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Redes neurais artificiais, como o perceptron multicamada (MLP), têm sido cada

vez mais empregadas em várias aplicações. Recentemente, as redes neurais pro-

fundas (deep neural networks), especialmente as redes neurais convolutivas (CNN),

receberam atenção considerável devido à sua capacidade de extrair e representar

abstrações de alto ńıvel em conjuntos de dados. Esta dissertação descreve um sis-

tema de inspeção automático baseado em algoritmos de aprendizado profundo (deep

learning) e visão computacional para detecção de algas em dutos submarinos. O al-

goritmo proposto compreende uma rede CNN ou MLP, seguida de uma fase de

pós-processamento que opera em domı́nios espaciais e temporais, empregando agru-

pamento de posições de detecção vizinhas e um buffer das regiões de interseção ao

longo dos quadros. Os desempenhos de MLP, empregando diferentes descritores, e

os classificadores CNN são comparados em cenários do mundo real. Mostra-se que a

fase de pós-processamento diminui consideravelmente o número de falsos positivos,

resultando em uma taxa de acerto de 99,39%.
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Artificial neural networks, such as the multilayer perceptron (MLP), have been

increasingly employed in various applications. Recently, deep neural networks, spe-

cially convolutional neural networks (CNN), have received considerable attention

due to their ability to extract and represent high-level abstractions in data sets.

This work describes a vision inspection system based on deep learning and computer

vision algorithms for detection of algae in underwater pipelines. The proposed al-

gorithm comprises a CNN or a MLP network, followed by a post-processing stage

operating in spatial and temporal domains, employing clustering of neighboring de-

tection positions and a region interception framebuffer. The performances of MLP,

employing different descriptors, and CNN classifiers are compared in real-world sce-

narios. It is shown that the post-processing stage considerably decreases the number

of false positives, resulting in an accuracy rate of 99.39%.
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Chapter 1

Introduction

This chapter explains the motivation for this project, and it introduces the prob-

lem of classifier development for underwater pipeline inspection. The objectives,

contributions, and structure of this dissertation are outlined.

1.1 Problem Context

Underwater pipeline inspection has become increasingly challenging with the ex-

pansion of underwater field exploration [1], [2]. Automatic inspections are often

performed by Remotely Operated Vehicles (ROVs) and Autonomous Underwater

Vehicles (AUVs), which carry sensors and cameras and are handled either through

cable connections from the vehicle to the operators or through radio control [2], [3].

AUVs decrease the interaction between human and inspection procedure, which is

due to the generalization capacity that is expected from the type of system that is

proposed in this work.

An accurate and efficient inspection system can prevent leaks and environmental

problems. Often underwater pipelines accumulate sand and algae on their surfaces,

which can hide damages. Therefore, it is important that the inspection system

recognizes and notifies the presence of algae and sand [4], [5]. In particular, in

vision-based systems, algae present a large diversity of shapes, colors and textures

[6], which vary with different external conditions such as their constant movements

due to water flow caused by sea current and turbulence generated by ROVs [1].

Classic neural network techniques, such as the multilayer perceptron (MLP), are

strongly dependent on feature extraction methods. Recently, deep learning algo-

rithms have been developed to iteratively extract their own features from original

data. A recent deep learning technique, namely deep convolutional neural network

(CNN) [7], was applied in this work. The neural network architectures and param-

eters that result in optimal classifier performance are selected. MLP algorithms

employing different features, such as color information, wavelet coefficients statis-
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tics, local binary patterns (LBP), Hu moments, entropy and gray-level co-occurrence

matrix (GLCM), are also described. The results obtained using MLP and deep CNN

architectures are compared under various real-world scenarios.

This work presents artificial neural network (ANN) based algorithms developed

for the automatic detection of the presence of algae in underwater pipelines.

1.2 Project Motivation

In complex computer vision classification problems whose solutions traditionally

depend on feature extraction methods, which is the case of algae detection based

on texture analysis, deep learning techniques [8] have had a major impact over

the last ten years [9]. In conventional feature extraction methods, design choices

for feature extraction are made by experts. For those tasks, the experts usually

rely on previous studies, or on topic-specific knowledge, or both. Deep learning

methods, on the other hand, allow for automatic feature extraction. The classifying

systems thus developed do not require expert-defined features and, in addition to

that, consistently outperform conventional classifiers with respect to test accuracy,

test mean-squared error, and so forth.

1.3 Objectives

The main objective of this research is to develop a system that is able to detect the

presence of algae on the surface of subsea pipelines employing machine learning and

image processing techniques. More specifically, the sub-objectives that emerge from

main objective are:

• Generating a manually annotated image database from the underwater

pipeline inspection videos that are available;

• Designing feature extractors that lead to a suitable balance between processing

time and test classification accuracy;

• Making the classification system robust to different external conditions in

which pipelines are commonly found;

• Comparing multi-layer perceptron networks and convolutional neural networks

with respect to test classification accuracy;

• Designing post-processing algorithms to reduce false-positive classification ra-

tios.
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1.4 Contributions

In this work, we propose methods for training neural network classifiers for the algae

detection problem. Several different neural network models are designed using the

proposed methods, and these models are compared both objectively (with respect

to test classification accuracy) and subjectively (with respect to visually assessed

performance in non-annotated video segments). For multi-layer perceptron classi-

fiers, several feature extractors are designed, aiming at feature extraction methods

that lead to a low false-positive ratio. For both the multi-layer perceptron and the

convolutional neural network classifiers, a region-based post-processing algorithm

is designed. The results indicate that neural networks (multi-layer perceptron and

convolutional) achieve reasonable performance in the automatic inspection problem

of algae detection, even if the image is highly noisy and blurred. For neural network

training, we created a proprietary manually annotated algae image database, us-

ing proprietary pipeline inspection videos. Additional information about the algae

image database is provided in Appendix A.

1.5 Dissertation Outline

The remainder of this dissertation is organized as follows. We present theoretical

background of image processing for feature extraction in Chapter 2, and neural net-

work theoretical background in Chapter 3. In Chapter 4, we present conventional

feature extraction, as well as a post-processing algorithm. The post-processing al-

gorithm is based on spatial and temporal analyses, and it aims at improving false-

positive classification results. In Chapter 5, we present experimental results and

a comparison between MLP and CNN classification performances. Concluding re-

marks and a brief discussion about future work topics are given in Chapter 6. Ap-

pendix A lists samples from the Algae dataset, which is used in the experimental

performance assessment. Appendix B presents details about the libraries that are

used in the present work.

1.6 Related Works

Related algorithms regarding pattern recognition and image classification include

texture description, feature extraction, and machine learning techniques. In [10],

an LBP histogram selection approach for color texture classification was presented.

In [11], a rotation-invariant texture extraction technique using principal component

analysis (PCA) and dual-tree complex wavelet transform (DT-CWT) was proposed.

In [12], the authors suggested classification features based on the multi-scale wavelet

3



transform of the original image, or features based on a smooth cubic spline surface

computed from the original image. In [13], a comparison between curvelet and

wavelet texture features was presented. In [14], the authors carried out a compar-

ative study of texture detection and texture classification algorithms using Gabor

filters, Laws masks, ring/wedge filters, GLCM, and autoregressive image models.

In [15], the binary rotation invariant and noise-tolerant euclidean (BRINE) metric

feature was presented for multi-view face recognition. In [16], a method for plant

species identification is reported. The method is based on common flower features

such as color, texture, and shape, in addition to fractal dimension information.

In [17] and [18], the authors described other applications for machine learning,

such as bovine tuberculosis detection and pedestrian detection. Marchi and oth-

ers [19] present a deep recurrent neural network based on autoencoders applied

to acoustic novelty detection. Bergado [20] presents a master’s thesis about deep

learning applied to urban scene classification. In that dissertation, he tried different

conventional and deep neural network topologies in order to develop a recurrent con-

volutional neural network. Hafemann [21] presents a master’s thesis about texture

classification using deep CNNs.

Regarding underwater targets, Qin and others [22] used convolutional layers and

a linear SVM classifier for fish recognition. Villon and others [23] presented results

for coral reef fish detection and recognition in video sequences. They compared

conventional machine learning methods with deep learning. Cao and others [3]

proposed a feature extraction system, based on deep-learning techniques, using a

stacked autoencoder. Like [16], Lee and others [24] also work in the context of plant

classification. They used CNNs to learn unsupervised feature representations for 44

plant species.

Many works about CNNs (regularization, initialization, architecture selection,

and so on) were published in the last decade [9]. Srivastava and others [25] proposed

dropout, which is a novel regularization technique. Dropout is widely used in deep

learning nowadays, and it is easily applicable to deep CNN training. Ioffe and

others [26] introduced batch normalization, which is another important deep learning

tool, as it significantly mitigates internal covariate shift problems in the mini-batch

training mode. To save computational resources in deep neural network training,

new gradient-based optimization techniques have been published [27], [28], [29] and

are widely used nowadays.

To support video object tracking tasks, algorithms using different methods have

been proposed [30], [31], [32]: an image pre-processing and centroid-based method,

a method combining camshift and Kalman prediction, and a method combining

color analysis and Hu moments. Additional image pre-processing work related to

underwater image analysis was proposed by Yang and others [33].
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Chapter 2

Image Processing and Feature

Extraction

This chapter describes image processing techniques aimed to image enhancement

and feature extraction used in the machine learning classification task.

2.1 Image Processing

In this work image processing was employed to enhance image using several tech-

niques that provide more detailed information from images such as edge enhance-

ment, spatial filtering, background removal and color-based histogram equalization.

The purposes of employing these techniques are described below:

• Edge enhancement: In underwater inspection tasks commonly the captured

images are blurred and the shapes of the objects are missing and/or are con-

fused with the background due to the non-controllable environment. These set

of techniques are applied to recover the edges in the image and can be used as

a features extraction stage [34], [35];

• Spatial filtering: in order to help in the detection of objects, edge enhance-

ment does not always provide relevant information to generate features be-

cause background artifacts are enhanced as well. Spatial filtering removes

high gradients (intensity variations) throughout the image [35], [34];

• Color-based histogram equalization: Depending on the scenario, RGB color

domain is usually not the best option for image processing [35]. HSV color

domain is normally used to separate hue and saturation channels from light-

ness, and histogram equalization enhances color information in these channels,

distributing the color throughout the spectrum in order to reduce the influence

of lightness over images [35], [34], [36];
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• Background removal: Background usually becomes a problem when feature

extractor is based on texture or edges components [34], [36]. Simple segmen-

tation techniques, such as K-means, can be employed to remove these artifacts,

because only two clusters, the background and foreground image sections, are

necessary [35], [34], [36].

2.2 Features extraction

The feature extractor, also called descriptor, provides non-redundant information

with a smaller dimensionality size than the original input. When input data is too

large to be processed, the data representation can always be represented in smaller

dimension data, that is, it can be transformed into a reduced set called feature

vector. The selected features contain relevant information from original data and

this reduced representation can be used, instead of the complete initial data, to

perform certain machine learning tasks. In this work, the descriptor is mainly based

on extraction of texture, color and shape.

2.2.1 Color-based features

Color-based features are useful when input images contain high color variations or

the pixel values distribution is a wide Gaussian function (color histogram with a wide

color spectrum). This information needs to be interpreted as numbers and usually

statistical values are collected from histograms or even the histogram is used as the

feature vector [34].

2.2.2 Entropy-based features

Color or another spatial information are not directly manageable to compute the

feature vector. This is why statistical parameters are computed and commonly

used instead of the raw information. Mean, variance, skew and others are first-

order statistical parameters, entropy also measures the unpredictability of the state,

disorder or information in a determined group data. These parameters are employed

to collect information from color or spatial features of the image [34], [36].

2.2.3 Wavelets-based features

Wavelets are powerful and very useful techniques in image and signal processing.

They can be applied as texture extractor due to the fact that the wavelet property of

separating high and low frequencies contributes to the segmentation of the high and

low intensity variations in the pixels. In this work, Daubechies 2 wavelet (db2) was
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employed in the experiments due to its asymmetric and orthogonal properties [34],

[36]. Figure 2.1a depicts the complete filter bank decomposition employed for the

extraction of texture features, where I(x,y) is the input image to be decomposed by

wavelet filters H1 and H2. The outputs Sn,1, Sn,2, Sn,3 and Sn,4 represent the second

level decomposition of the input. If the input is the original image, the outputs will

be the second level decomposition of the image.

If the input is Sn,2 the outputs will correspond to a subset of the second level

decomposition of Sn,2 or the fourth level decomposition of the original image (using

only the Sn,2). This nested representation is shown in Figure 2.1b.

(a) (b)

Figure 2.1: Wavelet decomposition block. In (a), Basic wavelets filters bank block
for two-level-decomposition of the input, and in (b), the nested blocks to obtain the
four-level decomposition from image using the subband S2.

Useful information for this project was observed up to the third decomposition

level, black output images are obtained in upper levels for some subbands. A corre-

lation analysis was then employed to determined the most relevant subbands with

the best image representations [34], [36]. This analysis is detailed in Chapter 5,

which contains the simulation results.

2.2.4 Local Binary Patterns

Local binary patterns (LBP) was introduced in [37] and is widely used for texture

extraction due to its capability to describe compactly and efficiently the texture

information of the image. LBP is a translation, rotation and scaling invariant de-

scriptor. However, each one of these invariances adds extra computational cost to

the extractor, since different parameters, such as the spatial resolution operator, the

quantization of angular space and the method to determine the pattern, must be

set to obtain more robust features [34].
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LBP is obtained by comparing the center pixel of a window with its neighbors

and this pixel is replaced by a new computed number based on weighted binary

code. The basic LBP is shown in Eq. (2.1) where s(x) is a thresholding function

configured by the central point in the kernel expressed in Eq. (2.2). For example,

given a 3x3 kernel from a gray image, depicted in Figure 2.2a, its thresholded value

after applying Eq. (2.2) will be 101000012 and its weighted value for this binary

code are 1+0+0+0+0+32+0+128 = 161 calculated through Eq. (2.1). This result

will replace the center point in the current kernel, producing the matrix depicted in

Figure 2.2b, Local Binary Pattern is computed throughout the image to obtain a

LBP map. Finally, a histogram is obtained from the map LBP of the entire image,

which describes the texture [37], [34].

