
VERIFICATION OF GENERALIZED ROBUST DIAGNOSABILITY OF

DISCRETE EVENT SYSTEMS

Lahis El Ajouze Azeredo Coutinho

Dissertação de Mestrado apresentada ao

Programa de Pós-graduação em Engenharia

Elétrica, COPPE, da Universidade Federal do

Rio de Janeiro, como parte dos requisitos

necessários à obtenção do t́ıtulo de Mestre em

Engenharia Elétrica.

Orientador: Lilian Kawakami Carvalho

Rio de Janeiro

Junho de 2017

VERIFICATION OF GENERALIZED ROBUST DIAGNOSABILITY OF

DISCRETE EVENT SYSTEMS

Lahis El Ajouze Azeredo Coutinho

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO

ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE

ENGENHARIA (COPPE) DA UNIVERSIDADE FEDERAL DO RIO DE

JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A

OBTENÇÃO DO GRAU DE MESTRE EM CIÊNCIAS EM ENGENHARIA

ELÉTRICA.

Examinada por:

Prof. Lilian Kawakami Carvalho, D.Sc.

Prof. Patŕıcia Nascimento Pena, D.Sc.

Prof. Marcos Vicente de Brito Moreira, D.Sc.

RIO DE JANEIRO, RJ – BRASIL

JUNHO DE 2017

Coutinho, Lahis El Ajouze Azeredo

Verification of Generalized Robust Diagnosability

of Discrete Event Systems/Lahis El Ajouze Azeredo

Coutinho. – Rio de Janeiro: UFRJ/COPPE, 2017.

IX, 73 p.: il.; 29, 7cm.

Orientador: Lilian Kawakami Carvalho

Dissertação (mestrado) – UFRJ/COPPE/Programa de

Engenharia Elétrica, 2017.

Referências Bibliográficas: p. 71 – 73.

1. Discrete event systems. 2. Fault diagnosis. 3.

Sensor failures. 4. Robust diagnosability. I. Carvalho,

Lilian Kawakami. II. Universidade Federal do Rio de

Janeiro, COPPE, Programa de Engenharia Elétrica. III.

T́ıtulo.

iii

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos

necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

VERIFICAÇÃO DA DIAGNOSTICABILIDADE ROBUSTA GENERALIZADA

DE SISTEMAS A EVENTOS DISCRETOS

Lahis El Ajouze Azeredo Coutinho

Junho/2017

Orientador: Lilian Kawakami Carvalho

Programa: Engenharia Elétrica

Este trabalho aborda o problema de diagnosticabilidade robusta generalizada

(DRG) de sistemas a eventos discretos (SEDs) descritos por uma classe de autômatos

em que cada elemento da classe gera uma linguagem distinta. A definição de DRG e

o algoritmo para sua verificação propostos anteriormente na literatura foram atua-

lizados, resultando em um novo algoritmo com menor complexidade computacional

que o anterior. Baseado nesse algoritmo, uma nova condição necessária e suficiente

para diagnosticabilidade robusta generalizada foi apresentada. Quatro abordagens

diferentes sobre diagnosticabilidade de SEDs foram analisadas: o problema de di-

agnosticabilidade de sistemas a eventos discretos sujeitos a falhas permanentes de

sensores (i); o problema de diagnosticabilidade robusta de sistemas a eventos dis-

cretos sujeitos a perdas permanentes (ii) e intermitentes (iii) de observação; e o

problema de verificação da diagnosticabilidade robusta de sistemas a eventos discre-

tos parcialmente observados (iv). Mecanismos de transformação foram propostos

para cada problema analisado com o objetivo de demonstrar que as abordagens de

(i) a (iv) são casos particulares da diagnosticabilidade robusta generalizada proposta

nesse trabalho.

iv

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Master of Science (M.Sc.)

VERIFICATION OF GENERALIZED ROBUST DIAGNOSABILITY OF

DISCRETE EVENT SYSTEMS

Lahis El Ajouze Azeredo Coutinho

June/2017

Advisor: Lilian Kawakami Carvalho

Department: Electrical Engineering

This work addresses the problem of generalized robust diagnosability (GRD)

of discrete event systems (DESs) described by a class of automata, where each

automaton in the class generates a distinct language. The definition of GRD and

the algorithm for its verification previously proposed in literature were updated,

resulting in an algorithm with smaller computational complexity than the previous

one. Based on this algorithm, a new necessary and sufficient condition for generalized

robust diagnosability was presented. Four different approaches on diagnosability of

DESs were analyzed: the problem of diagnosability of discrete event systems subject

to permanent sensor failures (i); the problem of robust diagnosis of discrete event

systems against permanent (ii) and intermittent (iii) loss of observations; and the

problem of verification of robust diagnosability for partially observed discrete event

systems (iv). Transformation mechanisms for each analyzed problem were proposed

with the purpose of demonstrating that all approaches (i) - (iv) are particular cases

of the generalized robust diagnosability definition proposed in this work.

v

Contents

List of Figures viii

1 Introduction 1

2 Discrete event systems theory 5

2.1 Languages . 6

2.1.1 Notation and Definitions . 6

2.1.2 Operations on Languages . 7

2.2 Automata . 8

2.2.1 Operations on Automata . 12

2.3 Diagnosability of discrete event systems 15

2.4 Verification of decentralized diagnosability of discrete event systems . 18

2.5 Final comments . 20

3 Different approaches on fault diagnosis of discrete event systems 21

3.1 Diagnosability of discrete event systems subject to permanent sensor

failures . 21

3.2 Robust diagnosis of discrete event systems against permanent loss of

observation . 25

3.3 Robust diagnosis of discrete event systems against intermittent loss

of observations . 28

3.4 Verification of robust diagnosability for partially observed discrete

event systems . 31

3.5 Generalized robust diagnosability of discrete event systems 35

3.6 Final comments . 42

4 Verification of generalized robust diagnosability on discrete event

systems 43

4.1 Updates on the generalized robust diagnosability definition 43

4.2 The updated verification algorithm for generalized robust diagnos-

ability of discrete event systems . 45

4.3 Computational complexity of the new verifier automaton 55

vi

4.4 Transformation mechanisms . 56

4.4.1 Diagnosability of discrete event systems subject to permanent

sensor failures . 57

4.4.2 Robust diagnosis of discrete event systems against permanent

loss of observations . 61

4.4.3 Robust diagnosis of discrete event systems against intermit-

tent loss of observations . 62

4.4.4 Verification of robust diagnosability for partially observed dis-

crete event systems . 64

4.5 Final comments . 68

5 Conclusion and Future Work 69

Bibliography 71

vii

List of Figures

2.1 Illustrative parking-garage gate discrete event system. 6

2.2 State transition diagram from Example 1. 9

2.3 Automaton modeling the parking-garage system. 16

2.4 Faulty label automaton Al. 17

3.1 Automata G and R from the motivating example. 23

3.2 Automaton G and its diagnoser Gd. 26

3.3 Automaton G (a) and its corresponding diagnoser Gd (b). 29

3.4 Automaton Gdil resulted from the application of the dilation opera-

tion to G where Σilo = {c}. 31

3.5 Two configurations C1 (a) and C2 (b) of the manufacturing line. . . 32

3.6 Automata models of machines MA, Ma and MB. 33

3.7 Automata models of the buffers B1 and B2 33

3.8 Class of automata G = {G1, G2, G3}. 39

3.9 Faulty automata F1 (a), F2 (b), and F3 (c). 40

3.10 Augmented non-faulty automata H1 (a), H2 (b), and H3 (c). 41

3.11 Verifier automata V1 (a) and V3 (b). 42

4.1 Automata from Step 1 of the updated verification algorithm. 47

4.2 Automata from Step 2 and 3 of the updated verification algorithm. . 48

4.3 Verifiers from Step 4 of the updated verification algorithm. 50

4.4 Verifiers from Step 8 of the updated verification algorithm. 51

4.5 Step 2 of Algorithm 4.2. 58

4.6 Replicating the original system transitions. 59

4.7 Including transitions labeled by σu from x ∈ X to x′ ∈ X ′. 60

4.8 Automaton G1 constructed according to Algorithm 4.2. 60

4.9 Automaton G2 constructed according to Algorithm 4.2. 60

4.10 Automata G9 and G11 constructed according to Algorithm 4.3 where

the blue transitions are labeled by unobservable events and the red

ones are labeled by the fault event. 62

viii

4.11 Automata Gdil1 and Gdil2 constructed according to Algorithm 4.4

where the red transitions are labeled by the faulty event; the blue

transitions are labeled by a′; and the green transitions are labeled by

c′. 64

4.12 State transition diagrams for the example of Algorithm 4.5. 66

4.13 Complement of GN and the parallel composition Gp from Algorithm

4.5. 66

4.14 Function TAKAI2012T0GRD(G,GN) of Algorithm 4.5 where the

blue states are the new one; the red transitions are labeled by the

faulty event; and the green states and transitions are the ones added

after the normal behavior boundary. 68

ix

Chapter 1

Introduction

Ever since industry emerged it has been seeking for constant improvement of oper-

ations and optimization of processes. The concept of automation came to light over

the last years as an alternative capable of reducing labor, energy, material expenses

and waste whilst enhancing quality, precision and accuracy. After General Motors

has established its automation department in 1947 [1], the new theory started to

be spread out and widely applied to manufacturing, traffic, database, computer and

several other types of systems. These systems may be classified in many different

aspects, but this work will focus on discrete-state, event-driven systems commonly

called as discrete event systems (DESs) and hereby modeled by language and au-

tomata, mathematical formalisms able to represent all the aspects of DESs [2].

As technology evolved, these systems became larger and more complex requir-

ing stringent standards of performance and reliability as well as being intolerant to

occurrences of failures. Sophisticated and systematic methods for the timely and

accurate diagnosis and isolation of a system failure were therefore developed gener-

ating a event-based concept of diagnosability of discrete event systems in the context

of failure diagnosis problem, as introduced by LIN [3] and SAMPATH et al. [4]. In

[4], deterministic automata called diagnosers were proposed with the purposes of

performing online detection and isolation of system failures and offline verification of

the diagnosability properties of a system. This second task may be also performed

using verifiers, which are deterministic automata that demands less computational

complexity to perform the same task of a diagnoser as proposed in [5–7], and the

references therein.

The idea of failure diagnosis of discrete event systems has received expressive

attention from the scientific community as in [3, 4, 8–15], which has formulated

and addressed a variety of problems derived from the failure diagnosis framework.

Recently, there have been some works on sensor failures in supervisory control of

DESs [16, 17]; on various notions of robust diagnosis of discrete event systems in the

presence of potentially faulty sensors, such as in [18–23], where the robustness may

1

be due to the maintenance of the diagnosability property after the failure of a sensor,

a communication failure between sensor and supervisor, an electrical bad linkage,

etc. Besides, in [24, 25] fault diagnosis under unreliable conditions are presented.

KANAGAWA and TAKAI [26] have considered a failure diagnosis problem for

discrete event systems subject to permanent sensor failures. A notion of diagnos-

ability subject to permanent sensor failures has been introduced with respect to

a certain nondeterministic observation mask, along with an aggregated Mealy au-

tomaton with a deterministic and state-dependent observation mask that is defined

to perform verification of the proposed diagnosability definition. Then, it has been

shown that the diagnosability of the original system subject to permanent sensor

failures and the diagnosability of the aggregated Mealy automaton were equivalent

and, finally, the delay bound within which the occurrence of any failure string can

be detected subject to permanent sensor failures has been computed.

CARVALHO et al. [20] have considered the problem of diagnosing the occurrence

of a certain unobservable fault event in the operation of partially-observed discrete

event systems subject to permanent loss of observations modeled by finite state

automaton. The permanent loss of observations has been assumed to be due to the

failure of certain sensors monitoring originally observable events at the outset of

the system, that is, before the occurrence of the event it is monitoring. Since the

diagnostic engine is not necessarily aware of such failure, a previous definition of

robust diagnosability of a given fault event despite the possibility of permanent loss

of observations has been explored, and a polynomial time verification algorithm to

verify robust diagnosability has been proposed. Besides, a methodology to perform

online diagnosis in this scenario, using a set of partial diagnosers, has been also

presented.

CARVALHO et al. [21] has considered that bad sensor operation or communica-

tion failure between sensors and the diagnoser to be regarded as loss of observations

of events initially assumed as observable, which would lead to the diagnoser standing

still or even reporting some wrong information regarding the fault occurrence. It has

been assumed therefore that intermittent loss of observations may occur - a problem

here referred to as robust diagnosis of discrete event systems against intermittent

loss of observations - and an automaton model based on a new language operation

called dilation has been proposed. A necessary and sufficient condition for robust

diagnosability in terms of the language generated by the original automaton has

been presented along with two tests for robust language diagnosability: one based

on diagnosers and the other one using verifiers. The work has been finally extended

to robust codiagnosability against intermittent loss of observations.

TAKAI [23] has studied robust failure diagnosis of discrete event systems and has

considered that, given a set of possible models, each of which has its own nonfailure

2

specification, there exists a single diagnoser that detects any occurrence of a failure

within a uniformly bounded number of steps for all possible models - which has been

called as a robust diagnoser. A notion of robust diagnosability has been introduced

along with a proof that it served as a necessary and sufficient condition for the

existence of a robust diagnoser. An algorithm for verifying the robust diagnosability

condition has been finally presented.

CARVALHO et al. [27] dealt with the problem of robust diagnosability of discrete

event systems described by a class of automata, where each automaton generates

a distinct language. A new generalized robust diagnosability (GRD) definition was

introduced to generalize all previous definitions of robust diagnosability. Robust-

ness here stands for the ability of the language diagnosability property to remain

unchanged even considering uncertainties in the model of the system [22] and in

the set of observable events [28]. A necessary and sufficient condition for the new

definition is also presented, as well as a polynomial time verification algorithm. This

definition is the central line of this work.

The objective here is to improve the verification algorithm proposed in [27] and

to show how this definition is capable of encompassing many sophisticated problems

addressed so far, namely (i) the problem of diagnosability of discrete event systems

subject to permanent sensor failures [26]; the problem of robust diagnosis of discrete

event systems against (ii) permanent [20] and (iii) intermittent [21] loss of obser-

vations; and (iv) the problem of verification of robust diagnosability for partially

observed discrete event systems [23]. The results of this work have shown that,

by relaxing some assumptions and updating the generalized robust diagnosability

definition, as well as improving the computational complexity of the verification

algorithm proposed by CARVALHO et al. [27], all the abovementioned problems

may be addressed and solved using the generalized robust diagnosability definition.

Transformation mechanisms were developed for each one of the referred problems

so that it could be easily demonstrated how they can be addressed by the GRD

definition. More importantly, even with the transformation mechanisms it is more

advantageous in terms of computational complexity to solve these problems using

the GRD definition.

This work is organized as follows. In Chapter 2 we present the discrete event sys-

tems theory based on [2]. In Chapter 3 we present the different approaches on fault

diagnosis of discrete event systems proposed by TAKAI [23], CARVALHO et al. [20],

CARVALHO et al. [21], TAKAI [23] and CARVALHO et al. [27]. In Chapter 4, we

update the generalized robust diagnosability definition; propose a new verification

algorithm for the GRD definition; and develop transformation mechanisms for each

problem presented in Chapter 3 - based in the inputs from each paper - that returns

a language based framework applicable to the generalized robust diagnosability def-

3

inition. Then, we evaluate whether or not the GRD definition is able to encompass

all the presented problems. Finally, in Chapter 5 we draw some conclusions about

this work and propose a future line of work to be pursued.

4

Chapter 2

Discrete event systems theory

Discrete event systems (DESs) are dynamic discrete-state, event-driven systems in

which the state evolution depends exclusively on the occurrence of asynchronous

discrete events over time, as defined by CASSANDRAS and LAFORTUNE [2]. The

states are part of a discrete event set and describe the behavior of the system at

an instant time t, whereas the event represents an instantaneous occurrence, mostly

related to an action taken such as the press of a button, and is responsible for the

transitions from one state to another - therefore the term event-driven.

The main particularity of DESs is that, unlike continuous-state systems, they are

not necessarily associated with time. The system is observed in intervals of time and

a change in observation is only perceived after the occurrence of an event. Hence,

these systems are not properly represented by differential equations, which caused

several formalisms to be created so that the system could be modeled.

In order to illustrate a DES, consider a very simple system consisting of a parking-

garage gate as shown in Figure 2.1. This gate may be opened or closed. Consider

the gate to be opened, which we may call O. Consider also that there exists a remote

control with two buttons responsible for managing the gate: one button opens and

the other one closes the gate. Only by the press of the open button the gate status

may change from O to closed, or C, and vice-versa if the close button is pressed.

Note that the gate may be in two different states, O and C and, unless a button is

pressed, i.e., an event Open or Close occurs, the gate stays exactly how it is, regardless

of the time period that has passed. Thus, we are presenting a discrete-state, event-

driven dynamic system in which the evolution depends solely on the occurrence of

events.

This work will focus on a language-based approach based on set theory to mathe-

matically formalize discrete event systems. This approach is graphically represented

by state transition structures detailing the states, the transitions and the events re-

sponsible for the transitions to occur. Even though it is easy to encounter many

other formalisms in literature, the one to be here presented is automata along with

5

Opening Direction

Closing Direction

CLOSED

OPENED

Figure 2.1: Illustrative parking-garage gate discrete event system.

the concept of languages that can both model a discrete event system.

