a) = UR(f((x, 0), a),Σo) = UR((y, 1),Σo) =

{(y, 0), (y, 1)} since (y, 1) is reached by event “a” and (y, 0) is reached from (y, 1)

by the unobservable event “c”; thus, a new state {(y, 0), (y, 1)} is created. We

carry out the same procedure for state {(y, 0), (y, 1)}, from which, the only de-

fined observable event is “b”, and so, fobs({(y, 0), (y, 1)}, b) = UR(f((y, 0), b),Σo) ∪

UR(f((y, 1), b),Σo) = UR((x, 0),Σo)∪UR((x, 1),Σo) = {(x, 0)}∪{(x, 1)} = {(x, 0), (x, 1)}

, thus state {(x, 0), (x, 1)} is added to the observer and also the transition from

{(y, 0), (y, 1)} to it, labeled by “b”. Finally, we have that fobs({(x, 0), (x, 1)}, a) =

UR(f((x, 0), a),Σo) = UR((y, 1),Σo) = {(y, 0), (y, 1)}, since f((x, 1), a) is not de-

fined. Note that state {(y, 0), (y, 1)} already exists in the observer automaton, and

so, we only add to the observer the transition from {(x, 0), (x, 1)} to {(y, 0), (y, 1)},

labeled by event “a”. Figure 2.5 shows the resulting observer Gobs = Obs(G,Σo).

2.2 Opacity

Opacity is a general flow information property that characterizes whether a “secret”,

with respect to some system behavior, can be discovered or not by an external

observer, named Intruder. The notion of opacity can be split in weak opacity or

strong opacity, depending on how much the Intruder is able to infer from the secret

behavior of the system, as follows [3].

Definition 2.8 (Strong and Weak Opacities) Given a system modeled by G =

(X,Σ, f,Γ, x0), whose generated language is L, a general mapping Θ : Σ∗a → Σ∗b ,

where Σa,Σb ⊆ Σ, and two languages L1, L2 ⊆ L, then:

• L1 is strongly opaque with respect to L2 and Θ if Θ(L1) ⊆ Θ(L2);

• L1 is weakly opaque with respect to L2 and Θ if Θ(L1) ∩Θ(L2) 6= ∅.

Notice, from Definition 2.8, that strong opacity implies weak opacity, but not

conversely. We illustrate the definitions of strong and weak opacities with the fol-

lowing example.

15

Example 2.8 Let L = Pre(abc+cab) and consider the following sublanguages of L:

L1 = {abc}, L2 = {a, ab, abc}, L3 = {cab}. In addition, let Σo = {a, b}, Σuo = {c},

Σ = Σo ∪ Σuo = {a, b, c} and Θ = Po : Σ∗ → Σ∗o. Notice that Po(L1) = {ab},

Po(L2) = {a, ab}, and Po(L3) = {ab}. Thus, we can say that L1 is strongly opaque

with respect to L3 and Θ = Po, since Po(L1) ⊆ Po(L3), and that L2 is weakly opaque

with respect to L3 and Θ = Po, since Po(L2) ∩ Po(L3) = {ab} 6= ∅. Note, however,

that L2 is not strongly opaque with respect to L3 and Θ = Po, since a /∈ Po(L3).

Note that when strong and weak opacity definitions were proposed in LIN [3],

its goal was to characterize opacity as a general property between languages and

to show that other properties — anonymity, secrecy, observability, diagnosability

and detectability — could be seen as special cases of opacity upon properly defin-

ing languages L1 and L2; that is the reason why neither secrets nor Intruder were

mentioned in those definitions.

Opacity can also be characterized according to how we define what the secret

behavior is, leading to six most usual types of opacity, one of them related to secret

language and the others related to secret states, as follows [2, 8]: language-based

opacity, current-state opacity, initial-state opacity, initial-and-final-state opacity, K-

step opacity and∞-step opacity, where the latter five opacity notions will be referred

to as state-based opacity.

We start by introducing the notion of language-based opacity, first presented

by BADOUEL et al. [4], and formally defined by DUBREIL et al. [5]. In words,

language-based opacity states that “given a secret language Ls ⊂ L and a set of

observable events Σo, then every secret sequence in the secret language s ∈ Ls must

have the same observation as some non-secret sequence t ∈ L \ Ls”. Formally,

language-based opacity is defined as follows.

Definition 2.9 (Language-Based Opacity) Given a system modeled by G =

(X,Σ, f,Γ, x0), projection Po : Σ∗ → Σ∗o, and a secret language Ls ⊆ L, where

L = L(G), we say that G is language-based opaque with respect to Σo and Ls if

∀s ∈ Ls, there exists t ∈ L \ Ls such that Po(s) = Po(t), i.e., Po(Ls) ⊆ Po(L \ Ls).

16

Notice that when comparing Definitions 2.8 and 2.9, it is easy to verity that

language-based opacity is equivalent to strong opacity, if we set L1 = Ls, L2 = L\Ls
and Θ = Po.

Example 2.9 Let us consider here the same language L = Pre(abc + cab) as in

Example 2.8 and assume that Σo = {a, b} and Σuo = {c}. Defining the secret

language as Ls = {abc}, then, the system is language-based opaque, since cab ∈ L\Ls
and Po(abc) = Po(cab).

We will now consider the notions of state-based opacity. We start with the notion

of current state opacity (CSO), which was first introduced by BRYANS et al. [1] in

the context of Petri Nets and was presented as a property of finite-state automata

by SABOORI and HADJICOSTIS [6]. Stating that a system is current-state opaque

is the same as being sure that “the intruder never knows if the system is actually in

a secret state or not”. The formal definition is presented as follows.

Definition 2.10 (Current-State Opacity[8]) Given a system modeled by G =

(X,Σ, f,Γ, x0), projection Po : Σ∗ → Σ∗o, and a set of secret states Xs ⊆ X, G is

current-state opaque with respect to Σo and Xs if for all s ∈ L such that f(x0, s) ∈

Xs, there exists t ∈ L such that f(x0, t) ∈ X \Xs and Po(s) = Po(t).

Example 2.10 Let G be the automaton represented in Figure 2.6, Σ = {a, b, c},

Σo = {a, b}, Σuo = {c} and Xs = {3}. We can say that G is current-state opaque

because sequence “acb”, which reaches secret state 3, has the same projection as

sequence “cab”, that reaches state 7, i.e.,f(0, acb) = 3 = Xs, f(0, cab) = 7 ∈ X \Xs

and Po(acb) = Po(cab) = ab. Note that, if we set Σo = {a, c}, Σuo = {b} and

Xs = {4}, the system is no longer current-state opaque, since there does not exist a

sequence t ∈ L : f(x0, t) ∈ X \Xs, whose projection is Po(t) = Po(acba) = aca.

The second notion of state-based opacity, the so called initial-state opacity, was

also first defined in the context of Petri Nets by BRYANS et al. [1] and brought

to the finite-state automaton formalism by SABOORI and HADJICOSTIS [7]. It

17

Figure 2.6: System related to the examples 2.10, 2.13, 2.14 and 2.15.

Figure 2.7: System related to the examples 2.11 and 2.12.

means that “the intruder is never sure whether the initial state of the system was a

secret state or not”, being formally defined as follows.

Definition 2.11 (Initial-State Opacity) Given a system modeled by G = (X,Σ, f,Γ, X0),

projection Po : Σ∗ → Σ∗o, and a set of secret initial states X0,s ⊆ X0, G is initial-

state opaque with respect to Σo and X0,s if ∀x0 ∈ X0,s and for all s ∈ L, f(x0, s)!,

there exists y0 ∈ X0 \X0,s and t ∈ L, f(y0, t)! such that Po(s) = Po(t).

Example 2.11 Let G be the automaton represented in Figure 2.7 with Σ = {a, b, c},

Σo = {a, b}, Σuo = {c}, X0 = X and X0,s = {2}, which was presented in [7]. In

this example, the intruder wants to discover if, among all the possible initial states,

the system has started from a secret state. Indeed the system modeled by automaton

G is initial-state opaque, since for every sequence s starting from state 2, there

exists another sequence t = cs starting from state 0 with the same observation, i.e.,

Po(s) = Po(t). Now, assuming that the set of secret initial states is X0,s = {0},

then the system is no longer initial-state opaque, since when the sequence “aa” is

observed, the Intruder will track down the initial state 0.

The next notion of state-based opacity, called initial-and-final-state opacity (IFO),

was presented by WU and LAFORTUNE [8] aiming to model anonymous commu-

nications, where the identities of both, the sender (inital state) and receiver (final

18

state), must be hidden from external observers (intruders). The system is said to be

IFO if “the intruder, after receiving a sequence of observable events, is never sure

whether the estimated pair of initial and final states is a secret pair or not”. IFO is

formally defined as follows.

Definition 2.12 (Initial-and-Final-State Opacity) Given a system modeled by

G = (X,Σ, f,Γ, X0), projection Po : Σ∗ → Σ∗o, and a set of secret pair of states

Xsp ⊆ X0 × X, G is initial-and-final-state opaque with respect to Σo and Xsp if

∀(x0, xf) ∈ Xsp and for all s ∈ L, such that f(x0, s) = xf , there exists (y0, yf) ∈

(X0 ×X) \Xsp and t ∈ L, f(y0, t) = yf , such that Po(s) = Po(t).

Example 2.12 The same automaton G represented in Figure 2.7 with Σ = {a, b, c},

Σo = {a, b} and Σuo = {c} will be used to explain IFO. The system is initial-and-

final-state opaque with respect to the secret pair of states Xsp = {(3, 1)} but it is

not initial-and-final-state opaque with respect to Xsp = {(0, 0)}. IFO holds for the

former case because for every sequence s ∈ L, f(3, s) = 1, there is a sequence

t ∈ L : f(1, s) = 1 with the same observation, since the transition from state 3

to state 1 is given by the unobservable event “c”, whereas in the latter case, where

Xsp = {(0, 0)}, if “aa∗” is observed, the Intruder will be sure that the system started

from state 0 and is currently in it, since there is no other sequence t such that

Po(t) = aa∗ and f(x1, t) = x2, (x1, x2) 6= (0, 0).

Note that both CSO and ISO can be seen as a special case of IFO, if we set

Xsp = X0 ×Xs for CSO and Xsp = X0,s ×X for ISO.

The next notion of state-based opacity described here is K-step opacity, proposed

by SABOORI and HADJICOSTIS [6]. It is a more general property that embeds

the secrecy of states from the last K steps executed by the system until the current

moment, therefore it means that “the intruder is never sure that the system is in

a secret state or has visited one in the last K steps”. K-step opacity is defined as

follows.

19

Figure 2.8: Observer of automaton depicted in Figure 2.6.

Definition 2.13 (K-Step Opacity) Given a system modeled by G = (X,Σ,

f,Γ, x0), projection Po : Σ∗ → Σ∗o, a set of secret states Xs ⊆ X, and an inte-

ger K ≥ 0 ∈ Z+, we say that G is K-step opaque with respect to Σo, Xs and K

if for all s ∈ L, f(x0, s)! and for all s′ ∈ Pre(s) such that |P (s) \ P (s′)| ≤ K,

f(x0, s
′) ∈ Xs, there exists t ∈ L, f(x0, t)!, and t′ ∈ Pre(t) such that f(x0, t

′) ∈

X \Xs, Po(s) = Po(t) and Po(s
′) = Po(t

′).

