
CLASSIFICATION OF UNDERWATER PIPELINE EVENTS USING DEEP

CONVOLUTIONAL NEURAL NETWORKS

Felipe Rembold Petraglia

Dissertação de Mestrado apresentada ao

Programa de Pós-graduação em Engenharia

Elétrica, COPPE, da Universidade Federal do

Rio de Janeiro, como parte dos requisitos

necessários à obtenção do t́ıtulo de Mestre em

Engenharia Elétrica.

Orientador: José Gabriel Rodŕıguez Carneiro

Gomes

Rio de Janeiro

Setembro de 2017

iii

Petraglia, Felipe Rembold

 Classification of Underwater Pipeline Events using Deep

Convolutional Neural Networks/Felipe Rembold Petraglia. –

Rio de Janeiro: UFRJ/COPPE, 2017.

 XII, 56 p.: il.; 29, 7cm.

 Orientador: José Gabriel Rodríguez Carneiro Gomes

 Dissertação (mestrado) – UFRJ/COPPE/Programa de

Engenharia Elétrica, 2017.

 Referências Bibliográficas: p. 54-56.

 1. Introduction. 2. Artificial Neural Networks. 3. Deep

Neural Networks. 4. Experiments and Databases. 5. Results.

6. Conclusions. I. Gomes, José Gabriel Rodríguez Carneiro.

II. Universidade Federal do Rio de Janeiro, COPPE,

Programa de Engenharia Elétrica. III. Título

Àqueles que estiveram próximos

a mim durante o peŕıodo do

mestrado.

iv

Agradecimentos

Gostaria de agradecer ao professor José Gabriel Rodŕıguez Carneiro Gomes, meu

orientador, pela paciência e atenção ao longo deste trabalho.

Agradeço também aos meus pais, Mariane e Antonio Petraglia, pelos conselhos

e pela experiência compartilhada ao longo da minha trajetória acadêmica. Demon-

stro também minha gratidão ao meu irmão, Pedro Gabriel, pela companhia e pelo

conv́ıvio harmonioso no cotidiano.

Sou extremamente grato aos professores cujas disciplinas cursei ao longo do

curso de mestrado. O conhecimento que adquiri em suas aulas foi de fundamen-

tal importância para a minha formação como engenheiro. Agradeço também aos

funcionários da Universidade Federal do Rio de Janeiro (UFRJ), pois suas atuações

são decisivas para o sucesso dessa instituição de excelência.

Por fim, registro minha gratidão aos meus colegas de classe, em especial àqueles

pertencentes ao grupo de amigos que estiveram mais próximos de mim durante a

graduação e o mestrado. Tanto os momentos de estudo e de trabalho em equipe

quanto os de descontração foram extremamente proveitosos em sua companhia, e

estimularam de forma significativa a minha participação na UFRJ.

v

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos

necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

CLASSIFICAÇÃO DE EVENTOS EM DUTOS SUBMARINOS UTILIZANDO

REDES NEURAIS CONVOLUCIONAIS

Felipe Rembold Petraglia

Setembro/2017

Orientador: José Gabriel Rodŕıguez Carneiro Gomes

Programa: Engenharia Elétrica

A inspeção automática de dutos submarinos tem sido uma tarefa de crescente

importância para a detecção de diferentes tipos de eventos, dos quais destacam-se

armadura exposta, presença de algas, flanges e manta. Tais inspeções podem se

beneficiar de técnicas de aprendizado de máquinas para classificar acuradamente

essas ocorrências. Neste trabalho, apresenta-se um algoritmo de redes neurais con-

volucionais para classificação de eventos em dutos submarinos. A arquitetura e

os parâmetros da rede neural que resultam em desempenho de classificação ótimo

são selecionados. A técnica de rede neural convolucional, em comparação ao algo-

ritmo do perceptron precedido por extração de features wavelet, apresenta desem-

penho superior para diferentes classes de eventos, alcançando em média acurácia

de classificação de 93.2%, enquanto o desempenho alcançado pelo perceptron é de

91.2%. Além dos resultados obtidos no conjunto de teste, são analisadas as curvas

de acurácia e de entropia cruzada obtidas para o conjunto de validação ao longo

do treinamento, de modo a comparar os desempenhos de cada método e para cada

classe de eventos. São também fornecidas visualizações das sáıdas das camadas inter-

mediárias da rede convolucional. Essas visualizações são interpretadas e associadas

aos resultados obtidos.

vi

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Master of Science (M.Sc.)

CLASSIFICATION OF UNDERWATER PIPELINE EVENTS USING DEEP

CONVOLUTIONAL NEURAL NETWORKS

Felipe Rembold Petraglia

September/2017

Advisor: José Gabriel Rodŕıguez Carneiro Gomes

Department: Electrical Engineering

Automatic inspection of underwater pipelines has been a task of growing im-

portance for the detection of four different types of events: inner coating exposure,

presence of algae, flanges and concrete blankets. Such inspections might benefit of

machine learning techniques in order to accurately classify such occurrences. In this

work, we present a deep convolutional neural network algorithm for the classification

of underwater pipeline events. The neural network architecture and parameters that

result in optimal classifier performance are selected. The convolutional neural net-

work technique outperforms the perceptron algorithm preceded by wavelet feature

extraction for different event classes, reaching on average 93.2% classification accu-

racy, while the accuracy achieved by the perceptron is 91.2%. Besides the results

obtained in the test set, accuracy and cross entropy curves obtained in the validation

set during training are analyzed, so that the performances of each method and for

each event class are compared. Visualizations of the convolutional neural network

intermediate layer outputs are also provided. These visualizations are interpreted

and associated to the results obtained.