LBP =
∑
x∈[1,8]

s(x)2x−1 (2.1)

s(x) =

1, if Px > P

0, otherwise
(2.2)

127 200 20
35 100 107
0 95 100

(a)

127 200 20
35 161 107
0 95 100

(b)

Figure 2.2: 3x3 pixels window as kernel extracted from a grayscale image (a), to
obtain LBP output image (b).

The basic LBP code is complemented with two local measures, the contrast

and the variance, which can be obtained by different ways in order to compute the

pixel intensities, such as encoding by differences from 1s and 0s or computing the

four neighbor pixels in vertical and horizontal positions, aiming to reflect features

correlations as well as contrast [34].

In this work scale invariant is also considered, replacing x by x(i) in Eq. (2.1)

where x(i) is a function applied in order to consider points at greater distances from

the center point. This idea is expressed in Eq. (2.3) and the basic LBP is replaced

by LBP S showed in Eq. (2.4), where P and R are the number of points in the

circularly symmetric neighborhood and the radius of the circle, respectively [34],

[36].

x(i) =

x0 +Rcos(2πi
P

)

y0 +Rsin(2πi
P

)
(2.3)
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LBP S(P,R) =
∑
i∈[1,P ]

s(x(i))2i−1 (2.4)

2.2.5 Gray-Level Co-occurrence Matrix

The co-occurrence matrix is defined over an image and contains the distribution of

pixel values at a given offset. This statistical method is employed to analyze texture

considering spatial relationships of pixels. If the image being analyzed contains

only gray scale values, it is called Gray-Level Co-occurrence Matrix (GLCM). The

GLCM function characterizes the texture of an image by comprising information

of how often pairs of pixels occur in an image considering their specific values and

spatial relationship. However, this matrix commonly is not used as an entirely,

instead statistical measures are extracted from it to represent the information of

pixels relationship [38]; for this reason GLCM is considered a second-order statistical

features [34], [36].

2.2.6 Hu-moments-based

In mathematics, a moment is a specific quantitative measure of the shape of a

set of points, and an image moment is a particular weighted average of the pix-

els. Moments are useful to describe information from objects. For instance, the

area, centroid and orientation of a pixels group are moments and describe a layout

that contains global description of a shape with invariance properties in compact

representation without noise effects [34], [39].

Hu moments are translation, scale and rotation invariant feature and are com-

posed of only the seven parameters based on previous calculated moments such as

moment inertia around the image centroid and the invariant skew. Due to its robust-

ness to represent different shapes, Hu moments are widely used in image processing

and computer vision [40], [38], [41].
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Chapter 3

Artificial Neural Networks

This chapter deals with neural network theoretical background that is required for a

proper understanding of the methodology and results presented in this work. After

a brief introduction on machine learning basics, we address the following topics: gra-

dient optimization algorithms, multi-layer perceptrons (MLPs), deep convolutional

neural networks (CNNs), regularization, application of the basic backpropagation

algorithm to MLPs and CNNs, and, finally, initialization heuristics.

3.1 Machine Learning Basics

This section addresses fundamental machine learning concepts: algorithm types,

generalization issues, logistic regression, and softmax regression.

3.1.1 Types of Machine Learning Algorithms

Solving machine learning problems corresponds to mapping input events into output

decisions. The input events are also called patterns, and the respective correct

or desirable decisions are called targets. According to the availability of targets,

machine learning algorithms may be organized as follows [42], [43], [44]:

• Supervised learning: when a given input is referenced to a known target, the

training process is called supervised learning. Every input vector (event) is

mapped into an output vector, which may either represent one of several

classes, or represent a continuous approximation to a real function. The out-

put vectors are compared to target vectors during the training process, to

generate error signals for parameter optimization. After training is finished,

new inputs and new targets may be used for test performance assessment;

• Unsupervised learning: the inputs are not labeled (i.e. targets are not avail-

able), and the machine learning task is to label the data. The training proce-
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dure is often referred to as clustering;

• Reinforcement learning: in reinforcement learning, algorithms learn how to

act (generate outputs) in response to different situations (input events), as in

supervised learning. In reinforcement learning, however, the impact of the ac-

tions on an external environment is assessed, which generates feedback signals

that are also used in a closed-loop training process.

Machine learning tasks seek functions that approximate real vector distributions

(input vectors alone, or input and target vector joint distributions). If targets are

available and they correspond to two or more classes, then the machine learning

task corresponds to solving a classification problem. If the targets are scalar values

or vectors drawn from a continuous probability density function, then the machine

learning task corresponds to solving a regression problem [42], [43], [44], [45]. Figure

3.1 illustrates regression (top) and classification (bottom) problems, including three

solution types that are commonly found: underfit (left), good (center) and overfit

(right) solutions. Generalization issues are discussed next.

X1

X
2

Underfitting

Model

True

Points

X1

X
2

Good Generalization

Model

True

Points

(a) Regression

X1

X
2

Overfitting

Model

True

Points

X1

X
2

Underfitting

Group 1

Group 2
X1

X
2

Good Generalization

Group 1

Group 2

(b) Classification

X1

X
2

Overfitting

Group 1

Group 2

Figure 3.1: examples of regression (top) and classification (bottom) problems, in-
cluding three solution types that are commonly found: underfit (left), good (center)
and overfit (right) solutions.
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3.1.2 Generalization Issues

A machine learning system capacity relates, roughly, to the ability of achieving good

performance in the representation of data not previously seen [43]. The generaliza-

tion error is typically assessed through the application of the model to a test set

containing data samples that were not used for training. Although training and

test samples ideally correspond to information extracted from the same problem

domain, and are therefore identically distributed, the test samples may generate

incorrect outputs, depending on the learning model. The learning model estimates

the data distribution from which the training and test samples were drawn. If the

machine learning algorithm optimizes model parameters to reduce training error,

then a similar error is expected for the test samples. To know whether a machine

learning algorithm is performing well, one must pay attention to the training error,

which must be small, and to the difference between training and test (i.e. validation)

error, which must be small as well [8], [17]. Large training error or large difference

between training and validation errors correspond to undesirable situations, which

are described next:

• Underfitting : if the training error is large, then the model is not able to fit

the data correctly. A large training error usually occurs if the model is too

simple or if training is interrupted too early;

• Overfitting: a large difference between training and validation errors occurs if

the model is too complex or if the number of training iterations is excessive.

To avoid underfitting and overfitting related to insufficient or excessive training,

strategies to stop training at the right time have been developed. Early stopping

is useful for avoiding overfitting, and it also saves computer processing time. Early

stopping is usually based on the difference between training and validation errors,

or on the training error standard deviation, or on additional statistical properties of

the training and validation error curves [46], [47], [48], [8].

3.1.3 Logistic Regression

In supervised learning for regression, the objective function under optimization mea-

sures the average distance between outputs caused by input vectors x and the cor-

responding targets y. The function h(x) predicts the target vector y based on

input vector x. In linear regression, h(x) can be represented as in Eq. (3.1), where

θ is a parameter vector to be optimized, either manually or automatically. The

parametrized function hθ(x) is also referred to as the model hypothesis. Machine

learning algorithms automatically find a θ vector that is optimal, in the sense of
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Figure 3.2: Training and validation error curves indicating situations of underfitting,
overfitting, and adequate generalization.

making the model hypothesis as close as possible to the target y for every input

vector x. The objective function is also referred to as loss function or cost function.

A cost function example based on mean squared error (MSE) is shown in Eq. (3.2)

[48], [8]. In the present work, we will focus on loss function minimization algorithms

based on gradient descent.

hθ(x) =
∑
j

θjxj = θTx (3.1)

J(θ) =
1

2

∑
j

(hθ(x
j)− yj)2 =

1

2

∑
j

(θTxj − yj)2 (3.2)

Logistic regression, in contrast to linear regression, is often applied to discrete

target prediction. The logistic regression hypothesis can be thought of as the pos-

terior probability of a vector class, given an input vector. The expressions for the

probabilities of class “0” and class “1” in the binary classification case, which add

up to one, are shown in Eqs. (3.3), (3.4). The hypothesis hθ(x), in Eq. (3.3),
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corresponds to a sigmoidal function that is also known as logistic function. The

logistic regression loss function, which is shown in Eq. (3.5), corresponds to the

cross-entropy between hθ(x) and y.

P (y = 1|x) = hθ(x) =
1

1 + exp (θTx)
(3.3)

P (y = 0|x) = 1− hθ(x) (3.4)

J(θ) = −
∑
j

yjlog(hθ(x
j)) + (1− yj)log(1− hθ(x

j) (3.5)

To minimize J(θ), the gradient ∇θJ(θ) must be computed, which is shown in

scalar form in Eq. (3.6).

∂J(θ)

∂θi
=
∑
j

xji (hθ(x
j)− yj) (3.6)

3.1.4 Softmax Regression

Softmax regression may be thought of as the multi-class form of logistic regression

(i.e. classification with multiple-class targets). The hypothesis, which is shown in

Eq. (3.7), corresponds to the posterior probability P (y = n|x), for n = 1, 2, . . . , N ,

where N is the number of classes taken into account in the softmax regression.

As in the two-class logistic regression, the softmax regression loss function J(θ)

corresponds to the cross-entropy between hθ(x) and y, as shown in Eq. (3.8). The

derivative of J(θ) with respect to θ is shown in Eq. (3.9). The class probabilities,

which are shown in Eq. (3.10), add up to one. The minimization of J(θ) is based

on iterative optimization techniques [42] ,[43].

hθ(x
(i)) =

[ P (y = 0|x(i))

P (y = 1|x(i))

P (y = 2|x(i))

...

P (y = K|x(i))

]
=

1∑N
j=1 e

θ(j)Tx(i)

[ eθ
(0)Tx(i)

eθ
(1)Tx(i)

eθ
(2)Tx(i)

...

eθ
(N)Tx(i)

]
(3.7)

J(θ) = − 1

m

m∑
i=1

N∑
n=0

1
{

y(i) = n
}

logP (y(i) = n|x(i); θ)) (3.8)

∂J(θ)

∂θln
= −

m∑
j=1

x(i)(1
{
y(i) = n

}
− P (y(i) = n|x(i); θ)) (3.9)

P (y(i) = n|x(i); θ)) =
eθ

(k)Tx(i)∑K
l=1 e

θ(l)Tx(i)
(3.10)
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3.2 Gradient descent optimization algorithms

Gradient descent is one of the most popular algorithms for solving machine learning

optimization problems. The parameter θ in J(θ) is updated along the opposite

direction of ∇θJ(θ), as shown in Eq. (3.12). The learning rate parameter η controls

the amount of change applied to θ in each optimization iteration [49], [44], [50]. The

gradient computation in Eq. (3.11) is repeated for every input data vector (i.e. data

sample).

θt+1 = θt − η∇θJ(θ(t); x,y) (3.11)

• Batch mode: in batch mode, parameter update is defined by the error gradient

average over the entire training data set. If the training data set is large, which

is usually the case, parameter update takes a long time, if it is not infeasible

in terms of memory consumption. The presence of similar vectors within the

training data set renders batch mode computations highly redundant, which

leads to the waste of computational resources;

• Stochastic mode: in contrast to batch mode, parameters are updated for every

input vector x and respective target y. Parameter update is thus very fast,

and redundancy in gradient computation is reduced. However, updates are

highly variant because gradients computed from a single sample are usually

very different;

• Mini-batch mode: in mini-batch mode, parameter update is defined by the

error gradient average over a subset of the training data set. The subset is

usually small, with size ranging from around 50 to 256. The mini-batch mode

error convergence is more stable than the stochastic mode error convergence,

and the mini-batch parameter update is faster than the batch mode parameter

update.

For large datasets, basic gradient descent algorithms may become inefficient and

the training error may take a long time to converge. More sophisticated gradient

descent algorithms have been widely used. To make gradient and parameter update

expressions short, the assignment shown in Eq. (3.12) is considered in the following

sections. The gradient computed at the current time step is gt, and Eq. (3.12) is

used next to explain some of the most popular gradient descent algorithms [49], [44],

[50]:

gt ← ∇θtJ(θt; xt,yt) (3.12)
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• Momentum: Eqs. (3.13) and (3.14) show the momentum update expressions,

where γ is the momentum factor. It is usually set to a value around 0.9 [51],

[49]. Using momentum attenuates oscillations in the training loss function

curve (it further stabilizes gradient computations in the mini-batch mode),

and it effectively changes the update size when many gradient computations

yield parameter update along the same direction. The Nesterov momentum

[52], which is a popular momentum update expression, is a variant of the basic

momentum update expression;

vt = γvt−1 − ηgt (3.13)

θt+1 = θt + vt (3.14)

• Adagrad: the Adagrad algorithm [27] scales η individually for each parameter,

according to past gradient values, in order to speed up the converge of stochas-

tic gradient descent algorithms. Eq. (3.15) defines mt as an accumulator of

past gradients, from which updates with different step sizes are computed for

each parameter according to Eq. (3.16) [53], [27]. Details about the smoothing

factor ε are provided in a following discussion about the RMSprop algorithm;

mt = mt−1 + g2
t (3.15)

θt+1 = θt +
η

√
mt + ε

� gt (3.16)

• Adadelta: the Adadelta algorithm [18] is based on the Adagrad algorithm. It

uses an adaptive learning rate that comprises both the magnitude of recently

computed gradients and the magnitude of recent update steps. Adadelta ad-

dresses two drawbacks of Adagrad: the continuous decay of learning rates, and

the requirement of a manually adjusted global learning rate. Error minimiza-

tion remains effective after many updates have been done [54], [49];

• RMSprop: this algorithm corresponds to unpublished work, and it was intro-

duced by Geoffrey Hinton in Lecture 6e of his Coursera class [28], [49]. It uses

an adaptive learning rate, as in Adadelta. The mt accumulator is shown in Eq.

(3.17). It is computed using past gradients, as in Adagrad and in Adadelta,

but RMSprop uses a exponentially weighted moving average of past gradients.

Similarly to the momentum algorithm, E[g2]t is scaled by a momentum factor

γ, to adjust the step size, and then subtracted by the scaled squared gradient.