Example 2.13 Assume that G is the automaton represented in Figure 2.6, and let

Σ = {a, b, c}, Σo = {a, b}, Σuo = {c} and Xs = {3}. Then, we can say that G is 1-

step opaque but not that it is 2-step opaque. In order to show that fact, let us consider

automaton Obs(G,Σo) depicted in Figure 2.8. Note that, when the Intruder observes

the sequence “ab”, it estimates states {3, 7}. Then, the only possible next observable

sequence is “aba”, and now the Intruder knows that the system is currently in {4, 8}

and was in {3, 7} one step back. Thus, the system is 1-step opaque. When the

Intruder observes sequence “abaa”, it becomes sure that G is in state 4, therefore, if

we consider automaton G shown in Figure 2.6, we see that the system was also in

state 4 one step back and in state 3 two steps back. Thus the system is not 2-step

opaque.

Note that CSO can be understood as 0-Step opacity, since the only concern of

CSO is about the Intruder being sure that the current state is a secret one, i.e., it

takes into account zero past steps.

The last notion of state-based opacity, ∞-step opacity, was introduced in SA-

BOORI and HADJICOSTIS [9], and is an extension of K-Step Opacity. In this

regard, a system is said to be ∞-Step opaque if “the intruder is never sure whether

the system has ever been in a secret state or not”. Its formal definition is as follows.

20

Definition 2.14 (∞-Step Opacity) Given a system modeled by G = (X,Σ,

f,Γ, x0), projection Po : Σ∗ → Σ∗o, and a set of secret states Xs ⊆ X, G is ∞-step

opaque if for all s ∈ L, f(x0, s)! and for all s′ ∈ Pre(s) such that f(x0, s
′) ∈ Xs, there

exists t ∈ L, f(x0, t)!, and t′ ∈ Pre(t) such that f(x0, t
′) ∈ X \ Xs, Po(s) = Po(t)

and Po(s
′) = Po(t

′).

Example 2.14 We use again the same automaton G represented in Figure 2.6,

with the same sets Σ = {a, b, c}, Σo = {a, b}, Σuo = {c} and Xs = {3}. Since the

system is not 2-step opaque, as explained in Example 2.13, it will not be ∞-step

opaque. If we replace the self-loop in state 8 with another self-loop labeled with event

“a”, then the system will become ∞-step opaque, since the Intruder will never be

sure if the system has ever been solely in the secret state 3.

Notice that, even though Definition 2.8 concerns two different languages in a

system, the notions of strong and weak opacity can be extended over Definitions

2.9 - 2.13. In this regard, the strong versions of LBO, CSO, ISO and IFO are

defined by Definitions 2.9 - 2.12, whereas the weak versions will be obtained by

replacing the restriction of “every secret” with “exists at least one secret” inside the

definition; for example, we say that G is current-state weakly opaque with respect

to Σo and Xs if ∃s ∈ L such that f(x0, s) ∈ Xs, and there exists t ∈ L such that

f(x0, t) ∈ X \ Xs and Po(s) = Po(t). Finally, Definition 2.13 corresponds to the

weak version of K-Step opacity, and the definition of K-Step Strong Opacity [21] is

given by if the statement “for all s ∈ L, f(x0, s)! and for all s′ ∈ Pre(s) such that

|P (s) \ P (s′)| ≤ K, f(x0, s
′) ∈ Xs, there exists t ∈ L, f(x0, t)!, ∀t′ ∈ Pre(t) such

that |P (t) \P (t′)| ≤ K, f(x0, t
′) ∈ X \Xs, Po(s) = Po(t) and Po(s

′) = Po(t
′)” holds.

Example 2.15 Assume again that G is the automaton represented in Figure 2.6,

Σ = {a, b, c}, Σo = {a, b}, Σuo = {c} but Xs = {3, 6}. Note that G is 1-step weakly

opaque because whenever the Intruder estimates state 6, it also estimates states 1

and 2, no matter state 6 is being estimated as the current state or the 1-step back

state. The same situation occurs when secret state 3 is estimated. It is not difficult

21

to see that 1-Step Strong Opacity does not hold in G, since, after observing sequence

“ab”, the intruder knows that, no matter what sequence has originally occurred,“acb”

or “cab”, the system was in a secret state in at most 1 past steps. If the occurred

sequence was “acb”, it means that the system is currently in secret state 3, and if

the occurred sequence was “cab”, it means that the system has visited the secret state

6 in the 1-step back.

Note that the definition of these notions of opacity are used to characterize

how “opaque” a system genuinely is, but when we deal with opacity-enforcement

strategies, we always aim at the strong version of opacity. Thereafter, henceforth,

whenever we talk about any opacity notion, we will refer to it as it was defined

throughout this chapter, Definitions 2.9 - 2.14.

Since the current work deals with CSO enforcement, we need to know when the

system satisfies this property. An easy and intuitive way to verify if a system is

CSO is to build its observer automaton, since the state xobs is understood to be the

Intruder’s state estimation after observing a sequence s ∈ Lobs. Thus, we say that

the system is CSO if all states of Gobs contains both secret and non secret states.

Thereafter, the set of secret states of the observer is defined as Xs,obs := Xobs ∩ 2Xs .

Thus, the system is CSO if and only if Xs,obs = ∅.

22

Chapter 3

Opacity-Enforcement methodology

This chapter is intended to expose the strategy developed to enforce current-state

opacity through changes in the order of event observation. Section 3.1 characterizes

the problem to be solved, the assumptions made on the model of the system, the

capacity of the Intruder over the system and how the opacity-enforcer will work.

Section 3.2 presents the opacity enforcement strategy itself and some definitions

used to easy its comprehension. Section 3.3 presents the algorithms developed to

enforce opacity through changes in the order of event observation. Finally, Section

3.4 show us an example where the strategy proposed in this work is applied.

Physical System

Receiver

Intruder

Opacity Enforcer

chnch2ch1 b b b

Figure 3.1: The Opacity-Enforcement architecture.

23

3.1 Problem Formulation

The architecture considered in this work is shown in Figure 3.1, and is composed of a

physical system, which is modeled by an automaton, measurement points, which are

responsible for recording the event occurrences, and transmission channels, which

transmit the sensor signals to the Opacity-Enforcer. The Opacity-Enforcer is re-

sponsible for, after receiving an event, choosing, based on preset rules, either to

release or hold it until the arrival of other events, with a view to changing the order

of the observation of the events. The events released by the Opacity-Enforcer are

transmitted to the intruder through a non-secure network.

With respect to the automaton model, only observable events are transmitted

through the channels and although both, Receiver and Intruder, have the same

power of observation based on the observable events, only the Receiver knows the

rules used by the Opacity-Enforcer to enforce the desired opacity and the model. The

Intruder, on the other hand, only has knowledge on the system model. The system

secrets are represented by secret states, which the Intruder must never discover, i.e.,

it can never estimate a secret state with certainty. The Opacity-Enforcer actions

must prevent the Intruder from correctly estimating any secret state, supplying it

with estimates of non-secret states.

The Opacity-Enforcer we propose here works as follows. When it receives a

signal associated with an event occurrence, it may immediately release this signal

or hold it until one or more events occur. When the Opacity-Enforcer holds the

transmission of an event, it must release this event immediately after some sequence

arrival in the sequel. To this end, the Opacity-Enforcer delays the event release by

a certain number of steps, where step is understood here as any arrival of event at

the Opacity-Enforcer.

We make the following assumptions on the Intruder’s capacity:

I1. The Intruder has a copy of the automaton that models the system, including

events, states, transition functions, as well as its initial states.

24

I2. The Intruder has full access to the signals transmitted from the Opacity-Enforcer

to the Receiver, i.e., it can observe all of the observable events.

I3. The Intruder does not know about the existence of the Opacity-Enforcer, and

so, it does not know that the information might have been changed.

I4. The Intruder always expects to estimate some state inside the model whenever

it observes an event.

We also make the following assumptions on the channels:

A1. Each channel that connects the physical system to the Opacity-Enforcer trans-

mits only one specific event at time.

A2. There are no delays on transmission through the communication channels.

A3. The channels connecting the physical system and the Opacity-Enforcer are

safe.

A4. The network connecting the Opacity-Enforcer and the Receiver is unsafe.

Assumption A1 means that channel ch1 will just transmit an event σ1 to the

Opacity-Enforcer, ch2 will just transmit an event σ2 and so on. Assumption A2

means that the dynamic of the system is much slower then the transmission of the

events through the channels, i.e., the transmission delays are negligible. Assump-

tions A3 and A4 mean that only the transmission from the Opacity-Enforcer to the

Receiver is susceptible to leak information to the Intruder.

3.2 The Opacity-Enforcement Strategy

The strategy proposed here leverages the possibility of delaying events so as to

cause changes in its order of observation, misleading the Intruder’s estimation of

the current state of the system. To this end, the Opacity-Enforcer checks if for

every sequence that reaches a secret state with respect to the observer and its

continuations, there exists some possible change in the order of observation of the

25

events so that this sequence can be seen as another possible one whose prefixes and

their continuations lead only to non-secret states of the observer. The changes in

the order of event observation is a permutation of the order of the events that occurs

in a sequence. Although shuffling the event order in a sequence is an easy task, its

formal definition requires some effort. First we need to consider the sequence as an

ordered tuple; then, we arrange randomly the elements of the tuple, and; finally, we

concatenate the elements of the randomly arranged tuples in sequences again. We

start by defining the function “Tuple of a sequence”, which maps a sequence into

an ordered tuple, and its inverse mapping.

Definition 3.1 (Tuple of a sequence) Let s = σ1σ2 . . . σn ∈ Σ∗ be a finite se-

quence. The tuple of a sequence s is the mapping T : Σ∗ → Σn, where n = |s|,

Σn = Σ × Σ · · · × Σ, n times, is defined as the n-tuple T (s) := (σ1, σ2, . . . , σn)

formed by the events of s.

Giving the n-tuple t = (t1, t2, . . . , tn) ∈ Σn, the inverse mapping T−1 : Σn → Σ∗

is defined as the sequence T−1(t) := t1t2 . . . tn formed by the concatenation of the

elements in the n-tuple t, according to the order they appear in t.

Note that the operation sequence from a tuple can be extended to a set of tuples

T−1 : 2Σn → 2Σ∗
such that T−1(A) := {s ∈ Σ∗ : (∃t ∈ A)[s = T−1(t)]}.

The next operation that must be defined is the “Permutation of tuples”, which,

given a tuple t as input, generates all possible tuples t′ such that the order of the

elements in t′ is a permutation of the elements in t.

Definition 3.2 (Permutation of tuples) Let t = (t1, t2, . . . , tn) ∈ Σn. The per-

mutation of a tuple is the mapping P : Σn → 2Σn
, that associates to each n-tuple t,

a set P(t) of n-tuples composed of all permutations of the order in the elements of

it, i.e., P(t) := {(t1, t2, . . . , tn−1, tn), (t1, t2, . . . , tn, tn−1), . . . , (tn, tn−1, . . . , t2, t1)}.