vii

Contents

List of Figures x

List of Tables xii

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 2

1.3 Thesis Structure . 2

2 Artificial Neural Networks 4

2.1 Backpropagation . 5

2.2 Activation Functions . 9

2.2.1 Logistic Function . 9

2.2.2 Softmax . 9

2.2.3 Hyperbolic Tangent . 10

2.2.4 Rectified Linear Unit . 10

2.2.5 Leaky ReLU . 12

2.3 Regularization Techniques . 13

2.3.1 `1 Regularization . 14

2.3.2 `2 Regularization . 14

2.3.3 Dropout . 16

2.3.4 Batch Normalization . 17

2.4 Feature Extraction . 18

2.4.1 Wavelet-based Feature Extraction 19

2.4.2 Wavelet Transform . 20

2.4.3 Features based on First- and Second-Order Statistics 23

3 Deep Neural Networks 25

3.1 Convolutional Neural Network . 25

3.1.1 Convolutional Layer . 26

3.1.2 Pooling Layer . 27

3.1.3 Fully-Connected Layer . 28

viii

3.2 Optimization Methods . 29

3.2.1 Stochastic Gradient Descent 29

3.2.2 AdaGrad . 30

3.2.3 RMSProp . 31

3.2.4 Adam . 31

4 Experiments and Databases 33

5 Results 38

6 Conclusions 52

Bibliography 54

ix

List of Figures

2.1 Perceptron mathematical model. 5

2.2 Simple perceptron classification example, with w = [1 −1]T and b = 0. 6

2.3 Multilayer perceptron structure. 7

2.4 Logistic function. 10

2.5 Hyperbolic tangent function. 11

2.6 ReLU function. 12

2.7 Leaky ReLU function. 13

2.8 Dataset sample distribution in a neural network input hyperspace. . . 15

2.9 Low convergence capability data regression. 16

2.10 Data regression with good convergence and generalization capabilities. 17

2.11 Low generalization capability data regression. 18

2.12 `1 regularization and its derivative function. 19

2.13 `2 regularization and its derivative function. 20

2.14 (a) Standard neural network. (b) Neural network after applying

dropout. 21

2.15 Feature calculation based on first- and second-order statistics wavelet

coefficients. 21

2.16 Decomposition of a signal x(k) by a perfect reconstruction two-channel

filter bank. 22

2.17 Filter bank structure of a dyadic decomposition with J levels. 22

2.18 Spectrum division by a dyadic decomposition with J = 4 levels. . . . 23

2.19 Two dimensional discrete wavelet transform with J = 3 levels. 23

3.1 Illustration of arrangement with only one spatial dimension. The

neuron weights in this example are [2, 1,−1]. 27

3.2 Illustration of arrangement with only one spatial dimension. In this

example, the stride is equal to 2. 27

3.3 Three-dimensional convolutional layer. 28

3.4 Max-pooling with 2× 2 filters and stride equal to 2. 29

3.5 Max-pooling with 2 × 2 filters and stride equal to 2, over a three-

dimensional volume. 29

x

4.1 Samples from the ICE dataset. 34

4.2 Samples from the algae dataset. 34

4.3 Samples from the flange dataset. 35

4.4 Samples from the CB dataset. 35

4.5 Negative samples. 36

4.6 CNN architecture. 37

4.7 MLP architecture. 37

5.1 Accuracy for ICE. 39

5.2 Loss function for ICE. 39

5.3 Original ICE sample. 40

5.4 First convolutional layer outputs for ICE. 41

5.5 Second convolutional layer outputs for ICE. 42

5.6 Accuracy for algae. 42

5.7 Loss function for algae. 43

5.8 Original algae sample. 43

5.9 First convolutional layer outputs for algae. 44

5.10 Second convolutional layer outputs for algae. 45

5.11 Accuracy for flange. 45

5.12 Loss function for flange. 46

5.13 Original flange sample. 46

5.14 First convolutional layer outputs for flange. 47

5.15 Second convolutional layer outputs for flange. 48

5.16 Accuracy for CB. 48

5.17 Loss function for CB. 49

5.18 Original CB sample. 49

5.19 First convolutional layer outputs for CB. 50

5.20 Second convolutional layer outputs for CB. 51

xi

List of Tables

5.1 Classification accuracy for the four different event classes. 38

xii

Chapter 1

Introduction

1.1 Motivation

The intensification of subsea oil and gas field exploitation has turned the inspection

of underwater pipelines into a progressively demanding task. Usually conducted with

the use of remotely operated underwater vehicles (ROVs), which employ sensors and

cameras and are controlled through radio or cable connections [1], visual inspection

by humans is a tedious endeavor, particularly in the cases of long inspections, low

image quality and search for multiple targets [2].

In contrast to ROVs, autonomous underwater vehicles (AUVs) are able to auto-

matically detect and track underwater pipelines. In this regard, event classification

methods based on machine learning can be used in order to automatically inspect

the pipelines.

Classic neural network techniques, such as the multilayer perceptron (MLP), are

strongly dependent on feature extraction methods, which are often manually carried

out. Recently, deep learning algorithms have been able to iteratively extract their

own features from original data. Such techniques usually consist of very complex

models, composed of a large amount of elements and a variety of regularization

techniques, such as dropout, batch-normalization and max-pooling.

These networks present convenient training properties, allowing the model to

learn information from a large number of data samples before its accuracy achieves

saturation. On the other hand, when a relatively small number of data samples

is used in the training stage, overfitting harms the model classification precision,

causing its learning curve to saturate after a small amount of training epochs.

This thesis focuses on the application of one of these recent techniques, namely

convolutional neural network (CNN), to event classification. A method consisting of

a perceptron preceded by a wavelet-based feature extractor is also described, and the

results obtained using the deep CNN architecture and the perceptron are compared.

1

In order to provide information for the understanding of the neural network

decisions, visualizations of the outputs of the trained CNN intermediate layers are

exhibited and interpreted. Convolutional layer weights are also plotted.

1.2 Objectives

This work main objective is to develop a deep convolutional neural network archi-

tecture capable of achieving high classification accuracy for pipeline events without

the need for manually selected feature extraction techniques. Whereas a variety of

approaches proposing deep neural network architectures for image classification have

been recently published, benchmark on models particularly for underwater pipeline

event classification is relatively scarse. In this sense, this work provides a reference

for deep neural network models for this type of application.

In the experiments performed, images from underwater pipelines and their sur-

rounding environments were utilized, in order to validate the method for future

applications in real-time pipeline event detection. In order to take advantage of

the complex deep neural network architecture, a large number of data samples were

collected and utilized.

1.3 Thesis Structure

In Chapter 2, basic neural network concepts are presented. Perceptron and multi-

layer perceptron (MLP) are described, as well as the backpropagation learning tech-

nique. Activation functions and regularization techniques utilized in these methods

are presented, and feature extraction methods that process data to generate neural

network inputs are explained.

In Chapter 3, deep neural networks are characterized. CNN, an architecture

which is vastly used in image processing to explore local properties, is described.

Recent regularization techniques, such as max-pooling, dropout and batchnormal-

ization, are explained. Optimization methods utilized in this work are presented.

In Chapter 4, the experiments conducted in this work are described, as well as the

generated and utilized database. The four event classes considered are detailed, and

the utilized CNN and MLP architectures are specified. The windows extracted from

pipeline images, used as inputs to the neural network algorithms, are characterized.

In Chapter 5, experimental results are presented. Accuracy and loss curves ob-

tained by the CNN and by the perceptron for the four event classes are exhibited

and compared. In order to assist the understanding of the CNN functioning, visu-

alizations of intermediate layer outputs are provided and analyzed.

2

Finally, conclusions from this thesis and suggestions for future work are presented

in Chapter 6.

3

Chapter 2

Artificial Neural Networks

Artificial neural networks (ANNs) [3] are computational models based on the aproxi-

mate functioning of biological human neurons. These models are statistical methods

for estimating complex functions, usually utilized in data classification, prediction

or regression. The units within the network are organized in different layers, so

that neurons from adjacent layers are connected through weights. The connection

weights can enhance or inhibit the element activation, which is determined according

to a specific nonlinear function, called activation function.

The first neural network generation, proposed in 1957, was the perceptron [4],

one of the simplest models for supervised learning. This algorithm consists in a

binary classifier based on a linear prediction function combining a set of weights

with the feature vector, used as input to the system. As can be seen in Figure 2.1,

the perceptron maps an input x, a real valued vector, to a binary output value f(x):

f(x) =

1, if wTx+ b > 0

0, otherwise
, (2.1)

where w is the perceptron weight vector and b is the bias coefficient.

As Figure 2.2 shows, the perceptron algorithm separates the input hyperspace by

a hyperplane, wTx + b = 0. In this sense, each side of the hyperspace corresponds

to a different class. Therefore, the single layer perceptron is only capable of learning

linearly separable data patterns. In order to learn more complex patterns, additional

layers with nonlinear activation functions are required.

Based on the simple perceptron structure, the MLP [5] was posteriorly proposed

as a feedforward neural network composed of three or more layers of nodes in a

directed graph, with each layer being fully-connected to the following one, as shown

in Figure 2.3. An input and an output layer with one or more hidden layers compose

the architecture.

Each element value is determined by a function of the weighted sum of the previ-

4

Figure 2.1: Perceptron mathematical model.

ous layer element values. Except for the output layer, which is activated by the step

function, the elements present continuosly differentiable activation functions, most

commonly hyperbolic tangent and logistic functions, enabling the use of gradient-

based optimization methods. Therefore, the input signal is propagated through the

intermediate layers, determining the output classification result.