The parameter update rule is shown in Eq. (3.18). As the learning rate η is

adjusted by mt, the RMSprop running average reduces abrupt variations that
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may occur in the parameter update vector. The smoothing factor ε avoids

division by zero, and it is usually in the range from 10−9 to 10−6 [28], [55],

[49];

mt ← E[g2]t = γE[g2]t−1 − (1− γ)g2
t (3.17)

θt+1 = θt +
η

√
mt + ε

� gt (3.18)

• Adam: the adaptive moment estimation is one of the most popular optimiza-

tion algorithms for neural network training, because of its relatively fast con-

vergence to a local minimum close to the initialization point [29]. It combines

the RMSprop algorithm and the momentum algorithm using an exponentially

decaying average of past squared gradients. The gradient sequence first and

second-order moment estimates, which are usually referred to as the mean mt

and the uncentered variance vt, are shown in Eqs. (3.19) and (3.20). Usual

values for the β1 and β2 parameters are 0.9 and 0.999 [29], [49].

mt = β1mt−1 − (1− β1)gt (3.19)

vt = β2vt−1 + (1− β2)g2
t (3.20)

If β1 and β2 are close to 1, then mt and vt are biased toward zero, particularly

in initial iterations. The computed bias-corrected moment estimates are shown

in Eqs. (3.21) and (3.22). The parameter update expression is presented in

Eq. (3.23) [29], [49].

m̂t =
mt

1− βt1
(3.21)

v̂t =
vt

1− βt2
(3.22)

θt+1 = θt +
η√

v̂t + ε
� m̂t (3.23)

3.3 Multi-Layer Perceptron

This section briefly discusses the multi-layer perceptron (MLP), starting with the

McCulloch-Pitts neuron and the perceptron in Section 3.3.1, and finishing with the

MLP itself in Section 3.3.2.
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3.3.1 Perceptron

A perceptron is a simple mathematical processing unit inspired by the biological

neuron. Neural electrical signals are represented by numerical values. As these

electrical signals are modulated by the strengths of synaptic connections between

dendrites and axons, the perceptron computes a weighted sum of its input signals.

The value of the weighted sum is usually limited by an activation function that is

sigmoidal, or by a hyperbolic tangent function [56]. These operations are described

in Eq. (3.24), including a bias parameter b and the non-linear activation function ϕ.

This basic mathematical processing unit is also usually referred to as the McCulloch-

Pitts neuron. Figure 3.3 shows a single neuron with three inputs.

y = ϕ(
∑
i

wixi + b) (3.24)

A single neuron can only solve linearly separable binary classification problems.

Common examples of linearly separable classification problems are the “AND” and

“OR” logic functions. The McCulloch-Pitts neuron does not allow a solution for

non-linearly separable classification problems, unless its inputs have been previously

mapped into a representation in a different feature space [57]. A common example

of non-linearly separable classification problem is the “XOR” logic function.

x2 w2 Σ ϕ(.)

Activate
function

y

Output

x1 w1

Weights

x3 w3

Bias
b

Inputs

Figure 3.3: Artificial neuron.

3.3.2 Multilayer Perceptron

The multi-layer perceptron (MLP) is a feedforward neural network composed by

layers of perceptrons. It solves non-linearly separable classification problems. The

individual network nodes emulate biological neurons [58], and they are usually im-

plemented by perceptrons or by McCulloch-Pitts neurons. The MLP layers are

usually arranged along a forward direction, and so the network nodes form a graph

with no cycles. Each layer is fully connected to the previous one (i.e. any network

node receives input signals from all nodes in the previous layer). As weighted inputs
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are successively mapped by non-linear activation functions in successively layers, we

expect to obtain input representations that are increasingly better, in the sense of

solving the classification or regression task at hand. To effectively find those rep-

resentations, we optimize those weights for a specific problem using a training data

set and an error backpropagation algorithm [43], [44], [57].

The MLP last layer may have a single output node (for regression or binary

classification), or a number of output nodes equal to the number of classes (for

classification). In the layers between the input layer and the output layer, which

are also denoted as hidden layers, activation functions perform non-linear mapping,

thereby transforming input data into linearly separable data (in the case of classifica-

tion problems). Sigmoidal or hyperbolic tangent activation functions are commonly

used. Neurons at the same layer usually have the same type of activation function

[44], [57]. Other activation functions appear in the literature [59], [60], and Table

3.1 shows the activation functions that are used in the present work. A general MLP

architecture is depicted in Figure 3.4.

Activation Functions
Name Math expression Computational cost Curves

Linear x 1

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

Sigmoidal
1

1 + e−x
T (n)

−4 −3 −2 −1 0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

Hyperbolic Tangent
ex − e−x

ex + e−x
2T (2n)

−4 −3 −2 −1 0 1 2 3 4

−1.0

−0.5

0.0

0.5

1.0

ReLU max(0, x) ∼ 1

−1.0 −0.5 0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Table 3.1: Activation functions used in the present work.

Figure 3.5 illustrates a neural network solution obtained for a classification

problem, considering a loss function such as the one in Eq. (3.8). A complex

N-dimensional loss function, depicted by a one-variable function, is shown in the 2-

D plot of Figure 3.5a. A particular set of neural network weights was updated three

times, with respect to a single parameter θ (along the horizontal axis of Figure 3.5a),

and the updated values are also shown in Figure 3.5a. The best fit corresponds to

the red point, because that point corresponds to the smallest loss function value
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Figure 3.4: General architecture of a multi-layer neural network.

(among the red, green, and blue points), and it also corresponds to the smallest

classification error in Figure 3.5b [61], [42], [44], [57].
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Figure 3.5: Neural network solution for a classification problem.

In recent works, more sophisticated neural networks architectures have been

developed. Deep neural networks have a large number of hidden layers, and they

lead to remarkable improvements in comparison to conventional MLP results. In

this work, we will focus on deep convolutional neural networks.

3.4 Convolutional Neural Networks

Nowadays, the deep convolutional neural network [7], [62] is one of the most widely

used machine learning techniques. It has been successfully applied to automatic
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feature extraction for image analysis. Conventional or hand-crafted feature extrac-

tion is replaced by convolutional layers. The convolution operation is carried out

by sliding a kernel on the image and, for every pixel on which the kernel is cen-

tered, computing the inner product between the kernel values and the underlying

pixels. The first convolutional neural networks (CNNs) were based on the discrete

convolution operation, and they were inspired by biological vision systems. Like

the conventional CNNs, the deep CNNs have layers that are composed by two basic

stages: the convolutional stage, which extracts features from the layer inputs, and

the subsampling stage, which reduces image resolution [8], [57], [63], [64], [9].

3.4.1 Convolution Layers

Convolutional layers leverage the ideas of local connectivity, parameter sharing, and

spatial arrangement [63], [8]. After training is complete, features extracted by con-

volutional layers usually yield better classification or regression overall performance

than conventionally designed or hand-crafted features do.

• Local connectivity: each neuron in the convolutional layer is connected only to a

small subset (a local neighborhood, defined by width, height, and depth) of the

convolutional layer input image. The input image may be a real-world image,

or a feature map created by a previous convolutional layer [8], [63]. Local

connectivity makes training easier [8]. The use of kernels reduces the number of

parameters in comparison to the number of parameters in a conventional (fully

connected) MLP [63]. A reduced number of parameters is also useful to avoid

overfitting. The Eq. (3.25) shows the convolution operation in convolutional

layers for one feature map;

zi = X ·Wi + bi (3.25)

• Spatial arrangement: in any convolutional layer, the neurons are arranged

according to some CNN hyperparameters 1, in order to define the convolution

operation output size. The hyperparameters considered in this case are input

volume W , stride S, and padding P [8]. Depending on the number of the

input image channels (i.e. the number of color fields), the first convolutional

layer usually has a depth equal to one or equal to three. As we look into

deeper layers, the input volume usually has depth larger than three. The stride

parameter defines the step with which we will slide the current convolutional

1Hyperparameters are model properties (topology, for instance) and design technique properties
(learning rate or momentum, for instance) that are adjusted by the designer during model devel-
opment and training. The hyper prefix is used to distinguish those parameters (model or design
properties) from the specific model parameters that are subject to optimization.
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layer kernel over the input image. We usually have S = 1 or S = 2. The

padding parameter is used for adjusting the input image resolution (by padding

it with zeros along the vertical and horizontal directions), so that the ratio

between the input image resolution and output image resolution is set to an

integer value or to an equivalently simple ratio. To compute the size of an

output volume O (i.e. the convolutional layer output size), we use Eq. (3.26),

which involves the previously defined W , S, and P hyperparameters, and also

the filter (kernel) size F [65];

O =
W + 2P − F

S
+ 1 (3.26)

• Parameter sharing: neurons are organized into feature maps, so that the

weights (kernel values) connecting a local region (neighborhood) of the in-

put image to an output neuron are the same for all output neurons. Since

a single weight matrix (kernel) is used for extracting features for every valid

pixel at the output image, the number of training parameters is clearly re-

duced. Indeed, the term kernel stems from the fact that the connection weight

sets are repeated throughout all the convolutional layer neurons, and such sets

thus behave as kernel filters. Figure 3.6 presents the weight connections as a

K ×K kernel connecting a H1 × W1 × D1 (width, height, and depth) input

volume to a H2 × W2 × D2 output volume, this operation is performed by

means of Eq. (3.25) and the final output is calculated through Eq. (3.26) [8]

,[65].

Every convolutional layer is completely described by a set of kernel filters. As the

coefficients of each filter are optimized during deep CNN training, each filter learns

how to extract specific patterns (features) from the layer input volume (i.e. multi-

channel map). The convolution is a linear operation. After the convolution operation

is complete, activation functions introduce non-linearity in the forward signal flow.

Every output feature map is the result of a non-linear activation function (usually

ReLU) applied to the convolution operation performed at the respective layer. After

training is complete, extracted features become more complex (and more useful for

solving the specific problem at hand) as we look into deeper layers.

3.4.2 Pooling Layers

The sub-sampling layer, or commonly called pooling layer, is used immediately

after every convolutional layer, to reduce the resolution for every feature map. The

pooling kernels resize their input volumes, which are convolutional layer output

volumes, using mathematical or logic functions. The pooling kernels are usually
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Figure 3.6: Connections between H1 × W1 × D1 input volume and H2 × W2 × D2

output volume.

square and their size is denoted as K × K. They are applied with stride K over

the feature map. The two most popular pooling kernels consist in selecting the

maximum value within the K × K kernel area (max pooling) or in computing the

average value within the kernel area (average pooling).

Using pooling layers has three advantages: the number of neural network pa-

rameters subject to optimization is significantly reduced, the network performance

becomes more robust to outlying local variations that may occur within small neigh-

borhoods at the input image, and, in deep CNNs with basic topology, the feed-

forward computational cost is reduced (for layers in which the output volume is

smaller than the input volume). The pooling layer output volume can be computed

from Eq. (3.27), where W and S are the previously defined width and stride hy-

perparameters. The spatial extent hyperparameter F is analogous to the previously

defined kernel size F , and so the same symbol is used for both hyperparameters.

Depth remains unchanged, because pooling is only performed along the width and

height dimensions of the input volume (feature map volume), regardless of its depth.

Figure 3.7 illustrates a pooling operation over an H1 × W1 × D1 input volume ,

using a K × K kernel. If K = 2, each 2 × 2 with stride S = 2 neighborhood is

reduced to size 1 × 1. The width and height are thus reduced by a factor of two,

and the depth remains equal, this means H2 = H1/2, W2 = W1/2 and D2 = D1 [8],

[65], [8].
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O =
W − F
S

+ 1 (3.27)
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Figure 3.7: Connections between input and output volumes, illustrating downsam-
pling by a factor of two at the pooling layer (i.e. at the convolutional layer output).

3.4.3 Convolutional Neural Networks

Convolutional neural networks (CNNs) are often composed by cascading feature-

extracting stages containing a convolutional layer, an activation function, and a

pooling layer. Each stage generates a feature map that is fed to the next feature-

extracting stage. We think of this cascade of stages as a locally-connected feed-

forward graph. After feature extraction is performed at the deepest convolu-

tional/pooling stage, the respective feature maps are flattened into a 1 × 1 × D

vector, where D is the dense neural network input dimension. The 1 × 1 × D vector

is thus fed into the first fully-connected layer. The fully-connected layers are equal

to the layers in a conventional MLP. The fully-connected layers are also referred to

as dense layers [66]. Figure 3.8 depicts a typical CNN topology (which is not among

our final ones) composed by two convolutional layers, two respective (max) pooling

layers, one additional (average) pooling layer, and three dense layers [8], [63], [65].

This topology uses 16 filters at the first convolutional layer, and 32 filters at the

second one. After both convolutional layers, max-pooling layers with 2 × 2 kernels

are commonly used. The third pooling layer (average pooling) further reduces the

number of dimensions at the MLP input, in order to reduce overfitting. The last
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Figure 3.8: CNN topology using two stages (convolutional layer and pooling layer)
repeated twice, thus composing two CNN layers, immediately followed by an addi-
tional pooling layer, flattening, and three fully-connected layers.

feature maps (32 3 × 3 feature maps) are flattened and fed into the MLP. The first

two layers of the MLP map the extracted features into data that are more represen-

tative for classification. The final classification is handled by the output dense layer,

which is usually composed by maximally sparse neurons (i.e. one neuron for each

class) [44]. To compute class probabilities, we apply the softmax operation (Eq.

(3.10)) to the neural network final outputs. Sometimes, the softmax operation is

regarded as an additional layer that generates strongest output at the output node

corresponding to the predicted class [65].

3.5 Regularization

One challenge in machine learning consists in keeping, in a test data set that contains

previously unseen input data, classification or regression accuracy close to the accu-

racy obtained upon training interruption. Deep models are usually more powerful

than shallower or simpler models, but the deep models tend to have overfitting prob-

lems, because of the large number of parameters to be optimized. Many strategies

for obtaining deep neural network models with a good generalization performance,

i.e. without overfitting, have been developed. Many of those strategies are based on

using penalty terms or weight decay in order to limit model size, parameter values,

and effective training extension. Effective regularization techniques reduce variance

without increasing model bias. In neural network applications, regularization tech-

niques penalize the loss function over the training data or perform a limitation over

the number of parameters to be optimized. If the bias was regularized as well,

then underfitting problems might occur [8], [57]. Some of the currently available

regularization strategies are explained next.