Notice that, given an n-tuple t = (t1, t2, . . . , tn), |P(t)| ≤ n!, since it is possible

that there exists i, j ∈ {1, 2, . . . , n}, i 6= j.

26

Finally, we define the “Sequence permutation”, as the mapping that generates

all event order permutations of a given sequence.

Definition 3.3 (Sequence permutation) Let s = σ1σ2 . . . σn ∈ Σ∗ be a sequence

and T (s) = (σ1, σ2, . . . , σn) denote the n-tuple formed from that sequence. The

sequence permutation Sp is a mapping Sp : Σ∗ → 2Σ∗
where for each sequence

s = σ1σ2 . . . σn, it associates a set Sp(s) := T−1(P(T (s))).

The following example illustrates the operations presented in Definitions 3.1 –

3.3.

Example 3.1 Let us consider the sequence s = aba. We have that t = T (s) =

(a, b, a) is the corresponding tuple of s. The permutations defined from T (s) form

the set P(t) = {(a, b, a), (a, a, b), (b, a, a)} and thus, the sequence permutation of s

is Sp(s) = T−1(P(t)) = {aba, aab, baa}. Notice that, as pointed out before, |P(t)| =

3 < 3! = 6.

Now, that the sequence permutation has been defined, the next step in the

opacity enforcement strategy proposed in this work is to search for conditions that

ensure the feasibility of the proposed opacity enforcement, i.e., the conditions in

order for the system to be opacity-enforceable.

Definition 3.4 (Opacity-enforceability) A system modeled by an automaton G =

(X,Σ, f,Γ, x0) is CSO enforceable through changes in the order of event observations

with respect to Σo and Xs if ∀s : fobs(x0,obs, s) ∈ Xs,obs, and ∀t ∈ Lobs/s, ∃n ∈ Z+

and ∃u ∈ Lobs/st : |u| = n, and ∃v ∈ Sp(stu) ∩ Lobs such that fobs(x0,obs, w) ∈

Xobs\Xs,obs,∀w ∈ Pre(v).

Notice that, in Definition 3.4, n can be equal to 0.

Example 3.2 Let us consider automaton G1, whose state transition diagram is

depicted in Figure 3.2a, and let Σo = {a, b, c, d} and Xs = {2}. Note that its

observer automaton Gobs,1 is identical to G1. According to Definition 3.4, the system

27

(a) Automaton G1. (b) Automaton G2.

Figure 3.2: Automata used in Examples 3.2.

modeled by automaton G1 is CSO enforceable. In order to show this fact, notice that

for s = ab, fobs(x0,obs, s) = 2. Let us now consider all continuations of Lobs after s.

• t = ε. In this case, there exits an integer n = 2 and a sequence u = cd ∈

Lobs/st such that v = badc ∈ Sp(stu)∩Lobs,1 = {abcd, badc} and fobs,1(0, w) /∈

Xs,obs,1,∀w ∈ Pre(v) = {ε, b, ba, bad, badc};

• t = c. In this case, there exists n = 1 and u = d, such that Definition 3.4

holds, since the same v = badc is obtained here;

• Continuing this process for t = cd, t = cda, t = cdaa, . . . , similar conclusions

can be drown.

Let us now consider the system modeled by automaton G2, depicted in Figure

3.2b, where Σo = {a, b, c, d, e} and Xs = {2}. Notice that this system is not

CSO enforceable, since for s = ab and t = e, there does not exist any integer n,

any sequence u after st in Lobs, and, hence, any v ∈ Sp(stu) ∩ Lobs,2 such that

fobs,2(0, w) /∈ Xs,obs,2,∀w ∈ Pre(v)

In order to define an opacity enforcement strategy, the occurrence of the event

in the system must be distinguished from its observation by the Intruder. To this

end, let Σs be a copy of Σ with all of its events relabeled by introducing a subscript

s. We define the following operation to rename the events of a sequence s ∈ Σ∗.

Definition 3.5 (Rename Operation) The rename operation is the mapping R :

Σ∗ → Σ∗s, where: R(ε) = ε, R(σ) = σs and R(sσ) = (sσ)s = R(s)R(σ) = R(s)σs,

28

where σ ∈ Σ and s ∈ Σ∗. The inverse rename operation R−1 : Σ∗s → Σ∗ can be de-

fined as R−1(ε) = ε, R−1(σs) = σ and R−1((sσ)s) = R−1(ssσs) = R−1(ss)R
−1(σs) =

R−1(ss)σ.

Based on the rename operation, we define the set of actual event observations as

follows:

Σo,s := {σs : (σs = R(σ)) ∧ (σ ∈ Σo)} (3.1)

We then define the extended set of events as Σe := Σo ∪ Σo,s.

Assume that opacity can be enforced in a non-opaque system through changes in

the order of event observation. Thus, there exists an opacity enforcement strategy

OE such that for every sequence that has occurred, it decides, after each event

arrival, whether: (i) it releases immediately its observation; (ii) it holds it without

releasing any observation at all or; (iii) it holds the event but releases the observation

of another event that has been held. In order to present a formal definition for the

opacity enforcement function, let us define the function N : Σ∗e × Σe → Z+, where

for a pair (s, σ), N (s, σ) returns the number of occurrences of event σ in sequence

s.

Definition 3.6 (Opacity-Enforcement function) Let us consider the projections

Pe,s : Σ∗e → Σ∗o,s. The opacity enforcement function OE : Σ∗e → 2Σo,s ∪{ε} is defined

as:

OE(se) :=


σs ∈ Σo,s, if N (se, σs) < N (se, R

−1(σs)) ∧

fobs(x0,obs, R
−1(Pe,s(se)σs)) ∈ Xobs\Xs,obs

ε, otherwise

Note that, by imposing that N (se, σs) < N (se, R
−1(σs)), we ensure that only

events that have actually occurred can be released for observation, as opposed to the

insertion function used in [17–19] that allows the introduction of fictitious events.

In addition, the released observation must lead to non-secret states of the observer,

which implies that under no circumstances the intruder will be in doubt if the system

29

is in a secret or non-secret state of Gobs, but always thinks that the system is in a

non-secret state of Gobs.

Example 3.3 Let us consider automaton G1 depicted in Figure 3.2a, and let Σo =

{a, b, c, d} and Xs = {2}. Initially, the opacity enforcement function will return

OE(ε) = ε and wait for some event occurrence. Upon the occurrence of se = a, it

will release no event, OE(a) = ε. Notice that, the release of as would eventually

lead the Opacity-Enforcer to hold indefinitely every further occurred event, since all

of the next events would either make the intruder to estimate the secret state 2 or

generate a sequence not in the observable behavior of the system. After releasing no

observation when “a” occurred, the function will wait for “b” to occur and release

“bs”, OE(ab) = bs. Then, the next action of the enforcer function is to release the

held event “as”, OE(abbs) = as, leading the Intruder to estimate state 5 while the

system is in 2. Carrying out this procedure, we have that OE(abbsas) = ε, i.e., the

enforcer is waiting for some event occurrence, OE(abbsasc) = ε, OE(abbsascd) = ds,

OE(abbsascddscs) = ε, and so on. Notice that while sequence abcd occurred in the

system, the opacity enforcement function released bsasdscs, misleading the Intruder

to wrongly estimate states.

When we embed the opacity-enforcement function into the physical system, the

resulting sequences se, obtained by the action of the opacity enforcer, generate an

extended language Le that depends on the language generated by the system and the

event observations released by the opacity enforcer. This language can be recursively

defined as follows.

1. ε ∈ Le, since OE(ε) = ε and thus, se = ε ∈ Le

2. seσ ∈ Le ⇐⇒ (se ∈ Le) ∧ (Pe,o(seσ) ∈ Lobs)

3. seσs ∈ Le ⇐⇒ (se ∈ Le) ∧ (σs ∈ OE(se))

where σ ∈ Σo is an event occurrence and σs ∈ Σo,s∪{ε} is either the empty sequence

ε or the event released by the opacity enforcer.

30

Note that, according to the definition of Le, at least one new sequence is added

to the extended language every time an observable event σ occurs in G. If the

Opacity-Enforcer decides not to release any new observation, then only sequences

of type seσ are added to Le. However, when the Opacity-Enforcer releases an event

observation σs ∈ Σo,s after se, then seσs is also added to Le.

It is straightforward to see from the definition of extended language that Pe,o(Le) =

Lobs, where Pe,o : Σ∗e → Σ∗o and that ∀se ∈ Le, fobs(x0,obs, R
−1(Pe,s(se))) ∈ Xobs\Xs,obs.

Note that |OE(se)| > 1 occurs when it is possible for the observation of two

or more events to lead to different non-secret states of Gobs. In this case, some

event release policy must be adopted; the most intuitive one is to release the event

that has happened first. If OE(se) = ε, then, no event will be released, which

suggests a trivial way to enforce CSO, i.e., by holding all events observations, i.e.,

OE(se) = ε,∀σe and, eventually, if some σs appears such that it is possible for Gobs

to move to a non-secret state, then OE(se) releases it. Such a solution is not wise

from the practical point of view, and thus, it is more realistic to establish bounds

on the number of steps that observable events can be held. In this regard, the

Opacity-Enforcer actions will be bounded in order to make it feasible, i.e., they will

be bounded by a maximum step delay associated with each event. This Opacity-

Enforcer property is described as

SD = {(σ1, k1), (σ2, k2), . . . , (σn, kn)} (3.2)

where ki, i = 1 . . . n, represents the maximum number of steps that event σi

can be held. For example, assuming that SD = {(α, 1), (β, 0), (γ, 0)}, then if the

sequence αβγ arrives, the Opacity-Enforcer may release α immediately, creating the

shuffled sequence ααsββsγγs, or hold it for one step, creating the shuffled sequence

αββsαsγγs; thus two output observation sequences, αsβsγs or βsαsγs can be chosen

depending on the CSO enforcement policy. With this constraint, we present the

following necessary and sufficient condition for CSO enforceability.

31

Theorem 3.1 Let Pe,o : Σ∗e → Σ∗o. We say that G = (X,Σ, f,Γ, x0) is CSO en-

forceable through changes in the order of event observations with respect to Σo, Xs

and SD if and only if ∀s : fobs(x0,obs, s) ∈ Xs,obs, and ∀t ∈ Lobs/s, ∃n ∈ Z+,∃u ∈

Lobs/st : |u| = n, ∃se ∈ Le such that : (i) Pe,o(se) = stu; (ii) ∀σ ∈ Σo, N (se, σ) =

N (se, R(σ)); and (iii) SD holds true for all observable events.

Proof: Let Pe,s : Σ∗e → Σ∗o,s.

(⇒) We will prove the sufficient condition by taking the contrapositive of the

implication. Thus, assume that ∃s : fobs(x0,obs, s) ∈ Xs,obs, and ∃t ∈ Lobs/s,

∀n ∈ Z+,∀u ∈ Lobs/st : |u| = n, ∀se ∈ Le such that either conditions (i), (ii)

or (iii) is false. Let us consider an extended sequence se ∈ Le such that condi-

tions (i) and (ii) hold but (iii) does not hold. It is straightforward to see that

if condition (iii) is not met, then the system is not CSO enforceable with respect

to SD. If conditions (i) and (iii) are met but not condition (ii), then ∀se ∈ Le

we have that (Pe,o(se) = stu) ∧ (N (se, σ) 6= N (se, R(σ))) ∧ (SD holds), thus,

by setting v = R−1(Pe,s(se)), we have that v /∈ Sp(stu), since |v| < |stu|, hence,

@v ∈ Sp(stu) ∩ Lobs such that fobs(x0,obs, w) ∈ Xobs\Xs,obs,∀w ∈ Pre(v), leading us

to conclude that, according to Definition 3.4, the system is not CSO enforceable.