This chapter is organized as follows. In Section 2.1 we present the concept of

language along with its notations, definitions and operations and in Section 2.2 we

present the concept of automata. In Sections 2.3 and 2.4 we respectively introduce

the related concepts of diagnosability of discrete event systems and verification of

decentralized diagnosability of DES. Finally, we conclude with some final comments

in Section 2.5.

2.1 Languages

The concept of language is based on set theory and is relevant to discrete event

system modeling since the sets of states and events are discrete and finite to the

extent of this work. Specifically focusing on the event set Σ, it is possible to think of a

sequence of events. If events are labeled by letters, and Σ is taken as an alphabet, the

strings that represent sequences of events can be taken as words. Given a system, all

the sequences of events that are possible to occur can then be faced as the language

spoken by this system. That line of thinking starts explaining language modeling.

2.1.1 Notation and Definitions

As it was already introduced, the event set Σ of a DES is here treated as an alphabet

assumed to be finite. Events are generically represented by the letter e, and the

6

empty string (or word) is represented by the symbol ε. Note that an empty alphabet

has no elements, that is, not even ε is included. A sequence, string or word is denoted

by s, and its length is given by |s|. By convention, the length of ε is zero.

Definition 2.1 A language defined over an event set Σ is a set of finite-length

strings formed from events in Σ. 2

A language defined over a set Σ is a subset of Σ∗, an operation called Kleene-

closure which denotes the set of all possible finite-length sequences of events in Σ,

including ε. Particularly, ∅, Σ and Σ∗ itself are languages.

Let s = abc denote a sequence where a, b and c ∈ Σ∗. Then, referred to s, a is

the prefix, b is a substring and c is the suffix. Besides, s/a denotes the suffix of s

after the prefix a.

2.1.2 Operations on Languages

Once languages are described as sets, all the usual set operations are also applicable

to them. Besides, new operations are defined as follows.

• Concatenation: Let La, Lb ⊆ Σ∗, then LaLb := {s ∈ Σ∗ : (s = sasb) ∧ (sa ∈
La) ∧ (sb ∈ Lb)}.

• Prefix-closure: Let L ⊆ Σ∗, then L̄ := {s ∈ Σ∗ : (∃t ∈ Σ∗)[st ∈ L]}.

• Kleene-closure: Let L ⊆ Σ∗, then L∗ := {ε} ∪ L ∪ LL ∪ LLL....

• Projections: P : Σ∗l → Σ∗s, Σs ⊂ Σl, where P (ε) := ε,

P (e) :=

{
e, if e ∈ Σs

ε, if e ∈ Σl \ Σs,

and P (se) := P (s)P (e) for s ∈ Σ∗l , e ∈ Σl.

From the definition it is easy to see that the projection, often called as natural

projection, takes a string formed from the larger event set - here defined as Σl - and

erases events from it that do not belong to the smaller event set Σs.

Likewise, it is possible to define the inverse operation, with respect to the corre-

sponding inverse map 1: P−1 : Σ∗s → 2Σ∗l , where P−1(t) := {s ∈ Σ∗l : P (s) = t}. In

other words, given a string of events in the smaller event set Σs, the inverse projec-

tion returns the set of all strings from the larger event set Σl that project, with P ,

to the given string.

1The notation 2A means the power set of A, i.e., the set of all subsets of a finite set A.

7

Both projection P and inverse projection P−1 may be extended to languages by

simply applying them to all the strings in the language. For L ⊆ Σ∗l , P (L) := {t ∈
Σ∗s : (∃s ∈ L)[P (s) = t]}, and for Ls ⊆ Σ∗s, P

−1 := {s ∈ Σ∗l : (∃t ∈ Ls)[P (s) = t]}.

2.2 Automata

The modeling formalism here presented is centered on the automaton, which is a

device defined as a six-tuple capable of representing and manipulating languages.

Definition 2.2 A deterministic automaton, denoted by G, is a six-tuple:

G = (X,Σ, f,Γ, x0, Xm) (2.1)

where X is the set of states, Σ is the set of events, f : X ×Σ→ X is the transition

function, that is usually partial on its domain, Γ : X → 2Σ is the active event (or

feasible event) function, x0 is the initial state, and Xm ⊆ X is the set of marked

states. 2

The state transition diagram is the oriented graph representation of an automa-

ton and helps shaping up all the math involved with DESs. In the state transition

diagrams, the vertices of the graph are circles and represent the different states of

the system. The transitions connecting them are represented as arcs and labeled by

symbols, that are the events of the system. Note that it is possible to have selfloops,

which in this case are transitions that start and end at the same state. The initial

state has an arrow pointing to it, and the marked states are represented by double

circles. In case the marked states are not defined, assume, without loss of generality,

that Xm = ∅.
An example of an automaton and its state transition diagram is provided.

Example 1 Let G be a deterministic automaton which state transition diagram

can be seen in Figure 2.2. The sets of states and events are respectively given by

X = {x0, x1, x2, x3, x4} and Σ = {a, b, c}. The transition function is defined as:

f(x0, a) = x1; f(x0, b) = x2; f(x1, c) = x3; f(x3, b) = x3; f(x2, a) = x4; f(x4, a) =

x0, causing the active event functions to be: Γ(x0) = {a, b}; Γ(x1) = {c}; Γ(x2) =

{a}; Γ(x3) = {b}; Γ(x4) = {a}. Finally, the initial state is x0.

The generated and marked languages of an automaton are described according

to Definition 2.3.

Definition 2.3 A language generated by an automaton G is given by:

L(G) := {s ∈ Σ∗ : f(x0, s) is defined}, (2.2)

8

x0

x1

x3

x2

x4

a b

c

b

a
a

Figure 2.2: State transition diagram from Example 1.

While the language marked by G is given by:

Lm(G) := {s ∈ L(G) : f(x0, s) ∈ Xm}. (2.3)

2

Starting at the initial state, and following along the state transition diagram, all

the directed possible paths are represented by the language generated by G, L(G).

The transitions composing each path are labelled by events. The concatenation of

these events is the string corresponding to this path, in a way that s ∈ L(G) if and

only if it corresponds to an admissible path in the state transition diagram. It is

important remarking that L(G) is prefix-closed by definition, and that it is possible

having events defined in Σ that do not appear in the state transition diagram. That

indicates that these events will not figure in L(G).

The language marked by G, Lm(G), is a subset of L(G) corresponding to all the

sequences s in the state transition diagram labelling paths that ends in a marked

state, that is, for which f(x0, s) ∈ Xm. Note that Lm(G) is not necessarily prefix-

closed.

Another relevant definition to be presented involves the concept of blocking.

While inspecting the state transition diagram, whenever a path takes to a state

where no further events can be executed, it is called a deadlock. Analogously, a path

that takes to a set of strongly connected2 unmarked states is actually taking to a

livelock.

Definition 2.4 An automaton G is said to be blocking if

Lm(G) ⊂ L(G) (2.4)

2In graph theory, a pair of vertices in a directed graph is said to be strongly connected if there
is a path in each direction between them [29].

9

and nonblocking when

Lm(G) = L(G) (2.5)

2

In case a state transition diagram representing a language has no deadlock states

in it, this associate language is said to be live.

It is possible that different automata generate and mark the same language.

These are language-equivalent automata.

Definition 2.5 Automata G1 and G2 are said to be language-equivalent if

L(G1) = L(G2) and Lm(G1) = Lm(G2) (2.6)

2

Automaton theory is not restricted to deterministic automata. It is possible to

have an automaton with more than one initial state, as well as having transitions

labeled by the event ε. Moreover, a single event may label multiple transitions from

a state x. Whenever an automaton meets at least one of these three requirements

it is said to be nondeterministic.

Definition 2.6 A nondeterministic automaton, denoted by Gnd, is a six-tuple:

Gnd = (X,Σ ∪ {ε}, fnd,Γ, X0, Xm) (2.7)

where:

• fnd : X × {Σ ∪ ε} → 2X , that is, fnd(x, e) ⊆ X whenever it is defined.

• The initial state x0 may be a set of states, i.e., X0 ⊆ X. 2

Defining the generated and marked languages by a nondeterministic automaton

demands a few previous steps. For starts, the transition function needs to be ex-

tended to the domain X ×Σ∗, denoted by f ext
nd (x, ε). Further on, the ε− reach of a

state x is defined to be the set of all states that can be reached from x by following

transitions labelled by ε in the state transition diagram. The proper notation is

εR(x). By convention, x ∈ εR(x). The definition is extended to a subset of states

B ⊆ X,

εR(B) =
⋃
x∈B

εR(x). (2.8)

10

Recursively, f ext
nd (x, ε) is constructed as follows

f ext
nd (x, ε) := εR(x) (2.9)

For u ∈ Σ∗ and e ∈ Σ,

f ext
nd (x, ue) := εR[z : z ∈ fnd(y, e) for some state y ∈ f ext

nd (x, u)] (2.10)

Now that all the requirements have been met, the generated and marked lan-

guages of a nondeterministic automaton are defined as follows.

Definition 2.7 The language generated by a nondeterministic automaton Gnd is

L(Gnd) := {s ∈ Σ∗ : (∃x ∈ x0)[f ext
nd (x, s) is defined} (2.11)

While the language marked by Gnd is given by:

Lm(Gnd) := {s ∈ L(Gnd) : (∃x ∈ x0)[f ext
nd (x, s) ∩Xm 6= ∅}. (2.12)

2

It is possible for a deterministic automaton to generate and mark the same

languages of a nondeterministic automaton. The automata are then said to be

language equivalent, and the deterministic automaton is called the observer. The

procedure for building an observer automaton is proposed.

The observer of a Gnd is defined as Obs(Gnd) = (Xobs,Σ, fobs, x0,obs, Xm,obs) and

is built in Algorithm 2.1 [2].

Algorithm 2.1 Observer automaton

Input: Gnd = (X,Σ ∪ {ε}, fnd,Γ, x0, Xm)
Output: Obs(Gnd) = (Xobs,Σ, fobs, x0,obs, Xm,obs)

1: Define x0,obs := εR(x0) and set Xobs = x0

2: For each B ∈ Xobs and e ∈ Σ, define fobs(B, e) := εR({x ∈ X : (∃xe ∈ B)
[x ∈ fnd(xe, e)]}) whenever fnd(xe, e) is defined for some xe ∈ B. In this case,
add the state fobs(B, e) to Xobs. If fnd(xe, e) is not defined for any xe ∈ B, then
fobs(B, e) is not defined

3: Repeat Step 2 until the entire accessible part of Gobs has been constructed
4: Xm,obs := {B ∈ Xobs : B ∩Xm 6= ∅}

The observer automaton is an important tool in the study of partially-observed

systems, that are the ones where some events are defined as unobservable and behave

exactly like an ε-transition of a nondeterministic automaton.

11

The model for a partially-observed DES is a deterministic automaton whose set

of events is Σ = Σo∪̇Σuo, a partition of Σ, where Σo and Σuo are, respectively, the set

of observable and unobservable events. This event set is used to build an observer

automaton just like before. The notion of ε-reach is now generalized by the notion

of unobservable reach, that is

UR(x) = {y ∈ X : (∃t ∈ Σ∗uo)[f(x, t) = y]}

Extended to the set of states B ⊆ X,

UR(B) =
⋃

x∈B UR(x).

Let G = (X,Σ, f,Γ, x0, Xm) denote a partially observed automaton with the par-

titioned event set. Obs(Gnd) = (Xobs,Σ, fobs,Γobs, x0,obs, Xm,obs) is built in Algorithm

2.2 [2].

Algorithm 2.2 Observer automaton that models a partially-observed DES

Input: G = (X,Σ, f,Γ, x0, Xm)
Output: Obs(G) = (Xobs,Σ, fobs, x0,obs, Xm,obs)

1: Define x0,obs := UR(x0) and set Xobs = x0,obs

2: For each B ∈ Xobs and e ∈ Σo, define fobs(B, e) := UR({x ∈ X : (∃xe ∈ B)
[x ∈ f(xe, e)]}) whenever f(xe, e) is defined for some xe ∈ B. In this case,
add the state fobs(B, e) to Xobs. If f(xe, e) is not defined for any xe ∈ B, then
fobs(B, e) is not defined

3: Repeat Step 2 until the entire accessible part of Gobs has been constructed
4: Xm,obs := {B ∈ Xobs : B ∩Xm 6= ∅}

2.2.1 Operations on Automata

In order to properly analyze a DES modeled by an automaton it is necessary the

definition of a set of operations useful for modifying the state transition diagram.

Besides, operations capable of combining two or more automata are primordial once

working with components of a system. The following operations are said to be unary

and do not alter the elements in Σ.

Accessible Part

The accessible part is an operation that deletes all the unreachable states of an

automaton G, starting from the initial state x0. It takes along all the related tran-

sitions, and is formally defined as:

12

Ac(G) := (Xac,Σ, fac,Γac, x0, Xac,m) where

Xac = {x ∈ X : (∃s ∈ Σ∗)[f(x0, s) = x]}
Xac,m = Xm ∩Xac

fac : Xac × Σ∗ → Xac

Note that the operation restrains the domain of the transition function to Xac

and does not alter L(G) e Lm(G).

Coaccessible Part

A state x ∈ X is said to be coaccessible whenever there is a path starting from state

x and ending in a marked stated belonging to Xm. The operation erases all the states

in G that are not coaccessible, along with all its related transitions. Formally:

CoAc(G) := (Xcoac,Σ, fcoac,Γcoac, x0,coac, Xm) where

Xcoac = {x ∈ X : (∃s ∈ Σ∗)[f(x, s) ∈ Xm]}

x0,coac :=

{
x0 if x0 ∈ Xcoac

undefined otherwise

fcoac : Xcoac × Σ∗ → Xcoac

Note that L(CoAc(G)) ⊆ L(G). However, Lm(CoAc(G)) = Lm(G).

Trim Operation

An automaton that is at the same time accessible and coaccessible is said to be trim,

formally defined as:

Trim(G) := CoAc[Ac(G)] = Ac[CoAc(G)]. (2.13)

Complement

Consider a trim deterministic automaton G that marks L ⊆ Σ∗ and, thus, generates

L. The automaton marking the language Σ∗ \ L is here denoted by Gcomp and is

built in two steps. The first one actually defines a complete automaton making f

to be a total function ftot. In order to do so, a new state xd is added to X, known

as the dump state. All undefined f(x, e) in G is then assigned to xd.

13

ftot(x, e) =

{
f(x, e), if e ∈ Γ1(x)

xd, otherwise

Setting ftot(xd, e) ∀e ∈ Σ, the complete automaton is built, such that L(Gtot) =

Σ∗ and Lm(Gtot) = L

Gtot = (X ∪ xd,Σ, ftot,Γtot, x0, Xm)

The next step towards building the complement is to change the marking status of

all states in Gtot by marking all unmarked states, including xd, and unmarking all

marked states. The step yields the definition

Comp(G) := (X ∪ xd,Σ, ftot,Γtot, x0, (X ∪ xd) \Xm)

From this point, the operations are named composition operations.

Product Operation

The product operation, also called the completely synchronous composition, is de-

noted by ×. The product between two automata G1 e G2 results in:

G1 ×G2 := Ac(X1 ×X2,Σ1 ∪ Σ2, f,Γ1×2, (x01, x02), Xm,1 ×Xm,2) where

f((x1, x2), e) :=

{
(f1(x1, e), f2(x2, e)), if e ∈ Γ1(x1) ∩ Γ2(x2)

undefined, otherwise

Γ1×2(x1, x2) = Γ1(x1) ∩ Γ2(x2).

According to the definition of product composition, the transitions of both au-

tomata need to be synchronized with a common event, that is, an event e ∈ Σ1∩Σ2.

An event will then only occur in G1×G2 if, and only if, it occurs simultaneously in

G1 e G2.

The states of G1 ×G2 are denoted in pairs, in which the first component is the

current state of G1 and the second component is the current state of G2. Besides,

the generated and marked languages of G1 ×G2 are:

L(G1 ×G2) = L(G1) ∩ L(G2), (2.14)

Lm(G1 ×G2) = Lm(G1) ∩ Lm(G2). (2.15)

Parallel Composition

The parallel composition is also called synchronous composition and is represented

by ||. The parallel composition allows private transitions to occur, synchronizing

only transitions labeled by common events.

14

The parallel composition between the two automata G1 and G2 results in:

G1||G2 := Ac(X1 ×X2,Σ1 ∪ Σ2, f,Γ1||2, (x01, x02), Xm,1 ×Xm,2)

where

f((x1, x2), e) :=


(f1(x1, e), f2(x2, e)), if e ∈ Γ1(x1) ∩ Γ2(x2)

(f1(x1, e), x2), if e ∈ Γ1(x1) \ Σ2

(x1, f2(x2, e)), if e ∈ Γ2(x2) \ Σ1

undefined, otherwise

Γ1||2(x1, x2) = [Γ1(x1) ∩ Γ2(x2)] ∪ [Γ1(x1) \ Σ2] ∪ [Γ2(x2) \ Σ1].

In parallel composition, a common event, that is, belonging to Σ1 ∩ Σ2, will

occur only if both automata execute them at the same time. On the other hand,

the private events, that is, the ones in (Σ1 \Σ2)∪ (Σ2 \Σ1), may occur whenever it

is possible.