• L1 regularization: this method uses a parameter norm penalty term whose

expression is shown in Eq. (3.28). The Ω(θ) term is weighted by a scaling

factor, and it is then added to the original loss function, which yields the

regularized loss function that is shown in Eq. (3.29). In Eq. (3.29), the original
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loss function is J0(θ,x,y), and the scaled regularization term is αΩ(θ) [57], [43],

[8]. In the sense of limiting synaptic connection strength, the L1 regularization

technique is related to the weight decay regularization technique. The L1

regularization is computationally inefficient if it is applied to non-sparse input

data, and it may lead to sparse outputs;

Ω(θ) =‖ θ ‖1=
∑
j

| θj | (3.28)

J(θ;X, y) = J0(θ;X, y) + αΩ(θ) (3.29)

• L2 regularization: this is one of the most common regularization techniques

used in machine learning. The L2 regularization penalizes the squared magni-

tude of the parameters. The penalty term expression is shown in Eq. (3.30).

In contrast to L1 regularization, the L2 regularization is computationally effi-

cient and does not lead to sparse outputs. The regularized loss function can

be expressed as in Eq. (3.29). Combination of L1 and L2 regularization is

mentioned in [67] , and it is also known as elastic net regularization [8], [43],

[47], [48];

Ω(θ) =‖ θ ‖2
2=
∑
j

θ2
j (3.30)

• Dropout: this regularization technique is extremely effective, simple, and com-

putationally cheap [25]. Dropout overcomes L1, L2, and other regularization

techniques. It works through temporary modification of the neural network

structure itself. To implement dropout, we suppress the outputs of a random

subset of the neural network neurons, for every gradient computation. After

parameter update (only for the neurons that remained active), the previously

suppressed neurons are restored, and a new neuron subset is randomly selected

for dropout. This process is repeated until all neurons have been suppressed

at least once. Dropout configuration involves only one hyperparameter, which

defines the dropout keep probability, ranging from 0.5 to 0.9 depending on the

model complexity [25], [57], [8];

• Batch normalization (as a regularizer): batch normalization was introduced

in [26]. It potentially leads to higher overall accuracy and to faster learning,

by adjusting input data distributions around zero mean and unit variance for

all neural network layers. Zero mean and unit variance input normalizations

may be undone by batchnorm parameter optimization, if training data deems
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it effective for reducing internal covariate shift2 problems. In other words, the

neural network can learn how to undo the zero mean and unit variance input

normalization at specific layers, if that is needed for reducing internal covariate

shift. Batch normalization adds approximately 30% computational overall

overhead to the feed-forward and parameter update iterations [68], but it leads

to conveniently normalized data at the inputs for all layers in the network. This

reduces internal covariate shift, and regularize the gradient from distraction to

outliers among the input data samples and flow towards the local minimum,

accelerating the learning process [26], [8]. Batch normalization also works as a

regularizer, because the normalization of neural network layer inputs according

to batch statistics adds noise to the parameter update operations. The same

data sample affects normalization differently, if it is present in different mini-

batches;

• Global Average Pooling: in global average pooling (GAP) [66], the spatial

average of each feature map (at the last convolutional layer) is computed,

and the resulting vector is fed to the classification (dense) layers. In [66], the

authors explain why performing global average pooling may lead to better

results than feeding the last convolutional layer feature maps directly to the

dense layers. The regularization associated with GAP acts as a structural and

non-parametric regularizer. GAP is not strictly a regularization technique,

but it may be regarded as an aid to regularization, as its application reduces

the number of dense layer parameters. Techniques similar to GAP have been

developed. For example, in global max pooling [69], the averaging operation

is replaced by the max operation;

• Data Augmentation: if the number of samples in a data set tends to infin-

ity, then a sufficiently large model will learn the data distribution perfectly

and present optimal test performance. Thus, augmenting (artificially increas-

ing the number of samples in) the training data set by applying controlled

transformations to the original data samples may improve learning. For image

databases, popular operations include random crops, flipping, rotation, color

domain modifications, color jittering, as well as different combinations of these

operations. Data augmentation is widely used in deep learning, especially if

the training database size is not large [47] ,[66], [70].

2Internal covariate shift is the process through which the inputs of any neural network layer
define a nonstationary probability density function. Throughout training, the probability density
function associated with the inputs of a given neural network layer changes, as the parameters in
previous layers are updated.
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3.6 Backpropagation Algorithm

Backpropagation [71] is a widely used, computationally simple, algorithm for com-

puting gradients for parameter update [8] in deep feedforward networks. The error

is estimated by the loss function J(θ), which indicates the average distance (in some

arbitrary sense) between the targets and the predicted outputs [44], [61], [8], [72].

The backpropagation algorithm yields the gradient ∇θJ(θ) for almost any loss func-

tion J , where θ is a multidimensional parameter to be optimized, even if the number

of parameters is larger then the number of input arguments in J (i.e. the number

of input dimensions in the neural network model). To compute the gradient at any

given layer out of previously computed gradients (which are already available for

all layers that closer to the output than the given layer), backpropagation uses the

chain rule. A clear derivation of general expressions for backpropagation may be

obtained from graph theory [8].

The backpropagation algorithm has two stages: forward propagation and back-

ward propagation. At the forward propagation stage, a data sample is fed to the

neural network input, and information flows throughout the network towards its

output. At the end of this stage, the loss function between the network output and

the input data sample target is evaluated (partially, in the mini-batch mode, or fully,

in the full batch mode) [72], [61]. At the backward propagation stage, loss gradients

are successively computed for parameters at every layer, as the error signals are

propagated from the network output back towards its input [8], [50].

Algorithms 1 and 2 describe the general backpropagation operations that are

used for deep neural network training, in the forward and backward propagation

stages, respectively [8]. The model parameters θ are presented as weight and bias

terms in neural networks represented as W and b respectively, the pre-activation

function is z, the arbitrary activation function is f , the hidden layer outputs are h,

and the computed gradients are stored in g [8]. At the forward stage, the neural

network acts as a forward graph connecting inputs to outputs. At the backward

propagation, a backward graph connects the neural network outputs to its inputs,

and gradients values are available at each node of the backward graph. Algorithm

2 starts at the neural network output, by computing loss function derivatives with

respect to the output layer parameters. These loss function derivatives are subse-

quently propagated to previous (hidden) layers, through the hidden neurons and

their respective activation functions.
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Algorithm 1 : Forward computation in a generic deep feedforward neural network.

Input: `, Network depth

Input: W(i), i ∈ {1...`}, model weight matrices of the model

Input: b(i), i ∈ {1...`}, bias parameters of the model

Input: x, model inputs

Input: y, targets

1: h(0) = x # Neural network inputs

2: for k = 1, ... , ` do

3: z(k) = b(k) + W(k)h(k−1)

4: h(k) = f(z(k))

5: end for

6: ŷ = h(`)

7: J = L(ŷ,y) + λΩ(θ) # Loss function plus regularization term

Algorithm 2 : Backward computation in a generic deep feedforward network.

Input: `, Network depth

Input: L, loss function of the model

1: g← ∇ŷJ = ∇ŷL(ŷ, y) # Loss function gradient

2: for k = `, `− 1, ... , 1 do

3: g← ∇z(k)J = g� f
′
(z(k))

4: ∇b(k)J = g + λ∇b(k)Ω(θ)

5: ∇W(k)J = g h(k−1)T + λ∇W(k)Ω(θ)

6: g← ∇h(k−1)J = W(k)Tg # Propagate the gradient in all lower layers

7: end for

Specifically, CNNs have convolutional, pooling, and dense layers. The backprop-

agation algorithm operations for deep CNNs are described in Algorithms 3 and 4, for

the forward and backward propagation stages, respectively [8]. In 3, an input image

is fed to the convolutional layers. All convolutional layers generate feature maps,

and their feature maps are immediately resized at the respective pooling layers.

Activation functions are used in lines 4 and 5 of 3.
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Algorithm 3 : Forward computation in convolutional and pooling layers.

Input: `, Network depth

Input: W(i), i ∈ {1...`}, model weight matrices of the model

Input: b(i), i ∈ {1...`}, bias parameters of the model

Input: X, model inputs

Input: h, flatten output

1: h
(0)
N = X # N could be 1 or 3 for gray or color channels

2: for k = 1, ... , ` do

3: z
(k)
N = W

(k)
Nx,y
∗ h

(k)
Nx,y

+ b
(k)
Nx,y

4: p
(k)
N = Pooling(f(z

(k)
N ))

5: h
(k)
N = p

(k)
N

6: end for

7: ĥ
(`)

= Flatten(h
(`)
N )Nx1 # Reshape the matrix into vector of neurons

In Algorithm 4, CNN backpropagation starts at the input of the first dense

layer, assuming that regular backpropagation was already applied from the overall

neural network output back to the first dense layer input. The first operation to be

considered is pooling. As this operation involves functions that do not depend on

weights, the pooling layer is traversed without any weight update, which obviously

also reduces backpropagation computational cost. If max-pooling is used, then the

error backpropagation is directed toward the path where it came from. Other units

in this pooling layer are not affected by the error. If average pooling is used, then

the error is backpropagated with scaling factor equal to 1/K2, where K is the kernel

size, and it is assigned to all units that compose the kernel. Algorithm 5 describes

parameter update in batch mode, which is performed after loss function gradients

have been computed for all layers.

Algorithm 4 : Backward computation in convolutional and pooling layers.

Input: `, Network depth

Input: ∇h(`+1)J ←W(`+1)Tg , gradient of first hidden fully connected layer

1: g← ∇h(`+1)J

2: for k = `, `− 1, ... , 1 do

3: pN ← Upsampler(g)N # there is no direct effect for weights

4: gN ← ∇
(k)
zNJ = pN � f

′
(z(k))

5: ∇
b
(k)
N
J = gN + λ∇

b
(k)
N

Ω(θ)

6: ∇
W

(k)
N
J = h

(k−1)T
N ∗ rot180(gN) + λ∇

W
(k)
N

Ω(θ)

7: gN ← ∇h(k−1)J = W
(k)T
N gN

8: end for
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Algorithm 5 : Weights and bias update by mean of Backpropagation using batch
mode.

Input: `, Network depth

Input: L, loss function of the model

Input: W,b, Weights and bias of the model previously initialized

Input: x,y, inputs and target of the problem to solve previously initialized

1: for k = 1, ... , ` do

2: ∇W(k)J , ∇b(k)J = Backpropagation(L;W,b;x,y)

3: W(k) = W(k) - α 1
`
∇W(k)J

4: b(k) = b(k) - α 1
`
∇b(k)J

5: end for

3.7 Initialization

Nowadays, initialization in neural networks is an important topic [68], there are

many techniques to initialize weights and bias [68], [73], [74]. Uniform and Xavier

initialization were used in this work.

• Uniform: This initialization operates in a uniform distribution to obtain the

weights values. The intervals are set by designing criteria [68], [52];

• Xavier: This initialization process calculates the Eq. (3.31), where nin and

nout are the fan in and fan out connections, i.e. the number of inputs and

outputs of this neuron.

V ar(W ) =
2

nin + nout
(3.31)
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Chapter 4

Methodology

This chapter introduces the employed methodology that was employed to design

the system taking into consideration the building input data based on feature ex-

traction and deep learning architectures, including image enhancement and post-

processing algorithm. The first section describes the feature extraction algorithms

employed in the multi-layer-perceptron-based (MLP-based) system. The next sec-

tion presents a detailed experimental analysis, comprising a discussion and compar-

isons about classifier architecture designs employed in this work: the MLP-based and

the Convolutional-Neural-Network-based (CNN-based) systems. Later, a post-

processing algorithm is presented, which is employed in order to reduce the false

positive rate in the system. Spatial and temporal analysis are applied, and struc-

tural and procedure details are described such as to obtain favorable results.

4.1 Features Extractor Algorithms

The MLP network was applied to the database with six different feature extraction

approaches, based on wavelet statistics, LBP, Hu moments, entropy and GLCM.

The contrast, dissimilarity, homogeneity, energy and correlation of the pattern can

be extract from the GLCM matrix [75]. In some networks, pre-processing was

employed before the feature extraction procedure in order to remove artifacts. The

corresponding features and pre-processing approach of each MLP topology are:

• MLP 1: To obtain a zero-mean grayscale window, the window mean grayscale

value was subtracted from each pixel. A three-level dyadic wavelet decomposi-

tion was subsequently applied. Each 2-D wavelet decomposition level generates

four decomposition subbands. Overall mean and variance were computed for

each subband [11], leading to eight features per wavelet level. At the top level,

the low-frequency subband mean value is zero, and so only its variance was

computed. This leads to seven features at the top level, and thus 23 features

32



are used as MLP inputs. This descriptor is detailed in Algorithm 6. In line 5,

the sequence filters are applied to the image in order to obtain the subbands

Sn,1, Sn,2, Sn,3 and Sn,4 explained in the Figure 2.1a. Line 8 and 11 compute

the wavelets from S1 and S1,1 in the same way as illustrated in Figure 2.1b;

• MLP 2: A three-level wavelet packet decomposition was applied to the zero-

mean grayscale image. The overall mean and variance were computed for each

subband, which means eight features from the first level, 32 features from the

second level, and 128 features from the third level. Redundant information

appears across different subbands. To remove redundant features, a correla-

tion matrix was computed, and features whose correlation with a previously

selected feature was above 0.5 were discarded [11], [13]. This procedure re-

duced the feature vector size to 25. This descriptor is detailed in Algorithm 7

and employs the wavelet block of Figure 2.1b;

• MLP 3: To compute LBP features, we selected 24 pixels from a circularly

symmetric neighborhood with a three-pixel radius, and then we applied a

uniform computation method on them [10], [37]. The number of uniform

prototypes in an LBP depends on the number of pixels selected for uniform

computation. The final histogram dimension number is equal to the number

of selected points plus two [10], which leads to a 26-element feature vector;

• MLP 4: The LBP was computed for red, blue and green channels of every

input window using the same parameters as in MLP 3. The average of the

red, blue and green LBP histograms then composed the first 26 features that

were used as inputs for MLP 4. In addition to those 26 features, we computed

five GLCM coefficients from every input window graylevel representation, and

we also computed maximum values from the hue and saturation histograms

of the HSV representation of the input window. The overall size of the MLP

4 input feature vector is thus equal to 33. This descriptor is presented in

Algorithm 8;

• MLP 5: Histogram equalization was applied to the saturation and bright-

ness (value) components in the HSV representation of the input window. The

window was then converted into a single grayscale channel, and the 26 LBP

histogram and five GLCM features of the grayscale representation were calcu-

lated (31 features). The maximum value of the hue channel histogram and the

entropy values of the red, green, blue, hue and saturation channels [75] were

then included in the feature vector, which increased the feature vector size to

37. Finally, we computed a Canny-filtered version of the input window, and,

from that filtered image, we computed seven Hu moments and five GLCM fea-
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tures [40], which led to a feature vector with size equal to 49. This descriptor

is presented in Algorithm 9;

• MLP 6: The same histogram equalization and grayscale conversion of MLP 5

were applied, and we computed the same 26 LBP features and five GLCM fea-

tures of MLP 5. We then included, in the feature vector, the maximum values

of hue, saturation, red and blue channel histograms, as well as the entropy val-

ues of the red, green, and blue channels, thus increasing the number of features

to 38. Finally, we computed the first Hu moment (from the Grayscale channel)

[40], five GLCM features from the hue channel, and five GLCM features from

the saturation channel, which lead to a feature vector with size equal to 49.