Finally, condition (i) being false is not feasible, since Pe,o(Le) = Lobs, thus, there

always exists se ∈ Le such that Pe,o(se) = stu ∈ Lobs. Hence, according to Definition

3.4, the system is not CSO enforceable.

(⇐) Assume that ∀s : fobs(x0,obs, s) ∈ Xs,obs, and ∀t ∈ Lobs/s, ∃n ∈ Z+ and

∃u ∈ Lobs/st : |u| = n, and ∃se ∈ Le such that conditions (i) – (iii) hold. Let us

set v = R−1(Pe,s(se)). Thus, since conditions (i) and (ii) are met and and se is an

extended sequence of the language Le, obtained through the actions of an opacity en-

forcement function, we can say that v ∈ Sp(stu) and that v ∈ Lobs, and, in addition,

that fobs(x0,obs, w) ∈ Xobs\Xs,obs,∀w ∈ Pre(v). Hence, we can write our assumption

as ∀s : fobs(x0,obs, s) ∈ Xs,obs, and ∀t ∈ Lobs/s, ∃n ∈ Z+,∃u ∈ Lobs/st : |u| = n,

∃v ∈ Sp(stu) ∩ Lobs such that fobs(x0,obs, w) ∈ Xobs\Xs,obs, ∀w ∈ Pre(v), then, from

Definition 3.4, the system is CSO enforceable with respect to Σo, Xs and SD, since

32

condition (iii) is also met.

3.3 Algorithms

In this section, we first adapt the algorithm proposed in [29] in Subsection 3.3.1. In

Subsection 3.3.2, we propose an algorithm which checks whether CSO enforcement

with respect to Σo, Xs and SD can be done or not. Finally, in Subsection 3.3.3,

we propose an algorithm that searches for a minimum delay bounds such that the

system CSO enforceable. Both, the two proposed algorithms, are jointly used to

solve the opacity enforcement problem. These algorithms do not deal with decision

conflict problems when |OE(se)| > 1, i.e., when two or more events are eligible to

be released by the opacity enforcement function.

The shuffle of event observations is carried out by constructing automaton D,

which was first presented in [29] to model the effect of communication delay in

language diagnosability. Here, automaton D will be used with a different purpose,

i.e., to synchronize all possible changes in the order of observation according to the

opacity-enforcement property such that the altered sequence observations remain

inside the language generated by the system.

Assuming that an upper bound is given, the first proposed algorithm (Algorithm

3.3) finds a minimal solution with respect to how long each event must be held in

order to enforce opacity. The second proposed algorithm (Algorithm 3.2) is executed

until either a minimal solution is found or opacity cannot be enforced with the

current bound SD. In addition, Algorithm 3.2 makes the distinction between event

occurrences and observations, and although it shuffles the event observation order,

it preserves the language generated by the system, i.e., Algorithm 3.2 ensures that

for every sequence that reaches a secret state and its continuations, there must exist

some change in the order of its event observations that leads only to estimations of

non-secret states of Gobs by the Intruder.

33

3.3.1 Computation of automaton D

Automaton Di was conceived in the context of failure diagnosis for communication

delay. This architecture has the following components:(i) a Physical System with

Measurement Sites (MSj), from where the recorded events are transmitted; (ii)

Local Diagnosers (LDi), which fire when a failure is detected, and; (iii) channels

(chi,j), which follow FIFO rule, transmit one event at a time from the measurement

sites to the local diagnosers, and are susceptible to a known delay. Given the event

set Σ = Σo ∪ Σuo with respect to the system, a vector of delays ki,j with respect

to each channel, and the set of events Σi,j transmitted through them, automaton

Di generates all sequences with respect to Σo and also all possible changes in the

order of event observation due to delays, with respect to Σo,s. The states of Di

denote occurred sequences which possesses events not successfully observed yet.

The symbol ν, which represents “blank space”, is also used when naming the states

of Di, since a successful observation of an event that is not its first occurred event

or the occurrence of unobservable events leads to new states with blank spaces in

their names. This blank space ν must be considered in order to control how many

steps the event observations are being delayed. Note that the initial state of Di is

also denoted as ν, since no event has occurred.

We make some simplifications over automaton D, since we do not deal with

either measurement sites or multiple local Opacity-Enforcers. Note that, in our

context, instead of local diagnosers, we have a single local receiver, namely the

Opacity Enforcer. Automaton Di is adapted to our context by assuming that we

have one MS for each event and also that the associated channel to this MS transmits

this specific event only, as stated in assumption A1, thus, every event can have its

observation changed with another event observation, as long as the delay associated

to them is enough to enable that exchange. We also deal with one Opacity Enforcer

only, leading to the construction of one unique automaton D instead of multiple

automata Di. Some steps of the original construction algorithm are negligible, since

we compute D with respect to the event set of the observer automaton, i.e., there

34

are no unobservable events to be considered.

Before we proceed to the computation of automaton D, some operations over

sequences s ∈ (Σo ∪ {ν})∗, which are used in order to build D, must be defined.

Definition 3.7 Let us define Σoν = Σo ∪ {ν} and the set of states Q, where each

state q ∈ Q is labeled with a sequence s ∈ Σ∗oν. Then, given Σ = Σo ∪Σuo, we define

the following functions:

• Replacement function, defined as rep : Q×Z∗+ → Q, where ∀q = q1q2 . . . ql ∈ Q

and Z∗+ = Z+ \ {0},

rep(q, i) =

 q1q2 . . . qi−1νqi+1 . . . ql, if i ≤ l

undefined, otherwise.

• Elimination function, defined as cut : Q→ Q, where ∀q = q1q2 . . . ql ∈ Q,

cut(q) =

 qiqi+1 . . . ql, if (∃i ≤ l)[(qi 6= ν) ∧ (qk, ∀k ∈ {1, 2, . . . , i− 1})]

ν, if qk = ν, ∀k ∈ {1, 2, . . . , l}.

Example 3.4 Let us consider a state q = ab, a ∈ Q. We have that cut(rep(q, 1)) =

cut(νb) = b and that cut(rep(q, 2)) = cut(aν) = aν.

Since we have already simplified the structure of automaton D and defined the

operations required to its construction, we now present the algorithm which com-

putes automaton D.

Algorithm 3.1 Computation of automaton D

Input: Σo, k
max = [kmaxσ1

, . . . , kmaxσn].

Output: D = (XD,Σe, fD,ΓD, x0,D).

Step 1. Define x0,D = ν and XD = ∅.

Step 2. Construct Σo,s = R(Σo) and then define Σe = Σo ∪ Σo,s.

35

Step 3. F ← x0,D, where F denotes a FIFO queue.

Step 4. While F 6= ∅, do:

Step 4.1. u← head[F]

Step 4.2. If u = x0,D, then:

Step 4.2.1. For each σ ∈ Σo, compute x̃D = fD(u, σ) = σ, then Enqueue(F, x̃D).

Step 4.2.2. XD ← XD ∪ {u}

Step 4.2.3. Dequeue(F)

Else:

Step 4.2.4. Set ` = |u| and create the set I` = {1, 2, . . . , `}

Step 4.2.5. Denote u = σ1σ2 . . . σ` and create the set Iν = {y ∈ I` :

(∃σy ∈ u)[σy = ν]}

Step 4.2.6. Compute I`\ν = I` \ Iν

Step 4.2.7. For each σ ∈ Σo, do:

(a) x̃D = fD(u, σ) =

 uσ, if |σyσy+1 . . . σ`| ≤ kmaxσy , ∀y ∈ I`\ν
undefined, otherwise

(b) If x̃D is defined, then Enqueue(F, x̃D)

Step 4.2.8. For each σs ∈ Σo,s, do:

(a) Create the set Y = {y : (σy ∈ u) ∧ (σy = R−1(σs))}

(b) If Y 6= ∅, then compute ŷ = min(Y) and x̃D = fD(u, σs) =

cut(rep(u, ŷ))

(c) If (x̃D /∈ XD) ∧ (x̃D /∈ F), then Enqueue(F, x̃D)

Step 4.2.9. Set XD ← XD ∪ {u}

Step 4.2.10. Dequeue(F)

Step 5. For each xD ∈ XD, ΓD(xD) = {σ ∈ Σe : fD(xd, σ)!}

We start Algorithm 3.1 by creating the initial state x0,D in Step 1, naming it ν,

since no event have occurred yet, and by setting the set of states XD as an empty

36

set. In Step 2, we build Σo,s labeling each event of Σo with subscript s by using the

rename function R(σ), and then, we build the extended set of events Σe, which is

composed by all of the occurred and observed events. In Step 3, we create a FIFO

queue named F and set its first element as the initial state of D. In Step 4, we enter

a routine where we will analyze all possible event occurrences and event successful

observations, that may lead to the creation of new transitions and states. The states

in automaton D are named after the observed sequences that reaches them whose

event observations have not been released yet, for example: if state xi is reached by

sequence ac, then xi = ac, and; if a state xj is reached by sequence accs, then the

state reached by this sequence will be xj = aν. Note that we will repeat Step 4

until the queue F is empty. In Step 4.1 we take the first state u of the queue F

and check, in Step 4.2, whether it is the initial state or not. If we are analyzing

the initial state, then we proceed to Step 4.2.1, where, for each observable event

σ ∈ Σo, we create a state x̃D = σ and also the transition function fD(ν, σ) = σ, and

then, we add these states, represented as x̃D, to the queue F . In Step 4.2.2, we add

the analyzed state u to the set of states XD, and then, in Step 4.2.3, we remove the

analyzed state u from the queue F . If the current state u, which we are analyzing,

is not the initial state, we proceed to Step 4.2.4, where we measure the length of

the sequence that reaches u, ` = |u|, and then, we create a set whose elements are

the positive integers smaller or equal to `, i.e., I` = {1, 2, . . . , `}. In Step 4.2.5, we

denote u as a sequence of events indexed with ascending numbers, u = σ1σ2 . . . σ`,

and then, we create a set Iν containing all integers representing the order the “blank

space” ν has appeared in u = σ1σ2 . . . σn. In Step 4.2.6, we create the set I`\ν as

the set difference between I` and Iν , i.e., I`\ν = I` \ Iν , representing all indexed

numbers of events that still have to be observed. In Step 4.2.7, which concerns

the event occurrences with respect to their maximum delay value, we create new

states x̃D = uσ and transition functions fD(u, σ) = uσ for every observable event

σ ∈ Σo, as long as the number of allowed delay of each element of u, events yet

to be observed, has not surpassed its maximum value, |σyσy+1 . . . σ`| ≤ kmaxσy , and

37

a

ν

r caa

ar ac abaν

b bb

bcbrba bν

a

a

a

b

b

b

cc

r

rr

rs

rs

rs cs

cs

bs

bs

bs

bs

as

as

as

as

as bs

c

cs

as bs

bsas

Figure 3.3: Automaton D.

so, if x̃D is defined, we add it to the queue F . In Step 4.2.8, we deal with the

successful event observations, and, for each observed event σs ∈ Σo,s, we create the

set Y containing all index numbers of the elements of u which corresponds to the

occurrence of σy, i.e., σy = R−1(σs), and so, if this set is not empty, Y 6= ∅, then

we take the least element of Y , ŷ = min(Y) and then replace the first appearance

of event σy, which is denoted as σŷ, with the “blank space” ν. After that, we erase

all elements ν of u which are not preceded by any event and set it as new state, i.e.,

we set x̃D = cut(rep(u, ŷ)). We also define the transition fD(u, σs) = x̃D and add

x̃D to F if it has neither been analyzed nor it already belongs to F . In Step 4.2.9,

we add u to the set of states XD and, in Step 4.2.10, we remove u from the queue

F . Finally, in Step 5 we compute the set of active events of automaton D.