If Σ1 = Σ2, then the parallel composition plays the same roll as the product

operation.

In order to properly characterize both generated and marked languages of the

automaton resulted from the parallel composition, a few definitions are needed:

Pi : (Σ1 ∪ Σ2)∗ → Σ∗i for i = 1, 2. (2.16)

Based on these projections, the resulting languages are:

L(G1||G2) = P−1
1 [L(G1)] ∩ P−1

2 [L(G2)], (2.17)

Lm(G1||G2) = P−1
1 [Lm(G1)] ∩ P−1

2 [Lm(G2)]. (2.18)

2.3 Diagnosability of discrete event systems

Consider the system shown in Figure 2.1. Suppose that one is entering the il-

lustrated parking-garage and when it presses the open button it realizes that the

parking-garage was stuck closed, or, reversely, by the press of the close button it is

noticed that the gate is stuck opened. Using the language and automata formalisms

presented here, we propose in Figure 2.3 a model for the parking-garage gate system

considering these possible failures.

The system has a discrete-state set X = {C,O, Sc, So} where Sc and So stands

for stuck closed and stuck opened respectively. The event set of the system is given

by Σ = {Close, Open, σf}, in which σf ∈ Σf , Σf ⊂ Σ is modeling the possible failures

15

C O

Sc So

Open

σf

Close

Close
σf

Open

Open, Close Open, Close

Figure 2.3: Automaton modeling the parking-garage system.

in the system. In case a person presses the close button and the gate does not closes,

this person is able to drop the car and manually have the gate closed.

Assume now that two sensors are added to the system. The first one, positioned

at the point where the gate is closed, capable of informing whether or not the gate

is completely closed and, analogously, the second one monitoring the opening of

the gate is positioned at the point where the gate is completely opened. Besides,

consider that the open and close button will only work after the right information

sent by each sensor, respectively the signal showing that the gate is completely

closed and completely opened. Let us consider that, due to a failure in the motor

responsible for opening the gate, the gate gets stuck closed. The sensor responsible

for informing that the gate is completely closed does not inform this to the diagnoser

and hence, even upon the press of the open button, the gate will not open.

Although this is a simple and visually detectable failure, many much more com-

plex other failures has led the scientific community to deal with the problem of

diagnosis of discrete event systems, which consists basically in detecting a failure in

a system in order to improve performance and reliability. In this work we will deal

with the event-based property of diagnosability of discrete event systems concerning

the detection of the occurrence of a failure event.

Let G = (X,Σ, f,Γ, x0, Xm) model a system. The event set Σ is partitioned

as Σ = Σo∪̇Σuo, where Σo and Σuo denote the set of observable and unobservable

events, respectively, and let Σf ⊆ Σuo be the fault events set that corresponds to

all failures that may occur in the referred system. In addition, assume that the set

of failure events can be partitioned as Σf =
⋃l

i=1 Σfi where Σfi represents the set

of failure events of the same type. Assume, without loss of generality that l = 1,

i.e., there is only one failure type Σf . Let the language generated by G be denoted

as L(G) = L and assume that L is live. Let GN be the subautomaton of G that

represents the nonfailure behavior of the system and let L(GN) = K, which is a

prefix-closed language formed with all traces of L that do not contain any failure

event from the set Σf . The language-based diagnosability definition may now be

16

N Y
σf

σf

Figure 2.4: Faulty label automaton Al.

presented.

Definition 2.8 (Diagnosability of discrete event systems) Let L be the prefix closed

language generated by G and K ⊂ L denote the prefix-closed language generated by

GN . Define the projection Po : Σ∗ → Σ∗o and let Σf be the set of failure events.

Then, L is diagnosable with respect to Po and Σf if, and only if,

(∃n ∈ N)(∀s ∈ L \K)(∀st ∈ L \K, |t| ≥ n)

⇒ (∀w ∈ P−1
o (Po(st)) ∩ L,w ∈ L \K).

2

According to Definition 2.8, L is diagnosable with respect to Po and Σf if, and

only if, for all traces st of arbitrarily long length after the occurrence of a failure

event, there does not exist a trace s ∈ K such that Po(s) = Po(st).

The property of a language of being or not diagnosable is tested through the

use of two test automata: diagnosers, capable of performing online detection and

isolation of failures and offline verification of the diagnosability properties of the

system, and verifiers, that perform the best offline verification and are the main

focus of this work.

Diagnosers are deterministic automata based on a given system model G whose

event set is formed with the observable events of G. The states of a deterministic

automaton Gd have labels Y and N attached to the states of G to indicate whether

or not the fault event has occurred. The diagnoser is formally given by

Gd = (Xd,Σo, fd,Γd, x0,d) = Obs(G||Al,Σo) (2.19)

where Al is the two state label automaton shown in Figure 2.4. Note that their

computational complexity is exponential in the number of states.

When a diagnoser is in a certain (resp. normal) state, it is certain that a fault has

(resp. has not) occurred. However, if the diagnoser is in an uncertain state, it is not

sure whether or not the fault event has occurred. If there exists a cycle formed with

uncertain states where the diagnoser can forever remain, then it will never be able

to diagnose the fault occurrence; on the other hand if somehow it always leaves this

cycle of uncertain states, then this cycle is not indeterminate. The indeterminate

cycle definition proposed by SAMPATH et al. [4] becomes useful.

17

Definition 2.9 (Indeterminate cycles of Gd) A set of uncertain states

{xd1 , xd2 , . . . , xdp} ⊂ Xd forms an indeterminate cycle if the following condi-

tions hold true:

IC.1) xd1 , xd2 , . . . , xdp form a cycle in Gd;

IC.2) ∃(xkll , Y), (x̃rll , N) ∈ xdl, xkll not necessarily distinct from x̃rll , l = 1, 2, . . . , p,

kl = 1, 2, . . . ,ml, and rl = 1, 2, . . . , m̃l in such a way that the sequence of

states {xkll }, l = 1, 2, . . . , p, kl = 1, 2, . . . ,ml and {x̃rll }, l = 1, 2, . . . , p, rl =

1, 2, . . . , m̃l form cycles in G;

IC.3) there exist s = s1s2 . . . sp ∈ Σ∗ and s̃ = s̃1s̃2 . . . s̃p ∈ Σ∗ such that Po(s) =

Po(s̃) 6= ε, where sl = σl,1σl,2 . . . σl,ml−1, f(xjl , σl,j) = xj+1
l , j = 1, 2, . . . ,ml−1,

f(xml
l , σl+1,0) = x1

l+1, and f(x
mp
p , σ1,0) = x1

1, and similarly for s̃l.

Let us refer the indeterminate cycles just defined as indeterminate observed cy-

cles. It is worth remarking that the concept will be useful for the comprehension of

the work to be presented.

2.4 Verification of decentralized diagnosability of

discrete event systems

Since the main topic of this work is a verification algorithm, we may present the

polynomial time verification algorithm for decentralized diagnosis of discrete event

systems proposed by MOREIRA et al. [6].

Verifiers are automata constructed according to a given algorithm that are capa-

ble of performing offline language diagnosis of discrete event systems. Specifically,

we will focus on the type of verifier that searches for cycles in the original system

with a given property. They are an advantageous alternative to diagnosers when per-

forming offline diagnosis since they can be built out of a polynomial time algorithm

compared to the exponential complexity from the diagnosers.

The verifier to be here presented is capable of performing the verification of

both codiagnosability and centralized diagnosability of discrete event systems with

a polynomial time computational complexity and the feature of only searching for

traces that leads to violation of the diagnosability definition. The verifier is con-

structed according to Algorithm 2.3. The following theorem states the correctness

of Algorithm 2.3 [6].

Theorem 2.1 Let L and K, (K ⊂ L), denote the prefix-closed languages gener-

ated, respectively, by G ad GN . Assume there are m local sites with projections

Poi : Σ∗ → Σ∗oi, i ∈ I, and let Σf be the set of failure events. Then, L is not

18

Algorithm 2.3 Verification of decentralized diagnosability of DES

Inputs: G = (X,Σ, f,Γ, x0, Xm)
Output: GV = (XV ,ΣR1 ∪ ΣR2 ∪ . . .ΣRm ∪ Σ, fV ,ΓV , x0,V)

Let G be a deterministic automaton and Σf the set of failure events. Assume
that, for each local diagnoser, Σ is partitioned as Σ = Σoi∪̇Σuoi , i ∈ I, I =
{1, 2, . . . ,m}, where Σoi and Σuoi are the observable and unobservable event
sets for each local diagnoser, respectively.

1: Compute automaton GN that models the normal behavior of G as follows:

1.1: Define ΣN = Σ \ Σf

1.2: Build automaton AN composed of a single state N (also its initial state) with a
self-loop labeled with all events in ΣN .

1.3: Construct the nonfailure automaton GN = G×AN = (XN ,Σ, fN , ΓN , x0,N).

1.4: Redefine the event set of GN as ΣN , i.e., GN = (XN ,ΣN , fN ,ΓN , x0,N).

2: Compute automaton GF that models the failure behavior of the system as fol-
lows:

2.1: Define Al = (Xl,Σf , fl,Γl, x0,l), where Xl = {N,Y }, x0,l = N, fl(N, σf) = Y and
fl(Y, σf) = Y , for all σf ∈ Σf .

2.2: Compute Gl = G||Al and mark the states of Gl whose second coordinate is equal
to Y .

2.3: Compute the failure automaton3 GF = CoAc(Gl).

3: Define function Ri : ΣN → ΣRi
as 4:

Ri(σ) =

{
σ, if σ ∈ Σoi ∪ Σf

σRi
, if σ ∈ Σuoi \ Σf

. (2.20)

Construct automata GN,i = (XN ,ΣRi
, fN,i,ΓN,i, x0,N), for i ∈ I, with

fN,i(xN , Ri(σ)) = fN(xN , σ) for all σ ∈ ΣN .
4: Compute the verifier automaton GV = GN,1||GN,2|| . . . ||GN,m||GF = (XV ,ΣR1 ∪

ΣR2∪Σ, fV ,ΓV , x0,V). Notice that a state of GV is given by xV = (xN,1, xN,2, xF),
where xN,1, xN2 and xF are states of GN,1, GN,2 and GF , respectively and xF =
(x, xl), where x and xl are states of G and Al, respectively.

5: Verify the existence of a cycle5 cl = (xkV , σk, x
k+1
V , . . . , xlV , σl, x

k
V), where l ≥ k ≥

0, in GV satisfying the following conditions:

∃j ∈ {k, k + 1, . . . , l} s.t. for some xjV , (x
j
l = Y) ∧ (σj ∈ Σ).

If the answer is yes, then L is not codiagnosable with respect to Poi and Σf .
Otherwise, L is codiagnosable.

19

codiagnosable with respect to Poi and Σf if and only if there exists a cycle in GV ,

cl = (xkV , σk, x
k+1
V , . . . , xlV , σl, x

k
V), where l ≥ k ≥ 0, satisfying the following condi-

tions:

∃j ∈ {k, k + 1, . . . , l} s.t. for some xjV , (x
j
l = Y) ∧ (σj ∈ Σ). (2.21)

The computational complexity of Algorithm 2.3 is O(m×|X|m+1× (|Σ|− |Σf |)),
which shows that it requires polynomial time in the number of states and events

of G but like all other methods in literature, it has exponential complexity in the

number of local diagnosers.

Remark 1 Compared to diagnosers, verifiers are much better options for offline

verification of the language diagnosability property of discrete event systems since

many proposed algorithms proposed in literature require polynomial-time computa-

tional complexity whereas diagnosers require exponential complexity in the number

of states of a system model.

2.5 Final comments

This chapter presented a fragment of the theory of discrete event systems that is

relevant to the comprehension of this work. It has covered simple introductory

concepts such as systems, events and states. Moreover, it has presented the

concepts of languages and automata in a way to mathematically formalize discrete

event systems [2]. Finally, it has introduced the concepts of failure diagnosis of

discrete event systems and the verification of the language diagnosability definition

using diagnosers and verifiers.

20

Chapter 3

Different approaches on fault

diagnosis of discrete event systems

In this chapter we will present different approaches on fault diagnosis of discrete

event systems. Each subsection will explain a portion of a paper available in lit-

erature regarding different addressed problems. In Subsection 3.1 we learn about

the problem of diagnosability of DESs subject to permanent sensor failures [26]. In

Subsection 3.2 we will refer to robust diagnosability of DESs subject to permanent

sensor failures[20]. In Subsection 3.3 the work considers the problem of robustly

diagnose a system subject to intermittent sensor failures [21]. In Subsection 3.4 we

deal with the problem of verifying the robust diagnosability of partially observed

DESs [23] and in Subsection 3.5 we finally present the definition of generalized robust

diagnosability [27].

3.1 Diagnosability of discrete event systems sub-

ject to permanent sensor failures

KANAGAWA and TAKAI [26] considered the problem of failure diagnosis of dis-

crete event systems that are subject to permanent sensor failures by proposing a

notion of diagnosability with respect to a nondeterministic observation mask. It

also proposed a verification mechanism based on an aggregated Mealy automaton

with a deterministic and state-dependent observation mask and showed how the di-

agnosability of the aggregated Mealy automaton is equivalent to the diagnosability

of the original system. Finally, the paper computed the delay bound for detecting

the occurrence of a failure string subject to permanent sensor failures.

The definition of diagnosability subject to permanent sensor failures proposed

by KANAGAWA and TAKAI [26] demands that a few concepts are introduced

so that it can be entirely comprehended. Let us consider the observation mask

21

M : Σ → ∆ ∪ {ε} where ∆ is the set of observable symbols (not to be confused

with the set of observable events). The observation mask M can be extended to

M : Σ∗ → ∆∗ in the usual manner. The occurrence of an event σ is observed

as M(σ). If M(σ) = ε, an event is said to be unobservable; otherwise, σ is an

observable event. Comparing the observation mask to the projection operation

presented in Section 2.1.2, we conclude that the projection operation may be a

particular case of the observation mask where the symbols in the set of observable

symbols ∆ are the events in the smaller event set Σ∗s. Hence, instead of using the

projection operation, KANAGAWA and TAKAI [26] use the observation mask in

their diagnosability definitions.

In order to illustrate how the observation mask works, let us consider the moti-

vating example [26] proposed by CASSANDRAS and LAFORTUNE [2] consisting

on a pump, a valve, a controller, a pump pressure sensor and a valve flow sensor.

The purpose of the diagnosis is to detect a failure such that the valve gets stuck

closed.

Consider that the system is modeled by automaton G represented by Figure

3.1(a) where Σ = {c1, c2, c3, o1, o2, v} where ci, i = 1, 2, 3, are commands issued by

the controller; o1 is a change in pressure sensor reading; o2 is a change in flow sensor

reading; and v models the failure when the valve gets stuck closed. The nonfailure

behavior of G is modeled by automaton R in Figure 3.1(b), that generates the

language K. After the occurrence of event v representing the failure of the valve,

this will not open even with the first command of the controller (c1). Thus, the

sensor flow reading will remain the same, which is the same as saying that event o2

will not occur after the occurrence of v.

Assume that the observation mask M is given by

M(σ) =

{
σ, if σ ∈ Σ− {v}
ε, if σ = v

(3.1)

where ∆ = Σ − {v}. The mask demonstrates that all events are observable except

for the failure event v.

It is assumed that a cyclical trace sk occurs and that, after the occurrence of

the sequence skvc1, the pressure sensor fails permanently and the event o1 becomes

unobservable. The incident is modeled by the observation mask M1 as follows.

M1(σ) =

{
σ, if σ ∈ Σ− {o1, v}
ε, if σ ∈ {o1, v}

(3.2)

Let us consider any string skv ∈ L(G) \ K that ends with a failure event v,

where s = c1o1o2c2o1o2c3 and k ≥ 0. For its extension skvc1o1c2 ∈ L(G) \ K,

there is no nonfailure string u ∈ K such that M(u) = M(skvc1o1c2) = skc1o1c2.

22

q0

q1

q2

q3

q4

q5

q6

q7

q8

q9

q10

q11

c1

o1

o2

c2

o1

o2

c3

v

c1

o1

c2

o1

c3

(a) G

q0

q1

q2

q3

q4

q5

q6

c1

o1

o2

c2

o1

o2

c3

(b) R

Figure 3.1: Automata G and R from the motivating example.

This means that G is diagnosable with respect to K and M . However, after the

permanent failure of the pressure sensor the string skvc1o1c2 ∈ L(G)−K is observed

as M(skvc1)M1(o1c2) = skc1c2. For any nonfailure string u ∈ K there are no strings

u1, u2 ∈ Σ∗ such that u = u1u2 and M(u1)M ′(u2) = skc1c2. That is, even if the

event o1 becomes unobservable due to the failure of the pressure sensor, the failure

string skvc1o1c2 ∈ L(G)−K can be distinguished from any nonfailure string. This

motivates the consideration of diagnosability subject to permanent sensor failures.

In [26] it is considered that the sensing capability of a diagnoser may degrade to

permanent sensor failures and it is assumed that a permanent sensor failure occurs

at most once, at any time during system operation, and that it is not detected

by a diagnoser. This lost of sensor reading is modeled by a transition from the

nominal observation mask M to a coarser observation mask Mi, where i stands for

the number of sensor failures in a system. It is assumed that there are n different

types of transitions from the nominal observation mask and therefore the resulting

observation masks are denoted by Mi : Σ→ ∆∪{ε} (i ∈ I), where I := {1, 2, . . . , n}
is the index set.