2.1 Backpropagation

In the training phase, in order to set the optimal weight values for a supervised learn-

ing task, backpropagation [6] is used in conjunction with an optimization method,

such as gradient descent. After the input vector x is propagated layer by layer and

reaches the output layer, the network output y is compared to the desired output

d. This comparison is performed according to a loss function J(w, b) (where the w

vector contains all network parameters and b is the bias coefficient), usually set as

the mean squared error over N samples in a batch:

J(w, b) =
1

2N

N∑
n=1

|d(n)− y(n)|2. (2.2)

The gradient of the loss function with respect to the weight vector w, connecting

the last hidden layer to the output layer, is then calculated. According to the

gradient descent method, after being multiplied by a learning rate η, the gradient is

subtracted from w in each update iteration, in order to minimize the loss function:

∆w = −η∇J(w) = −η ∂J
∂w

. (2.3)

The partial derivative of the error with respect to the weight vector is calculated

5

-15 -10 -5 0 5 10 15

x
1

-15

-10

-5

0

5

10

15
x 2

wTx + b = 0
class A
class B

Figure 2.2: Simple perceptron classification example, with w = [1 − 1]T and b = 0.

according to the chain rule:

∂J

∂w
=
∂J

∂y

∂y

∂w
=

1

N

N∑
n=1

(y(n)− d(n))
∂y(n)

∂w
. (2.4)

Since

y(n) = φ(wTo(n) + b), (2.5)

where φ is the activation function and o(n) is the previous layer output vector, the

partial derivative of y with respect to w is calculated as:

∂y(n)

∂w
= φ

′
(wTo(n) + b)o(n), (2.6)

where φ
′

is the derivative of the activation function cited above. A commonly used

activation function, which was used in this work, is the logistic function:

φ(z) =
1

1 + e−z
. (2.7)

6

Figure 2.3: Multilayer perceptron structure.

In this case,

φ
′
(z) =

∂φ(z)

∂z
= φ(z)(1− φ(z)). (2.8)

Therefore, we conclude from (2.6) that

∂y(n)

∂w
= φ(wTo(n) + b)(1− φ(wTo(n) + b))o(n). (2.9)

From (2.3) and (2.4), the weight vector update is computed as

∆w = −η 1

N

N∑
n=1

(y(n)− d(n))φ(wTo(n) + b)(1− φ(wTo(n) + b))o(n). (2.10)

Similarly, the bias coefficient update is calculated based on gradient descent:

∆b = −η∇J(b) = −η∂J
∂b

= −η 1

N

N∑
n=1

(y(n)− d(n))
∂y(n)

∂b
. (2.11)

Since
∂y(n)

∂b
= φ

′
(wTo(n) + b), (2.12)

the coefficient update is given by

∆b = −η 1

N

N∑
n=1

(y(n)− d(n))φ(wTo(n) + b)(1− φ(wTo(n) + b)). (2.13)

For the previous layer weights, the chain rule is again utilized, and the weight

gradients are given by the partial derivatives of the loss with respect to the previous

layer outputs, multiplied by the partial derivatives of the previous layer outputs

7

with respect to the weights of the layer.

Let W be the previous layer weight matrix, c be its bias coefficient vector and

o2 be its input vector. Hence:

o(n) = φ(W To2(n) + c). (2.14)

For the i-th column of W , the gradient is computed according to

∆Wi = −η∇J(Wi) = −η ∂J
∂oi

∂oi
∂Wi

, (2.15)

where oi is the i-th element of o and Wi is the i-th column of W . Analogously to

(2.6), we conclude that

∂y(n)

∂oi
= φ

′
(wTo(n) + b)wi, (2.16)

where wi is the i-th element of w. From (2.14), we calculate

∂oi(n)

∂Wi

= φ
′
(W T

i o2(n) + ci)o2(n), (2.17)

where ci is the i-th element of c. From (2.15), the weight matrix update is then

calculated:

∆W = −η 1

N

N∑
n=1

(y(n)− d(n))φ(wTo(n) + b)(1− φ(wTo(n) + b))

· o2(n)φ
′
(W To2(n) + c)diag[w], (2.18)

where diag[v] is the diagonal matrix containing the elements of v in its main diag-

onal.

Similarly to (2.17), the partial derivative of the previous layer output with respect

to the bias vector is obtained as

∂oi(n)

∂ci
= φ

′
(W T

i o2(n) + ci). (2.19)

Hence, the bias vector update is

∆c = −η 1

N

N∑
n=1

(y(n)− d(n))φ(wTo(n) + b)(1− φ(wTo(n) + b))

· diag[w]φ
′
(W To2(n) + c). (2.20)

8

2.2 Activation Functions

Over the years, neuron models with different activation functions have been pro-

posed. In this section, the most commonly used activation functions will be de-

scribed.

2.2.1 Logistic Function

Logistic function is described by

S(t) =
1

1 + e−t
. (2.21)

As can be seen in Figure 2.4, its output approaches 0 as t approaches −∞, and

1 as t approaches ∞. Applied to the weighted combination of the input signal,

this function introduces nonlinearity in the neural network, and limits the signal

to the interval [0, 1]. This is an advantage comparatively to linear activation func-

tions, which are usually associated with unstable training behavior, since neuron

inputs along favored paths tend to increase unlimitedly, as these functions are not

normalizable.

Logistic function can be seen as a smoother variant of the classic threshold

neuron, which is another important advantage in machine learning tasks. Since it

is differentiable, this model might be trained using backpropagation.

For −2.5 < t < 2.5, S(t) presents an approximately linear behavior, which is

why this interval is called linear regime. As saturation begins, the growth slows,

and, at maturity, growth stops.

A major disadvantage of this activation function is that it is not centered at zero,

which might restrict the weights either to positive or to negative values. Another

disadvantage is that its saturation might attenuate the error gradients in case the

weight values are too high or too low.

2.2.2 Softmax

Softmax is a generalization of the logistic function for multiclass classification meth-

ods. This function limits a K-dimensional vector t of arbitrary real values to a

K-dimensional vector σ(t) of real values in the range (0, 1) that add up to 1. The

function is given by

σj(t) =
etj∑K
k=1 e

tk
, (2.22)

where each entry σj in σ and tj in t corresponds to the j-th class. The classification

result is therefore the class corresponding to the maximum value of σ(t).

9

Figure 2.4: Logistic function.

2.2.3 Hyperbolic Tangent

Hyperbolic tangent function is described by

H(t) =
et − e−t

et + e−t
. (2.23)

As shown in Figure 2.5, its output is restricted to the interval [−1, 1], approach-

ing −1 when t approaches −∞, and 1 when t approaches ∞. As well as the logistic

function, hyperbolic tangent belongs to the sigmoidal function class. However, an

important difference between these functions is that hyperbolic tangent is antisym-

metric, which explains why recently it has been preferred.

2.2.4 Rectified Linear Unit

Rectified Linear Unit (ReLU) [7] function is described by

R(t) =

0, if t < 0.

t, otherwise.
(2.24)

10

Figure 2.5: Hyperbolic tangent function.

Shown in Figure 2.6, this type of activation improves stochastic gradient conver-

gence, since its curve does not present saturation, thereby preventing vanishing and

exploding gradient problems. Comparatively to the sigmoidal functions, which are

composed by exponential functions, ReLU also presents less costly implementation,

since it can be performed simply with comparisons and multiplications:

R(t) = max(t, 0). (2.25)

Because of these advantages, ReLU has been widely used in deep learning algorithms,

when large and complex datasets are used.

Amongst its disadvantages, its unbounded characteristics allow neuron inputs

along favored paths to increase unlimitedly, which might hamper convergence sta-

bility. Another problem, referred to as dying ReLU problem, is that neurons can

sometimes be pushed into states in which they become inactive for essentially all

inputs. In this state, no gradients flow backward through the neuron, and hence the

neuron becomes stuck in a perpetually inactive state. In some cases, large numbers

of neurons in a network can become stuck in inactive states, effectively decreasing

the model capacity. This problem typically arises when the learning rate is set too

11

high.

Figure 2.6: ReLU function.

2.2.5 Leaky ReLU

In order to circumvent the dying ReLU problem, leaky ReLU [8] was proposed as a

function, shown in Figure 2.7, described by

L(t) =

αt, if t < 0.

t, otherwise,
(2.26)

where α is tipically equal to 0.01, allowing a small, non-zero gradient when the

unit is not active. Parametric ReLU (PReLU) [9] takes this idea further by turning

the leakage coefficient into a parameter that is learned along with the other neural

network parameters.

12

Figure 2.7: Leaky ReLU function.

2.3 Regularization Techniques

Convergence and generalization are two important neural network capabilities. In

classification tasks, convergence is the machine learning algorithm ability to accu-

rately approximate the function that maps the input patterns to their classes. De-

pending on the database complexity, a large number of neurons is required for the

neural network to achieve good approximations, specially if the number of utilized

data samples is large.