Note that all elements of the queue F are states yet to be analyzed, while the

elements of the set XD are states which have already been through Algorithm 3.1

as the head element u, i.e., they already were analyzed.

Example 3.5 Given Σo = {a, b, c, r}, and kmax = [kmaxa , kmaxb , kmaxc , kmaxr] = [1, 1, 0, 0],

we will now build automaton D, whose state transition diagram is depicted in Fig-

ure 3.3, following along Algorithm 3.1. In Step 1, we create the initial state

x0,D = ν and set XD = ∅. In Step 2, we set Σo,s = R(Σo) = {as, bs, cs, rs} and

Σe = Σo ∪ Σo,s = {a, as, b, bs, c, cs, r, rs}. In Step 3, we create the queue F = [ν].

In Step 4, we start building D from its initial state ν (u = ν), and, since no event

has occurred yet, we create states for all possible event occurrences, i.e., events “a”,

38

“b”, “c” and “r” can occur, and so, states “a”, “b”, “c” and “r” are created with

their correspondent transitions; after that, we add these new states to the queue, i.e.,

F = [ν, a, b, c, d, r], update the state set to XD = {ν} and remove the head element

ν from the queue, as stated in Steps 4.2.1 – 4.2.3. The next element of the queue

F is state “a” (u = a), therefore, we set ` = 1, I` = {1}, Iν = ∅, I`\ν = {1} in

Steps 4.2.4 – 4.2.6; since |a| ≤ kmaxa = 1, all events are enabled to occur in state

“a”, and, thus, in Step 4.2.7, states “aa”, “ab”, “ac” and “ar” are created in

D and added to the queue F = [a, b, c, d, r, aa, ab, ac, ar]; in Step 4.2.8, we have

one iteration for as only, where we set Y = {1}, ŷ = 1 and add the transition

fD(a, as) = cut(rep(a, 1)) = cut(ν) = ν to D. We set XD = {ν, a} and remove the

head element, state “a”, from queue F in Steps 4.2.9 and 4.2.10, respectively.

We carry out this process for all states in queue F until it becomes empty.

Notice that, when we analyze state “ab” (u = ab), we have that |ab| = 2 � kmaxa =

1, thus, no states are created in Step 4.2.7, and so, we proceed to Step 4.2.8,

where we set σs = as, and, hence, we have that Y = {1}, ŷ = 1 and transition

fD(ab, as) = cut(rep(ab, 1)) = cut(νb) = b is added to D; in the second itera-

tion, where σs = bs, we set Y = {2}, ŷ = 2 and add the transition fD(ab, bs) =

cut(rep(ab, 2)) = cut(aν) = aν and the corresponding state x̃D = aν to automaton

D.

3.3.2 An Algorithm for Opacity Enforcement Checking

Now that the construction of automaton D has been explained, we will introduce

the first algorithm related to the opacity-enforcement strategy proposed here.

Given the observer automaton Gobs, a secret state set Xs and a step delay con-

figuration SD, this algorithm investigates whether CSO can be enforced or not and

also realizes the Opacity-Enforcer automaton Roe, as follows.

Algorithm 3.2 Opacity enforcement checking

Input: Gobs, Xs, SD.

39

Output: (True, Roe) or False.

Step 1. Set Gsys = (Xsys,Σo, fsys,Γsys, x0,sys) = Gobs

Step 2. Set Gint = (Xsys, R(Σo), fint,Γint, x0,sys), where fint(x, σs) = fsys(x, σ) and

Γint(x) = R(Γsys(x))

Step 3. Construct automaton D = (XD,Σe, fD,ΓD, x0,D) as in Algorithm 3.1 using

the property SD as input

Step 4. Construct V := Gsys||D||Gint = (XV ,Σe, fV ,ΓV , x0,V)

Step 5. For each xV = (xsys, xD, xint) ∈ XV :

(i) If xint ∈ 2Xs, then: delete xV , set V = Ac(V) and start Step 5 again

(ii) If xD 6= x0,D and ΓV (xV) = ∅, then: delete xV , set V = Ac(V) and start

Step 5 again

(iii) If [Γsys(xsys) ∩ ΓD(xD)] \ ΓV (xV) 6= ∅, then: delete xV , set V = Ac(V)

and start Step 5 again

Step 6. For each xV ∈ XV :

Step 6.1. If ΓV (xV)∩Σs 6= ∅, then remove all events σ ∈ Σe \Σs from it and

set V = Ac(V)

Step 7. Set Vobs = Obs(V,Σo)

Step 8. If L(Vobs) = L(Gsys), then set Roe = (XR,Σe, fR,ΓR, x0,R) = V and return

(True, Roe), else return False

In Step 1 of Algorithm 3.2, automaton Gsys, which models the observable event

occurrence in the system, is computed being equal to the observer of automaton G

with respect to Σo. In Step 2, automaton Gint that models the Intruder’s state

estimates, is computed as a copy of Gsys but renaming the events with subscript s.

40

Step 3 computes automaton D with the current configuration of SD as proposed

in [29]. Note that automaton D models every possible change of event order with

respect to each channel delay. In Step 4, automaton V is computed as the paral-

lel composition of automata Gsys, D and Gint. Given that D has all the possible

event occurrences and all changes in the order of its observations with respect to

the Opacity-Enforcer property, the first intersection will synchronize only sequences

such that its order of occurrence belong to L(Gsys) and the second parallel compo-

sition erases the sequences whose changes in the order of event observation do not

belong to L(Gint), thereafter only sequences sD such that Pe,o(sD) ∈ L(Gsys) and

Pe,s(sD) ∈ L(Gint) will remain. It is important to note that the states of V , written

as (xsys, xD, xint), and of the automata constructed from V contain, respectively,

information about the current state in the plant, the events that are held by the

Opacity-Enforcer and Intruder’s state estimate.

Step 5 removes from V the undesirable behaviors caused by the shuffling of event

occurrences and observations by removing state xrem = (xsys, xD, xint) of automaton

V , that satisfies at least one of the following conditions: (i) its third element,

correspondent states in automaton Gint, which can also be interpreted as the state

estimated by the intruder, belongs to the set of secret states of automaton Gobs,

i.e., xint ∈ Xs,obs; (ii) its active event set is empty while its second element (events

that have yet to be observed) is different from ν, i.e., ΓV ((xsys, xD, xint)) = ∅ and

xD 6= ν, where x0,D = ν and ν represents “no event to be observed”; (iii) its active

event set is different from that of its first element (correspondent state in automaton

Gsys), i.e., (ΓD(xD) ∩ Γsys(xsys)) \ ΓV ((xsys, xD, xint)) 6= ∅, meaning that any event

σ ∈ Σo that could occur in xsys was wrongly inhibited in xrem even though further

delays of events were allowed in automaton D. These steps intend to: (i) prevent

a genuine or misleading estimation of secret states set, (ii) prevent the existence

of states that have some events yet to be observed but with no successors (further

possible events success of observation in its second element would not be inside the

language generated by automaton Gint or would lead to already removed states) and

41

(iii) prevent the existence of states which some event occurrence in Σo that has been

inhibited by previously removed states. Note that Step 5 is repeated until no state

is deleted and the accessible part operation is done whenever a state is removed.

The strategy of shuffling event occurrences with their observations is likely to

leave V with decision conflicts, denoting that a state has events of Σo and Σs si-

multaneously in its active event set. When that occurs, the Opacity-Enforcer must

either wait for the arrival of an event occurrence or release an event observation.

These decision conflicts are removed in Step 6, since for every state xV of V , that

has some observation event σs ∈ Σs in its active event set, all transitions associated

with events σ /∈ Σs departing from it will be deleted and in the sequel the accessible

part operation over V is done. The idea behind this “cleaning” step is associated

with the fact that the Opacity-Enforcer must release an observation whenever it

is possible. In Step 7 the automaton Vobs is computed as the observer of V with

respect to Σo in order for the language generated by automaton Vobs to be compared

with the language generated by automaton Gsys in Step 8. This language com-

parison ensures that the Opacity-Enforcer model, given by automaton V , does not

constrain the behavior of the system. If L(Vobs) = L(Gsys), then Step 8 computes

the realization of Opacity-Enforcer automaton Roe = V . Note that automaton Roe

records every event occurrence and release event observations so as that the Intruder

is not able to estimate any secret state of Gobs. In addition, Step 8 returns (True,

Roe), meaning that the opacity-enforcement can be done with the current SD. On

the other hand, if L(Vobs) 6= L(Gsys), then Step 8 returns False, showing that the

current SD does not allow the system to be CSO enforced.

We now will prove Algorithm 3.2 correctness. We start with the following result.

Lemma 3.1 The projection over the set of observable events of the language gener-

ated by automaton V , built in Step 4 of Algorithm 3.2, is the same as the language

generated by automaton Gobs, i.e., Pe,o(L(V)) = Lobs.

Proof: Given V = Gsys||D||Gint, let us deal with states xV = (xsys, xD, xint) ∈

XV in automaton D. We know that the state transitions in automaton Gint are

42

driven by events σs ∈ Σs, thus, no matter which component xsys the parallel com-

position is in, all events σ ∈ Σo are eligible to occur in xV . With respect to the

states of automaton D, we can say that there will exist two types of state: states

where all events σ ∈ Σo are eligible to occur; and states where no occurrence events

are defined, thus, only events σs ∈ Σs may occur in this type of state. Hence, no

sequence of Gsys will be harmed while synchronizing it with a sequence of D, since

if the component xD represents a state of the former case, all events σ ∈ Σo are

eligible to occur, and; if it represents one of the latter case, only events σs ∈ Σs are

able to occur and will not harm any sequence of Gsys with respect to the occurrence

behavior. Summarizing the presented facts, in a state xV = (xsys, xD, xint) ∈ XV ,

either all events σ ∈ Σo defined in xsys are able to occur, since they are eligible in

both components, xD and xint, or only event σs ∈ Σs are eligible to occur, however,

their occurrence will eventually lead V to a state where its components fit the former

case, i.e., all σ defined in xsys may occur. Thus, while constructing V , the sequences

of Gsys were extended but not harmed, hence, we have that Pe,o(L(V)) = L(Gobs).

Remark 3.1 Given Pe,s : Σ∗e → Σ∗o,s, the opacity enforcement function OE can be

extracted from the Opacity-Enforcer automaton Roe = (XR,Σe, fR,ΓR, x0,R), which

realizes OE(se), as follows: OE(se) = Pe,s(ΓR(fR(xo,R, se))).