This transition between masks is here modeled as presented by ROHLOFF [16].

Consider a system modeled by G with observable event set Σo = {σ1, σ2, . . . , σn}
and nominal observation mask M

M(σ) =

{
σ, if σ ∈ Σo

ε, otherwise
(3.3)

23

where ∆ = Σo. In [16] it is considered that at most one observable event σi ∈ Σ

becomes unobservable due to the failure of the corresponding event sensor, i.e., the

failure of a sensor affects only one event observation, which can be described as the

transition from the nominal mask M and Mi,

Mi(σ) =

{
σ, if σ ∈ Σo − {σi}
ε, otherwise

(3.4)

The observation mask M f : Σ∗ → 2∆∗ subject to permanent sensor failure is

defined as

M f (s) = {M(s1)Mi(s2) ∈ ∆∗ | s1s2 = s ∧ i ∈ I} (3.5)

where M(s1)Mi(s2) denotes the observed string of s = s1s2 when the transition from

M to Mi occurs after the occurrence of s1 [16]. Note that M f is a nondeterministic

observation mask since it assigns the set of possible observed strings to each s ∈ Σ∗.

The set of all observable strings is given by

M f (L(G)) =
⋃

s ∈ L(G)

M f (s) (3.6)

Let us consider the diagnosing problem of detecting the occurrence of any failure

string in L(G)−K within an uniformly bounded number of steps being G subject

to permanent sensor failures. A diagnoser for G is formally defined as a function

D : M f (L(G))→ {0, 1}. Whenever D is certain that a failure has occurred, it issues

the answer 1; otherwise, the decision is 0. In order to correctly detect the occurrence

of any failure string within an uniformly bounded number of steps this diagnoser D

is required to satisfy conditions C1 and C2 as follows

C1) ∃m ∈ N,∀s ∈ L(G) \K, ∀t ∈ L(G)/s : [|t| ≥ m ∨ st ∈ Ld(G)]⇒
[∀τ ∈M f (st) : D(τ) = 1],

C2) ∀s ∈ K, ∀τ ∈M f (s) : D(τ) = 0.

(3.7)

where C1 means that there exists m ∈ N such that the occurrence of any failure

string is detected within m steps under any observed string and C2 guarantees the

decision ”1” is issued after the occurrence of a failure string.

Taking this problem in consideration a diagnosability property subject to per-

manent sensor failures was defined as follows.

Definition 3.1 The system G is said to be diagnosable with respect to a nonempty

closed sublanguage K ⊆ L(G) and the observation mask M f : Σ∗ → 2∆∗ if

24

∃m ∈ N,∀s ∈ L(G) \K, ∀t ∈ L(G)/s : [|t| ≥ m ∨ st ∈ Ld(G)]⇒
[∀u ∈ L(G) : M f (st) ∩M f (u) 6= ∅ ⇒ u /∈ K].

A theorem showing that diagnosability defined in Definition 3.1 is a necessary

and sufficient condition for the existence of a diagnoser that satisfies conditions C1

and C2 is proposed.

Theorem 3.1 Given a nonempty closed sublanguage K ⊆ L(G) and the observation

mask M f : Σ∗ → 2∆∗, there exists a diagnoser D : M f (L(G))→ {0, 1} that satisfies

C1 and C2 if, and only if, the system G is diagnosable with respect to K and M f .

If G be diagnosable with respect to K and M f , then a diagnoser D :

M f (L(G))→ {0, 1} given as

D(τ) =

{
1, if ∀u ∈ L(G) : τ ∈M f (u)⇒ u /∈ K
0, otherwise

(3.8)

for each τ ∈M f (L(G)) satisfies C1 and C2.

The work presented by KANAGAWA and TAKAI [26] also covers the verification

of the proposed definition through an aggregated Mealy automaton and the delay

bound within which the occurrence of any failure string can be detected subject to

permanent sensor failures. Since the remaining topics are not central to the extent of

this work, we will only underline that the computational complexity of the presented

state-dependent verification method is O(n2× |X| × |XN |2× (n+ |Σ|2)), where XN

stands for the number of states of the nonfailure specification automaton GN that

generates the sublanguage K.

3.2 Robust diagnosis of discrete event systems

against permanent loss of observation

CARVALHO et al. [20] consider the problem of diagnosing the occurrence of a

fault event in the operation of a partially-observed discrete event system subject to

permanent loss of observation modeled by a finite state automaton. It assumes that

certain sensors may fail at the outset and that the diagnoser is not aware of such

failure - therefore generating the loss of observation. A previous definition of robust

diagnosability is considered and a polynomial time verification algorithm sufficient

for verifying the robust diagnosability of the system is presented. Furthermore,

a methodology to perform online diagnosis using a set of partial diagnosers for a

system subject to permanent sensor failure is provided.

25

1

2

3

5

6

74

c a

σf

ab

b

d

ed

{1N}

{2N, 3Y }

{4Y } {7Y }

{5N}

{6N}

c a

b a

d e

b

d

Figure 3.2: Automaton G and its diagnoser Gd.

The problem addressed in [20] is related to the one presented in Section 3.1 in

a sense that it also considers that a sensor may permanently fail and compromise

the fault diagnosis of a discrete event system. While KANAGAWA and TAKAI [26]

considers that a sensor may fail at anytime during the system operation but only

one sensor may fail at a time, CARVALHO et al. [20] consider that a sensor may

only fail prior to the first occurrence of the event it is monitoring. However, in [20]

the robustness of the definition allows more than one sensor to fail at the same time.

In order to clarify the concept, let us consider the system G depicted in Figure

3.2 along with its diagnoser automaton Gd.

Since there are only cycles in certain states of Gd, the language L generated

by G is said to be diagnosable. Suppose that the trace sY = cσfae
n has occurred

and that the sensor responsible for readings of the event c fails. When the trace sY

occurs, the diagnoser will not be able to observe events c or σf before the occurrence

of a. Hence, it will update to the state 5N where it will remain upon occurrence

of en. Even though the language was originally diagnosable with respect to Po

and Σf , after the failure of the sensor the diagnoser becomes incapable of correctly

diagnosing the system, demanding not only a modification on the diagnoser but also

in the diagnosability definition. Just like the sensor responsible for monitoring event

c has failed, the other sensors could have failed as well, demanding not only a new

definition but one robust enough to encompass all the failure occurrences.

Hence, let us take the following assumptions into account.

• A3. L is diagnosable with respect to Po : Σ∗ → Σ∗o and Σf = {σf}.

• A41. Any loss of observations when it occurs, takes place before the first

occurrence of the (initially observable) event associated with the sensor that

1Not restrictive in the case of a cyclical system that observably returns to its initial state.

26

has failed, and it is permanent, i.e., the event remains unobservable.

Consider also the definition proposed by BASILIO et al. [28].

Definition 3.2 (Diagnosis basis) A set Σ′o ⊆ Σo is a diagnosis basis if L is also

diagnosable with respect to projection P ′o : Σ∗ → Σ′∗o and Σf = {σf}. If for any

nonempty subset Σ′′o ⊆ Σ′o, L is not diagnosable with respect to projection P ′′o : Σ∗ →
Σ′′∗o and Σf = {σf} then Σ′o is a minimal diagnosis basis.

According to Definition 3.2, the sets that are diagnosis bases ensure diagnos-

ability of L and thus use the redundancy of the events in Σo \ Σ′o to provide some

robustness to the diagnosing system. This leads to the definition of robust diagnos-

ability against permanent loss of observations.

Definition 3.3 (Robust diagnosability against permanent loss of observations) Let

Σdb = {Σo1 ,Σo2 , . . . ,Σom}, where Σoi, i ∈ Im are either minimal or nonminimal

diagnosis bases for L. Define the set

Σrob = {Σuo1 ,Σuo2 , . . . ,Σuom}, (3.9)

where

Σuoi = Σo \ Σoi, i ∈ Im. (3.10)

Then L is robustly diagnosable with respect to projections Po1 , Po2 , . . . , Pom, where

Poi : Σ∗ → Σ∗oi, and Σf = {σf}, or equivalently, with respect to permanent loss of

observation of the events of all sets Σuoi, i ∈ Im, and Σf = {σf}, if the following

condition holds true:

(∃n ∈ N)(∀s ∈ L \K)(∀t ∈ L/s)
(‖t‖ ≥ n⇒ RD),

(3.11)

where the robust diagnosability condition RD is given as

(∀i, j ∈ {1, 2, . . . ,m}, i 6= j)

(@ ωj ∈ L)[Σf /∈ ωj ∧ Poi(st) = Poj(wj)].

The idea behind Definition 3.3 is that since L is diagnosable with respect to

Poi : Σ∗ → Σ∗oi , and Σf = {σf}, and assuming that all partial diagnosers for

Σok , k ∈ Im are running simultaneously and have access to all available sensors,

any partial diagnoser, say Σoi , only performs properly if all events in Σuoi become

unobservable, i.e., observation of all events in Σuoi is lost. In this case, while some

partial diagnosers may get stuck, others may continue running, since it is possible

that the intersections of the languages generated by two different partial diagnosers

27

be nonempty. This implies that it is possible that an arbitrarily long trace sY

that contains the fault event has the same projection over, say Σ∗oi and Σ∗oj , where

the former takes Gdi to a certain state whereas the latter takes Gdj to a normal

state. In this case, according to Definition 3.3, L is not robustly diagnosable against

permanent loss of observation of the events in Σuoi and Σuoj .

Even though it is not part of the central objective of this work, the paper pre-

sented by CARVALHO et al. [20] is followed by the proposition of verification of

robust diagnosability against permanent loss of observations using verifiers, result-

ing in a computational complexity of O(m2|X|2|Σ|), and the online implementation

of robust diagnosers concerning the robust language diagnosability definition pre-

sented.

3.3 Robust diagnosis of discrete event systems

against intermittent loss of observations

CARVALHO et al. [21] assume that intermittent loss of observations may occur

during the fault diagnosis of a discrete event system. Bad sensor operation can make

sensors fail to report event occurrences. Besides, bad electrical linkage and possible

atmospheric interference in the communication channels of a system may lead to loss

of communication between sensors and the system’s diagnoser. These occurrences

would be responsible for intermittent loss of observations during fault diagnosis of

DESs. Hence, in [21] a robust diagnosability against intermittent loss of observations

definition is presented, along with two tests for robust diagnosability - one using

diagnosers and the other one using verifiers - and also a modeling mechanism for

systems with intermittent behavior. Finally, the results are extended to robust

codiagnosability against intermittent loss of observations.

The problem here addressed is better comprehended through the observation of

a motivating example.

Example 2 Figures 3.3(a) and 3.3(b) show the state transition diagrams of an

automaton G, for which Σ = {a, b, c, d, e, σf}, Σo = {a, b, c, d, e} and Σf = {σf},
and the corresponding diagnoser Gd, respectively. It is immediate to see that, since

Gd has no indeterminate cycles, the language generated by G is diagnosable with

respect to Po and Σf .

Assume, initially, that, for some n ∈ N, the trace s′Y = cσfabd
n has been gen-

erated and suppose that the occurrence of event c has not been recorded somehow.

Since event c has become unobservable, the first event occurrence to be recognized

by Gd is a, which takes the diagnoser state to {5N}. When the next events of s′Y

28

1

2

3

5

6

74

c a

σf

ab

b

d

b, de

{1N}

{2N, 3Y }

{4Y } {7Y }

{5N}

{6N}

c a

b a

e b, d

b

d

(a) (b)

Figure 3.3: Automaton G (a) and its corresponding diagnoser Gd (b).

occur, the diagnoser moves to state {6N}, where it stays as long as event d con-

tinues to occur, therefore displaying wrong information regarding the occurrence of

σf . Assume, now, that, for some n ∈ N, trace s′′Y = cσfce
n has been generated

and assume also that event c is subject to intermittent loss of observation. If the

first occurrence of event c is not recognized by the diagnoser, then Gd remains in

its initial state. If, in the sequel, the communication between the system and the

diagnoser is somehow restored before the second occurrence of event c, then when c

occurs for the second time, the diagnoser moves to state {2N, 3Y }. Notice that since

the next event of s′′Y to occur is e, which is not in the active event set of {2N, 3Y },
the diagnoser stands still in an uncertain state, and, once again, provides wrong

information regarding the fault occurrence. This anomalous behavior suggests that

the system model should be modified to take into account intermittent loss of ob-

servations due to sensor malfunction or communication failure between sensors and

diagnoser. This necessity for a new modeling led to the definition of the dilation

operation.

Definition 3.4 (Dilation) Let Σ = Σilo∪̇Σnilo∪̇Σuo be a partition of Σ, where Σilo is

the set of observable events associated with intermittent loss of observations and Σnilo

denotes the set of observable events not subject to intermittent loss of observations

and let Σ′ilo = {σ′ : σ ∈ Σilo} and Σdil = Σ ∪ Σ′ilo. The dilation D is the mapping

D : Σ∗ → 2(Σdil)
∗

s 7→ D(s),
(3.12)

29

where
D(ε) = {ε} ,

D(σ) =

 {σ} , if σ ∈ Σ\Σilo,

{σ, σ′} , if σ ∈ Σilo,

D(sσ) = D(s)D(σ), s ∈ Σ∗, σ ∈ Σ.

(3.13)

The dilation operation D can be extended from traces to languages by applying it

to all sequences in the language, that is,

D(L) =
⋃
s∈L

D(s). (3.14)

Consider a system G with an associated event set Σilo. For each event σilo ∈ Σilo

labeling a transition, the dilation operation will add a new transition to G parallel to

the original transition labeled by σ′ilo instead. The operation extended to every event

which monitoring sensor is subject to intermittent loss of observation originates Gdil,

a deterministic automaton that maintains the same observable event set Σo from G.

A very important result may then be presented as a theorem showing that Gdil

models the behavior of a system G subject to intermittent loss of observations by

establishing a relationship between the languages generated by G and Gdil, L and

Ldil, respectively. The proof of Theorem 3.2 is in [21].

Theorem 3.2 Let Gdil = (X,Σdil, fdil,Γdil, x0) be a deterministic automaton ob-

tained from G. Then, Ldil = L(Gdil) = D(L).

Consider automaton G from Example 2. Consider that Σ = {a, b, c, d, e, σf} and

Σilo = {c}. If we apply the dilation operation to the referred example, we obtain

the automaton Gdil described in Theorem 3.2, as shown in Figure 3.4.

Since the dilation operation has been fully presented, we may now introduce the

definition of robust diagnosability of DES subject to intermittent loss of observa-

tions.

Definition 3.5 (Robust diagnosability of DES subject to intermittent loss of ob-

servations) A prefix-closed and live language L, generated by an automaton G, is

robustly diagnosable with respect to dilation D, projection Pdil,o : Σ∗dil → Σ∗o and

Σf = {σf} if the following holds true:

(∃n ∈ N)(∀s ∈ L \K)(∀t ∈ L/s)(‖t‖ ≥ n⇒ RD),

where the robust diagnosability condition RD is

(@ω ∈ L)[(Pdil,o(D(st)) = Pdil,o(D(ω))) ∧ (Σf /∈ ω)]. (3.15)

30

1

2

3

5

6

74

c
c′ a

σf

ab

b

d

b, de

Figure 3.4: Automaton Gdil resulted from the application of the dilation operation
to G where Σilo = {c}.

Remark 2 Note that if Σilo = ∅ then Ldil = L, D(st) = {st} and Pdil,o reduces to

Po. In this case, Definition 3.5 reduces to the usual definition of language diagnos-

ability introduced in [4].

The work presented in [21] extends to robust diagnoser construction methodolo-

gies and application of verification algorithms to robustly diagnose a language sub-

ject to intermittent loss of observations. Even though the main concepts regarding

this work were already presented, we may highlight that the computational complex-

ity to build a robust diagnoser Gdil,d is, in the worst case, O(2|X|×|Σ|) where X and

Σ denote the state and event sets of the original system G, respectively. Meanwhile,

the worst case for the construction of Gdil,t leads to a complexity of O(2n|X| × |Σ|).
Finally, the computation complexity using the verifier proposed by MOREIRA et al.

[6] requires polynomial time in the number of states and events of G and is, in the

worst case, O(|X|2 × |Σ|) for the diagnosability test and O(m × |X|n+1 × |Σ|) for

the codiagnosability test.

3.4 Verification of robust diagnosability for par-

tially observed discrete event systems

The paper presented by TAKAI [23] considers the robust failure diagnosis of discrete

event systems. From a given set of possible models and its corresponding nonfailure

specifications, the work suggests the existence of a single diagnoser, so called robust

diagnoser, for the detection of the occurrence of a failure, in all possible models,

within a uniformly bounded number of steps. A notion of robust diagnosability is

introduced and proved that is serves as a necessary and sufficient condition for the

existence of a robust diagnoser. Finally, the work presents an algorithm for verifying

31

MA B1 MB

(a)

Ma B2 MB

(b)

Figure 3.5: Two configurations C1 (a) and C2 (b) of the manufacturing line.

the proposed robust diagnosability condition.

Motivated by the possibility of developing a robust tool capable of encompass-

ing modeling uncertainties, multiple configuration systems such as manufacturing

systems and at the same time reduce costs of implementation and maintenance, the

work proposed was remarking since it considered a set of possible models, different

of what was considered by the majority of the research community back then.