Generalization, on the other hand, is the model ability to respond correctly to

samples which are different from the ones utilized in the training set. When focusing

on convergence capability, a possible error is to use an excessively large number of

neurons, causing the model to generate biased approximations with respect to the

samples used during learning stage. This effect, referred to as overfitting [10], ham-

pers the network generalization capability, undesirably modeling the noise present

in the database.

For instance, Figure 2.8 shows a dataset sample distribution in a neural network

input hyperspace, to be utilized in data regression. As can be noticed, data samples

utilized to train the network generally present noise, instead of obeying exactly

13

to a determined pattern. If the number of neurons utilized is too small, complex

curves might not be correctly estimated, as illustrated in Figure 2.9. In this case, the

model is too simple to learn enough information from the dataset, and the estimated

function will not converge to the desired function. A more complex network is

therefore required to process this amount of information, and an increase in the

number of neurons or layers is generally capable of handling this difficulty. A more

sofisticated neural network regression is shown in Figure 2.10. As can be noticed,

the estimated function converges to the data distribution, as well as being able to

correctly process new inputs, which are not present in the dataset used for training.

The increase in the number of elements might however cause the model to ex-

tract excessive information from the dataset, learning particular characteristics of

the samples which do not correspond to the general pattern. This effect, called

overfitting, is illustrated in Figure 2.11. It might be circumvented utilizing complex

datasets, with big amount and diversity of samples.

Additionally, regularization techniques are utilized in order to improve the gen-

eralization capability of a learned model. In general, these methods add a term

R(w) to the loss function:

J(w, b) =
1

2N

N∑
n=1

|d(n)− y(n)|2 +R(w), (2.27)

penalizing the exploration of certain regions of the function space used to build the

model. Regularization can be used to learn simpler models, induce models to be

sparse, introduce group structure into the learning problem, among other constraints

[11]. In this section, traditional regularization techniques will be discussed.

2.3.1 `1 Regularization

`1 regularization [12] introduces as penalty the sum of the weight modules:

R1(w) = λ
∑
i

|wi|, (2.28)

where λ is a constant called regularization factor. This restriction prevents high

weight values to adjust the model excessively to the database. Causing the weight

vector to become sparse, it makes the model basically invariant to noisy inputs. This

regularization criterion selects the data dimensions to be explored by the model.

2.3.2 `2 Regularization

`2 regularization [12] introduces as penalty the sum of the weight squares:

14

0 20 40 60 80 100
−2000

0

2000

4000

6000

8000

10000

12000

Figure 2.8: Dataset sample distribution in a neural network input hyperspace.

R2(w) = λ
∑
i

w2
i . (2.29)

This regularization method penalizes high weight values, selecting diffuse weight

vectors. More frequently utilized in machine learning than `1 regularization, it causes

the model to consider all the data dimensions in a more balanced way, instead of

selecting certain dimensions over the others.

In order to understand why `1 regularization is more likely to generate weight

values close to zero, it is important to analyze its gradient. Considering that gradient

descent updates the weights in the opposite direction of the gradient with a certain

step size, we calculate the gradients as follows:

∂R1(w)

∂wi
= λsign[wi] = λ

wi
|wi|

, (2.30)

whereas

∂R2(w)

∂wi
= λwi. (2.31)

Figures 2.12 and 2.13 show the `1 and `2 regularization functions, as well as

their respective gradient functions, for λ = 1. As can be noticed, the `1 gradient

15

0 20 40 60 80 100
−2000

0

2000

4000

6000

8000

10000

12000

Figure 2.9: Low convergence capability data regression.

is constant. This means that `1 regularization will move any weight towards zero

with constant step size, regardless of the weight value. In contrast, notice that the `2

gradient is linearly decreasing towards zero as the weights approach zero. Therefore,

`2 regularization also moves the weight vector towards zero, but the steps become

gradually smaller.

2.3.3 Dropout

In order to prevent overfitting, a possible solution is to combine the predictions of

many different neural networks. For large models, however, this alternative would

require a too long test phase, which renders unfeasible its application in certain

practical tasks.

The dropout regularization technique [13] consists in randomly dropping neurons

during training. In each training epoch, there is a probability p that each element

is dropped, along with its connections, resulting in a thinner model, as shown in

Figure 2.14. This technique approximates the effect of adding the predictions of all

these thinner networks.

16

0 20 40 60 80 100
−2000

0

2000

4000

6000

8000

10000

12000

Figure 2.10: Data regression with good convergence and generalization capabilities.

2.3.4 Batch Normalization

Training deep neural networks is complicated by changes in layer input distribution

during training. This problem requires the use of lower learning rates and careful

parameter initialization, slowing down the training phase. This phenomenon is

referred to as internal covariate shift.

In order to address this problem, batch normalization [14] is a technique which

enables the use of higher learning rates and of different initialization criteria. It

consists in, at each epoch, normalizing the samples within each training batch, by

making their mean equal to 0 and their variance equal to 1.

Thus, for a layer with d-dimensional input x = (x(1)... x(d)), we normalize each

sample of the k-th input by the following procedure:

x̂l
(k) =

x
(k)
l − µ

(k)
x√

σ2
x
(k) + ε

, (2.32)

where l is the sample index, and µ
(k)
x and σ2

x
(k)

are, respectively, the mean and

variance of x(k) given by

17

0 20 40 60 80 100
−2000

0

2000

4000

6000

8000

10000

12000

Figure 2.11: Low generalization capability data regression.

µ(k)
x =

1

m

m∑
i=1

x
(k)
i , (2.33)

and

σ2
x
(k)

=
1

m

m∑
i=1

(x
(k)
i − µ(k)

x)2, (2.34)

where m is the number of samples in each batch and ε is a regularization parameter.

Batch normalization allows the neural network to learn mean and variance parameter

estimates that are suitable for reducing internal covariate shift.

2.4 Feature Extraction

Analysis with a large number of variables generally requires large amounts of memory

and of computational power. Moreover, it may cause a classification algorithm to

overfit to training samples and generalize poorly for new data.

Related to reducing the number of dimensions of input vectors, feature extraction

is a technique that starts from an initial set of measured data and combines its

samples to derive a smaller number of values, known as features, intended to be

18

−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

w
i

R
1(w

i)

−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

w
i

∂
R

1(w
i)

/ ∂
 w

i

Figure 2.12: `1 regularization and its derivative function.

informative and non-redundant, thus leading to a faster learning process.

In this work, we adopted features based on the statistics of the coefficients of 2D

wavelet transform of each image sample. In the next sections, we present the main

concepts related to the adopted feature extraction approach.

2.4.1 Wavelet-based Feature Extraction

The regions of the images containing the events that we wish to classify in this work

have structural correlations that can be well represented by first- and second-order

statistics of some of their wavelet coefficients. Thus, it is possible to extract features

in the wavelet domain that yield a concise representation of the different events. In

this dissertation, the discussion will be restricted to wavelet-based features, although

these insights can be extended to other transform-domain representations as well,

such as the one resulting from applying Gabor filter banks.

Figure 2.15 illustrates the steps that compose the feature extraction method.

Initially each block of the image is converted to gray scales; then the wavelet is

applied to the resulting image and features of each sub-image are extracted. The

wavelet transform and the statistics for the coefficients employed in this work are

described in the remainder of this chapter.

19

−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

R
2(w

i)

w
i

−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

w
i

∂
R

2(w
i)

/ ∂
 w

i

Figure 2.13: `2 regularization and its derivative function.