We now propose the following necessary and sufficient condition for CSO en-

forcement by changes in the order of event observations.

Theorem 3.2 The system modeled by automaton G = (X,Σ, f,Γ, x0) is CSO en-

forceable through changes in the order of event observations with respect to a ob-

servable event set Σo ⊆ Σ, a set of secret states Xs ⊆ X and a Opacity-Enforcer

bound SD = {(σ1, k1), (σ2, k2), . . . , (σn, kn)} if and only if the language generated by

the verifier Vobs and language generated by the automaton Gsys are the same, i.e.,

L(Vobs) = L(Gsys), as in Algorithm 3.2.

Proof: Let us consider Pe,o : Σ∗e → Σ∗o and Pe,s : Σ∗e → Σ∗o,s.

43

(⇒) If L(Vobs) 6= L(Gsys)⇒ Pe,o(L(V)) 6= Lobs, since L(Vobs) = L(Obs(V,Σo)) =

Pe,o(L(V)) and L(Gsys) = L(Gobs) = Lobs. The sentence Pe,o(L(V)) 6= Lobs means

that ∃st ∈ Lobs and @se ∈ L(V) : Pe,o(se) = st, therefore, ∃s ∈ Lobs,∃t ∈

Lobs/s,∀n ∈ Z+,∀u ∈ Lobs/st : |u| = n,@se ∈ L(V) : Pe,o(se) = stu, since the

language generated by automata is prefix-closed. If fobs(x0,obs, s) ∈ Xs,obs, then we

have that ∃s ∈ Lobs : fobs(x0,obs, s) ∈ Xs,obs,∃t ∈ Lobs/s,∀n ∈ Z+,∀u ∈ Lobs/st :

|u| = n,@se ∈ L(V) : Pe,o(se) = stu, which implies the negation of Definition 3.4,

therefore, the system is not enforceable through changes in the order of event ob-

servations with respect to Σo, Xs and SD. The assumption of s not reaching a

secret state, i.e., fobs(x0,obs, s) ∈ Xobs \Xs,obs, is an absurd, since, from Lemma 3.1,

the observable language generated by both automata, V and Gobs, were originally

identical and, if the sequence st had never passed through any secret state of the

observer, it means that Algorithm 3.2 had never shuffled its event observations. The

case where fobs(x0,obs, st) ∈ Xs,obs is equivalent to s′ = st and t′ = ε. Hence, the

system is not enforceable through changes in the order of event observations with

respect to Σo, Xs and SD.

(⇐) If the language generated by the verifier Vobs is the same as the language

generated by the automaton Gsys, which models the system, then, we have that:

Lobs = L(Gsys) = L(Vobs) = L(Obs(V,Σo)) = Pe,o(L(V)) (3.3)

Since automaton D generates sequences which are composed of the shuffling be-

tween event occurrences and observations, we have that ∀se ∈ L(D), R−1(Pe,s(se)) ∈

Pre(Sp(Pe,o(se))), and so, since automaton V is a subautomaton of D, ∀se ∈

L(V), R−1(Pe,s(se)) ∈ Pre(Sp(Pe,o(se))). Note that L(V) ⊆ L(Gsys||D||Gint) ⇒

∀se ∈ L(V), (Pe,o(se) ∈ L(Gsys)) ∧ (Pe,s(se) ∈ L(Gint)) ⇒ Pe,o(se), R
−1(Pe,s(se)) ∈

L(Gsys)⇒ Pe,o(se), R
−1(Pe,s(se)) ∈ Lobs.

The existence of some se ∈ L(V) : ∀σ ∈ Σo, N (se, σ) = N (se, R(σ)) is given

by the fact that the delays are bounded, so eventually the second component of

xV ∈ XV will be ν and by condition (ii) of Step 5 of Algorithm 3.2, where all

44

blocking states whose second component is not null were removed. Thus, ∀s :

fobs(x0,obs, s) ∈ Xs,obs, ∀t ∈ Lobs/s, ∃n ∈ Z+ and ∃u ∈ Lobs/st : |u| = n, ∃se ∈

L(V) : (Pe,o(se) = stu)∧ (N (se, σ) = N (se, R(σ)),∀σ ∈ Σo). Note that if Pe,o(se) =

stu and N (se, σ) = N (se, R(σ)), ∀σ ∈ Σo holds, then it means that each event of

stu had its observation released in a shuffled order by the Opacity-Enforcer, thus,

R−1(Pe,s(se)) ∈ Sp(stu); the sentence R−1(Pe,s(se)) ∈ Lobs also holds, since Pe,s(se) ∈

L(Gint) ⇒ Pe,s(se) ∈ R(L(Gsys)) = R(Lobs), therefore, R−1(Pe,s(se)) ∈ Sp(stu) ∩

Lobs. We can also affirm that ∀se ∈ L(V), fobs(x0,obs, R
−1(Pe,s(se))) /∈ 2Xs ⇒ ∀se ∈

L(V), fobs(x0,obs, R
−1(Pe,s(se))) ∈ Xobs\Xs,obs, due to (i) condition in Step 5. Thus

∀s : fobs(x0,obs, s) ∈ Xs,obs, ∀t ∈ Lobs/s, ∃n ∈ Z+ and ∃u ∈ Lobs/st : |u| = n, ∃se ∈

L(V) : (R−1(Pe,s(se)) ∈ Sp(stu)∩Lobs)∧ (∀w ∈ Pre(R−1(Pe,s(se))), fobs(x0,obs, w) ∈

Xobs \ Xs,obs). Now, by setting v = R−1(Pe,s(se)), we can write the statement as

∀s : fobs(x0,obs, s) ∈ Xs,obs, ∀t ∈ Lobs/s, ∃n ∈ Z+, ∃u ∈ Lobs/st : |u| = n, ∃v ∈

Sp(stu) ∩ Lobs : fobs(x0,obs, w) ∈ Xobs \ Xs,obs, ∀w ∈ Pre(v), which implies that,

from Definition 3.4, the system is enforceable through changes in the order of event

observations with respect to Σo, Xs and SD.

According to theorem 3.2, we can enforce CSO through changes in the order

of event observations with respect to Σo, Xs and SD if and only if Algorithm 3.2

returns True.

3.3.3 An Algorithm for Finding Minimal Delay Bounds

Finding a feasible delay bound SD for the system to be CSO enforced is a hard

task, since either the delay bounds will be not enough to enforce CSO or they will

be unnecessarily large. In order to ease the search for a minimal feasible SD, the

following algorithm finds, given upper bounds on the delays for each event. The

algorithm returns Failure, if it is not possible to enforce-opacity with the current

constraints.

Algorithm 3.3 Optimization of step delays

45

Input: G, Σo, Xs, k
max = [kmax1 , . . . , kmaxn].

Output: SD = {(σ1, k
min
1), (σ2, k

min
2), . . . , (σn, k

min
n)} or Failure.

Step 1. Construct Gobs = Obs(G,Σo).

Step 2. Create a list k = [k1, . . . , kn]

Step 3. Set ki = 0 for i = 1, . . . , n

Step 4. Set SD = {(σ1, k1), (σ2, k2), . . . , (σn, kn)}

Step 5. If Xobs ∩ 2Xs = ∅, then return SD, else:

Step 5.1. While Algorithm 3.2 returns False and ki 6= kmaxi , i = 1, . . . , n, do:

Step 5.1.1. For i = 1, 2, . . . , n:

Step 5.1.1.1. If ki < kmaxi , then set SD = {(σ1, k1), . . . , (σi, ki +

1), . . . , (σn, kn)}

Step 6. If Algorithm 3.2 returns True, then:

Step 6.1. For i = 1, 2, . . . , n:

Step 6.1.1. While Algorithm 3.2 returns True and ki ≥ 0, set SD =

{. . . , (σi, ki − 1), . . . }

Step 6.1.2. Set SD = {. . . , (σi, ki + 1), . . . }

Else, return Failure, opacity cannot be enforced with SD = {(σ1, k
max
1),

(σ2, k
max
2), . . . , (σn, k

max
n)}

Step 7. Return SD

In Step 1 of Algorithm 3.3, we compute the observer Gobs with respect to

automaton G and Σo. In Step 2 we create a list of delay k = [k1, k2, . . . , kn]

and set all of its values to 0 in Step 3. In Step 4 we set the bound delay SD by

46

merging the informations from Σo and from k. In Step 5, we check if the system

is not already opaque by verifying if Xobs ∩ 2Xs = ∅. If it is already opaque, then

return SD = {(σ1, 0), . . . , (σn, 0)}, which means that G is CSO. On the other hand,

if G is not CSO, then Algorithm 3.3 proceeds to a loop where it searches for a SD

such that the system can be CSO enforced through changes in the order of event

observations. That loop works as follows: we check if opacity can be enforced with

the current step delay configuration SD running Algorithm 3.2 and if the answer is

negative, each ki is increased by 1, keeping in mind that if ki = kmaxi it will not be

increased. Step 5.1 ends when either opacity-enforcement is feasible with a given

SD or k has reached its upper bound ki = kmaxi ,∀i = 1, . . . , n. Step 6 tries to

find a minimal solution by checking the minimum value of each ki such that opacity

remains enforceable. If each ki has reached its maximum value, i.e., k = kmax,

and Algorithm 3.2 did not return True, it means that the system cannot be CSO

enforced, hence, Algorithm 3.3 returns False and implies that the current maximum

delays are not enough to enforce CSO. If Algorithm 3.2 has returned True, then

Step 6 starts with k1 and decreases its value by 1 unit until either CSO can no

longer be enforced (Algorithm 3.2 returns False) or k1 has reached a negative value;

in the latter case, it sets that k1 to the previous value by adding 1 to it. Then Step 6

carries out this same procedure for elements k2, k3, . . . , kn Note that in Step 6

we chose ki in the ascending order to find a minimum solution but other solutions

can be found depending on the order that ki are chosen. Finally, Step 7 returns

a minimum step delay configuration SD such that G is CSO enforced by changing

the order of event observation.

Remark 3.2 Note that Algorithm 3.3 outputs one of many possible minimum so-

lutions for the delays [k1, k2, . . . , kn]. A way of obtaining the minimal solution is

to find all the minimum solutions and use some criteria to find which ones among

them are minimal, e.g. weights might be associated with each event delay and then

the configuration that has the least cumulated weight will be the minimal solution.

47

3.4 Example

To illustrate the opacity enforcing methodology proposed in the work, we use a

classic problem called mouse in a maze [31], where the maze is composed of several

rooms linked by one-way doors, which may or may not have sensors that fire when

something passes through it. In the original problem, besides the mouse, there is

also a cat, with both able to move freely throughout the rooms; supervisory control

theory is then used in order for the mouse to always avoid the cat by locking or

unlocking the doors, because if they meet, the cat will eat the mouse. Here, we

replace the cat with traps placed beforehand in some rooms, which can be remotely

activated by the Intruder. Both, the owner of the maze and the Intruder, know the

rooms where the traps have been placed, and will be named as “Secret Rooms”.

Our objective is, therefore, to prevent the Intruder from correctly estimating the

mouse position with respect to the secret rooms.