Assume that a system has an exact model that belongs to a set of n possible

models {Gi|i ∈ I}, I = {1, 2, . . . , n}. Since Gi are all possible models of a same

system, the event set Σ is the a common finite set for all possibilities. Besides, each

Gi has an associated Gki generating the nonempty closed sublanguage Ki ⊆ L(Gi)

that models the nonfailure behavior of the system.

Consider the simple manufacturing line depicted in Figure 3.5. Configuration

C1 (resp. C2) consists of two machines MA and MB (resp. Ma and MB) and a

two-slot buffer B1 (resp. one-slot buffer B2). The machine MA can process two

parts simultaneously, while Ma and MB cannot process more than one part at a

time. The machines MA, MB, and Ma are modeled by automata GMA
, GMB

and

GMa as shown in Figure 3.6 where the event labels represent the following actions:

• a1: MA (resp. Ma) starts processing a part in C1 (resp. C2),

• b1: MA (resp. Ma) completes processing and passes a part to B1 (resp. B2) in

C1 (resp. C2),

• a2: MB takes a part from B1 (resp. B2) and starts processing in C1 (resp.

C2),

• b2: MB completes processing.

Automata models GB1 and GB2 of the buffers B1 and B2, respectively, are shown

in Figure 3.7. For each configuration, consider a nonfailure specification such that

the overflow and underflow of the buffer do not occur. The behaviors of C1 and

C2 are described by the synchronous compositions G1 = GMA
||GMB

and G2 =

GMa||GMB
, respectively. Also, the nonfailure specification forG1 andG2 are modeled

32

a1 a1

b1 b1
(a) GMA

a1

b1
(b) GMa

a2

b2
(c) GMB

Figure 3.6: Automata models of machines MA, Ma and MB.

b1 b1

a2 a2
(a) GB1

b1

a2
(b) GB2

Figure 3.7: Automata models of the buffers B1 and B2

33

by GK1 = GMA
||GMB

||GB1 and GK2 = GMa||GMB
||GB2 . Note that, for example, a

string a1b1a1b1 is a nonfailure one of G1 but it is a failure one of G2. Thus, in

this example, for each configuration, its own nonfailure specification language Ki,

(i ∈ {1, 2}) has to be specified.

The problem of synthesizing a robust diagnoser is considered to satisfy the fol-

lowing two conditions:

C3. (∀i ∈ I)(∃mi ∈ N)(∀s ∈ L(Gi) \Ki)(∀t ∈ L(Gi)/s)[|t| ≥ mi ∨ st ∈ Ld(Gi)]⇒
[∀j ∈ I : M−1M(st) ∩ L(Gj) ⊆ L(Gj) \Kj],

C4. (∀i ∈ I)(∀s ∈ Ki)D(M(s)) 6= 1.

That is, a robust diagnoser satisfying C3 and C4 correctly detects the occurrence

of any failure in any possible model. In order to characterize the existence of such

a robust diagnoser, the notion of robust diagnosability may be introduced.

Definition 3.6 The set {Gi|i ∈ I} of possible models is said to be robustly

diagnosable with respect to a set of nonempty closed languages {Ki ⊆ L(Gi)|i ∈ I}
if

(∀i ∈ I)(∀mi ∈ N)(∀s ∈ L(Gi)KKi)(∀t ∈ L(Gi)/s)[|t| ≥ mi ∨ st ∈ Ld(Gi)] ⇒ [∀j
∈ I : M−1M(st) ∩ L(Gj) ⊆ L(Gj) \Kj].

Robust diagnosability of {Gi|i ∈ I} with respect to {Ki ⊆ L(Gi)|i ∈ I} requires

that, for each possible model Gi there exists a nonnegative integer mi ∈ N such

that, for any failure string s ∈ L(Gi) \ Ki and any extension t ∈ L(Gi)/s with

|t| ≥ mi or st ∈ Ld(Gi), any string u ∈ M−1M(st) ∩ L(Gj) indistinguishable from

stinGj is also a failure string in L(Gj) \Kj for all possible models Gj. Note that, if

j 6= i, it is possible that the set M−1M(st)∩L(Gj) of indistinguishable strings is the

empty set. On the other hand, diagnosability of Gi with respect to Ki only requires

that strings indistinguishable from stinGi be failure ones in L(Gi) \Ki. Thus, the

following proposition holds.

Proposition 1 If the set {Gi|i ∈ I} of possible models is robustly diagnosable with

respect to a set of nonempty closed languages {Ki ⊆ L(Gi)|i ∈ I}, then, for each

i ∈ I, Gi is diagnosable with respect to Ki.

The converse relation of Proposition 1 does not holds, i.e., Gi being diagnosable

with respect to a given Ki does not guarantees {Gi|i ∈ I} to be diagnosable with

respect to {Ki ⊆ L(Gi)|i ∈ I}.
Another comparison to be made is regarding the robust diagnosability of the

aggregated model G∗ such that L(G∗) =
⋃

i∈I L(Gi).

34

Proposition 2 Let G∗ be an aggregated model such that L(G∗) =
⋃

i∈I L(Gi).If

the set {Gi|i ∈ I} of possible models is robustly diagnosable with respect to a set

of nonempty closed languages {Ki ⊆ L(Gi)|i ∈ I}, then the aggregated model is

diagnosable with respect to
⋃

i∈I Ki.

Proposition 2 shows how the diagnosability of the set {Gi|i ∈ I} is stronger than

of the aggregated model G∗. Hence, the converse relation of this proposition also

does not hold.

Consider the following proposition showing that if nonfailure behavior and dead-

locking behavior are consistent among all possible models, that is, if a string is a

nonfailure (resp. deadlocking) string in some possible mode, then it is also a non-

failure (resp. deadlocking) string (if it is feasible) in other possible models, then

robust diagnosability of Gi with respect to Ki is equivalent to diagnosability of an

aggregated model G∗ with respect to
⋃

i∈I Ki.

Proposition 3 Let G∗ be an aggregated model such that L(G∗) =
⋃

i∈I L(Gi). As-

sume that, for each i ∈ I, a nonempty closed language K ⊆ L(G) is specified as Ki =

k ∩ L(Gi) by an nonempty closed language K ⊆ Σ∗, and Ld(Gi) = Ld(G
∗) ∩ L(Gi).

Then, the set {Gi|i ∈ I} of possible models is robustly diagnosable with respect to a

set of nonempty closed languages {Ki ⊆ L(Gi)|i ∈ I} if and only if the aggregated

model G∗ is diagnosable with respect to
⋃

i∈I Ki.

Finally, consider the following theorem characterizing the existence of a robust

diagnoser satisfying conditions C3 and C4.

Theorem 3.3 There exists a robust diagnoser D : ∆∗ → {0, 1} satisfying conditions

C3 and C4 for a set of nonempty closed languages {Ki ⊆ L(Gi)|i ∈ I} if and

only if the set {Gi|i ∈ I} of possible models is robustly diagnosable with respect to

{Ki ⊆ L(Gi)|i ∈ I}.

The work proposed by TAKAI [23] is followed by the presentation of an algorithm

for verifying robust diagnosability. Since it is not the main focus of this work, let

us highlight that the computational complexity of the algorithm presented is equal

to O(|Xi| × |XKi
|2 × (Πj 6=i|XKj

|)× |Σ|n+1).

3.5 Generalized robust diagnosability of discrete

event systems

The paper presented by CARVALHO et al. [27] addressed the problem of diag-

nosability of discrete event systems considering not only one but two sources of

35

uncertainties to the system: the ones from the loss of observation of events and the

ones from the modeling of the system. The work took into consideration two al-

ready addressed fault diagnosis problems presented by LIMA et al. [30] and TAKAI

[22] and encompassed both by presenting a new definition of a generalized robust

diagnosability. Moreover, they presented a necessary and sufficient condition for the

generalized robust diagnosability and a polynomial time algorithm for the verifica-

tion of the generalized robust diagnosability.

The work proposed by LIMA et al. [30] was continued until it reached the ma-

turity presented in Section 3.2. The definition of robust diagnosability introduced

in [30] was stated as follows.

Definition 3.7 (Robust diagnosability against permanent sensor failures) Let L be

the live prefix-closed language generated by automaton G and let K ⊂ L denote

the prefix-closed language generated by GN (the subautomaton of G that models the

non-failure behavior). In addition, assume that Σoi, i ∈ Im, Im = {1, 2, . . . ,m}, is

a diagnosis basis for L. Then, L is robustly diagnosable against permanent sensor

failures with respect to projections Poi : Σ∗ → Σ∗oi, for i ∈ Im, and Σf = {σf}, if

and only if

(∃n ∈ N)(∀s ∈ L \K)(∀st ∈ L \K, |t| ≥ n)⇒
(∀i, j ∈ Im, i 6= j)(∀w ∈ K,Poi(st) 6= Poj(w)).

2

In accordance to Definition 3.7, a prefix-closed language L is not robustly diagnos-

able if there exist integers i, j ∈ Im, (i 6= j), and two traces w, st ∈ L, where w is a

non-faulty trace and st can be made arbitrarily long after the fault event σf ∈ Σf ,

such that Poi(st) = Poj(w).

Alternatively, TAKAI [22] brought light to the possibility of having a set of

possible automata modeling a system and introduced another definition of robust

diagnosability, similar to that presented in [30], assuming that: (i) the real system

model belongs to a set of possible models Gi = (Xi,Σ, fi,Γi, x0i , Xmi
), i ∈ Im; (ii)

each automaton model Gi generates a different language Li and has a distinct non-

faulty behavior, described by a nonempty closed sublanguage Ki ⊆ Li; (iii) they all

share the same observable event set Σo.

Taking both problems in consideration, CARVALHO et al. [27] have presented

the so called generalized robust diagnosability definition for a class of different lan-

guages generated by a class of automata that models a specific system. The defini-

tion is as follows.

Definition 3.8 (Generalized robust diagnosability) Let Li ⊆ Σ? be the language

generated by Gi, i ∈ Im, Im = {1, 2, . . . ,m}, and assume that Li is live. In addition,

36

assume that each model i ∈ Im has a projection Poi : Σ? → Σ?
oi

, and that Li is

diagnosable with respect to Poi and Σf . Let us denote GNi
as the subautomaton of

Gi that models the non-faulty behavior of the corresponding model, and Ki ⊂ Li the

language generated by GNi
. Then,

L = {Li : i ∈ Im},

the class of all possible languages generated by the class of automata

G = {Gi : i ∈ Im},

is robustly diagnosable with respect to projection Poi, i ∈ Im, and Σf = {σf}, if and

only if

(∀i ∈ Im)(∃ni ∈ N)(∀si ∈ Li \Ki)(∀siti ∈ Li \Ki, |ti| ≥ ni)

⇒ (∀j ∈ Im)(∀wj ∈ Kj, Poi(siti) 6= Poj(wj)).

2

Before the verification algorithm was deployed, the renaming function Ri : Σ→
ΣRi

, for i ∈ Im, was presented. The function was proposed by MOREIRA et al. [6]

and is used for the development of the verification algorithm.

Ri(σ) =

{
σ, if σ ∈ Σoi ∪ Σf

σRi
, if σ ∈ Σuoi \ Σf

. (3.16)

Notice that function Ri can be extended to domain Σ? in the usual way, as fol-

lows: Ri(ε) = ε, and Ri(sσ) = Ri(s)Ri(σ), ∀s ∈ Σ? and ∀σ ∈ Σ. As a consequence,

Ri can also be extended to a language L ⊆ Σ? by simply applying it to all strings

in L.

Based on Ri, we can also define the inverse renaming function, as follows:

R−1
i : ΣRi

→ Σ

σRi
7→ σ,

where σRi
= Ri(σ), with the following extension to domain Σ?

Ri
: R−1

i (sRi
σRi

) =

R−1
i (sRi

)R−1
i (σRi

) for all sRi
∈ Σ?

Ri
and σRi

∈ ΣRi
, and R−1

i (ε) = ε.

A polynomial time algorithm for the verification of the robust diagnosability

was finally presented with computational complexity equal to O(m|Xi|
∏m

j=1,j 6=i

|Xj|(|Σ| − |Σf |)) where m is the number of possible models Gi ∈ G.

The following theorem proves the correctness of Algorithm 3.1.

37

Algorithm 3.1 Verification of generalized robust diagnosability of DES

Inputs: Gi = (Xi,Σ, fi,Γi, xi,0), i ∈ Im
Output: Vi

1: For each model Gi = (Xi,Σ, fi,Γi, xi,0), i ∈ Im, build automaton GRi
=

(Xi,ΣRi
, fRi

, ΓRi
, xi,0), where ΣRi

= Ri(Σ), ΓRi
(x) = Ri[Γi(x)], and fRi

(x,Ri(σ)) = fi(x, σ) for all x ∈ Xi and σ ∈ Γi(x).
2: Compute the failure automaton Fi as follows:

2.1: Build the faulty label automaton A` = (XA`
,Σf , fA`

,ΓA`
, x0,A`

), where XA`
=

{N,Y }, x0,A`
= N , and fA`

(N, σf) = Y and fA`
(Y, σf) = Y .

2.2: Compute G̃Ri
= GRi

‖A` and mark all states of G̃Ri
that have the second component

equal to Y .

2.3: Compute the faulty automaton Fi = CoAc(G̃Ri
) = (XFi

,ΣRi
, fFi

,ΓFi
, x0,Fi

).

2.4: Redefine the event set of Fi as ΣFi
= ΣRi

∪ Σo.

3: Build the non-faulty automaton HRi
as:

3.1: Define ΣZi
= ΣRi

\ Σf , and build automaton Zi = ({N},ΣZi
, fZi

, N), composed
of a single state with a self-loop labeled with all events in ΣZi

.

3.2: Construct HRi
= GRi

× Zi = (XHRi
,ΣRi

, fHRi
,ΓHRi

, x0,HRi
).

3.3: Redefine the event set of each HRi
as ΣHRi

= ΣRi
\ Σf .

4: Construct the augmented automaton Hi = (XHi
, ΣHi

, fHi
,ΓHi

, x0,Hi
) from au-

tomaton HRi
as follows:

4.1: Define ΣHi
= ΣHRi

∪ Σo.

4.2: Define x0,Hi = x0,HRi
.

4.3: Add a new state Di to the state space of HRi
. Thus, XHi

= XHRi
∪ {Di}.

4.4: For each xHi ∈ XHRi
define:

fHi
(xHi

, σ) =


fHRi

(xHi
, σ), if σ ∈ ΓHRi

(xHRi
)

Di, if σ ∈ Σo \ ΓHRi
(xHRi

)

undefined, otherwise
, (3.17)

and for xHi
= Di define:

fHi(xHi , σ) =

{
Di, for all σ ∈ Σo

undefined, otherwise
. (3.18)

5: For i ∈ Im, compute verifier Vi whose jth state xVij
∈ XFi

× (×m
q=1,q 6=iXHq) and

the jth state of XFi
is xFij

∈ Xi×XA`
, by making a composition of Fi, H1, . . .,

Hi−1,Hi+1, . . .,Hm, following the same procedure as for the parallel composition
Fi‖(‖mj=1,j 6=iHj), except that if state (xFi

, D1, . . . , Di−1, Di+1, . . . , Dm) is reached,
where xFi

∈ XFi
, then its active event set is forced to be the empty set2, i.e,

ΓVi
(xFi

, D1, . . . , Di−1, Di+1, . . . , Dm) = ∅.

6: Verify the existence of a cycle cli = (xVik
, σk, xVik+1

, σk+1, . . . , σl, xVik
), where

l ≥ k > 0, in Vi satisfying the following condition:

∃j ∈ {k, k + 1, . . . , l} s.t. (σj ∈ ΣRi
) ∧ (xFij

= {xij , Y }).

If the answer is yes, then the class L is not robustly diagnosable with respect to
projections Poi , i ∈ Im, and Σf . Otherwise, the class L is robustly diagnosable.

38

1

2

3

5

6

4

7 8

d σu

σf

b

e

a

b c

a b

1

2

3 4

5

e

σf c

b
a

b

1

2

3

5

6

4

e c

σf

b

a

b

a

(a) G1 (b) G2 (c) G3

Figure 3.8: Class of automata G = {G1, G2, G3}.

Theorem 3.4 The class L is not robustly diagnosable with respect to Poi, i ∈ Im,

and Σf if and only if there exists a cycle cli = (xVik
, σk, xVik+1

, σk+1, . . . , σl, xVik
),

where l ≥ k > 0, in at least one verifier Vi, i ∈ Im, satisfying the following condition:

∃j∈{k, k + 1, . . . , l} s.t. (σj∈ΣRi
) ∧ (xFij

= {xij ,Y }). (3.19)

The generalized robust diagnosability definition and the verification algorithm

proposed are better comprehended through the observance of an illustrating exam-

ple.

Example 3 Let G = {G1, G2, G3} be the class of automata shown in Figure 3.8,

and assume that Σ = {a, b, c, d, e, σu, σf} is the set of all events used in the modeling

of the system. In addition, let Σo1 = {a, b, c}, Σo2 = {a, b, c, e} and Σo3 = {a, b, d, e}
be, respectively, the observable event sets of G1, G2 and G3. The objective here is

to verify if the class L of languages generated by the automata in G is robustly

diagnosable with respect to Poi, i ∈ Im, and Σf = {σf}.