2.4.2 Wavelet Transform

We present in this section a summary of the mathematical concepts related to the

expansion of discrete signals in series, especially the expansion carried out by the

discrete wavelet transform (DWT) [15], [16], [17], [18]. Let x be a signal that belongs

to the Hilbert space of complex finite energy series `2(Z). The problem of linear

expansion of x is to find a set of signals {ϕi} belonging to `2(Z) so that we can write

x as the linear combination:

x =
∑
i

αiϕi. (2.35)

If the set {ϕi} is linearly independent (that is,
∑

i αiϕi = 0 if and only if αi = 0 for

all i) and spans `2(Z) (that is, if any signal x ∈ `2(Z) can be expanded as in (2.35)),

then {ϕi} is by definition a basis of `2(Z). If the basis is orthonormal (that is, if

< ϕi, ϕj >= δi−j, where δk is the unit impulse function and < x, y > is the inner

product of x and y), then the coefficients of (2.35) are calculated as:

αi =< x,ϕi > . (2.36)

In the more general case, where {ϕi} is a non-orthogonal basis, there will be a

single dual basis {ϕ̃i} such that < ϕi, ϕ̃j >= δi−j. The coefficients in (2.35) are

20

Figure 2.14: (a) Standard neural network. (b) Neural network after applying
dropout.

Figure 2.15: Feature calculation based on first- and second-order statistics wavelet
coefficients.

calculated as

αi =< x, ϕ̃i > . (2.37)

Functions {ϕi} and {ϕ̃i} form a pair of biorthogonal bases. The representation of

a signal x as in (2.35) is done in order to analyze or process the signal in the trans-

form domain. According to the bases {ϕi} and {ϕ̃i} used in the signal analysis, the

coefficients of the Fourier, Wavelet, Gabor, and many other transforms are calcu-

lated. The selection of the more adequate basis is done according to the application,

and often depending on the type of signal to be processed. In several applications,

such as denoising and signal compression, a good basis is one that allows a com-

pact representation, or one with reduced processing cost. For practical reasons, it is

generally desirable that the basis components be related to each other through sim-

ple operations, such as time-shifting, scaling and modulation. The decomposition

of a signal into multiple complementary subspaces may be implemented through

appropriate multi-channel filter banks, called analysis filter banks. Each channel

implements the projection of the original signal into a subspace, so that this signal

can be reconstructed by the summation of its projections through a synthesis filter

bank, as illustrated in Figure 2.16, for a two-channel decomposition. The analysis

and synthesis filter banks that provide an output signal equal to the input signal

(possibly with a delay) are called perfect reconstruction filter banks. To construct

multi-channel filter banks, it is possible to use the two-channel analysis filter bank

of Figure 2.16 as an elementary block, from which more complex structures can be

constructed by cascading these filters in binary trees. Among the many possible

21

tree structures, the one shown in Figure 2.17 is of particular importance because

of its mathematical and practical characteristics. This structure, which successively

subdivides the band of lower frequencies into two subbands, each one containing ap-

proximately half the input signal spectrum, is called analysis filter bank in octaves

or dyadic. The corresponding decomposition of a signal x(k) is known as its DWT,

where the coefficients αJ are called the scale or approximation coefficients and the

coefficients βl, l = 1, · · · , J are known as detail or wavelet coefficients.

Figure 2.16: Decomposition of a signal x(k) by a perfect reconstruction two-channel
filter bank.

Figure 2.17: Filter bank structure of a dyadic decomposition with J levels.

If the dyadic tree of Figure 2.17 contains J levels, the input spectrum will

be divided into a low frequency approximation band [0, π/2J] and J detail bands

[π/2J−j+1, π/2J−j] with j = 1, 2, · · · , J , as shown in Figure 2.18. The DWT de-

composition properties will depend on the number of decomposition levels J , on the

orders of the analysis filter pair h and g of Figure 2.16 and on the family they belong

to, such as Haar, Daubechies, Coiflets, Symmlets, among others. The Daubechies

filters were employed in this work, since they present maximally flat responses at

their pass and stop bands and, thus, avoid undesirable ripples in the frequency re-

sponses of the analysis filters (Figure 2.17), which might cause mixture of the signal

contents in the different frequency subbands.

The DWT of a two dimensional image can be defined by applying the dyadic de-

composition of Figure 2.17 to each dimension (rows and columns) separately. The

DWT decomposition results in a set of independent spatially oriented frequency

channels, which represent spatial and spectral localized components of the image.

22

Figure 2.18: Spectrum division by a dyadic decomposition with J = 4 levels.

The frequency subbands, labeled as LLj, LHk, HLk and HHk, where k = 1, 2, ..., J ,

are illustrated in Figure 2.19, for J = 3, where the subscript k denotes the decompo-

sition level and J is the largest scale in the decomposition. These subbands contain

different information about the image. The lowest frequency band LLj represents a

coarse approximation of the image, while the LHk, HLk and HHk subbands represent

the horizontal, vertical and diagonal high-frequency components of the image, re-

spectively. At the k-th decomposition level, the highest frequency band is HHk, and

the LLk subband is further decomposed into sub bands LHk+1, HLk+1 and HHk+1.

Figure 2.19: Two dimensional discrete wavelet transform with J = 3 levels.

2.4.3 Features based on First- and Second-Order Statistics

The texture of an image region is characterized by its smoothness, homogeneity,

coarsity, presence of different types of borders and patterns. In order to describe a

texture, different features can be calculated, which exploit the space relations among

23

the image pixels. In this section, we describe a set of features obtained from the

DWT of the zero-mean grayscale representation of the image region being analyzed.

Such features are based on first- and second-order statistics of the DWT coefficients

of each subband (see Figure 2.19).

For a given image region, of size M ×M , being analyzed, let yj,k(l,m), of size

M/2k ×M/2k, represent the pixels of the approximation subband LLk for j = 1,

and of the detail subbands LHk, HLk and HHk, for j = 2, 3, 4, respectively, at scale

k. The first-order statistics employed in our work were the mean values of the

coefficients of the sub-images at each scale (decomposition level) k, given by

µj,k =
1

(M/2k)2

M/2k∑
l=1

M/2k∑
m=1

yj,k(l,m), (2.38)

for j = 1, · · · , 4 and k = 1, · · · , J . Since the mean value of the grayscale fullband

image was subtracted (in order to obtain a zero mean image), µ1,1 is always equal to

zero. Thus, the first-order statistics employed as input features were the mean-values

of the other 4J − 1 sub-images.

The second-order statistics (variances) of the sub-images yj,k(l,m), given by

σj,k =
1

(M/2k)2

M/2k∑
l=1

M/2k∑
m=1

(yj,k(l,m)− µj,k)2 (2.39)

were also computed, leading to 4 features per wavelet level.

Thus, a total of 8J − 1 features based on first and second-order statistics of

the wavelet coefficients of each grayscale image of the region being analyzed were

employed as input features in this work.

24

Chapter 3

Deep Neural Networks

Deep neural networks are artificial neural networks with multiple layers of nonlin-

ear processing units. Because of their sofisticated architectures, these models can

converge faster to approximations of complex functions. Moreover, the use of signal

processing methods for feature extraction is generally unnecessary, since the initial

layers often translate the data into compact intermediate representations, deriving

layered structures that remove redundancy in representation.

Because of the large number of elements in deep neural networks, regularization

and optimization methods are extremely important to prevent these models from

overfitting.

3.1 Convolutional Neural Network

Convolutional neural network [19] is an architecture which explores spatial properties

in samples in order to take advantage of the fact that the input consists of images.

Its layers have neurons arranged in three dimensions: width, height and depth. Each

neuron is only connected to a small region of the layer before it, called receptive

field, instead of being connected to all the neurons in the layer, as in the multilayer

perceptron.

This connectivity pattern between neurons is inspired by the organization of the

animal visual cortex [20]. Individual cortical neurons respond to stimuli in restricted

regions of space, and the receptive fields of different neurons partially overlap, so

that they tile the visual field. The response of an individual neuron to stimuli within

its receptive field can therefore be approximated mathematically by a convolution

operation.

The convolutional neural network is also known as shift invariant or space in-

variant [21] artificial neural network, which is named based on its shared-weight

architecture and translation invariance characteristics.

25

Among the layers utilized to build convolutional neural networks, the three main

types are convolutional, pooling and fully-connected layers.

3.1.1 Convolutional Layer

The convolutional layer parameters consist of a set of learnable filters. Every filter

is small along width and height, and its depth is equal to the input depth. During

the forward pass, each filter is slided across the width and height of its input, and,

in each position, the dot products between the filter parameters and the inputs are

computed, which characterizes a convolution. As we slide the filters along the input

volume, two-dimensional activation maps are produced, exhibiting the patterns that

the filters are most sensitive to.