The maze and its sensors are depicted in Figure 3.4, and the automaton G

that models this system is shown in Figure 3.5. The room where the mouse is

initially placed will be the initial state, i.e., X0 = {0}, and the set of secret states is

Xs = {3, 5}. The set of events is partitioned as Σ = Σo∪̇Σuo, where Σo = {a, b, c, r}

and Σuo = {σuo} represent the signals issued by the sensors attached to some of

the doors (note that different sensors may issue the same signal) and the passage

through doors with no sensor at all, respectively. Since all doors are one-way and

the mouse can get stuck inside some rooms, two one-way tubes are placed outside

the maze to connect rooms 6 and 8 to the initial room 0. Note that, without the

actions taken by the Opacity-Enforcer, both, Receiver and Intruder, would estimate

the states as shown by the observer of G in Figure 3.6, and so, the Intruder can be

sure that the mouse has reached a secret state when it estimates states {3} or {5}.

We will now address the problem of designing an Opacity-Enforcer so as to

achieve current-state opacity. To this end, we set SD = {(a, 1), (b, 1), (c, 0), (r, 0)},

i.e., we will try to find a CSO enforcement policy that holds events a and b for at

most one step after their occurrences and releases events c and r immediately after

48

Figure 3.4: Mouse in a Maze problem structure.

0

1

86

5

4 3 2

10 9

7

a

r

r

b r

b

c

a a

c
b

cσuo

σuo

σuo

σuo

Figure 3.5: Automaton G that models the system dynamics.

{0, 1, 8}{2, 9, 10} a{3} rb{4, 5}{6}

{7}{5}

{9, 10} {8}

c

r

bc
c

b

a

c
r

{10}

a r

Figure 3.6: Observer automaton Gobs = Obs(G,Σo).

49

their occurrences. We will start with Algorithm 3.2, used to verify if an Opacity-

Enforcer with such bounds can be designed, as follows.

Example 3.6 Let us consider the system shown in Figure 3.4, which is modeled by

an automaton whose state transition diagram is depicted in Figure 3.5, where X0 =

{0}, Xs = {3, 5}, Σo = {a, b, c, r}, Σuo = {σuo} and Σ = Σo ∪ Σuo . In addition,

the observer automaton of G is illustrated in Figure 3.6 and we set the Opacity-

Enforcer bound property SD = {(a, 1), (b, 1), (c, 0), (r, 0)}. Starting Algorithm 3.2,

we firstly build automaton Gsys in Step 1, which is identical to Gobs. Following

Algorithm 3.2, we then build automaton Gint, which is identical to Gobs, except for

that subscript s has been added to all of its events, as stated in Step 2. In the

sequel, we construct automaton D with the Opacity-Enforcer bound property SD as

in Example 3.5.

In the next step, we compute automaton V = Gsys||D||Gint and then we proceed to

Step 5, where we delete undesirable states of V until there is no state that satisfies

conditions (i), (ii) nor (iii). Figure 3.7 shows part of automaton V in which the

painted states satisfy removal condition (i). After being deleted, the gridded states

will also be removed, since they will no longer be accessible and then Step 5 is

repeated. After the painted and gridded states are all removed, the diagonally hatched

state ({3}, r, {5}) will satisfy removal condition (ii) and then they will be removed,

as well, and, in the sequel, the accessible part operation will performed and Step 5

will be executed again. Finally, the diagonally hatched state ({2, 9, 10}, ν, {2, 9, 10})

will be removed because it satisfies removal condition (iii). After that, no states

satisfies the removal conditions, and thus, Algorithm 3.2 proceeds to the next steps.

In Step 6, we remove from automaton V decision conflicts between waiting the

arrival of an event occurrence or releasing an event observation, since, according

to the problem formulation, the Opacity-Enforcer must release an event immedi-

ately after its observation neither harms the state estimation nor leads to a secret

state estimate by the Intruder. Figure 3.8 shows the painted states ({8}, b, {7})

and ({9, 10}, a, {8}) in automaton V with decision conflicts, e.g, when the Opacity-

50

{0, 1, 8}, ν, {0, 1, 8}

{2, 9, 10}, a, {0, 1, 8}
a

r

{3}, ar, {0, 1, 8}
as

{3}, r, {2, 9, 10}
rs

b

c bs

cbs

{3}, ν, {3}

{4, 5}, b, {3}

{6}, bc, {3} {4, 5}, ν, {4, 5}

{6}, c, {4, 5}
cs

{6}, ν, {6}
a

{10}, a, {6}
as

{10}, ν, {10}

r

rs

{0, 1, 8}, r, {6}

{4, 5}, b, {2, 9, 10}
bs

{4, 5}, ν, {5}
c

{6}, c, {5}

{5}, b, {2, 9, 10}
bs

{5}, ν, {5}

c

c

.
. . .

. . .

{6}, bc, {2, 9, 10} bs

. . .

c

.

c

{2, 9, 10}, ν, {2, 9, 10}. . .
. . .

as

r

Figure 3.7: Part of V that shows undesirable states.

Enforcer is in state ({8}, b, {7}), it can either wait for events a or r to occur, or

it can release the observation bs. These decision conflicts are erased in Step 6.1

when all transitions that does not have an event σs ∈ Σo,s are removed from states

({8}, b, {7}) and ({9, 10}, a, {8}). As a consequence of those transitions removal, the

hatched states will no longer be accessible and then they will be deleted.

The computation of the observer Vobs of automaton V with respect to Σo, Vobs =

Obs(V,Σo) is done in Step 7 and the comparison whether L(Vobs) = L(Gsys) is

performed in Step 8. As soon as the observer Vobs of the automaton V is done, it

can be seen that both Vobs and Gsys generate the same language, thus, Algorithm 3.2

returns True about the system G being opacity-enforceable through changes in the

order of event observations with respect to its observable event set Σo = {a, b, c, r}

and its step delays bound SD = {(a, 1), (b, 1), (c, 0), (r, 0)} and also returns the

realization of the Opacity-Enforcer automaton Roe as shown in Figure 3.9, given by

automaton V after removing the decision conflicts.

51

{7}, ν, {7}

{8}, b, {7}

{8}, ν, {8}

{0, 1, 8}, br, {7}

{0, 1, 8}, r, {8}

{9, 10}, ba, {7}

{9, 10}, a, {8}

b

bs

a r

a r

bs bs

. . .

. . .

. . .

r

rs
{9, 10}, ν, {9, 10} {7}, ac, {8}

{7}, c, {9, 10}

as c

cas

cs
cs

6

Figure 3.8: Part of V that shows decision conflicts.

{0, 1, 8}, ν, {0, 1, 8}{2, 9, 10}, a, {0, 1, 8}

{3}, ar, {0, 1, 8}

{3}, aν, {0, 1, 8}

{3}, ν, {2, 9, 10}

{4, 5}, b, {2, 9, 10}

{7}, ac, {0, 1, 8}

{7}, c, {2, 9, 10}

{7}, ν, {7}

{8}, b, {7}

{8}, ν, {8}{9, 10}, a, {8}

{9, 10}, ν, {9, 10}

{7}, c, {9, 10}

{0, 1, 8}, r, {8}

{5}, ab, {0, 1, 8}

{5}, b, {2, 9, 10}

{6}, bc, {2, 9, 10}

{6}, bν, {7}

{6}, ν, {8} {10}, a, {8}

{10}, ν, {9, 10}

{0, 1, 8}, r, {0, 1, 8}
r

rs

ac

as

cs

b

bs

r

rs
a

as

c

cs

b

as

c

cs

bs
r a

as

r

rs

as

bc

Figure 3.9: Automaton Roe that realizes the opacity enforcement strategy.

52

It is important to emphasize the importance of language inclusion comparison

between automaton Vobs and Gsys because, as shown throughout Example 3.6, Al-

gorithm 3.2 shuffles all the possibilities of events occurrences and observations and

then prunes all the unrealistic or undesirable possible changes in the order of event

observation with respect to the bound of the Opacity-Enforcer. Note that if the

upper bound of the Opacity-Enforcer is not enough to enforce opacity, eventually

it will not release an event signal (every possible changes in the order of event ob-

servation would not guarantee opacity). In addition, these branches will be pruned,

since holding an event forever is not plausible, therefore L(Vobs) 6= L(Gsys).

Example 3.7 Regarding Algorithm 3.3, let us input the same G, Σo, Xs used

in Example 3.6 and set kmax = [2, 2, 2, 0], then Algorithm 3.3 will build the ob-

server of automaton G, shown in Figure 3.6, in Step 1, create a list k and set

k = [0, 0, 0, 0] in Step 2 and Step 3, respectively. Then, it will set SD =

{(a, k1), (b, k2), (c, k3), (r, k4)} = {(a, 0), (b, 0), (c, 0), (r, 0)} in Step 4. In Step

5, since Xobs ∩ 2Xs = {{3}, {5}}, we proceed to Step 5.1, where we will run

Algorithm 3.2 and it will return False, thus increasing the step delays to SD =

{(a, 1), (b, 1), (c, 1), (r, 0)}. Note that k4 has not increased because it has already

reached its maximum value kmax4 = 0. We repeat Step 5 with the updated SD

Algorithm 3.2 returns True, allowing Algorithm 3.3 to proceed to Step 6, where it

tries to minimize k. Firstly, Step 6.1.1 targets k1 and Algorithm 3.2 returns True,

then we decrease k1 setting SD = {(a, 0), (b, 1), (c, 1), (r, 0)}. The second time we

run Step 6.1.1, it still targets k1 but Algorithm 3.2 returns False, then it goes to

Step 6.1.2, where we set SD = {(a, 1), (b, 1), (c, 1), (r, 0)} back and then Step

6.1 change its target to k2, repeating the whole process. Finally, Algorithm 3.3 will

return SD = {(a, 1), (b, 1), (c, 0), (r, 0)} in Step 7.

Remark 3.3 Note that automaton Roe, shown in Figure 3.9, keeps track of both

the system dynamics and the observation released to the Intruder. For example, if

G generates the sequence s = rab, then the mouse will be in the secret room 5, but

the Opacity-Enforcer releases events rs and as, holds b, then waits for event c to

53

Figure 3.10: Estimator Automaton E .

occur in order to release csbs, generating rsascsbs; thus the Intruder estimates the

mouse current position as in rooms 2, 9 or 10 while the mouse is actually in room 5.

Note that, since the receiver also has the knowledge on the OE dynamics, it will have

access to the current state of Roe, i.e., xoe = {{5}, b, {2, 9, 10}}, meaning that for

the receiver, the mouse is in room 5. This is a significant improvement over existing

opacity-enforcement methodologies, and suggests that there may exist an inverter

automaton that is capable to make possible the determination of the exact state of

the system by the receiver.

Notice that the automaton which models both, the estimation of an outsider

which knows about the opacity enforcer function and the estimation of the intruder,

is computed by building the observer automaton E = Obs(Roe,Σo,s) and renaming

its states according to each state estimation component. The following example

shows the Estimator Automaton E = (XE ,Σo,s, fE ,ΓE , x0,E) of the system presented

in Example 3.6.