This descriptor is summarized in Algorithm 10.

Algorithm 6 : Feature extraction based on db2 wavelets.
Input: Image, input Image from dataset or extracted Window

Input: Hi, i=1,2 db2 wavelet filters

Output: f, features extracted from input image

1: I ← GrayImage = RGBtoGRAY(Image)

2: I = I − µI # Subtract the mean

3: Sequence = [1,1 ; 1,2 ; 2,1 ; 2,2]

4: for n = 1, ... , 4 do

5: Fn ← Sn = I ∗HSequence(n) # Image filtering

6: end for

7: for n = 1, ... , 4 do

8: F4+n ← S1,n = S1 ∗HSequence(n) # Image decomposition in next subband

9: end for

10: for n = 1, ... , 4 do

11: F8+n ← S1,1,n = S1,1 ∗HSequence(n) # Image decomposition in next subband

12: end for

13: f = σF1 # Compute standard deviation from subband 1

14: for n = 1, ... , 11 do

15: f2n = µFn # Extract mean from each subband image

16: f2n+1 = σFn # Extract standard deviation from each subband

17: end for

4.2 Neural Networks System

This section describes the complete system and how to tackle the classification

problem by means of the two machine learning techniques explained in Chapter 4,

the MLP-based and CNN-based classifiers, in order to choose the best architecture

and analyze the complete system including false positive reduction post-processing

algorithms.
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Algorithm 7 : Feature extraction based on least correlated db2 wavelets features.
Input: Image, input Image from dataset or extracted Window

Input: Hi, i=1,2 db2 wavelet filters

Output: f, features extracted from input image

1: I ← GrayImage = RGBtoGRAY(Image)

2: I = I − µI # Subtract the mean

3: Sequence = [1,1 ; 1,2 ; 2,1 ; 2,2] # Wavelet filter sequence

4: for k = 1, ..., 20 do

5: if mod(k-1,5)=0 then

6: Fk ← Sk = I ∗HSequence(k) # Compute first-level subband images

7: else

8: Fk ← Sk,m ∗HSequence(m) # Compute second-level subband images

9: end if

10: end for

11: for n = 1, ... , 20 do

12: µn, σn = MeanVariance(Fn) # Compute Mean and Variance

13: end for

# selected features with the low correlated values computed for µn, σn using

# function ComputeCorrelation(µn, σn)

14: f = [σ1, µ2, σ2, µ3, σ3, µ4, σ4, µ5, σ5, µ6, σ6, µ7, σ7, µ8, σ8, µ10, σ10, µ12, σ12, µ15, σ15, µ16, σ16, µ20, σ20]

Algorithm 8 : Feature extraction based on color texture information.
Input: Image, input Image from dataset or extracted Window

Output: f, features extracted from input image

1: I ← GrayImage = RGBtoGRAY(Image)

2: Ir, Ig, Ib,← ExtractChannels(Image)

3: LBPr = LBP(Ir, 24, 3,′ uniform′) # Compute red channel LBP

4: LBPg = LBP(Ig, 24, 3,′ uniform′) # Compute green channel LBP

5: LBPb = LBP(Ib, 24, 3,′ uniform′) # Compute blue channel LBP

6: fLBP ←MeanVector(LBPr, LBPg, LBPb) # Compute the mean color LBP

7: fGLCM ← GLCM(I)

8: J ← HSV Image = RGBtoHSV(Image)

9: fH ←Max(histogram(JH , bins = 72)) # Compute 72 bins for Hue channel

10: fS ←Max(histogram(JS , bins = 20)) # Compute 20 bins for Saturation channel

4.2.1 MLP-based System

The Algae detection system using MLP can be implemented by two ways: using

pixels directly to feed the network or through feature extraction algorithms. The

design of the classifiers takes into consideration regularization techniques, activation

functions, batch size and influence of descriptors in performance. Additionally, the

MLP-based system employs a false positive reduction procedure at the end, aiming

to reduce the wrong classification in the system. Therefore, the complete MLP-

based system is composed of three blocks as illustrated in Figure 4.1, where the

feature extractor block is one of the algorithms explained in this chapter, the

neural network block based on MLP will be fed by the feature vector to solve a

2-classes classification problem, and the false-positive reduction block will perform
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Algorithm 9 : Feature extraction based on color, shape and texture information.
Input: Image, input Image from dataset or extracted Window

Output: f, features extracted from input image

1: In ← Normed = NormalizeImage(Image) # Normalize values from 0 to 255

2: J ← HSV Image = RGBtoHSV(In)

3: JS = HistEqualization(JS) # Histogram equalization in Saturation channel

4: JV = HistEqualization(JV ) # Histogram equalization in Brightness channel

5: Ipre ← RGBImage = HSVtoRGB(J) # Pre-processed Image

6: I ← GrayImage = RGBtoGRAY(Ipre)

7: Ir, Ig, Ib,← ExtractChannels(Image)

8: fLBP ← LBP = LBP(I, 24, 3,′ uniform′) # Compute the LBP features

9: fGLCM ← GLCM(I) # Compute the GLCM features from gray image

10: fH ←Max(histogram(JH , bins = 72)) # Compute the Max bin from 72 bins for Hue channel

11: Er = Entropy(Ir,
′ rows′) # Compute rows entropy in Red channel

12: Eg = Entropy(Ig,
′ rows′) # Compute rows entropy in Green channel

13: Eb = Entropy(Ib,
′ rows′) # Compute rows entropy in Blue channel

14: EH = Entropy(JH ,
′ rows′) # Compute rows entropy in Hue channel

15: ES = Entropy(JS ,
′ rows′) # Compute rows entropy in Saturation channel

16: fEntropy ← [Er, Eg, Eb, EH , ES ]

17: Iblur = MedianBlur(I)

18: Iedge = Canny(I) # Compute Canny edge detector

19: fHu ← HuMoments(Iedge) # Compute the Hu moments

20: fGLCMedge ← GLCM(Iedge) # Compute the GLCM features from Canny image

spatial and temporal analysis of the classifier result.

Figure 4.1: MLP-based system.

Experiments contemplates cross-validation, different feature extractors, initial-

ization techniques and regularization methods. A testing set provided by 20% of

the database images is employed to evaluate the performance of all MLP models.
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Algorithm 10 : Feature extraction global and local based on color, shape and
texture information.
Input: Image, input Image from dataset or extracted Window

Output: f, features extracted from input image

1: In ← Normed = NormalizeImage(Image) # Normalize values from 0 to 255

2: J ← HSV Image = RGBtoHSV(In)

3: JS = HistEqualization(JS) # Histogram equalization in Saturation channel

4: JV = HistEqualization(JV ) # Histogram equalization in Brightness channel

5: Ipre ← RGBImage = HSVtoRGB(J) # Pre-processed Image

6: I ← GrayImage = RGBtoGRAY(Ipre)

7: Ir, Ig, Ib,← ExtractChannels(Image)

8: fLBP ← LBP = LBP(I, 24, 3,′ uniform′) # Compute the LBP features

9: fGLCM ← GLCM(I) # Compute the GLCM features from gray image

10: fGLCMH ← GLCM(JH) # Compute the GLCM features from Hue channel

11: fGLCMS ← GLCM(JS) # Compute the GLCM features from Saturation channel

12: fH ←Max(histogram(JH , bins = 72)) # Compute the Max bin from 72 bins for Hue channel

13: fS ←Max(histogram(JS , bins = 50)) # Compute the Max bin from 50 bins for Hue channel

14: fS ←Max(histogram(Ir, bins = 64)) # Compute the Max bin from 64 bins for Red channel

15: fS ←Max(histogram(Ib, bins = 64)) # Compute the Max bin from 64 bins for Blue channel

16: Er = Entropy(Ir,
′ rows′) # Compute rows entropy in Red channel

17: Eg = Entropy(Ig,
′ rows′) # Compute rows entropy in Green channel

18: Eb = Entropy(Ib,
′ rows′) # Compute rows entropy in Blue channel

19: fEntropy ← [Er, Eg, Eb]

20: Iblur = MedianBlur(I)

21: Iedge = Canny(I) # Compute Canny edge detector

22: fHu1 ← HuMoments(Iedge) # Compute the first Hu moment

23: fGLCMedge ← GLCM(Iedge) # Compute the GLCM features from Canny image

4.2.2 CNN-based System

Deep learning implementation based on CNN was also employed in the experiments

to perform the classification task. The raw images came from the database (detailed

in Appendix A), whose sizes were 60x60x3. These images are fed to the input con-

volutional layer, that passes through the net until the output layer. Other versions

comprise CNN+MLP, before linking to the output layer.

The system design consists of initialization procedure, regularization techniques,

activation functions, batch size selection and network configuration, the latter com-

prising the choices of the number of layers, pooling kernel sizes, filter-widths and

patch size. Cross-validation was employed in order to give robustness to performance

for all provide models [20]. A testing set provided by the 20% of database is employed

to measure the performance for all CNN and CNN+MLP models. Comparison and

discussion of the criteria employed to choose between CNN and CNN+MLP models

will be described in the next chapter.

The CNN-based system is illustrated in Figure 4.2, using a configuration similar

to the MLP-based system. The false positive reduction block was also included at
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the output of the system, and convolutional layers were employed instead of the

feature extractor block.

Figure 4.2: CNN-based System.

4.3 False Positives Reduction

As mentioned in a previous chapter, avoid false positives are more important than

avoid false negatives in real scenes, given the nature of the problem. Post-processing

algorithms, contained in the false-positive-reduction block, were applied to reduce

false positive classifications produced by large shift steps performed by the window.

The spatial and temporal analyses, which comprise the proposed post-processing

algorithm, are described next.

Experiments for this block consider the choice of the pixel spacing step between

each window to be processed, the minimum number of positive detections (or simply

detections) to form a group and the overlap rate between two groups in one or more

frames, employed in the spatial and/or temporal analysis.

4.3.1 Spatial Algorithm

Algae detection in an isolated small region (for example, a single 61× 61-pixel win-

dow) of a frame is most likely a misclassification. In order to suppress such false

positives, a spatial analysis of the classifier results was accomplished, taking into

account four neighbor windows located at horizontal left, vertical up, diagonal up-

left, and diagonal up-right. In order to illustrate the proposed algorithm, consider

the image with the classifier results shown in Figure 4.3a, where 16 windows pro-

duced positive algae detections (labeled as P ). For the evaluation window denoted
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in gray in Figure 4.3a, the four neighbor windows employed in the spatial analysis

are denoted in red. The algorithm operation is divided into two steps:

• Slide window over the image and assign labels;

• Obtain clusters corresponding to algae detected regions and eliminate false

positives.

In the first step, the algorithm assigns labels to the pixels corresponding to algae

detection (P ). If the pixel of at least one of the four above-defined neighbor windows

presented a positive (algae) result, the same label is assigned to it; otherwise, a new

label is created. If neighbor windows presented different labels, one of the labels is

assigned to the pixel being evaluated. The result of the first step of the proposed

algorithm applied to the image in Figure 4.3a is illustrated in Figure 4.3b.

P P
P P P P P P

P
P P

P P P P
P P P

P P
P P P

P P P
P P P P
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2 1 1 3 4 4
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11 11 11
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1 1
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5 5

5 5 5
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11 9 9
11 11 11

11 11 11 11

(c)

Figure 4.3: Illustration of spatial analysis for false positive removal. In (a), the
image obtained from classifier with 30 positive algae detection windows (indicated
as P ); step space is given by two cells. In (b), First step of the algorithm creates
labels for positive algae detection windows based on neighborhood detections. In
(c), Second step of the algorithm defines regions with algae and eliminates false
positives.

In the second step, different labels of neighbor pixels are replaced by one inside

that neighborhood to create a new larger cluster. Next, the minimum and maxi-

mum coordinates of each cluster define a rectangular region around the cluster. If

the overlap between every two regions is below a chosen threshold value (Ov), the

algorithm keeps the clusters separated. Otherwise, the clusters are merged. If a

cluster has less than a minimum number N of positive algae detected pixels, then

that cluster is eliminated. Additionally, Non-Maximum Suppression (NMS) [76],

[77] was employed to remove redundant rectangular regions. Figure 4.3c shows the

result after the algorithm was applied. Implementation details are presented in

Algorithm 11.

4.3.2 Temporal Algorithm

The spatial analysis algorithm removes satisfactorily from the classifier output image

the regions with few sparse false positives. However, due to blurring and other
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Algorithm 11 : Spatial analysis for false positive reduction.
Input: I, image from classifier

Input: N , minimum number of positive results

Output: Out, output image with regions of algae detections

# First step of the algorithm

1: for every positive algae detection pixel I(x, y) do

2: label←FindLabels(I(x− 1, y), I(x− 1, y − 1), I(x, y − 1), I(x+ k, y − 1))

3: switch (label)

4: case 0:

5: I(x, y) ← newlabel # Assign a new label

6: case 1:

7: I(x, y) ← label # Assign the one label found

8: case 2, 3, 4:

9: I(x, y) ← label # Assign one of the labels found

10: AssignEquality(I) # Assign equality between labels

11: end switch

12: end for

# Second step of the algorithm

13: JoinLabels(I) # Replace every assigned equality label

14: RemoveClusters(I,N) # Remove small clusters

15: ComputeRegion(I) # Compute rectangular detected regions

16: Out ← NMS(I,Ov) # Maintain regions with small overlap

artifacts, a region with false positives may remain being detected in one frame after

the spatial analysis, but most likely will not be in the next frames. To reduce this

problem, a frame buffer was used to perform a temporal analysis, in order to remove

the detected regions without temporal persistence.