In order to calculate the size of the layer output volume, three hyperparameters

are determinant: depth, stride and zero-padding. The depth corresponds to the

number of filters to be used, each learning to look for different characteristics in the

input, such as oriented edges.

The stride with which the filter is slided must also be specified. When the stride

is equal to 1, for instance, the filter is slided one pixel at a time. When the stride is 2,

the filter jumps two pixels between each dot product. Strides equal or greater than

3 are also possible, although less commonly used. The greater the stride, smaller

are the output width and height.

It might also be convenient to pad the input volume with zeros around the border.

The zero-padding parameter allows the output size to be controlled. Commonly, it

is used to preserve input height and width, so that the output has the same spatial

size.

Thus, each spatial dimension of the output volume can be calculated as follows:

D = (W − F + 2P)/S + 1, (3.1)

where W is the input volume relative dimension, F is the receptive field size of the

convolutional layer neurons, P is the zero-padding value utilized and S is the stride.

Figure 3.1 shows an example of spatial arrangement with only one dimension.

In this example, the input volume size is equal to 5, the receptive field size is equal

to 3, the padding value is 1 and the stride is 1. Therefore, the output size is equal

to (5− 3 + 2)/1 + 1 = 5.

Figure 3.2 illustrates an example in which the stride is 2. Consequently, the

output size is equal to (5− 3 + 2)/2 + 1 = 3.

Figure 3.3 shows a three-dimensional convolutional layer. As can be noticed, the

input height and width are equal to 5, there are two filters with spatial dimensions

equal to 3, the stride is 2 and the zero-padding parameter is 1. Consequently, the

26

Figure 3.1: Illustration of arrangement with only one spatial dimension. The neuron
weights in this example are [2, 1,−1].

Figure 3.2: Illustration of arrangement with only one spatial dimension. In this
example, the stride is equal to 2.

output spatial dimensions are equal to (5 − 3 + 2)/2 + 1 = 3, whereas its depth is

equal to 2, which corresponds to the number of filters. The filter depth is necessarily

equal to 3, which is the depth of the input volume.

After each convolutional layer, rectified linear units are used, in order to intro-

duce nonlinearities and, consequently, improve the feature extraction process.

3.1.2 Pooling Layer

Models with very large number of neurons are susceptible to overfitting, and their

training presents high computational complexity. Between successive convolutional

layers, a pooling layer is commonly inserted in order to reduce the spatial size of

the representation. The pooling layer operates independently on every depth slice

of the input and resizes it spatially.

Commonly utilized, max-pooling extracts the maximum value from every square

of elements where it is applied, so that downsampling is performed. Whereas the

depth dimension remains unaltered, each output spatial dimension is equal to

D = (W − F)/S + 1, (3.2)

27

Figure 3.3: Three-dimensional convolutional layer.

where W is the input dimension, F is the operator spacial extent and S is the stride.

Figure 3.4 shows an example of 2×2 max-pooling operation, with stride equal to

2. The input width and height are equal to 4. Consequently, the output width and

height are equal to (4− 2)/2 + 1 = 2.

Figure 3.5 illustrates an example of 2×2 max-pooling operation over a three-

dimensional volume. The stride is equal to 2, and the input size is 128×128×32.

Notice that the depth dimension remains unaltered, whereas the output width and

height are equal to (128− 2)/2 + 1 = 64.

As well as max-pooling, batch normalization is often performed in between con-

volutional layers, in order to prevent overfitting.

3.1.3 Fully-Connected Layer

As in the multilayer perceptron, neurons in a fully connected layer have full con-

nections to all activations in the previous layer. Their activations can hence be

computed with a matrix multiplication followed by a bias offset.

28

Figure 3.4: Max-pooling with 2× 2 filters and stride equal to 2.

Figure 3.5: Max-pooling with 2 × 2 filters and stride equal to 2, over a three-
dimensional volume.

Whereas the convolutional layer output represents high-level features from the

data, the fully-connected layers flatten these representations and learn nonlinear

combinations from them, in order to perform the final classification task. Commonly,

multiple fully connected layers are sequentially utilized, so that the model can learn

more complex patterns from the data samples.

3.2 Optimization Methods

Mathematical optimization is the selection of the best value for a variable from a

set of available alternatives. Frequently, it consists in minimizing a real function by

sistematically selecting input values according to a certain criterion and computing

the value of the function.

In machine learning, a variety of weight optimization criteria and optimization

functions are widely used.

3.2.1 Stochastic Gradient Descent

Neural network algorithms consider the problem of estimating the weight vector w

that minimizes a loss function over N training samples:

29

J(w) =
1

N

N∑
n=1

Jn(w). (3.3)

Gradient descent method [22] updates the weight vector by taking a step in the

opposite direction of the loss gradient:

∆w = −η∇J(w) = −η 1

N

N∑
n=1

∇Jn(w), (3.4)

where η is the learning rate.

For large datasets, however, computing the cost gradient based on the complete

training set can be very costly, since a single step is taken for one pass over the

training set. In order to address this problem, stochastic gradient descent (SGD)

[23] updates the weights after each training sample, instead of accumulating the

weight updates:

∆wn = −η∇Jn(w). (3.5)

Hence, the update based on a single training sample is a stochastic approximation

of the cost gradient.

3.2.2 AdaGrad

One downside of SGD is that it is sensitive to the learning rate hyperparameter.

AdaGrad [24], for adaptive gradient algorithm, is a modified stochastic gradient

descent with adaptive learning rate, which increases it for more sparse data samples

and decreases it for less sparse ones. This improves convergence performance in

applications in which sparse data are more informative, such as image recognition

and natural language processing.

AdaGrad still has a base learning rate η0, but this parameter is multiplied by

the elements in the diagonal of the outer product matrix

G =
t∑

τ=1

gτg
T
τ , (3.6)

where t is the current iteration and gτ = ∇Jτ (w).

Hence, the diagonal elements are given by

Gj,j =
t∑

τ=1

g2τ,j. (3.7)

The weight vector is updated after every iteration, and the update is given by

30

∆w = −η0diag[G]
−

1

2 ◦ gτ , (3.8)

where ◦ denotes the Hadamard product.

Therefore, the per-parameter update is given by

∆wj = − η0√
(Gj,j)

gτ,j. (3.9)

3.2.3 RMSProp

In RMSProp [25], for root mean square propagation, the learning rate is also adapted

with respect to the weight vector. In this method, the learning rate is divided by a

moving average of the magnitudes of recent loss gradients.

Hence, first the running average is calculated in terms of mean-squares:

v(w, t) := γv(w, t− 1) + (1− γ)(∇J(w))2, (3.10)

where γ ∈ [0, 1] is the forgetting factor.

The weight vector update is then given by

∆w = − η0√
v(w, t)

∇J(w). (3.11)

3.2.4 Adam

Adam [26], short for adaptive moment estimation, is an update to RMSProp. In this

method, moving averages of the gradients and the second moments of the gradients

are used. The gradient moving average update is given by

m(w, t) := β1m(w, t− 1) + (1− β1)∇J(w). (3.12)

The running average of the second moment of the gradient is updated by

v(w, t) := β2v(w, t− 1) + (1− β2)(∇J(w))2. (3.13)

The weight vector update is then given by

∆w = −η0
m̂(w, t)√
v̂(w, t)

, (3.14)

where

m̂(w, t) =
m(w, t)

1− β1
, (3.15)

31

v̂(w, t) =
v(w, t)

1− β2
, (3.16)

and β1 and β2 are the forgetting factors for gradients and second moments of gradi-

ents, respectively.

32

Chapter 4

Experiments and Databases

The classifier developed in this work was used to detect four different event types.

Inner coating exposure (ICE) occurs when the pipeline surface is damaged. The

outer cover disruption is caused by object impact and by natural circumstances, such

as waves, sea currents, among others. Visually, it can be described as a texture region

containing several parallel stripes, possibly surrounded by homogeneous regions.

Figure 4.1 shows ICE samples.