Example 3.8 Let us consider the system presented in Example 3.6 and its Opacity-

Enforcer depicted in Figure 3.9. In order to build the estimator automaton E, after

we compute the observer of Roe, for each state of Obs(Roe,Σo,s), we: (i) merge all

xsys of xoe = {xsys, xD, xint} in the first element of xE ; (ii) discard the second element

xD, and; (iii) take xint as the second element of xE . For example, the initial state

of Obs(Roe,Σo,s) is composed of states ({0, 1, 8}, ν, {0, 1, 8}), ({0, 1, 8}, r, {0, 1, 8}),

({2, 9, 10}, a, {0, 1, 8}), ({5}, ab, {0, 1, 8}), ({7}, ac, {0, 1, 8}) and ({3}, ar, {0, 1, 8}),

54

Figure 3.11: Automaton G.

Figure 3.12: Opacity-Enforcer automaton of G.

thus, we set x0,E = ({0, 1, 8}∪{2, 9, 10}∪{5}∪{7}∪{3}, {0, 1, 8}) = ({0, 1, 2, 3, 5, 7, 8, 9, 10}, {0, 1, 8}).

Figure 3.10 shows the state transition graph of automaton E. Notice that, even

though the estimator automaton E has states whose elements represent the same

estimation, they cannot be merged, since their future behaviors are different.

The following example shows that the proposed algorithms cannot deal with

decision conflicts caused by |OE(se)| > 1.

Example 3.9 Let a system be modeled by the automaton G depicted in Figure 3.11,

and let Σ = Σo = {a, b, c}, Xs = {3} and SD = [(a, 1), (b, 0), (c, 0)]. Since Σ = Σo,

Gobs is also represented by the state transition diagram shown in Figure 3.11. The

Opacity-Enforcer automaton of G, synthesized by the proposed algorithms, is shown

in Figure 3.12. Note that both observation releases, as and cs, are allowed in state

({4}, ac, {0}), reached by the sequence se = ac, i.e., OE(ac) = {as, cs}.

Remark 3.4 The opacity enforcement strategy proposed throughout this work can

also be applied with a view to enforce LBO, ISO or IFO, since these notions can be

transformed to CSO, as presented by WU and LAFORTUNE [8].

55

Chapter 4

Conclusion and future works

We have presented in this work a new methodology for enforcing CSO of DES

modeled by automaton that leverages the possibility of delaying event occurrence

observation to make changes in its order of observation, misleading the intruder to

wrongly estimate that have either both secret and non-secret components or non-

secret components only.

The Opacity-Enforcer proposed in this work keeps track not only of the events

executed by the system but also of the release of their observation signals. Such

a feature can be regarded as an advance in opacity-enforcement strategies, since it

suggests that both opacity, from the Intruder’s point of view, and correct estimation,

from the Opacity-Enforcer’s point of view, may be achieved. As far as the authors

know, no previous works had dealt with the problem of achieving both opacity and

information transmission.

Future Works

The methodology proposed here can be enhanced by also allowing event erasure,

which could be done by applying the dilation operation proposed in [32] to automa-

ton D, where the intermittent loss of event observation will be seen as the event

eligibility to erasure.

Further researches can also explore this opacity-enforcement methodology in the

coordinated architecture context, where there are multiples channels and possibly

56

multiple Intruders trying to discover the secrets of the system.

In addition, the possibility of enforcing opacity on a system with secrets in the

perspective of the Intruder but keeping the estimation of some “goal states” not

dubious with respect to the receivers can also be explored as an extension to this

work.

57

Bibliography

[1] BRYANS, J. W., KOUTNY, M., RYAN, P. Y. “Modelling Opacity Using Petri

Nets”, Electronic Notes in Theoretical Computer Science, v. 121, n. Sup-

plement C, pp. 101–115, 2005. Proceedings of the 2nd International Work-

shop on Security Issues with Petri Nets and other Computational Models

(WISP 2004).

[2] JACOB, R., LESAGE, J.-J., FAURE, J.-M. “Overview of discrete event sys-

tems opacity: Models, validation, and quantification”, Annual Reviews in

Control, v. 41, pp. 135–146, 2016.

[3] LIN, F. “Opacity of discrete event systems and its applications”, Automatica,

v. 47, pp. 496–503, 2011.

[4] BADOUEL, E., BEDNARCZYK, M., BORZYSZKOWSKI, A., CAILLAUD,

B., DARONDEAU, P. “Concurrent secrets”, Discrete Event Dynamic

Systems: Theory and Applications, v. 17, n. 4, pp. 425–446, 2007.

[5] DUBREIL, J., DARONDEAU, P., MARCHAND, H. “Supervisory control for

opacity”, IEEE Transactions on Automatic Control, v. 55, n. 5, pp. 1089–

1100, 2010.

[6] SABOORI, A., HADJICOSTIS, C. N. “Notions of security and opacity in dis-

crete event systems”. In: 46th IEEE Conference on Decision and Control,

pp. 5056–5061, 2007.

[7] SABOORI, A., HADJICOSTIS, C. N. “Verification of initial-state opacity in

security applications of DES”. In: 9th International Workshop on Discrete

Event Systems (WODES), pp. 328–333, 2008.

[8] WU, Y.-C., LAFORTUNE, S. “Comparative analysis of related notions of opac-

ity in centralized and coordinated architectures”, Discrete Event Dynamic

Systems: Theory and Applications, v. 23, n. 3, pp. 307–339, 2013.

58

[9] SABOORI, A., HADJICOSTIS, C. N. “Verification of infinite-step opacity and

analysis of its complexity”, IFAC Proceedings Volumes, v. 42, n. 5, pp. 46–

51, 2009.

[10] CASSEZ, F. “The Dark Side of Timed Opacity”. In: Advances in Information

Security and Assurance: Third International Conference and Workshop,

ISA 2009, Seoul, Korea, June 25-27, 2009. Proceedings, pp. 21–30, Berlin,

Heidelberg, 2009. Springer Berlin Heidelberg.

[11] SABOORI, A., HADJICOSTIS, C. N. “Coverage analysis of mobile agent tra-

jectory via state-based opacity formulations”, Control Engineering Prac-

tice, v. 19, pp. 967–977, 2011.

[12] DUBREIL, J., JÉRON, T., MARCHAND, H. “Monitoring Confidentiality by

Diagnosis Techniques”, Proceedings of the European Control Conference,

pp. 2584–2589, 2009.

[13] SABOORI, A., HADJICOSTIS, C. N. “Verification of K-step opacity and

analysis of its complexity”, IEEE Transactions on Automation Science

and Engineering, v. 8, n. 3, pp. 549–559, 2011.

[14] YIN, X., LAFORTUNE, S. “On two-way observer and its application to the

verification of infinite-step and K-step opacity”. In: 13th International

Workshop on Discrete Event Systems (WODES), pp. 361–366, 2016.

[15] YIN, X., LAFORTUNE, S. “A new approach for the verification of infinite-

step and k-step opacity using two-way observers”, Automatica, v. 80,

pp. 162–171, 2017.

[16] YIN, X., LAFORTUNE, S. “A new approach for synthesizing opacity-enforcing

supervisors for partially-observed discrete-event systems”. In: American

Control Conference (ACC), pp. 377–383, 2015.

[17] WU, Y.-C., LAFORTUNE, S. “Synthesis of insertion functions for enforcement

of opacity security properties”, Automatica, v. 50, n. 5, pp. 1336–1348,

2014.

[18] WU, Y.-C., LAFORTUNE, S. “Synthesis of opacity-enforcing insertion func-

tions that can be publicly known”. In: IEEE 54th Annual Conference on

Decision and Control (CDC), pp. 3506–3513, 2015.

[19] WU, Y.-C., LAFORTUNE, S. “Synthesis of optimal insertion functions for

opacity enforcement”, IEEE Transactions on Automatic Control, v. 61,

n. 3, pp. 571–584, 2016.

59

[20] FALCONE, Y., MARCHAND, H. “Runtime enforcement of K-step opacity”.

In: IEEE 52nd Annual Conference on Decision and Control (CDC), pp.

7271–7278, 2013.

[21] FALCONE, Y., MARCHAND, H. “Enforcement and validation (at runtime)

of various notions of opacity”, Discrete Event Dynamic Systems: Theory

and Applications, v. 25, n. 4, pp. 531–570, 2015.

[22] SABOORI, A., HADJICOSTIS, C. N. “Opacity-enforcing supervisory strate-

gies for secure discrete event systems”. In: 47th IEEE Conference on

Decision and Control (CDC), pp. 889–894, 2008.

[23] CASSEZ, F., DUBREIL, J., MARCHAND, H. “Synthesis of opaque systems

with static and dynamic masks”, Formal Methods in System Design, v. 40,

n. 1, pp. 88–115, 2012.

[24] TONG, Y., LI, Z., SEATZU, C., GIUA, A. “Current-state opacity enforce-

ment in discrete event systems under incomparable observations”, Dis-

crete Event Dynamic Systems: Theory and Applications, pp. 1–22, 2017.

doi: 10.1007/s10626-017-0264-7.

[25] WU, Y.-C., RAMAN, V., RAWLINGS, B. C., LAFORTUNE, S., SESHIA,

S. A. “Synthesis of Obfuscation Policies to Ensure Privacy and Utility”,

Journal of Automated Reasoning, v. 60, n. 1, pp. 107–131, 2018.

[26] JI, Y., LAFORTUNE, S. “Enforcing Opacity by Publicly Known Edit Func-

tions”. In: 56th IEEE Conference on Decision and Control, pp. 377–383,

2017.

[27] KEROGLOU, C., LAFORTUNE, S. “Verification and Synthesis of Embedded

Insertion Functions for Opacity Enforcement”. In: 56th IEEE Conference

on Decision and Control, pp. 377–383, 2017.

[28] BEN-KALEFA, M., LIN, F. “Opaque superlanguages and sublanguages in

discrete event systems”. In: Proceedings of the 48th IEEE Conference

on Decision and Control/28th Chinese Control Conference, pp. 199–204,

2009.

[29] NUNES, C. E. V., MOREIRA, M. V., ALVES, M. V. S., CARVALHO, L. K.,

BASILIO, J. C. “Codiagnosability of networked discrete event systems

subject to communication delays and intermittent loss of observation”,

Discrete Event Dynamic Systems: Theory and Applications, pp. 1–32,

2018. doi: 10.1007/s10626-017-0265-6.

60

[30] CASSANDRAS, C. G., LAFORTUNE, S. Introduction to Discrete Events Sys-

tems. 2nd ed. New York, NY : USA, Springer, 2008.

[31] RAMADGE, P. J., WONHAM, W. M. “The control of discrete event systems”,

Proceedings of the IEEE, v. 77, n. 1, pp. 81–98, 1989.

[32] CARVALHO, L. K., BASILIO, J. C., MOREIRA, M. V. “Robust diagnosis

of discrete event systems against intermittent loss of observations”, Auto-

matica, v. 48, pp. 2068–2078, 2012.

61

	List of Figures
	Lista de Símbolos
	Introduction
	Background
	Discrete Event Systems
	Language
	Automaton

	Opacity

	Opacity-Enforcement methodology
	Problem Formulation
	The Opacity-Enforcement Strategy
	Algorithms
	Computation of automaton D
	An Algorithm for Opacity Enforcement Checking
	An Algorithm for Finding Minimal Delay Bounds

	Example

	Conclusion and future works
	Bibliography