Implementation details of the temporal analysis are presented in Algorithm 12,

where F is the buffer size, whose appropriate value is evaluated in the Chapter

5. An analysis of the overlap between detected regions (which are within sectors

determined by a maximum distance of their centroids for all frames of the buffer) is

employed, using the NMS algorithm with percentage threshold parameter Ov.

Figure 4.4 illustrates the application of the proposed algorithm with a frame

buffer of size F = 3, where the detected regions are delimited in green for the current

frame (n = 0), in blue for the previous frame (n = 1), and in red for the second

previous frame (n = 2). Figure 4.4a shows the current input image; Figure 4.4b

presents the result of the spatial analysis algorithm for the three frames, consisting

of 2 detected regions for the current frame, 1 for the previous frame, and 2 for the

first stored frame in the buffer.

In order to reduce the false positives of a frame that were not encountered in

previous frames, Algorithm 12 employs a procedure based on the centroid distances

[32], [31], [30]. After computing the centroids of the detected regions (output of

Algorithm 11) of all frames of the buffer (illustrated in Figure 4.4), a matrix that
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Algorithm 12 : Temporal analysis for false positive reduction.
Input: F , frame buffer size

Input: Ov, maximum overlap between regions (in percentage)

Input: D, minimum centroid distance

Input: Bn, n-th image of buffer

Input: I, input image from spatial analysis

Output: Out, output image with detected algae regions

1: for n from F -1 to 1 in steps of -1 do

2: Bn = Bn−1 # Shift images in buffer

3: end for

4: B0 = I # Store new image in buffer

5: for n from 0 to F -1 in steps of 1 do

6: Cn = Centroids(Bn) # Compute centroid of each cluster of Bn

7: end for

8: for n from 0 to F -1 in steps of 1 do

9: DC = Distances(Cn) # Istances between centroids

10: end for

11: if DC(x, y) < D then

12: Rn = NMS(Cn,Ov) # Remain regions

13: end if

14: if Rn appear in all frames of buffer then

15: Out←DrawRegions(Rn)

16: end if

contains the distances between every two centroids (DC matrix) is obtained. Next,

the regions with centroid distances smaller than a selected parameter D are merged

if the overlap between the corresponding detected regions is below a chosen threshold

value Ov, employing the NMS algorithm. Finally, only the regions that appear in

all frames of the buffer are kept, as illustrated in Figure 4.4d.
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(a) (b)

(c) (d)

Figure 4.4: Temporal analysis for removing false positives in current frame based on
detected regions of previous frames. In (a), Image from current frame is analyzed
employing 3 consecutive frames, (b) detected regions after spatial analysis and (c)
temporal analysis using 3 time steps in the framebuffer. In (d), Temporal analysis
after removing the false positive regions.
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Chapter 5

Results and Discussions

This chapter describes the relevant design decisions and implementation details that

are taken into account in order to build neural network models for the problem at

hand. This chapter also addresses the post-processing algorithm that is proposed.

To evaluate the effectiveness of the neural network approach to algae detection,

different neural network topologies were tested. They were compared with respect

to specific measures, which are described in Sections 5.2 and 5.3. Performance

analysis is split into two stages: classifier evaluation and system evaluation.

Section 5.1 describes MLP and CNN design. Section 5.2 describes performance

evaluation aiming at optimal classifier configuration (i.e. topology). The classifier

analysis stage considers on comparative experiments involving MLPs and CNNs.

The remainder of this chapter focuses on the following aspects of this dissertation:

• Neural network topology comparison addressing numbers of neurons in hidden

layers;

• Performance differences among different CNN topologies: number of layers,

filter sizes, and impact of initialization and regularization;

• False positive rate evaluation for all deep neural network topologies;

• Real image application issues.

5.1 Design Analysis

This section details initial experiments that were carried out to select some hyper-

parameter values, and starts the comparison among different neural network topolo-

gies. Experiments performed in the following subsections are independent among

each others and study several setting for the neural networks in the training phase.

This leads us to choose the loss and activation function, regularization techniques,
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optimizer, initializer and CNN hyperparameters. Finally, the strategies obtained

from results of this section will be used to build and train different topologies de-

scribed in Section 5.2. We used cross-validation with four folds. The original data

set was thus randomly partitioned into four subsets with the same size. In each fold,

three of these subsets were used for training, and the remaining subset was used for

testing the trained model. Training took 8000 epochs for MLPs and 125 epochs

for CNNs. We use the ’CNN+MLP’ expression to refer to a neural network having

convolutional neural layers connected to a dense layer before the output layer, which

is also trained for 125 epochs. Variations on the number of filters was inspired on

the VGG net [78], thus making the computational effort at any convolutional layer

equal to half the computational effort of the previous layer.

5.1.1 Loss Function

To choose a loss function that is suitable for the problem at hand, in this section we

compare MSE and cross-entropy loss functions. For either loss function, the neural

network model behavior and the convergence issues have been recently addressed

[79], [80]. Experiments have suggested that neural network models based on cross-

entropy overcome the models based on MSE, with respect to overall classification

error, and that cross-entropy is associated with faster training convergence. Taking

into account the multi-dimensional loss function surface, cross-entropy is associ-

ated with gradient magnitude (i.e. surface slope) that is larger than MSE gradient

magnitude, and so MSE may lead to slower training [79], [80].

5.1.2 Activation Function

Experiments were performed using a simple MLP topology having a single hidden

layer, and considering different activation functions for the neurons at that layer.

Figure 5.1 shows an MLP with 45 neurons at the hidden layer, and with sigmoidal,

hyperbolic tangent, or ReLU activation functions. With respect to training and

validation classification (%) error, the best activation function seems to be the hy-

perbolic. The hyperbolic tangent was selected for the hidden layers in MLPs, while

ReLU is selected for all hidden layers in CNNs, including possible dense layers [59],

[60]. Recent works often use the ReLU activation function for deep neural network

topologies [8], [20], [21], showing classification error that is similar to (or better

than) that achieved using the hyperbolic tangent. Vanishing gradient problems as-

sociated with the saturated hyperbolic tangent positive values are eliminated if the

ReLU activation function is used. Similar works agree with the statements that

the hyperbolic tangent is suitable for basic MLP topologies, and that ReLU-type

activation functions yield faster convergence in CNN training [60], [81].
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Figure 5.1: Activation function comparison: training (dashed lines) and validation
(solid lines) classification error sequences using sigmoidal (green), hyperbolic tangent
(red), or ReLU (blue) activation functions.

5.1.3 Regularization

Different regularization methods were applied to different neural network topolo-

gies: L2 regularization, dropout, and data augmentation were applied to MLPs,

and global average pooling and batch normalization were applied to CNNs. Figure

5.2 shows regularization effects on a CNN+MLP neural network with two convolu-

tional layers and 512 fully-connected neurons. The convolutional layers have 16 and

32 feature maps, respectively. The dense layer uses L2 regularization and dropout

(with 0.85 keep probability). The green lines represent a CNN+MLP architecture

without regularization in the convolutional layers (dashed line for training classifica-

tion error and solid line for validation classification error). The blue lines represent

the same CNN+MLP architecture with L2 regularization and global average pooling

at the convolutional layers. The red lines represent the same CNN+MLP architec-

ture with L2 regularization, global average pooling, and batch normalization at the

convolutional layers. Figure 5.2 suggests that global average pooling and batch nor-

malization improves error convergence in neural network training [26], [66]. Batch

normalization reduces training time by speeding convergence up. Without regular-

ization, the training loss function may not converge. Global average pooling reduces

the number of parameters to be optimized at the connection between the last con-

volutional layer and the first dense layer. For the experiments presented in Sections

5.2, 5.3, and 5.4, we use L2 regularization, global average pooling, and batch nor-

malization at the convolutional layers. We look forward to obtaining dense layers

without too many neurons, to keep the number of parameters relatively small and
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to avoid slow training.
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Figure 5.2: Effects of regularization at the convolutional layers of a neural network
with CNN+MLP topology: training (dashed lines) and validation (solid lines) clas-
sification error sequences using no regularization (cyan); L2 and GAP (magenta);
and L2, GAP and batch normalization (black).

5.1.4 Optimizer

For the initial experiments, we use RMSprop and Adam [49], [29]. Figure 5.3

presents training results for a CNN+MLP neural network topology with two convo-

lutional layers, 2× max pooling, and one dense hidden layer with 64 neurons. Each

convolutional layer generates 16 feature maps. At the convolutional layers, we use

L2 regularization, global average pooling, and batch normalization. At the dense

layer, we use dropout with keep probability equal to 0.85. In comparison to RM-

Sprop and Adam for MLP and CNN architectures, momentum yielded much slower

convergence and, sometimes, low error results. In Figure 5.3, the RMSprop and

Adam training results are similar, with a small advantage for Adam with respect to

RMSprop, and the worst results are obtained with momentum. This may be due to

the large gradients are not attenuate in the momentum optimizer as the other two

methods, generating large updates in the parameters and poor performance.

5.1.5 Initialization

Two initialization techniques were compared, Xavier and Uniform (manually se-

lected). Figure 5.4a shows a same MLP topology (using tanh as activation function)

initialized by means of both techniques, using the best result from uniform initializa-

tion. Also, Figure 5.4b shows a simple CNN topology, composed by 2 convolutional
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Figure 5.3: Comparison of momentum (green), RMSprop (blue), and Adam (red)
training results for a CNN+MLP topology. Training and validation classification
error are presented in dashed and solid lines respectively.

layers and 2x2 pooling layers, being initialized through Xavier and Uniform ini-

tializations. This analysis indicates that Xavier initialization has an impact in the

performance of MLP and CNN topologies. For small MLP architectures the im-

pact is not notorious showed that Xavier initialization increased the performance in

deep models, what we confirmed for CNN topologies. Related works state Xavier

initialization increased the performance in deep models. Glorot X. et al. (2010) [74]

observed this algorithm to initialize performed superiorly than uniform initialization.

This also is compared in Mishkin D. et al. (2015) [68] and Hendrycks D. et al (2016)

[73] employing other initialization techniques, showing Xavier achieved a suitable

performance. Thereby, Xavier initialization was selected for future experiments.

5.1.6 CNN hyperparameters

Kernel size, number of filters (channels) and depth are taken into account. In order

to define neural network topologies for training in Section 5.2, the CNN hyperpa-

rameters are set using power-of-two number sequences (number of filters and depth)

or odd numbers (kernel size). For training, we use L2 regularization, dropout with

keep probability equal to 0.9 in every layer, and global average pooling.

• Kernel size: to select kernel size, we trained a CNN with two convolutional

layers and 2x2 max pooling. Each convolutional layer generates 16 feature

maps. Before the output layer, which has two neurons, global average pooling

is performed. Kernels with sizes equal to 3×3, 5×5, 7×7, and 11×11 are

considered, for both convolutional layers. Figures 5.5a and 5.5b present the
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Figure 5.4: Comparison between Xavier and uniform initialization methods. In (a),
Xavier and Uniform initialization for a MLP topology. In (b), Xavier and Uniform
initialization for a CNN topology. Training and validation classification error are
presented in dashed and solid lines respectively.

effects of kernel size variation at the first and second convolutional layers,

respectively, on classification error on test data set. The median error values

are indicated at the center of the green boxes in the plots, and the average

median values (for kernel size variation at the first and second layers) are

represented by the blue lines. Similar error results are obtained with all filter

sizes, and the computational complexity increases first by a factor (5/3)2 (from

kernel size 3×3 to kernel size 5×5), and then by a factor (7/5)2 (from kernel

size 5×5 to kernel size 7×7). For simplicity, we thus select kernel size equal

to 3×3;
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Figure 5.5: Kernel size variation at the first (a) and second (b) convolutional layers
of a two-layer CNN. In (a), the average median error is 2.48%. In (b), the average
median error is 2.08%.

48



• Number of filters: making variations in the number of filters takes a long

training time. We thus varied the number of filters at the first layer, according

to powers of two, while keeping the number of filters constant (either 16 or

32) at the second layer of a two-layer CNN. After that, we varied the number

of filters at the second layer, according to powers of two, while keeping the

number of filters constant (either 16 or 32) at the first layer. Figure 5.6 shows

error results on test data set obtained with varying filter sizes. In Figures 5.6a

and 5.6b, the number of fixed filters is 16. In Figures 5.6c and 5.6d, the number

of fixed filters is 32. The median error values are indicated at the center of

the green boxes in the plots, and the average median values are represented

by the blue lines. The figures suggest that error is high for CNNs having 16

filters or less at any layer. On the other hand, CNNs having more that 16

filters have an error advantage below 1% with respect to the CNNs having

less filters. Increasing the number of filters at the second layer to more than

32 does not improve performance. In the connection from the convolutional

layer to the output layer, the large fan-in makes it hard to map 64 neurons

(channels) into two neurons. A dense layer may be added between the last

convolutional layer and the output layer. To optimize that layer, one might

use dropout with a small keep probability;

• Depth: neural network computational complexity increases significantly as

its number of layers (depth) increases. We limited CNN complexity to four

convolutional layers, each of them having 16 filters. In Figure 5.7a, we compare

error values for CNNs with two or three convolutional layers. Using three layers

increases the error by around 1% with respect to the error achieved using two

layers. For CNNs, when the network depth is increased from three to four,

error improves 0.75%. In Figure 5.7b, we compare error values for CNN+MLP

topologies having a hidden dense layer with 64 neurons before the output layer.

Increasing the depth from two to three improves the error by approximately

0.2%, but the error remains unchanged as the depth is further increased to

four. Detailed performance comparisons for different CNN and CNN+MLP

topologies are presented in Section 5.2.

5.2 Performance Analysis

In this section, we look for optimal classifier configuration. (i.e. topology and pa-

rameters). Test error and runtime are taken into account. Minimum and maximum

error values are computed for the training and test data sets, and then compared.

The database distribution is detailed in Appendix A. The central processing unit
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Figure 5.6: Different error results obtained by varying the number of filters at the
first or second convolutional layer of a two-layer CNN. In (a) and (c), the number
of filters is held constant at the second layer (16 and 32, respectively). The average
median error values are 2.83% and 2.91%, respectively. In (b) and (d), the number
of filters at the first layer is constant (16 and 32, respectively). The average median
error values are 3.23% and 1.95%, respectively.

(CPU) used in this dissertation is a 7th-generation i5 processor with 3.5 GHz clock

frequency. The graphical processing unit (GPU) used in this dissertation is an

NVIDIA GTX 980ti processor with 1.07 GHz clock frequency and 6 GB RAM. For

neural network design (training) and test, we use Tensorflow 1.1.0 on the Python

application programming interface (API) with GPU support.