Initially, note that Σo =
⋃3

i=1 Σoi = {a, b, c, d, e}. Now, according to Algorithm

3.1, the first step is to obtain automaton GRi
, i = 1, 2, 3, by renaming the events in

Σuoi \Σf . Therefore events d, e and σu should be renamed, respectively, as dR1 , eR1

and σuR1
, in G1, and event c as cR3 in G3. Notice that no event needs to be renamed

in G2. The state transition diagram of automata GRi
, i = 1, 2, 3, are not shown

since they are identical to those of Gi, i = 1, 2, 3, except for the above renaming.

The next step of Algorithm 3.1 is to compute the faulty automata Fi, i = 1, 2, 3.

Following Steps 2.1–2.4, automata F1, F2 and F3, shown in Figure 3.9, are obtained.

Notice that, although only events b, dR1 , eR1 and σf appear in the state transition

39

1N

2N

3Y

4Y

dR1

σf

b

eR1

1N

2N

3Y

e

σf

b

1N

2N

3Y

4Y

e

σf

b

a

(a) (b) (c)

Figure 3.9: Faulty automata F1 (a), F2 (b), and F3 (c).

diagram of F1, its event set is ΣF1 = ΣR1∪Σo = {a, b, c, d, e, dR1 , eR1 , σuR1
, σf}. Same

analysis can be carried out for F2 and F3 leading to ΣF2 = {a, b, c, d, e, dR2 , σuR2
, σf}

and ΣF3 = {a, b, c, d, e, cR3 , σuR3
, σf}.

Having computed the automata that model the faulty behavior of GR1 , GR2 and

GR3 , the next step is to obtain the non-faulty automata HR1 , HR2 and HR3 that

accounts for the non-faulty behavior of GR1 , GR2 and GR3 , and, in the sequel to

obtain the augmented automata H1, H2 and H3. Following Step 4 of Algorithm 3.1,

the state transition diagrams depicted in Figure 3.10 are computed. Regarding the

event sets of the augmented automata H1, H2 and H3, it is worth remarking that

ΣH1 = ΣF1 \ {σf}, ΣH2 = ΣF2 \ {σf} and ΣH3 = ΣF3 \ {σf}.
Proceeding in accordance with Step 5 of Algorithm 3.1, the verifier automata V1,

V2 and V3 must be computed. Figures 3.11(a) and 3.11(b) show the state transition

diagram of verifiers V1 and V3, respectively; the state transition diagram of verifier

V2 has been omitted since it leads to a conclusion similar to that drawn from V3.

Finally, to verify if L is robustly diagnosable with respect to Poi , i ∈ Im, and

Σf = {σf}, we follow Step 6 of Algorithm 3.1. In doing so, we first consider

verifier V1 shown in Figure 3.11(a). Notice that cycle (4Y D23N, eR1 , 4Y D23N) is

formed with an event in ΣR1 . Thus, although verifiers V2 (not shown in the paper)

and V3 (depicted in Figure 3.11(b)) do not have any cycle with events in ΣR2 and

ΣR3 , respectively, whose first components of their states have fault labels, we may

conclude that L is not robustly diagnosable with respect to Poi , i ∈ Im, and Σf =

{σf}.
A close examination of verifier V1 reveals the traces responsible for the non-robust

40

1N 5N 6N 8N

2N D1 7N

σuR1

dR1

Σo

a

b, c, d, e

c

ba, d, e

b

a, c, d, e

Σo

Σo

a

b, c, d, e

(a)

1N 2N 4N 5N

D2

e

a, b, c, d

c

a, b, d, e

a

b, c, d, e

b

a, c, d, e

Σo

(b)

1N 5N 6N

2N D3

cR3

e
a, b, c, d

b

a, c, d, e

a

b, c, d, e

Σo

Σo

(c)

Figure 3.10: Augmented non-faulty automata H1 (a), H2 (b), and H3 (c).

41

1N1N1N

2N1N1N

3Y 1N1N

3Y 1N5N

4Y D26N

4Y D2D3

1N1N5N

2N1N5N

dR1 cR3

σf
cR3

cR3

b

b

eR1

dR1

σf

1N1N1N

2ND12N

3ND12N

4Y D1D2

1N2N1N1N5N1N

e dR1σuR1

σf

b

e

e

(a) (b)

Figure 3.11: Verifier automata V1 (a) and V3 (b).

diagnosability. Notice that trace sV1 = dR1σfcR3be
n
R1

, where n can be arbitrarily

large, takes V1 from its initial state to state 4Y D23N and cycles over this state. Since

sF1 = PF1(sV1) = dR1σfbe
n
R1

and sH3 = PH3(sV1) = cR3b, then after inverse rename

we obtain s1 = dσfbe
n ∈ L1 and s3 = cb ∈ L3. Furthermore, Po1(s1) = Po3(s3) = b,

which implies that when trace s1 occurs, it is not possible to conclude that the

system is either in state 4 of G1, which is after the occurrence of fault event σf , or

in state 6 of G3, which is in a normal path.

3.6 Final comments

This chapter presented five different works exploring problems on diagnosability of

discrete event systems. The comprehension of the papers here introduced is key

for the understanding of the developed transformation formalisms to be presented

in Chapter 4. We have started presenting the work proposed by KANAGAWA and

TAKAI [26] concerning diagnosability of DESs subject to permanent sensor failures.

Then, we presented the concepts of robust diagnosis of DESs against permanent and

intermittent loss of observations proposed in [20] and [21], respectively. We have

also explored the verification of robust diagnosability of partially observed DESs

presented by TAKAI [23] and finally presented the generalized robust diagnosability

paper proposed by CARVALHO et al. [27].

42

Chapter 4

Verification of generalized robust

diagnosability on discrete event

systems

In this chapter we will update the generalized robust diagnosability definition in

Section 4.1 and present a new verification algorithm in Section 4.2 that has improved

computational complexity compared to the one present in Algorithm 3.1, as shown

in Section 4.3. In Section 4.4 we will access each problem presented in Chapter 3

and develop transformation mechanisms from the addressed problems of Chapter 3

to the generalized robust definition input format that allow us to demonstrate how

the generalized robust diagnosability definition encompasses all addressed problems

so far.

4.1 Updates on the generalized robust diagnos-

ability definition

Considering that new problems on fault diagnosis of discrete event systems were

addressed after the publication of the generalized robust diagnosability definition in

2011 such as the works proposed by KANAGAWA and TAKAI [26] and CARVALHO

et al. [21] we had to update the already presented Definition 3.8 so that it could

easily encompass all problems presented so far. The changes are related to the

following assumptions.

A1. Li is live

A2. Li is diagnosable with respect to projection Poi : Σ? → Σ?
oi

and Σf , for i ∈ Im,

Im = {1, 2, . . . ,m}.

43

The first change made was to remove assumption A1, which states that an input

language Li is live, whereas the second change was to include in the testing range of

the definition the assumption A2, that considers Li to be diagnosable with respect

to projection Poi : Σ? → Σ?
oi

and Σf , for i ∈ Im, Im = {1, 2, . . . ,m}.
Removing assumption A1 was already done in [13], [14] and [6]. Let us consider

a deterministic automaton G that generates the language L that is not live and

its projection Po : Σ∗ → Σ∗o. Since L is not live, then the system necessarily

has deadlock states. In order to turn L into a live language we may add a new

unobservable event σL to the event set Σ of automaton G and then add a self-loop

labeled by σL to each one of the deadlock states of the system. Proceeding this way

we have a new language L′i that is live and that its traces have the same projection

Po : Σ∗ → Σ∗o as the ones from Li, which preserves the partially observation of the

system. Moreover, the new event prevents that the addition of self-loops labeled by

previously defined events make the automaton non-deterministic.

Assumption A2 considers that a given Li is already diagnosable with respect

to its own projection Poi . In practical standards that means saying that it was

necessary that a test was performed to guarantee the diagnosability of Li. Con-

sidering that we are dealing with a class of automata G that generates a class of

languages L, then we infer without loss of generality that the class must be tested for

the codiagnosability of the decentralized diagnosers prior to the generalized robust

diagnosability verification.

If we analyze Definition 3.8 we will see that, for the particular case in which i = 1,

the definition is testing for the diagnosability of a single automaton just like proposed

by SAMPATH et al. [4]. Furthermore, if we make i = j we will be testing for the

codiagnosability of local diagnosers as presented in [6, 13, 31]. In that sense, we have

decided to include the tests for diagnosability and codiagnosability - particular cases

of the generalized robust diagnosability definition - into the updated definition. The

decision will allow us to easily demonstrate how the generalized robust diagnosability

definition encompasses all addressed problems presented in Chapter 3.

Once we have explained the reason why we have made the changes on the pre-

viously presented definition, we may now present the updated definition of the gen-

eralized robust diagnosability.

Definition 4.1 (Updated generalized robust diagnosability) Let Li ⊆ Σ? be the lan-

guage generated by Gi, i ∈ Im, Im = 1, 2, . . . ,m. In addition, assume that each

model i ∈ Im has a projection Poi : Σ? → Σ?
oi

. Let us denote GNi
as the subau-

tomaton of Gi that models the non-faulty behavior of the corresponding model, and

Ki ⊂ Li the language generated by GNi
. Then,

L = {Li : i ∈ Im},

44

the class of all possible languages generated by the class of automata

G = {Gi : i ∈ Im},

is robustly diagnosable with respect to projection Poi, i ∈ Im, and Σf = {σf}, if and

only if

(∀i ∈ Im)(∃ni ∈ N)(∀si ∈ Li \Ki)(∀siti ∈ Li \Ki, |ti| ≥ ni)

⇒ (∀j ∈ Im)(@wj ∈ Kj)[Σf /∈ wj ∧ Poi(siti) = Poj(wj)].

2

Once the definition has been updated we may now improve the computational

complexity of the verifier algorithm as proposed in Section 3.2.

4.2 The updated verification algorithm for gener-

alized robust diagnosability of discrete event

systems

In this section we will present the new verification algorithm for the generalized

robust diagnosability definition as presented in Definition 4.1. We will then provide

a necessary and sufficient theorem that proves the correctness of the algorithm and

conclude with an illustrating example.

Let us assume that the automata Gi ∈ G that are inputs for the algorithm

have each one a corresponding set of observable events Σoi ∈ Σo. Hence, Σo =

{Σo1 ,Σo2 , . . . ,Σom}. Additionally, let us assume, without loss of generality, that the

failure events set Σf = {σf} for all inputs to the algorithm are presented. We also

refer to the renaming function presented in Equation 3.16.

Consider the algorithm proposed as follows where we intend to include the di-

agnosability, codiagnosability and robust diagnosability tests considering the given

inputs and perform the offline verification of the language diagnosability property.

Before we present a theorem proving the correctness of Algorithm 4.1 we would

like to explain the idea behind the steps and how it affects the computational com-

plexity of the algorithm.

Generally, the idea behind this verification algorithm is to separate the normal

and failure behavior models of a given system and, after a few adjustments, perform

pairwise parallel compositions between them in order to identify faulty traces that

may have the same projection as a normal trace, which would lead to the violation

of the codiagnosability and (robust) diagnosability definition.

45

Algorithm 4.1 Updated verification of generalized robust diagnosability of DES

Inputs: A class of automata G = {G1, G2, . . . , Gm}, i ∈ Im, where Gi =
(Xi,Σi, fi, Γi, x0,i, Xmi

) and the event set Σi is partitioned as Σi = Σoi∪̇Σuoi .
Outputs: A class of automata GVij

= {GV11 , GV12 , . . . , GVmm}, i, j ∈ Im
1: Build GFi

, i ∈ Im, where each GFi
models the failure behavior of Gi as follows:

1.1: Construct the faulty label automaton Af = (Xf ,Σf , ff ,Γf , x0,f , Xm,f) where Xf =
{N,Y }, x0,f = N , Xm,f = ∅, ff (N, σf) = Y and ff (Y, σf) = Y for all σf ∈ Σf .

1.2: Compute G̃Fi
= Gi‖Af , i ∈ Im, and mark all states of G̃Fi

whose second component
is Y .

1.3: Obtain the failure automaton GFi = CoAc(G̃Fi) = (XFi ,Σi, fFi ,ΓFi , x0,Fi , Xm,Fi),

i ∈ Im, where CoAc(G̃Fi
) denotes the coaccessible part of automaton G̃Fi

, i.e.,the
automaton whose states are all coaccessible.

2: Build the set of normal behavior automata GNi
, i ∈ Im, as follows:

2.1: Define ΣANi
= Σi \ Σf , and construct automaton ANi

= ({N},ΣANi
, fANi

, N, ∅)
composed of a single state with a self-loop labeled with all events in ΣANi

.

2.2: Construct the nonfailure automaton GNi
= Gi × ANi

= (XNi
,

ΣANi
, fNi

,ΓNi
, x0,Ni

, Xm,Ni
).

3: Build the renamed normal behavior automata GR
Ni

= (XNi
,ΣR

Ni
, fR

Ni
,ΓR

Ni
,

x0,Ni
, Xm,Ni

), i ∈ Im, where ΣR
Ni

= Ri(Σi), ΓR
Ni

(x) = Ri[ΓNi
(x)], and fR

Ni
(x,

Ri(σ)) = fNi
(x, σ) for all x ∈ XNi

and σ ∈ ΓNi
(x).

4: Construct the verifier automaton GVij
= GFi

||GR
Ni

for each i ∈ Im, i = j, whose
states are of the form xVii

= (xFi
, xNi

), where xFi
and xNi

are states of GFi

and GR
Ni

respectively and xFi
= (x, xf) where x ∈ X and xf ∈ {N, Y } and

xNi
= (x,N).

5: IF, for any GVij
, exists a cycle cl := (xkVii

, σk, x
k+1
Vii

, σk+1, . . . , σ1, x
l
Vii

), where
l ≥ k > 0 satisfying the following conditions:

∃q ∈ {k, k + 1, . . . , l} s.t. (xql = Y) ∧ (σq ∈ Σi).

then the class of models G and the generated class of languages L are not
robustly diagnosable with respect to Poi and Σf and the algorithm must stop;
ELSE, continue for Step 6.

6: Build the renamed failure behavior automata GR
Fi

= (XFi
,ΣR

Fi
, fR

Fi
,ΓR

Fi
, x0,Fi

),
i ∈ Im, where ΣR

Fi
= Ri(Σi), ΓR

Fi
(x) = Ri[ΓFi

(x)], and fR
Fi

(x, Fi(σ)) = fFi
(x, σ)

for all x ∈ XFi
and σ ∈ ΓFi

(x).
7: Define the event set ΣRi

= Ri(Σi), i ∈ Im and redefine the event sets of the
renamed normal and failure bahavior automata GR

Ni
and GR

Fi
as Σ′Ri

= ΣRi
∪Σo.

8: For each pair (i, j), i, j ∈ Im, and j 6= i, construct the verifier automaton
GVij

= GR
Fi
||GR

Nj
whose states are of the form xVij

= (xRFi
, xRNj

), where xFi
and

xNj
are states of GR

Fi
and GR

Nj
respectively and xFi

= (x, xf) where x ∈ X and
xf ∈ {N, Y }.

9: Test for the existence of a cyclic path cl = (xkVij
, σk, x

k+1
Vij

, σk+1, . . . , σ1, x
1
Vij

),
where l ≥ k > 0 in at least one verifier GVij

, for i ∈ Im, satisfying the following
conditions:

∃q ∈ {k, k + 1, . . . , l} s.t. (xqf = Y) ∧ (σq ∈ ΣRi
).

If such a cl exists, then L is not robustly diagnosable with respect to projections
Poi and Poj or Σf .

46

1N

2N

3Y

4Y

d

σf

b

e

1N

2N

3Y

e

σf

b

1N

2N

3Y

4Y

e

σf

b

a
(a) GF1 (b) GF2 (c) GF3

Figure 4.1: Automata from Step 1 of the updated verification algorithm.

Let us start from the inputs Gi in G and through Step 1 build the set of automata

GFi
that models the failure behavior of the corresponding system Gi, i ∈ Im for all

scenarios in this algorithm. The construction of this failure behavior model takes

three steps and depends on a faulty label automaton Af composed by two labeling

states and transitions labeled solely by the fault event σf . When Af is parallel

composed with each automaton Gi resulting on automata G̃Fi
it marks the paths in

Gi that belong to the failure behavior of the system. States are labeled with Y or N

depending on their behavior status. GFi
are finally obtained through the coaccessible

part of G̃Fi
, i.e., the only paths that leads to marked states, the states labeled with

Y after the parallel composition with Af , are retained in these automata.

Let us consider the systems from Example 3.8 so that we can understand each

step and compare it with the previously presented Algorithm 3.1. As stated in

Section 3.5, a class of automata G = {G1, G2, G3} is given in Figure 3.8 where

Σ = {a, b, c, d, e, σu, σf} is the set of all events used in the modeling of the system.

In addition, Σo1 = {a, b, c}, Σo2 = {a, b, c, e} and Σo3 = {a, b, d, e}. Plugging this

example to the updated verification algorithm, Step 1 results in Figure 4.1. If we

compare it to Figure 3.9, we clearly see that the difference consists on the renaming

of the unobservable events of the faulty behavior automata GFi
that occurs at the

beginning of Algorithm 3.1 and here it will only happen in Step 6.