The presence of algae can be characterized by a variety of shapes, colors and

textures. This event might hide damages on the pipeline surface, hampering their

detection. Figure 4.2 shows algae samples.

Flanges are structures commonly found at pipeline junctions, and they are used

for holding pipeline sections together. When they are seen from a frontal view, these

events are outlined by hexagonal prisms surrounding cylinders. These formations

can also be observed from a lateral view, and in that case they are characterized

by thinner rectangles emerging from thicker structures. Figure 4.3 shows flange

samples.

Concrete blankets (CB) are structures placed under or over the pipelines, and

they are constructed to give support or to protect the pipelines from vibrations.

These events are usually identified by a regular brick array. Figure 4.4 shows CB

samples.

In order to train and test the implemented classification system, windows con-

taining event samples were extracted from high resolution images (1280 × 720), thus

composing databases that are used as neural network inputs. Windows that do not

contain any of these classes were also extracted, to compose the negative sample

database. Figure 4.5 shows negative samples.

For each event class, positive and negative samples were mixed, so that the

system would perform binary classification. 60 × 60 pixel windows were extracted

for ICE, algae and CB samples, whereas 80 × 80 pixel windows were extracted for

flanges, due to the need to include their entire geometry in each sample.

33

Figure 4.1: Samples from the ICE dataset.

Figure 4.2: Samples from the algae dataset.

34

Figure 4.3: Samples from the flange dataset.

Figure 4.4: Samples from the CB dataset.

35

Figure 4.5: Negative samples.

As can be seen in Figure 4.6, the implemented CNN topology consists of two

convolutional, two max pooling and three fully connected (FC) layers. The first layer

is a 32 kernel convolutional layer, which detects relatively simple features, which can

be easily recognised and interpreted. After that, a pooling layer is used, so that max

pooling is applied to 2x2 regions, with strides of 2. Subsequently, another 32 kernel

convolutional layer is applied, in order to detect more abstract and detailed features,

which are usually present among the ones from the previous layer. A pooling layer

applies max pooling once again to 2x2 regions, with strides of 2. Three FC layers

are subsequently applied. They map the previous layer outputs into deeper features,

to allow for a better classification performance. The FC layers have, respectively,

512 outputs, 256 outputs and 1 output.

At each convolutional layer output, batch normalization is performed. The op-

timizer utilized is Adam, with learning rate set to 0.001. ReLu activation function

is used after each convolutional and FC layer. After every FC layer, dropout regu-

larization is applied, with dropout probability of 50%. The loss function chosen is

cross entropy. The batch size is 100. The CNN is implemented using Keras API.

The CNN classification accuracy is compared to the one from a system com-

posed by an MLP preceded by a wavelet-based feature extractor [27]. As shown in

Figure 4.7, the MLP input layer consists of 23 elements, whereas its hidden layer is

composed by 12 elements. A three-level Daubechies 2 (Db2) wavelet is employed,

and the mean and the variance of the wavelet coefficients at each level are used as

features for the neural network.

36

Figure 4.6: CNN architecture.

Figure 4.7: MLP architecture.

37

Chapter 5

Results

Results obtained by the CNN and by the MLP on the test set, for the four classes

of events, are shown in Table 5.1. For each event class, 100,000 positive and 100,000

negative samples were randomly mixed. Among these, 162,000 samples were used

for training, 20,000 for testing and 18,000 for validating the networks. Before being

applied to the neural network input, each window is converted to grayscale, in order

to eliminate color dependence.

Table 5.1: Classification accuracy for the four different event classes.
Accuracy(%) ICE Algae Flange CB

CNN 96.5 98.3 83.0 95.0
MLP 94.6 97.0 82.4 90.8

The CNN leads to a higher classification accuracy for all four event classes con-

sidered. The biggest difference obtained is in CB, for which the CNN performs 4.2%

better than the perceptron. For flanges, the CNN accuracy is only 0.6% higher. This

is also the event for which both methods yield the lowest classification capability,

possibly because of the complexity of its structure and because of the variety of an-

gles from which its samples were recorded. Algae is the most easily classified event,

possibly because of the regularity of its aspect. For ICE, the classification accuracy

is also high for both methods, and the CNN performs 1.9% better. Its aspect, with

regular set of parallel stripes, is one of the reasons for the high accuracy.

Figures 5.1, 5.6, 5.11 and 5.16 show, for ICE, algae, flanges and CB, respectively,

the classification accuracy on the validation set. For all classes, the accuracy curves

converge within 40 epochs. The accuracy obtained for ICE has the fastest conver-

gence, reaching around its maximum value in 30 epochs. Figures 5.2, 5.7, 5.12 and

5.17 show the cross entropy curves on the validation set, for ICE, algae, flanges

and CB, respectively. The loss curves generally approach the minimum value after

approximately 35 epochs.

Figures 5.4 and 5.5 show, respectively, the first and second convolutional layer

38

Figure 5.1: Accuracy for ICE.

Figure 5.2: Loss function for ICE.

39

Figure 5.3: Original ICE sample.

outputs for an ICE sample, shown in Figure 5.3. As can be noticed, the convo-

lutional layers reinforce stripes along a common direction. The first layer output

contains more details from the original sample, whereas, in the second layer output,

blurring effect can be observed. This effect occurs due to the max-pooling operation

(downsampling), as well as the second set of convolution processes, which extracts

the most important information from the first convolutional layer outputs for the

classification task.

Figure 5.8 shows an original algae sample, whereas Figures 5.9 and 5.10 present

the first and second convolutional layer outputs for this sample, respectively. Blur-

ring effect can also be observed in the second layer for the algae sample. Differently

from the case of ICE, however, the first layer extracts edges along different directions.

Figure 5.13 illustrates an original flange sample. Figures 5.14 and 5.15 indicate

the first and second convolutional layer outputs for this sample, respectively. In

this case, the second layer reinforces the screw edges, which characterize this class.

Downsampling effect can be specially observed in some of the second layer output

images.

Figures 5.19 and 5.20 show, respectively, the first and second convolutional layer

outputs for a CB sample, depicted in Figure 5.18. It is possible to observe, in

the first layer output, the presence of edges along a preferred direction (vertical, in

the example) and along a secondary direction (horizontal, in the example). These

perpendicular lines characterize the frontal, lateral and bottom faces of the par-

allelepipeds. Besides, the difference of intensities of the regions delimited by the

edges is preserved. In the second layer, blurring effect can be noticed due to down-

sampling, and a bigger distinction occurs between the filter outputs, so that some

filters reinforce the edges and others preserve the differences of intensities between

the regions separated by the lines.

40

Figure 5.4: First convolutional layer outputs for ICE.

41

Figure 5.5: Second convolutional layer outputs for ICE.

Figure 5.6: Accuracy for algae.

42

Figure 5.7: Loss function for algae.

Figure 5.8: Original algae sample.

43

Figure 5.9: First convolutional layer outputs for algae.

44

Figure 5.10: Second convolutional layer outputs for algae.

Figure 5.11: Accuracy for flange.

45

Figure 5.12: Loss function for flange.

Figure 5.13: Original flange sample.

46

Figure 5.14: First convolutional layer outputs for flange.

47

Figure 5.15: Second convolutional layer outputs for flange.

Figure 5.16: Accuracy for CB.

48

Figure 5.17: Loss function for CB.

Figure 5.18: Original CB sample.

49

Figure 5.19: First convolutional layer outputs for CB.

50

Figure 5.20: Second convolutional layer outputs for CB.

51

Chapter 6

Conclusions

The classification of underwater pipeline events has become essential for pipeline

inspection, which has progressively turned into an automatic task. As opposed

to classic neural networks techniques, which strongly depend on manually selected

feature extraction methods, deep learning algorithms are able to extract their own

features from original data, which significantly improves classification performance

depending on the event class.

In this work, a CNN algorithm was implemented in order to classify four types

of events: ICE, algae, flange and CB. With the purpose of preventing this complex

model from learning specific characteristcs from the samples utilized for training,

regularization techniques were utilized. Results from the CNN were compared to

the ones obtained using a perceptron preceded by a wavelet-based feature extractor.