5.2.1 MLP Topologies

We initially had hand-crafted feature extractors (see Section 4.1) applied to the

database. As a result, six data sets were obtained from the original database. Table

5.1 presents overall success rates (train and test error values) for topologies MLP1,
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Figure 5.7: Different error results obtained by varying neural network depth, for
CNN topologies (a) and for CNN+MLP topologies (b). For CNNs (a), the average
median error is 1.93%, and for CNN+MLP topologies the average median error is
1.11%.

MLP2, MLP3, MLP4, MLP5, and MLP6. Those topologies use hyperbolic tangent

activation function in a single hidden layer, and sigmoidal activation function at the

output layer. The output layer has only one neuron, whose output is thresholded at

0.7 for classification. The first column indicates the number of neurons in the MLP

single hidden layer. The loss function is binary cross-entropy. For optimization,

we used the Adam algorithm with initial learning rate set to 10−3. The learning

rate was progressively reduced according to a pre-established schedule. The training

mini-batch size was set to 78, and the overall number of training epochs was set to

8000. Gradient computations are thus performed 624000 times. To avoid overfitting,

we used L2 regularization with a 10−5 scaling factor for all topologies.

Depending on the data representation corresponding to each feature extractor

(for MLPs 1 to 6), the MLP achieves an reduced test error (MLP6, for example),

which corresponds to stable convergence given the hyperparameters described in the

previous paragraph. Test performance usually improves as the number of neurons

is increased from 10 to 200. However, for a large number of neurons at the hidden

layer, it is more difficult to make the training process converge. We included dropout

in the training, with keep probability set to 0.85, to make convergence more likely.

The best classification results (4.33% test error) were obtained by the MLP6 neural

network with 200 neurons at the hidden layer. The MLP6 neural network uses

Algorithm 10 for feature computation.

For all topologies, the runtime takes from 5 to 8 microseconds per input. The

classifier runtime is typically much shorter than the feature extractor runtime. Over-

all runtime comparisons are provided in Section 5.4.1. Algorithm 10 programming
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Topology MLP1 MLP2 MLP3
(Neurons) Train(%) Test(%) Train(%) Test(%) Train(%) Test(%)
10 8.86±0.05 10.95±0.23 8.43±0.46 9.25±0.30 14.09±0.08 12.04±0.07
20 7.39±0.06 9.63±0.22 6.72±0.11 7.34±0.13 13.47±0.08 12.05±0.13
30 6.75±0.12 8.82±0.27 6.05±0.08 6.68±0.21 13.59±0.07 12.21±0.04
45 6.29±0.09 8.59±0.08 5.48±0.20 6.20±0.28 12.80±0.09 12.28±0.15
65 5.79±0.05 8.05±0.23 5.06±0.18 5.36±0.21 13.02±0.09 12.42±0.15
75 5.65±0.03 7.90±0.18 4.90±0.13 5.34±0.20 13.29±0.09 12.60±0.20
100 5.34±0.06 7.84±0.45 4.57±0.21 4.97±0.06 13.11±0.05 12.66±0.35
125 5.05±0.05 7.61±0.26 4.28±0.16 4.63±0.13 12.09±0.05 12.57±0.11
200 4.43±0.07 7.06±0.07 3.66±0.05 4.28±0.14 2.46±0.05 12.50±0.11

Topologies MLP4 MLP5 MLP6
(Neurons) Train(%) Test(%) Train(%) Test(%) Train(%) Test(%)
10 10.70±0.54 16.70±0.27 5.40±0.18 6.98±0.04 5.80±0.06 5.75±0.13
20 12.51±0.43 14.75±0.11 4.38±0.11 6.44±0.10 2.65±0.04 5.21±0.19
30 9.38±0.23 12.37±0.17 3.85±0.03 6.45±0.10 2.02±0.08 5.00±0.19
45 6.12±0.02 11.28±0.29 3.10±0.06 6.31±0.11 1.62±0.04 4.92±0.06
65 7.91±0.09 11.78±0.16 2.62±0.02 6.31±0.10 1.32±0.01 4.83±0.12
75 9.40±0.11 11.52±0.10 3.15±0.07 6.37±0.16 1.13±0.02 4.82±0.06
100 8.10±0.85 10.45±0.24 3.00±0.02 6.18±0.05 1.14±0.06 4.65±0.08
125 6.90±0.03 9.93±0.11 2.40±0.10 6.14±0.17 0.76±0.04 4.45±0.13
200 7.77±0.04 9.87±0.21 2.44±0.09 6.03±0.08 0.63±0.04 4.33±0.03

Table 5.1: Accuracy comparison among MLP topologies 1 to 6.

was not optimized for runtime.

5.2.2 CNN Topologies

We present the results of CNNs alone (without an MLP at the end), at first, so that

the improvement associated with dense layer inclusion becomes clear in Sec. 5.2.3.

Several CNN topologies were tested, and they are presented in Table 5.2. The first

column indicates the topology design number. The second column shows the number

of filters in each convolutional layer. The training and test error values are shown,

respectively, in columns three and four. The fifth and sixth columns show GPU and

CPU runtimes, and the ratio between the GPU and CPU runtimes is shown in the

seventh column. All CNN topologies use 2×2 pooling and global average pooling

before the output layer. The output layer is dense and contains only two neurons.

All convolutional layers use the ReLU activation function, and the output layer uses

softmax activation function. For parameter optimization, we used the cross-entropy

loss function. The initial learning rate was set to 10−3, and it was progressively

reduced according to a pre-established schedule. The mini-batch size was set to

1574, and the overall number of epochs was set to 125. Gradient computations are

thus performed 196750 times. To avoid overfitting, we used L2 regularization with

a 10−3 scaling factor, global average pooling, and batch normalization.

By comparing Tables 5.1 and 5.2, we notice that the test error values of the

smallest CNNs (topologies 1, 2 and 3 in Table 5.2) are just higher than the test error

of the best MLP6 in Table 5.1. Some CNNs with three convolutional layers such as
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Topology
number

Filters number
per layer

Train (%) Test (%) GPU Time
execution
(mseg)

CPU Time
execution
(mseg)

Relation
CPU/GPU

1 4, 8 4.25±0.08 6.99±0.33 0.0519 0.3080 5.93
2 4, 32 3.11±0.04 4.90±0.37 0.0500 0.3762 7.53
3 8, 16 2.72±0.03 4.25±0.22 0.0524 0.3866 7.38
4 8, 32 2.06±0.05 3.20±0.12 0.0546 0.4408 8.08
5 16, 4 2.45±0.02 4.03±0.06 0.0550 0.4483 8.15
6 16, 8 1.89±0.06 2.85±0.28 0.0558 0.4645 8.33
7 16, 16 1.39±0.03 2.45±0.09 0.0571 0.4996 8.75
8 16, 32 1.39±0.03 2.49±0.09 0.0598 0.5720 9.57
9 32, 16 1.23±0.03 2.00±0.09 0.0673 0.7289 10.84
10 32, 32 0.95±0.02 1.48±0.65 0.0700 0.8371 11.96
11 32, 64 0.83±0.03 1.47±0.08 0.0777 1.0566 13.61
12 4, 8, 16 2.55±0.03 4.13±0.16 0.0465 0.3279 7.95
13 4, 32, 8 2.09±0.03 2.42±0.05 0.0506 0.4042 7.99
14 4, 32, 16 1.03±0.01 1.97±0.10 0.0507 0.4170 8.23
15 8, 16, 32 1.04±0.03 2.10±0.10 0.0541 0.4319 7.98
16 8, 32, 8 0.87±0.03 2.00±0.05 0.0556 0.4686 8.43
17 8, 32, 16 1.21±0.01 1.99±0.04 0.0561 0.4815 8.58
18 16, 32, 64 0.07±0.16 1.05±0.14 0.0634 0.6947 10.96
19 16, 128, 32 0.55±0.05 0.80±0.04 0.0838 1.2609 15.05
20 32, 64, 32 0.87±0.07 0.97±0.07 0.0799 1.1871 14.85
21 32, 128, 64 0.04±0.15 0.85±0.12 0.0992 1.9111 19.26
22 64, 128, 32 0.30±0.01 0.82±0.02 0.1268 2.7885 21.99
23 16, 32, 64, 128 0.00±0.00 0.96±0.09 0.0666 0.8120 12.20

Table 5.2: Accuracy and runtime comparisons among 23 designed CNNs. Standard
deviation values are provided next to mean error values (five folds).

topologies 14, 16 and 18 have error similar to that of CNNs with two convolutional

layers such as topologies from 7 to 12. However, in spite of the larger number of

layers, those three-layer CNNs run faster and have smaller CPU/GPU runtime ratios

than they two-layer counterparts.

CNN topologies 1 to 6 have high test error (see also Figure 5.6). Topologies 7

and 8 are similar with respect to test error and GPU runtime. Topology 9 improves

test error by approximately 0.5% with respect to topologies 7 and 8, at the expense

of 0.2 ms additional CPU runtime. Topologies 10 and 11, which are the largest two-

layer topologies considered, have the best two-layer-based test error: approximately

98.5%. Topologies 15, 16 and 17 achieve test error values 0.5% higher than topologies

10 and 11 do, but topologies 15, 16 and 17 are better than topologies 10 and 11

with respect to GPU and CPU runtime, and with respect to the CPU/GPU runtime

ratio. That runtime advantage is due to the longer time taken by the 32 filters at

the first layer of CNNs 10 and 11. If the same 3×3 kernel size is used for every

layer, then the convolutions at the CNN first layer tend to take longer time than

convolutions at subsequent layers. As topologies 12 to 18 in Table 5.2 suggest, the

topologies with larger numbers of filters at layers two, three and four tend to have

shorter runtime than two-layer topologies with a large number of filters at layer one

(topologies 10 and 11, for example). Topology 18 keeps computational complexity

approximately the same for every layer. Similarly to what is done in VGG neural
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networks [78], at every layer the output volume width or height are half the width or

height of the output volume at the previous layer, but the number of filters is twice

the number of filters at the previous layer. So, runtime is approximately constant

for every layer. Topology 18 improves the test error by approximately 0.9% with

respect to the test error values of topologies 15, 16 and 17. Topologies 19 to 22

use larger numbers of filters at layer two. To reduce the number of parameters

(synaptic weights) at the connection from the last CNN layer to the output layer

(which is dense), topologies 19 to 22 have relatively small numbers of filters at the

last convolutional layer. These topologies improve the test error by approximately

0.2% with respect to topology 18, but they require at least 0.02 ms additional GPU

time, and at least 0.5 ms additional CPU time. Finally, we notice that a four-layer

CNN (topology 23) achieves 0% training error. However, the test error of topology

23 is not larger than the test error values obtained with topologies 19 to 22, and the

runtime is slightly larger than topology 18 runtime. Four-layer networks are thus

not considered for further (CNN+MLP) training. To have test error references for

CNN-based classification, we select the three-layer CNN topologies 19 and 21. To

investigate the error improvement that may be obtained by including a dense MLP

layer before the output layer (as in Figure 5.7b), other CNN topologies from Table

5.2 are selected too, as described in Section 5.2.3.

5.2.3 CNN+MLP Topologies

Several CNN+MLP topologies were tested, and they are presented in Table 5.3.

The first column indicates the topology design number. The second column shows

the number of filters in each convolutional layer and the number of neurons in the

dense layer. The remaining columns (three to seven) are exactly as described in the

first paragraph of Section 5.2.2. Like in the CNN topologies of Section 5.2.2, the

convolutional layers always use 2×2 pooling, and global average pooling is always

applied immediately after the last convolutional layer. All convolutional and dense

layers use the ReLU activation function and the output layer uses softmax acti-

vation function. For parameter optimization, we cross-entropy as in Section 5.2.3.

Depending on the neural network size, the learning rate was set either to 10−3 or

to 10−4. The remaining learning rate, mini-batch, and regularization specifications

are exactly the same as in the first paragraph of Section 5.2.2, except for the fact

that we include dense-layer dropout with keep probability set to 0.5 in the present

section.

The CNN+MLP design results are shown in Table 5.3. Some CNN topologies

from Table 5.2 were used in these designs. The test error of topologies 7 to 11

from Table 5.2 is improved as an additional dense MLP layer is included in the
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Topology
number

Filters number
per layer

Train (%) Test (%) GPU Time
execution
(mseg)

CPU Time
execution
(mseg)

Relation
CPU/GPU

1 4, 8 + 64 3.45±0.07 4.35±0.05 0.0519 0.3087 5.95
2 8, 16 + 64 1.66±0.05 2.23±0.07 0.0521 0.3879 8.75
3 16, 16 + 64 1.05±0.03 1.34±0.06 0.0572 0.5006 10.97
4 16, 32 + 64 0.24±0.16 1.12±0.05 0.0633 0.6950 10.79
5 32, 16 + 64 0.87±0.01 1.22±0.10 0.0677 0.7304 12.02
6 32, 32 + 64 0.61±0.01 1.10±0.04 0.0698 0.8386 11.95
7 32, 32 + 128 0.62±0.01 1.10±0.03 0.0703 0.8393 13.55
8 32, 64 + 64 0.39±0.02 0.99±0.03 0.0781 1.0584 17.10
9 64, 64 + 128 0.64±0.01 0.92±0.05 0.1057 1.8086 20.56
10 64, 128 + 128 0.39±0.00 0.88±0.02 0.1236 2.5422 7.99
11 8, 16, 32 + 64 0.53±0.02 1.34±0.04 0.0542 0.4329 8.99
12 8, 32, 32 + 64 0.19±0.01 1.09±0.02 0.0567 0.5097 9.94
13 16, 32, 8 + 64 0.19±0.01 1.10±0.03 0.0604 0.6008 11.03
14 16, 32, 64 + 64 0.06±0.02 0.82±0.04 0.0634 0.6999 14.99
15 32, 64, 32 + 64 0.01±0.00 0.92±0.03 0.0799 1.1971 15.60
16 32, 64, 64 + 64 0.11±0.01 0.65±0.01 0.0826 1.2889 16.92
17 32,64,128+128 0.10±0.03 0.72±0.02 0.0872 1.4744 19.40
18 32, 128, 64 + 64 0.06±0.04 0.61±0.07 0.0993 1.9252 22.23
19 64, 128, 32 + 64 0.09±0.03 0.80±0.04 0.1263 2.8082 27.02
20 64,128,256+128 0.06±0.04 0.59±0.07 0.1470 3.9714 21.24

Table 5.3: Accuracy and runtime comparisons among 20 designed CNN+MLP
topologies. Standard deviation values are provided next to mean error values (five
folds).

topologies, as topologies 3 to 8 in Table 5.3 indicate. This improvement comes at

insignificant additional runtime cost (the CNN+MLP topologies are approximately

0.01 ms slower on GPU and CPU). Topology 22 from Table 5.2 had achieved one

of the best CNN test errors (close to the test error of CNN topologies 19 and 21

in Table 5.2), and so we set the first layer of CNN+MLP topologies 9 and 10 to

have 64 filters. Using only two convolutional layers, the hidden dense layer input

number becomes large (64 or 128), and 128 neurons are used in the hidden dense

layer. With respect to topologies 3 to 8, the test error improvement of CNN+MLP

topologies 9 and 10 is insignificant (around 0.1%), so in the next topologies (from 11

on, leaving 17, 19 and 20 out) we avoid more than 32 filters at the first convolutional

layer and more than 64 neurons at the hidden dense layer. The three-convolutional-

layer CNN+MLP topologies (from 11 on, in Table 5.3) always reach test error below

1.5%. Less than 0.75% test error is achieved by larger topologies (16, 17, 18, and

20). The best test error is achieved by CNN+MLP topology 20. By comparing

the best test results in Tables 5.2 and 5.3, we conclude that CNN and CNN+MLP

topologies achieve similar test error values, with approximately 0.2% advantage for

CNN+MLP 20 with respect to CNN 19.