Next step of Algorithm 4.1 is directed to the construction of the normal behavior

automata GNi
, which is obtained through the product composition between each

automaton Gi and a normal behavior labeling automaton ANi
composed by only

47

1N

5N

6N

8N

2N

7N

σuR1dR1

a

c b

b a

1N

2N

4N

5N

e

c

a

b

1N

5N

6N

2N

cR3e

b

a

(a) GR
N1

(b) GR
N2

(c) GR
N3

Figure 4.2: Automata from Step 2 and 3 of the updated verification algorithm.

one state with a selfloop labeled by all the events in Σ excluding the fault event.

When a product composition is performed in this condition, there are no events in

Gi that are private to it, except for the fault event σf and therefore the automaton

GNi
is guaranteed to model solely the normal behavior of the system.

Before the first verifiers are constructed, it becomes necessary that the events

from the normal behavior automata GNi
are renamed according to the function pre-

sented in Equation 3.16. By doing so, the unobservable events of GNi
become private

to the normal behavior model of the system. By the time the verifier is constructed,

not only the parallel composition will result differently but most importantly the

labeled events will denote whether or not such event occurred only in the normal be-

havior of the system or in both cases. The results from Step 2 and Step 3 are shown

in Figure 4.2. Note how we do not need to construct the augmented automaton H〉
from Algorithm 3.1 in this updated version.

The first verifiers GVij
for the cases where i = j are constructed. Let us take a

moment to understand what this means. By performing verifiers where i = j the

test performed is a parallel compositing between the failure and renamed normal

behaviors of a same systemGi and the codiagnosability condition will be with respect

to their natural projection Poi and the fault event set Σf = {σf}. This step was

included in this new version so that the verifier would become more flexible to

48

encompass different approaches on fault diagnosis of discrete event systems. It is not

a structural change since it was assumed that this test had already been performed

in [27]. However, in case one of these initial tests show that a given language Li is

not diagnosable with respect to its own natural projection and the fault event set,

then the entire work must be stopped since it is a necessary and sufficient condition

for a robust diagnosability property that the diagnosability and codiagnosability

properties are applicable to the languages tested. Verifiers V11, V22 and V33 are

shown in Figure 4.3. Please note how it was not a step taken in Algorithm 3.1

since it was assumed from the beginning that each automaton Gi ∈ G was already

diagnosable with respect to Poi and Σf .

Remark 3 The pairwise parallel composition for verifiers generation here presented

in order to enhance the computational complexity of the verification algorithm for

the generalized robust diagnosability definition was already proposed in [20].

Remark 4 Note that if we make i = 1 in Definition 3.8 we reduce the problem to

the diagnosability of a discrete event system with respect to its projection Po and

Σf just like proposed by SAMPATH et al. [4]. Moreover, if we consider i = j then

we will be facing the codiagnosability verification problem addressed in [6, 13, 31].

Hence, we have included both testing possibilities in the new verification algorithm.

Assuming that all the languages were said to be diagnosable according to its

step, we may follow to Step 6 that, just like was done in Step 3, renames the

faulty behavior automata GFi
through the renaming function given in Equation

3.16. The renaming relevance here is the same as we just now presented, with the

slight difference that here the faulty behavior of a system will be parallel composed

to the normal behavior of another system. Hence, labeling private events becomes

key for a robust diagnosability definition otherwise it is impossible to detect the

proper occurrence of events and the detection of violating cycles.

Next step, maybe the most important of the entire contribution here de-

ployed, is to redefine the event sets of the renamed automata GR
Ni

and GR
Fi

to

Σ′Ri
= ΣRi

∪ Σo, where Σo, as stated in the beginning of this chapter, accounts for

Σo = {Σo1 ,Σo2 , . . . ,Σom}. It is important to rephrase that we are dealing here with

a language-based diagnosability property. Hence, the entire diagnostic is based on

the occurrence of traces, which are reduced to the events that conform the referred

traces. Therefore, in case the event sets are not carefully adjusted, the parallel

compositions that construct verifiers will be entirely inconclusive and there is no

verification at all; that is why this is such an important step.

Finally, we perform the verifiers GVij
for i 6= j and test for the robust diagnos-

ability property of the languages generated by Gi with respect to projections Poi

and Σf . In order to illustrate Step 8, consider Figure 4.4.

49

1N1N

2N1N

2N2N

2N3Y

5N1N

5N2N

5N3Y

1N2N

1N3Y

dR1
σuR1d

d dR1
σf σuR1

dR1
σuR1

d

σfσf

(a) V11

1N1N 2N2N 2N3Y
e σf

(b) V22

1N1N

5N1N 2N2N 2N3Y

cR3 e
σf

(c) V33

Figure 4.3: Verifiers from Step 4 of the updated verification algorithm.

50

1N1N

2N1N

3Y 1N

dR1

σf

1N1N

1N5N 2N1N

2N5N 3Y 1N

3Y 5N

4Y 6N

cR3 dR1

dR1
σf

cR3

σf cR3

cR3

b

eR1

(a) V12 (b) V13

Figure 4.4: Verifiers from Step 8 of the updated verification algorithm.

51

Although it can not be seen through the figures presented, the most important

change performed in this verifier comparing to the one presented in Algorithm 3.1

was to compute the verifiers in pairs instead of performing a parallel with all the

possible models of the system. This change was key for the improvement of the

computation complexity to be further detailed. As a consequence, the augmented

automaton H is not necessary anymore here which simplifies a few steps and leaves

the algorithm in a clearer and more objective form.

A theorem that proves the correctness of Algorithm 4.1 is presented as follows.

Theorem 4.1 The class L is not robustly diagnosable with respect to Poi, i ∈ Im,

and Σf if and only if there exists a cycle cli = (xVik
, σk, xGVij k+1

, σk+1, . . . , σl, xVik
),

where l ≥ k > 0, in at least one verifier GVij
, i, j ∈ Im satisfying the following

condition.

∃p ∈ {k, k + 2, . . . , l} : (xVij
= ((xp, Y), xNj

) ∧
[(σp ∈ Σi), for (i = j) ∨ (σp ∈ ΣRi

), for (i 6= j)] (4.1)

where for i = j, (xp, Y) is a state from GFi
, for i 6= j, (xp, Y) is a state from GR

Fi

and xNj
is a state from GR

Nj
.

Proof. For the case i = j, the proof is according to MOREIRA et al. [6]. The proof

for the case i 6= j is as follows.

(⇐=) Let us assume that there exists a cyclic path cl = (xkVij
, σk, x

k+1
Vij

, σk+1, . . . , σl,

xlVij
), where l ≥ k > 0, in verifier GVij

satisfying condition (4.1). Since xpFi
= (xp, Y)

for some p ∈ {k, k + 1, . . . , l}, then, from the construction of GVij
it can be seen

that xpFi
= (xp, Y) for all p ∈ {k, k+ 1, . . . , l}. This implies that there exists a trace

s′it
′
i ∈ L(GVij

), such that s′i contains the fault event, and t′i = (σkσk+1 . . . σl)
p, p ∈ N,

where |t′i| > n, ∀n ∈ N.

Define now the following projection operations:

PFi
: ΣR

Fi
∪ ΣR

Nj
→ ΣR

Fi
,

PNj
: ΣR

Fi
∪ ΣR

Nj
→ ΣR

Nj
,

P : ΣR
Fi
∪ ΣR

Nj
→ Σoi ∩ Σoj ,

Pi : ΣRi
→ Σoi ,

Pj : ΣRj
→ Σoj .

Notice that Pi and Pj become, respectively, equivalent to Poi and Poj if the renaming

is removed.

Since GVij
= GR

Fi
‖GR

Nj
, then L(GVij

) = P−1
Fi

[L(GR
Fi

)]∩P−1
Nj

[L(GR
Nj

)], which implies

that s′it
′
i ∈ P−1

Fi
[L(GR

Fi
)]. Let s̃it̃i = PFi

(s′it
′
i), where s̃i = PFi

(s′i) and t̃i = PFi
(t′).

52

Thus, since PFi

[
P−1
Fi

(L(GR
Fi

))
]

= L(GR
Fi

), then s̃it̃i ∈ L(GR
Fi

). In addition, since

t′i = (σkσk+1 . . . σl)
p, p ∈ N, where |t′i| > n, ∀n ∈ N, and, by assumption, there exists

an event σq ∈ ΣRi
for q ∈ {k, k + 1, . . . , l} and ΣRi

⊂ ΣR
Fi

, then the event sequence

t̃i = PFi
(t′i) also has arbitrarily long length, which implies that s̃it̃i ∈ L(GR

Fi
) also has

arbitrarily long length after the occurrence of the fault event σf . Notice that GR
Fi

is

obtained from GFi
after renaming the event set Σ as ΣRi

and that GFi
is the faulty

behavior of Gi according to Step 1. Thus, there exists a fault trace siti ∈ L(Gi) with

arbitrarily long length after a fault event σf ∈ Σf , such that Poi(siti) = Pi(s̃it̃i).

Let w̃j = PNj
(s′it

′
i). Since s′it

′
i ∈ L(GVij

), then s′it
′
i ∈ P−1

Nj
[L(GR

Nj
)]. In addition,

PNj
[P−1

Nj
(L(GR

Nj
))] = L(GR

Nj
), which implies that w̃j ∈ L(GR

Nj
). Notice that GR

Nj

is obtained from GNj
after renaming the events of Σ according to function Rj and

that GNj
models the normal behavior of Gj. Thus, there exists a trace wj ∈ L(Gj),

where Σf 6∈ wj, such that Poj(wj) = Pj(w̃j).

To conclude the proof, notice that

P (s̃it̃i) = P [PFi
(s′it

′
i)] = PFi

[P (s′it
′
i)] = P (s′it

′
i),

and

P (w̃j) = P [PNj
(s′it

′
i)] = PNj

[P (s′it
′
i)] = P (s′it

′
i),

and thus, P (s̃it̃i) = P (w̃j). Notice that according to Step 7 of Algorithm 4.1 the

event sets ofGR
Fi

andGR
Nj

are given as ΣRi
∪Σo and (ΣRj

\Σf)∪Σo, respectively. Thus,

the renamed events of ΣRi
and ΣRj

are private events of GR
Fi

and GR
Nj

, respectively,

whereas the events in Σo belong to both automata. However, since the event traces

of GR
Fi

belong to Σ∗Ri
and the traces of GR

Nj
belong to (ΣRj

\Σf)∗ and GVij
= GR

Fi
‖GR

Nj
,

then an event σ ∈ Σo belongs to a trace s ∈ L(GVij
), if and only if σ ∈ Σoi ∩ Σoj .

Therefore, P (s̃it̃i) = Pi(s̃it̃i) and P (w̃j) = Pj(w̃j), which implies that there exists a

trace siti ∈ L(Gi) of arbitrarily long length after the occurrence of the fault event

and a nonfaulty trace wj ∈ L(Gj), such that Poi(siti) = Poj(wj). Thus, robust

diagnosability is violated.

(=⇒) Suppose now that the class L is not robustly diagnosable with respect to

Poi , i ∈ Im, and Σf . Thus, there exists a trace siti ∈ Li \ Ki, where σf ∈ si and

|ti| > ni, ∀ni ∈ N, and wj ∈ Kj, such that Pi(siti) = Pj(wj), which implies that

the observable events in siti must all belong to Σoi ∩ Σoj . According to Algorithm

4.1 it is easy to see that L(GR
Fi

) = Ri(L(GFi
)) = Ri(Li \ Ki) and that L(GR

Nj
) =

Rj(L(GNj
)) = Rj(Kj). Hence, we imply that s̃it̃i = Ri(siti), w̃j = Rj(wj), s̃it̃i ∈

L(GR
Fi

), where σf ∈ s̃i and |t̃i| > ni, ∀ni ∈ N, and w̃j ∈ L(GR
Nj

), such that Pi(s̃it̃i) =

Pj(w̃j).

We will show that GVij
has a cyclic path that satisfies condition (4.1), and for

this purpose, we split the proof in two parts, as follows:

53

Part I. We show that there exists an arbitrarily long length trace s′it
′
i ∈ L(GVij

) such

that PFi
(s′it

′
i) = s̃it̃i and PNj

(s′it
′
i) = w̃j;

Part II. We prove that there exists a cyclic path cl, associated with trace s′it
′
i,

satisfying condition (4.1).

In order to prove part I , let us suppose that there exists a state in GVij
, xVij

=

(xFi
, xNj

), reachable from the initial state x0,Vij
after the execution of a trace u ∈

L(GVij
), where PFi

(u) is in the prefix-closure of s̃it̃i. Note that the state xVij
always

exists even if u = ε where xVij
= x0,Vij

. Now, let σq ∈ ΣRi
be a feasible event of

xFi
, such that PFi

(u)σq ∈ {s̃it̃i}, and consider the problem of finding a state of GVij
,

x̂Vij
, reachable from xVij

, that has σq as a feasible event. Two cases are possible:

(a) σq is an observable event of ΣRi
∩ ΣRj

;

(b) σq is an unobservable event of ΣRi
; notice that in this case σq cannot be a

renamed event of ΣRj
.

Let us first consider case (a). In this case, σq will be a feasible event of xVij
if

and only if it is feasible for the corresponding state of GR
Nj

. Since Pi(s̃it̃i) = Pj(w̃j),

then σq will be feasible for some state of GVij
, x̂Vij

= (xFi
, x̂Nj

), after the occurrence

of a finite trace from (ΣRj
\ Σoj)

∗. Consider now case (b), i.e., σq ∈ ΣRi
\ Σoi . In

this case, since self-loops labeled with all events in the set ΣRi
\ Σoi are added to

each state of GR
Nj

in order to form the parallel composition GVij
= GR

Fi
‖GR

Nj
, we

may conclude that σq is already feasible for xVij
= (xFi

, xNj
). Therefore, it can be

seen that there exists an arbitrarily long trace s′it
′
i associated with s̃it̃i such that

s′it
′
i ∈ P−1

Fi
(s̃it̃i) ∩ P−1

Nj
(w̃j), which implies that PFi

(s′it
′
i) = s̃it̃i and PNj

(s′it
′
i) = w̃j.

In order to prove part II , i.e., that there exists a cyclic path cl in GVij
whose first

components of its states are faulty states and at least one of the events of the cyclic

path belongs to ΣRi
, let us assume, without loss of generality, that s̃i = PFi

(s′i) and

t̃i = PFi
(t′i). Therefore, t′i is also an arbitrarily long trace of L(GVij

). Notice that

since GVij
is a finite state automaton, t′i must be associated with a cyclic path cl

of GVij
whose first components are faulty states. Any cyclic path cl in GVij

must

satisfy one of the following three cases:

(i) cl is associated with two cyclic paths, one in GR
Fi

and another one in GR
Nj

;

(ii) cl is associated with a cyclic path in GR
Fi

only, i.e., with no cyclic path in GR
Nj

;

(iii) cl is associated with a cyclic path in GR
Nj

only, i.e., with no cyclic path in GR
Fi

.

If condition (iii) holds true, then all states of cl will have the same first component

xFi
∈ XFi

. Therefore @σq ∈ ΣRi
such that σq is an event of the cyclic path cl, which

contradicts part I of the proof. On the other hand, when either condition (i) or (ii)

holds true, then, as shown in the above proof of part I , ∃σq ∈ ΣRi
in the cyclic path

cl, which concludes the proof. 2

54

4.3 Computational complexity of the new verifier

automaton

The computational complexity of Algorithm 4.1 is obtained based on the steps

necessary to generate each GVij
from the new verifier presented. Table 4.1 shows

the maximum number of states and transitions of all automata that must be com-

puted in order to generate the verifiers considering as input a class of automata

G = {G1, G2, . . . , Gm}, i ∈ Im. The Step 1 of the algorithm generates the failure

behavior labeling automaton Af , which has 2 states and 2 transitions; the paral-

lel compositions G̃Fi
= Gi||Af , for each Gi ∈ G which have maximum number of

states equal to 2|Xi| and 2|Xi||Σi| number of transitions; and the failure automata

GFi
which is the coaccessible part of G̃Fi

and therefore has in its worst case the

same complexity as G̃Fi
. Before evolving to the next step, we have decided to in-

clude an automton Gj to the steps for two reasons. First, to clarify from which

automaton each normal/failure behavior automaton is coming and also to make

it more fare since it is part of the process. The complexity associated with Gj

is |Xj regarding the set of states and |Xj||Σf | concerning the transitions. Step 2

generates the normal behavior labeling automata ANj
which has only 1 state and

a self-loop labeled by all the events σ such that σ ∈ Σj \ Σf ; and the normal be-

havior automata GNj
= Gj × ANj

will have complexity of |Xj|(|Σj| − |Σf |). In

Step 3 the normal behavior automata are renamed according to the renaming func-

tion presented in Equation 3.16 and therefore has same computational complexity

as the last step. Step 4 constructs the first verifiers GVij
= GFi

||GR
Nj

for i = j.

The parallel composition has in its worst case maximum number of states equal to

2|X|2 since it is done in pairs and therefore maximum number of transitions equal

to 2|X|2[(|Σ| − |Σf |) + |Σf |]. Step 6 only renames the faulty behavior automata

preserving the complexity and Step 7 only redefines the event sets of GR
Ni

and GR
Fi

which does not impact significantly in terms of computation complexity. Finally in

Step 8 the last GVij
, for i 6= j are constructed. Since here i 6= j, the computation

complexity is given by 2|Xi||Xj|(|Σi|+ |Σj| − |Σf |).