In Chapter 1, the machine learning topic was introduced. The objective of this

thesis, to develop a machine learning architecture capable of achieving high classi-

fication accuracy for pipeline events without the need of manually selected feature

extraction techniques, was described. Finally, the thesis structure was presented.

Chapter 2 presented basic neural network concepts, such as the perceptron, the

MLP and the backpropagation learning algorithm. In order to provide complemen-

tary insight into neural network performance, activation functions, regularization

techniques and feature extraction methods were described. Wavelet-based feature

extraction method, utilized in this work, was detailed, as well as fundamental con-

cepts related to this technique, such as wavelet transform and features based on

first- and second-order statistics.

In Chapter 3 deep neural networks were described. CNN, a deep learning tech-

nique, specially utilized in image processing, which was implemented in this work,

was specified. Regularization techniques vastly utilized in order to prevent deep

neural networks from overfitting were presented. Optimization methods, such as

SGD, AdaGrad, RMSProp and Adam, were described.

Chapter 4 detailed the experiments conducted and the database utilized in this

52

work. The dataset extraction performed in this work was explained, as well as the

composition of the training, validation and test sets. The four event classes consid-

ered were detailed, and the utilized CNN and MLP architectures were specified.

Chapter 5 presented the experimental results. Accuracy and loss curves obtained

by the CNN and by the perceptron for the four event classes were exhibited and

compared. In order to assist the understanding of the CNN behavior, visualizations

of intermediate layer outputs were provided and analyzed.

The CNN was shown to classify underwater pipeline events better in comparison

with the MLP based on wavelet features. Without the need of manually selected

feature extraction, the CNN obtained a higher classification accuracy on all four

event classes that were considered in this work, achieving 93.2% on average, whereas

the perceptron accuracy reached 91.2% on average.

During this work, two papers were published in international conference pro-

ceedings [28], [29].

In this work, samples extracted for the four classes of events were independent,

and treated as such. In order to further assist the detection of pipeline events

based on video samples, in the future, temporal sequences of images can be used

for training, validating and testing the model. To explore temporal sequencing of

the image samples, recursive neural network models, such as the long short-term

memory (LSTM), can be applied.

53

Bibliography

[1] ANTICH, J., ORTIZ, A. Underwater cable tracking by visual feedback. Pro-

ceedings of Pattern Recognition and Image Analysis, Lecture Notes in

Computer Science, 2003.

[2] JACOBY, M., KARIMANZIRA, D. Underwater pipeline and cable inspection

using autonomous underwater vehicles. MTS/IEEE Oceans, Bergen, 2013.

[3] SAHARIA, A., KEDIA, Y. A Review paper on Artificial Neural Networks.

SSRG International Journal of Electronics and Communication Engineer-

ing, 2016.

[4] ROSENBLATT, F. The Perceptron: a Probabilistic Model for Information Stor-

age and Organization in the Brain. Psychological Review, 1958.

[5] HAYKIN, S. Neural Networks: A Comprehensive Foundation. 2nd ed. , Prentice-

Hall, 1999.

[6] LECUN, Y. A Theoretical Framework for Back-Propagation. Proceedings of the

1988 Connectionist Models Summer School, 1988.

[7] NAIR, V., HINTON, G. Rectified Linear Units Improve Restricted Boltzmann

Machines. 2010.

[8] XU, B., WANG, N., CHEN, T., et al. Empirical Evaluation of Rectified Activa-

tions in Convolutional Network. 2015.

[9] HE, K., ZHANG, X., REN, S., et al. Delving Deep into Rectifiers: Surpassing

Human-Level Performance on ImageNet Classification. 2015.

[10] CAWLEY, G. C., TALBOT, N. L. C. On Over-fitting in Model Selection and

Subsequent Selection Bias in Performance Evaluation. Journal of Machine

Learning Research, 2010.

[11] BACH, F., JENATTON, R., MAIRAL, J., et al. Optimization with Sparsity-

Inducing Penalties. 2011.

54

[12] NG, A. Y. Feature Selection, L1 vs. L2 Regularization, and Rotational Invari-

ance. ICML, 2004.

[13] SRIVASTAVA, N., HINTON, G., KRIZHEVSKY, A., et al. Dropout: A Simple

Way to Prevent Neural Networks from Overfitting. Journal of Machine

Learning Research, 2014.

[14] IOFFE, S., SZEGEDY, C. Batch Normalization: Accelerating Deep Network

Training by Reducing Internal Covariate Shift. 2015.

[15] VETTERLI, M., KOVACEVIC, J. Wavelets and Subband Coding. Pentice-Hall,

Englewood Cliffs, New Jersey, 1995.

[16] MITRA, S. K. Digital Signal Processing: A Computer-Based Approach. 4 ed.

McGraw-Hill, 2011.

[17] VAIDYANATHAN, P. P. Multirate Systems and Filter Banks. Prentice-Hall,

Englewood Cliffs, New Jersey, 1993.

[18] STRANG, G., NGUYEN, T. Wavelets and Filter Banks. Wellesley-Cambridge,

1998.

[19] GOODFELLOW, I., BENGIO, Y., COURVILLE, A. Deep Learning. 2016.

[20] KHERADPISHEH, S. R., GHODRATI, M., GANJTABESH, M., et al. Deep

Networks Can Resemble Human Feed-forward Vision in Invariant Object

Recognition. Scientific Reports 6, Nature, 2016.

[21] LECUN, Y., BENGIO, Y. Convolutional Networks for Images, Speech, and

Time Series. The handbook of brain theory and neural networks, 1995.

[22] RUDER, S. An Overview of Gradient Descent Optimization Algorithms. 2016.

[23] BOTTOU, L. Large-Scale Machine Learning with Stochastic Gradient Descent.

Proceedings of COMPSTAT 2010, Springer, 2010.

[24] DUCHI, J., HAZAN, E., SINGER, Y. Adaptive Subgradient Methods for On-

line Learning and Stochastic Optimization. Journal of Machine Learning

Research 12, 2011.

[25] DAUPHIN, Y., VRIES, H., CHUNG, J., et al. RMSProp and Equilibrated

Adaptive Learning Rates for Non-Convex Optimization. 2016.

[26] KINGMA, D. P., BA, J. Adam: A Method for Stochastic Optimization. 3rd

International Conference for Learning Representations, San Diego, 2015.

55

[27] MEDINA, E., PETRAGLIA, M. R., GOMES, J. G. R. C. Neural-network

based algorithm for algae detection in automatic inspection of underwater

pipelines. 15th International Conference on Artificial Intelligence, 2016.

[28] PETRAGLIA, F. R., GOMES, J. G. R. C. Classification of Underwater Pipeline

Events Using Deep Convolutional Neural Networks. Proceedings of the

2017 International Conference on Acoustics, Speech and Signal Processing

(ICASSP 2017),, New Orleans, Mar. 2017.

[29] PETRAGLIA, F. R., RUIZ, R. E. C., GOMES, J. G. R. C., et al. Pipeline

Tracking and Event Classification for an Automatic Inspection Vision Sys-

tem. Proceedings of the 2017 IEEE International Symposium on Circuits

and Systems (ISCAS 2017), Baltimore, Jun. 2017.

56

	List of Figures
	List of Tables
	Introduction
	Motivation
	Objectives
	Thesis Structure

	Artificial Neural Networks
	Backpropagation
	Activation Functions
	Logistic Function
	Softmax
	Hyperbolic Tangent
	Rectified Linear Unit
	Leaky ReLU

	Regularization Techniques
	1 Regularization
	2 Regularization
	Dropout
	Batch Normalization

	Feature Extraction
	Wavelet-based Feature Extraction
	Wavelet Transform
	Features based on First- and Second-Order Statistics

	Deep Neural Networks
	Convolutional Neural Network
	Convolutional Layer
	Pooling Layer
	Fully-Connected Layer

	Optimization Methods
	Stochastic Gradient Descent
	AdaGrad
	RMSProp
	Adam

	Experiments and Databases
	Results
	Conclusions
	Bibliography