For the larger topologies (with three or four convolutional layers), the additional

parameters (synaptic weights) which are due to the added dense hidden layer usually

make training more complicated, even if dropout with 0.5% keep probability is

used. For CNN+MLP topologies with two convolutional layers, convergence is faster
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than it was for CNN topologies. The test error values are similar for CNN+MLP

topologies 16, 17, 18, 19 and 20. For topologies 16, 18, and 19, the number of filters

at the last convolutional layer is not as large as in topologies 17 and 20. After

global average pooling is performed1, the synaptic weights of the hidden dense layer

correspond to a matrix with size 32×64 (topology 19), or 64×64 (topologies 16 and

18), or even size 128×128 (topology 17), while for topology 20 that size increases to

256×128. Because of the large number of parameters, training is more difficult for

topologies 17 and 20.

A comparison between Tables 5.2 and 5.3 also indicates an increase in

CNN+MLP runtime with respect to CNN runtime. For some CNN+MLP topolo-

gies, the runtime is significantly larger than the runtime of simpler CNN+MLP

topologies having similar test error. Then, the topologies with error within 1%

of the best topology error may be considered as candidates for CNN-based classi-

fiers with suitable balance between runtime and error. We thus select topologies 6

and 18 as the best designs corresponding to two-layer and three-layer CNN+MLP

topologies.

5.3 Other Metrics

This section details other metrics that were carried out to understand the behavior

in the dense layer in CNN+MLP, and score metrics used on the best models of each

topology.

5.3.1 Relevant inputs

This experiment is conducted in order to discard non-relevant inputs in the networks

[82] through the analysis of the most important features from three descriptors

(explained in the Chapter 4) for an specific trained model. As shown in Table 5.1, the

best accuracy was obtained with topologies that contain 200 neurons in the hidden

layer. For such topologies, the relevance of each input generated by MLP1, MLP3

and MLP6 descriptors is presented in Figure 5.8, where the blue lines correspond to

the accuracy obtained using all inputs and the dots represent the accuracy obtained

replacing each input by its mean value. In Figure 5.8a, the relevance analysis is

shown for the MLP1 descriptor, which extracts texture information for the different

subbands; for this reason, all inputs are relevant for this feature extractor. In Figure

5.8b, a similar analysis is presented for the MLP3 descriptor, whose LBP features

contain local texture information, which often results in redundant areas in the

1In [66], the authors conclude that, by reducing the number of parameters to be optimized,
global average pooling makes training easier.
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output image; thus, some elements of the histogram vector are irrelevant for the

trained model. Figure 5.8c shows the relevance of each feature obtained with the

MLP6 descriptor, which employs LBP alongside other features. LBP features have

little relevant when compared to color descriptor and edge-image entropy. Moreover,

shape information are more relevant than texture features, specially for inputs from

8 to 20; this may be due to the fact that several texture features are related to similar

areas, what makes some of them irrelevant. This result indicates that shape and

color entropy information should generate more features than texture information.
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Figure 5.8: Relevant inputs for trained models MLP1, MLP3 and MLP6, obtaining
a model accuracy of 93.04%, 87.67% and 95.71% respectively.

From Table 5.3, CNN+MLP 18 is the model that resulted in the best accuracy.

In order to perform the relevance analysis of each global average feature map of

CNN+MLP 18, the 64 neuron outputs from the GAP operation are fed into the

next MLP hidden layer (fully-connected neurons). In Figure 5.9, the relevance

analysis results are presented for the 64 features, where the blue line corresponds

to the accuracy obtained using all inputs and the dots corresponds to the accuracy

obtained by replacing each input by its mean value. It can be observed that, if

features 29 and 62 are removed, the accuracy of CNN+MLP 18 increases. Therefore,
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it may indicates that the learned features present some feature maps with irrelevant

information. In Appendix B, the feature maps of all layer are presented for some

input images.
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Figure 5.9: Relevant features after global pooling layer for topology CNN+MLP 18,
model accuracy 99.47%.

This experiment indicates that when more features are included to a topology,

not all have relevant information to perform a task, as observed in Figures 5.8a and

5.8c, which features of MLP1 are relevant while in MLP6 some inputs become irrel-

evant features. as we observed in the analysis, when the features number increases,

some of them may result irrelevant and the feature reduction may improve the error

model or optimize the time execution of the network [82]

5.3.2 Score metrics

Since the presence of false positives is more critical than false negatives, the false

positive rate (FPR) was used for analysis in specific models selected from MLP,

CNN and CNN+MLP topologies. Table 5.4 presents the FPR of each model for the

test database.

Architecture Topology Accuracy
(%)

FPR (%)

MLP1 [83] 200 6.99 6.81
MLP2 200 4.14 4.20
MLP3 200 12.39 9.01
MLP4 200 9.66 8.78
MLP5 200 5.95 5.69
MLP6 200 4.29 4.67
CNN 19 16,128,32 0.76 0.36
CNN 21 32,128,64 0.80 0.59
CNN+MLP 6 32,32+64 1.06 0.83
CNN+MLP 18 [84] 32,128,64+64 0.53 0.30

Table 5.4: Comparison of false positive rate for selected models.
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5.4 Systems Comparison

For comparison purposes, error in videos was measured in two ways: number of false

positives, number of positive detections that were lost when temporal and spatial

algorithm were applied, and finally, a subjective evaluation of the system results.

Moreover, a discussion about the performances of temporal and spatial analysis are

presented in this section. Finally, the runtime is analyzed for both CNN-based and

MLP-based systems.

5.4.1 False Positives Reduction

Before comparing the performances of the CNN and MLP classifiers, a study was

made on the influence of the sliding window step K and the frame buffer size F on

the detection error rate and execution time. The results obtained with the CNN

classifier applied to 14416 frames (with manually annotated algae regions) are shown

in Figures 5.10 and 5.11.

Figure 5.10 shows the results obtained with window shift varying from 1 to 16

pixels, generated in order to determine a step size value that produces a good balance

between processing time and performance. Only the spatial analysis (Algorithm 11)

was employed in this experiment, with minimum number of pixels in a cluster and

overlap threshold between cluster regions equal to N = 8 and Ov = 0.8, respectively.

The region error percentages, measured by the interception-union ratio (IoU) [85]

between the delimitation boxes of the detected regions and the ground truth regions,

are presented in Figure 5.10a.

The percentage increases in the detected region error, measured by the IoU for

K-pixels shift using region for 1-pixel shift as reference, is shown in Figure 5.10b.

Figure 5.10c presents the false positive rates (FPR) obtained from 1867 frames

that had no algae on the pipelines. Finally, Figure 5.10d shows the runtime of the

algorithm for different values of K.

The temporal analysis further improves the FPR due to the fact that the cen-

troids corresponding to the algae on the pipelines present smooth movements. The

next experiment was conducted with the purpose of selecting the frame buffer size to

be used in Algorithm 2. According to the results of Figure 5.10, K = 8 was chosen

because the corresponding runtime is small (approximately 0.45 seconds) and the re-

gion error is acceptable (around 0.5%). The other parameters of Algorithm 11 were

kept equal to those of the previous experiment. The minimum distance between

centroids D of Algorithm 11 was set in the range of 10 to 150 pixels, according to

the size of the region being analyzed and the number of overlapping regions.

Figure 5.11a shows the FPR (obtained using the same 1867 frames from previ-

ous experiment) for different frame buffer sizes F , while Figure 5.11b displays the
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Figure 5.10: Performance and runtime of the algae detection system for different
values of the window shift step. In (a), Region error percentage. In (b), Region
error increase using 1-pixel shift as reference. In (c), False positive rate. In (d),
Algorithm runtime.

corresponding runtimes. As expected, FPR improves with an increase in buffer size,

at the cost of runtime growth. Based on the results of Figure 5.11a, the number of

frames F chosen was 2. From Figure 5.11b, it can be observed that as the frame

buffer increases so does significantly the system execution time.

5.4.2 MLP-based System

For this system, 200-neurons model from MLP6 showed in Table 5.1 was used to

test on real videos, system configuration was established in 8-pixels spatial shift,

minimum cluster size 8 and frame buffer size of 4. The framebuffer size is larger for

the MLP-based system since false positive regions are detected often even in consec-

utive 3 frames. The system implemented in CPU only, takes around 10 seconds and

1.5 seconds per frame for descriptor and post-processing algorithms, respectively.

Accuracy in videos for this model was 90.05% for 1500 frames in different scenes
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Figure 5.11: Performance and runtime of the algae detection system for different
frame buffer sizes. False positive rate and algorithm runtime for (a) and (b) respec-
tively.

using as reference the best model with shift step K=1 using interception/union as

evaluation metric. Figure 5.12 shows outcomes for MLP-based System applied to 6

images.

Figure 5.12: Examples of algae detection obtained MLP-based system with 8-pixels
spatial shift, minimum cluster size equal to 8 and 2 images in frame buffer.
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5.4.3 CNN-based System

The chosen architecture for CNN-based system was CNN+MLP 18 due to its good

performance over test set and low FPR. The chosen architecture was applied to the

same 6 images previously used to test the MLP-based system. The results are shown

in Figure 5.13. To complement the quantitative evaluation, a subjective analysis of

the detection results of CNN and MLP methods was performed. It was observed that

in several circumstances the MLP algorithm was not able to detect the presence of

algae, even when the size of the frame buffer was increased, while the CNN approach

detected it with small frame buffer sizes without generating false positives in regions

outside the pipeline.

Figure 5.13: Examples of algae detection obtained CNN-based system employing 8-
pixels spatial shift, minimum cluster size equal to 8 and 2 frames into frame buffer.

62



Chapter 6

Conclusions and Future Work

The complexity of automatic underwater pipeline inspection has become large

enough so that conventional machine learning algorithms face significant perfor-

mance limitations in typical applications. In this paper, we compared the perfor-

mances of conventional MLPs and deep CNNs in an algae detection. The deep CNNs

successfully performed high-level feature extraction, and achieved test classification

error around 0.6%, whereas the best conventional MLPs achieved 4.3% using dif-

ferent designed features. The classification error improvement comes at the cost of

a penalty in processor runtime, but specific libraries such as CUDA and CuDNN

allow for improved processing time. The runtime improvement is not available for

conventional MLPs, because they have small topologies and they are significantly

affected by the data transfer bottleneck even if graphical processors are used.

If regularization techniques are not used, then deep CNN training is impaired

by overfitting problems. To obtain generalization corresponding to 0.1% train clas-

sification error and 0.6% test classification error, we employed batch normalization,

pooling (max pooling at convolutional layers and global average pooling immedi-

ately before the fully connected layers), and 10% dropout. Dense layers with 64

neurons allowed fast convergence for all topologies. For some training folds, larger

dense layers led either to overfitting or to cost function divergence.

The classification error of the deep CNN test corresponds to acceptable perfor-

mance in video tests. Occasionally, objects similar to algae led to false-positive rates

higher than expected from the design. Often the false-positive results were associ-

ated with short time events. In that case, the incorrectly classified windows marked

in the video would briefly blink between two correctly classified regions in subse-

quent frames. To suppress blinking windows and to reduce false-positive results

within the same static frame, we proposed temporal and spatial post-processing

algorithms. The post-processing algorithms improved the false-positive rate and

thus the overall classification error in video tests, especially for blinking windows

intervals. Using small frame buffers reduce the processing time, and in this way,
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employing a small step size in the spatial post-processing algorithm, the available

runtime can be traded off by a reduced false-positive results at the frame level.

Deep neural network structures based on CNNs can be applied to the recognition

of several underwater pipeline events other than algae. To further suppress false-

positive results at regions outside the pipeline and for objects associated with partic-

ular three-dimensional shapes, three-dimensional models typically used in computer

vision might be used.
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Appendix A

Algae Database

The database was obtained from videos of underwater pipeline inspection tasks.

Each video frame had a size of 1280x720 pixels and the frame rate was 30 fps. To

reduce computational cost, image resizing was necessary, resulting in 317x638 pixel

images. 41992 samples were annotated manually for two classes: algae and non-

algae. The database was split and shuffled at 60% for training, 20% for validation

and 20% for testing. Data augmentation was employed after splitting the dataset.

Seven extra samples of each original image were included: three images rotated in

increments of 90◦, the corresponding mirrored images, and the mirror image for 0◦

rotation. The algae detection algorithms were applied to windows of 61× 61 pixels,

obtained from the RGB images (video frames) in a sliding mode.

(a) (b)

Figure A.1: Negative (a) and positive (b) samples from image database without
data augmentation.
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Appendix B

Looking at layers

In order to show the learned features, output from convolutional layer is shown on

Figure B.1.

(a) (b)

(c) (d)

Figure B.1: Looking at the layers using a positive input sample (a). The first (b),
second (c) and third (d) convolutional layers are shown.
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