Remark 5 Note that the algorithms presented by MOREIRA et al. [6] and CAR-

VALHO et al. [27] generate verifiers by performing a parallel composition of the fail-

ure behavior automaton with all the normal behavior automata GNi
for each Gi ∈ G.

This mechanism demands more computational complexity than the pairwise approach

proposed in CARVALHO et al. [20] and in Algorithm 4.1. Moreover, this new al-

gorithm differs from the previous one presented by CARVALHO et al. [27] since it

does not generate the automata Hi as proposed by MOREIRA et al. [6] and CAR-

VALHO et al. [20]. The computational complexity of the polynomial time Algorithm

55

Table 4.1: Computational Complexity of Algorithm 4.1

Automaton States Transitions
Gi |Xi| |Xi||Σi|
Af 2 2

G̃Fi
2|Xi| 2|Xi||Σi|

GFi
2|Xi| 2|Xi||Σi|

Gj |Xj| |Xj||Σj|
ANj

1 |Σj| − |Σf |
GNj

|Xj| |Xj|(|Σj| − |Σf |)
GR

Nj
|Xj| |Xj|(|Σj| − |Σf |)

GVij
, i = j 2|Xi|2 2|Xi|2[2|Σi| − |Σf |]
GR

Fi
2|Xi| 2|Xi||Σi|

GVij
, i 6= j 2|Xi||Xj| 2|Xi||Xj|(|Σi|+ |Σj| − |Σf |)

Complexity O(m2|X|2|Σ|)

4.1 is O(m2|X|2|Σ|), smaller than the previous generalized robust diagnosability ver-

ifier which has complexity equal to O
(
m|Xi|

∏
j 6=i |Xj|(|Σ|−|Σf |)

)
and smaller than

the verifier proposed by TAKAI [23] which has computational complexity equal to

O(|Qi| × |QKi
|2 × (Πj 6=i|Qkj |)× |Σ|n+1).

Now that we updated the generalized robust diagnosability definition we may

present transformation mechanisms capable of turning each already presented prob-

lem in Chapter 3 into a generalized robust diagnosability definition input. Moreover,

we present a proof that the mechanism holds and that the new definition is necessary

and sufficient to detect failures and then we present a test for each case.

4.4 Transformation mechanisms

According to what was presented in Section 3.5 along with the changes proposed

in this work, the generalized robust diagnosability definition is capable of encom-

passing many fault diagnosis problems. Among these problems, we have selected

four approaches that were presented in Chapter 3: diagnosis subject to permanent

sensor failures [26], robust diagnosis subject to permanent [20] and intermittent [21]

sensor failures, and verification of robust diagnosability of partially observed DESs

[23]. Some adaptations were made to the original definition and verifier presented

in Definition 3.8 and Algorithm 3.1 so that the GRD definition could be as robust

and generalized as possible. Hence, let us now propose transformation mechanisms

from problems and notations already presented so that it can be pluged into the

56

GRD definition and let us confirm the effectiveness of the GRD definition.

Following the same sequence of presentation in Chapter 3, let us start with

the paper from KANAGAWA and TAKAI [26] regarding fault diagnosis of systems

subject to permanent sensor failures.

4.4.1 Diagnosability of discrete event systems subject to

permanent sensor failures

The paper presented in Section 3.1 has a notation a little bit different from the one

used in this work; it works with the concept of masks instead of natural projections

and observable symbols instead of events in the language diagnosability definition

and conditions. However, the main idea behind the problem is clear and concerns

the possibility of a sensor to fail during a system operation and intends to propose

a language diagnosability definition capable of still being able to diagnose fault

occurrences even upon a sensor failure. Note that this approach differs from the

work proposed by CARVALHO et al. [20] since it does not necessarily assume that

the sensor failure occurred prior to the first occurrence of the event that the given

sensor is monitoring.

Algorithm 4.2 Transformation mechanism from the problem of diagnosability of
DESs subject to permanent sensor failures to GRD

Inputs:

• G = (X,Σ, f,Γ, x0, Xm)

• M(σ), Mi(σ), i ∈ Im
• Σf

Output: G = {G1, G2, . . . , Gm}
1: Define Σsfi = {σ ∈ Σ : M(σ) 6= ε ∧Mi(σ) = ε}, i ∈ Im
2: Define a new unobservable event σu and a new set of states X ′ = {x′ : x ∈ X}
3: Compute Gi = (Xi,Σi, fi,Γi, x0), i ∈ Im, where:

• Xi = X ∪X ′

• Σi = Σ ∪ {σu} ∪ λi(Σsf i
)

• For x ∈ X,

fi(x, σ) =

{
f(x, σ), if σ ∈ Σ
x′, if σ = σu

and
Γi(x) = Γ(x) ∪ {σu}

• For x′ ∈ X ′, Γi(x
′) = Γ(x) and fi(x

′, σ) = fi(f(x, σ), σu), if σ ∈ Σ and
f(x, σ) is defined

4: Redefine fi(x
′, σ) = fi(x

′, λi(σ)) and Γi(x
′) = λi(Γi(x

′)) for every σ ∈ Σsf i

5: Compute the class of automata G = {G1, G2, . . . , Gm}

57

q0 q1 q2 q3 q4 q5 q6q7q8q9q10q11

q′0 q′1 q′2 q′3 q′4 q′5 q′6q′7q′8q′9q′10q′11

c1 o1 o2 c2 o1 o2

c3

vc1o1c2o1

c3

Figure 4.5: Step 2 of Algorithm 4.2.

The transformation mechanisms proposed is in Algorithm 4.2 and considers a

system modeled by an automaton G with a defined fault events set Σf and associated

observation masks M(σ) and Mi(σ), i ∈ Im, Im = {1, 2, . . . ,m}. Mask M(σ) is

inherent to the nature of the system whereas masks Mi(σ) are related to observations

after the permanent failure of a given sensor. The output, a class of automata G is

dealt with the generalized robust diagnosability definition so that the language of

the system may be tested.

Before analyzing the algorithm, consider the proposition of the renaming function

λi:

λi(σ) =

{
σ, if Mi(σ) 6= ε ∨ σ ∈ Σf

σ′, if Mi(σ) = ε ∧ σ /∈ Σf

Very similar to the renaming function Ri many times referred throughout this

work, this function renames symbols that become unobservable in the observation

masks Mi and that were originally observable, i.e., for a given event σ its associated

symbol was observable according to M(σ) 6= ε but Mi(σ) = ε.

In Step 1 we define the sensor subject to failure set Σsfi for each mask Mi(σ),

i ∈ Im. The idea is to detect which events originally observable in G becomes

unobservable in the different masks Mi(σ). In Step 2 we define a new unobservable

event σu and also a new set of states X ′. The new event will be responsible for

labeling transitions between the original model G to models Gi generating languages

with the same observability property as its associated masks Mi. Since we do not use

Mealy automata, that was the alternative for mirroring the system model without

interfering in the generated language. With the same purpose, the new states were

created so that the model could be replicated. In Step 3 we finally create the models

Gi which will generate the same language generated by the original system G but will

also generate all the language generation possibilities concerning the associated mask

Mi observability. Each Gi will then have the states of G duplicated; the same events

of G plus the new σu event and also the events from its corresponding sensor subject

to failure event set Σsfi renamed through function λi. The transition functions and

58

q0 q1 q2 q3 q4 q5 q6q7q8q9q10q11

q′0 q′1 q′2 q′3 q′4 q′5 q′6q′7q′8q′9q′10q′11

c1 o1 o2 c2 o1 o2

c3

vc1o1c2o1

c3

c1 o1 o2 c2 o1 o2

c1

vc1o1c2o1

c3

Figure 4.6: Replicating the original system transitions.

feasible event sets are then defined respecting replicating rules where transitions

labeled by the new event σu go from the states xi ∈ X to their corresponding state

x′i ∈ X ′; the transitions from the original system are replicated to the model Gi;

and the events that were initially observable but become unobservable in Mi are

renamed to label transitions in Gi.

The transformation is easier comprehended through an example. Let us consider

the motivating example presented in Figure 3.1. In this case, the event set Σ =

{c1, c2, c3, o1, o2, v} where Σf = {v} and the mask is according to equation 3.1 where

∆ = Σ − {v}. Doing i = 1 let us now consider the mask (equation 3.1) from the

motivating example where o1 becomes unobservable. With all the inputs, let us

generate the automaton G1 through the steps of Algorithm 4.2.

We may first define Σsf1 = {o1} since event o1 was originally observable and be-

came unobservable in the corresponding observation mask M1. Then, in Step 2 let us

define the new event σu and the new set of states X ′ = {q′0, q′1, q′2, q′3, q′4, q′5, q′6, q′7, q′8,
q′9, q

′
10, q

′
11} according to Figure 4.5.

We may now step-by-step construct automaton G1. According to the definition

of the transition function of Gi in Algorithm 4.2 we may first replicate transitions

from x ∈ X to x′ ∈ X ′ labeled by the new unobservable event σu as shown in Figure

4.7 . Then, we shall replicate the transitions in G one time, as depicted in Figure

4.6. In Step 4 we must rename the events σsfi ∈ Σsfi and the construction is done,

as shown in Figure 4.8.

Suppose also that a mask M2 is given where instead of o1, the event o2 becomes

unobservable. The result of the algorithm is according to Figure 4.9 and the class of

automata ready to be applied to the generalized robust definition is G = {G1, G2}.
Note that KANAGAWA and TAKAI [26] make no assumptions regarding the diag-

nosability of the original system with respect to K and Mf . Hence, verifiers for the

cases where i = j and i 6= j will be generated assuring complete verification of the

language diagnosability of the system.

59

q0 q1 q2 q3 q4 q5 q6q7q8q9q10q11

q′0 q′1 q′2 q′3 q′4 q′5 q′6q′7q′8q′9q′10q′11

c1 o1 o2 c2 o1 o2

c3

vc1o1c2o1

c3

σu σu σu σu σu σu σuσuσuσuσuσu

c1 o1 o2 c2 o1 o2

c1

vc1o1c2o1

c3

Figure 4.7: Including transitions labeled by σu from x ∈ X to x′ ∈ X ′.

q0 q1 q2 q3 q4 q5 q6q7q8q9q10q11

q′0 q′1 q′2 q′3 q′4 q′5 q′6q′7q′8q′9q′10q′11

c1 o1 o2 c2 o1 o2

c3

vc1o1c2o1

c3

σu σu σu σu σu σu σuσuσuσuσuσu

c1 o′1
o2 c2 o′1

o2

c1

vc1o′1
c2o′1

c3

Figure 4.8: Automaton G1 constructed according to Algorithm 4.2.

q0 q1 q2 q3 q4 q5 q6q7q8q9q10q11

q′0 q′1 q′2 q′3 q′4 q′5 q′6q′7q′8q′9q′10q′11

c1 o1 o2 c2 o1 o2

c3

vc1o1c2o1

c3

σu σu σu σu σu σu σuσuσuσuσuσu

c1 o1 o′2
c2 o1 o′2

c1

vc1o1c2o1

c3

Figure 4.9: Automaton G2 constructed according to Algorithm 4.2.

60

It is important to rephrase that the algorithm here presented preserves the mod-

eling methodology proposed by KANAGAWA and TAKAI [26] and based in [16]

performing only minor adaptations so that it can be applied as an input of the

generalized robust diagnosability definition.

4.4.2 Robust diagnosis of discrete event systems against

permanent loss of observations

The problem presented by CARVALHO et al. [20] is concerning a sensor failure

occurring before the occurrence of the event monitored by the referred sensor that

remains out of work throughout the operation of the system. It is very similar to

the one presented in Section 4.4.1 and precisely a particular case of the problem

described in Section 3.1.

Other then the sensor failure, a set of diagnosis basis Σdb for a given system G is

provided. The definition needs to be able to robustly diagnose a fault occurrence in

this system considering all its diagnosis basis, i.e., providing the minimal conditions

of operation that maintains the language of the system diagnosable.

Having the model G and the set of diagnosis basis Σdb we may quickly solve this

problem through the steps of Algorithm 4.3 and the application of the generalized

robust diagnosability definition. Consider the algorithm given below.

Algorithm 4.3 Transformation mechanism from the problem of robust diagnosis
of DESs against permanent loss of observations to GRD

Inputs:

• G = (X,Σ, f,Γ, x0, Xm)

• Σdb = {Σo1 ,Σo2 , . . . ,Σom}
Output: G = {G1, G2, . . . , Gm}

1: Define Gi = (X,Σ,Γ, f, x0), i ∈ Im
2: For each Gi define the set of observable events as Σoi ∈ Σdb

3: Compute the class of automata G = {G1, G2, . . . , Gm}

The idea here is as simple as to build a particular model for each

Σoi ∈ Σdb in order to form a class of automata G. By doing so we

are reflecting the diagnosis basis in many models to be cross-checked.

We may enhance understandability by considering the example shown

in Figure 3.2. Consider automaton G to have Σ = {a, d, b, c, d, e, σf},
Σo = {a, b, c, d, e}, and Σdb = {{a, b, c}, {c, d, e}, {a, c, d}, {a, d, e},
{a, b, e}, {b, c, e}, {a, b, c, d}, {a, b, c, e}, {a, b, d, e}, {a, c, d, e}, {b, c, d, e},Σo}. The

verification of the generalized robust diagnosability of the given system is done

through the construction of one Gi to each Σoi ∈ Σdb, constructing a class of au-

tomata G and plugging to the GRD definition. As a matter of exemplification, let

61

1

2

3

5

6

74

c a

σf

ab

b

d

ed

1

2

3

5

6

74

c a

σf

ab

b

d

ed

(a) G9 (b) G11

Figure 4.10: Automata G9 and G11 constructed according to Algorithm 4.3 where
the blue transitions are labeled by unobservable events and the red ones are labeled
by the fault event.

us depict in Figure 4.10 automata G9 and G11 from the associated Σ9 = {a, b, d, e}
and Σ11 = {b, c, d, e}. Notice that the transitions labeled by the fault event σf

were colored red and the ones labeled by unobservable events particular to each

Gi were colored blue according to the corresponding Σi for better visualization.

Even though the language generated by automata G9 and G11 are diagnosable with

respect to its own natural projections and fault event set, we may check if a single

diagnoser is capable of fault diagnosing the language considering all the diagnosis

basis presented. Let us consider the occurrence of trace s = cσfbd. Automaton G9

will project this trace as s9 = {cbd} while automaton G11 projects as s11 = {bd}.
Even without the permanent observance of events a and c respectively in automata

G9 and G11 the language diagnosability property remains unchanged since there is

no faulty trace with the same projection as a normal trace.

4.4.3 Robust diagnosis of discrete event systems against in-

termittent loss of observations

The most complex and less explored problem among the ones addressed in this work

is the robust diagnosis of discrete event systems against intermittent loss of observa-

tions. Even though it is a perfectly normal practical possibility easily described as

sensor malfunctioning or communication failure between sensors and the diagnoser

which can be caused by bad electrical linkage, defective components, circuit heating,

measurement noise, data communication failure, etc, to model these situations is a

62

very hard task.

The work proposed by CARVALHO et al. [21] includes a modeling tool - the

dilation operation - that facilitates a lot the comprehension and solution of the

problem. Hence, in our transformation mechanism here presented we make use of

the abovementioned operation.

Algorithm 4.4 has as input a system model G along with a set of possible in-

termittent loss of observation sets Σiloi ∈ Σilo. The objective of the algorithm is to

build automata that generates the dilated languages of the original system model

based on different possible combinations of sensors subject to intermittent failure

and consequently events subject to intermittent loss of observations.

Algorithm 4.4 Transformation mechanism from the problem of robust diagnosis
of DESs against intermittent loss of observations to GRD

Inputs:

• G = (X,Σ, f,Γ, x0, Xm)

• Σilo = {Σilo1 ,Σilo2 , . . . ,Σilom}
Output: G = {Gdil1 , Gdil2 , . . . , Gdilm}

1: Define Σ
′

iloi
= {σ′ : σ ∈ Σiloi} for each Σiloi ∈ Σilo

2: Compute Σdili = Σ ∪ Σ
′

iloi
for each Σ

′

iloi

3: Build an automaton modeled by Gdili = (X,Σdili , fdili ,Γdilixo) where Γdili(x) =
D[Γ(x)], x ∈ X, and ∀σdili ∈ Γdili(x) : σdili ∈ D(σ), fdili(x, σdili) = f(x, σ),
σ ∈ Γ(x) for each Σdili

4: Compute the class of automata G = {Gdil1 , Gdil2 , . . . , Gdilm}

Since we make use of dilation, the procedure gets very simple and similar to

what was presented for the problem of diagnosing a DES subject to permanent loss

of observations. We may start by renaming the events in each Σiloi and defining

corresponding Σ′iloi according to Step 1. Then, we define the event set Σdil in order

to include in the same event set the events from Σ and the ones just renamed in

Step 1. We are now ready for building automata Gdili where the dilation operation

is applied on the feasible event set of G in a sense of detecting the occurrence of

events in G that are particularly subject to intermittent loss of observations in each

Gdili to be constructed. For each case, the transition labeled by the occurrence of

this event is duplicated and labeled by the renaming of the referred event. A class

of automata G = {Gdil1 , Gdil2 , . . . , Gdilm} is then computed in Step 4 which becomes

an input to the generalized robust diagnosability definition.

We may get a clear view of the algorithm development by observing an example.

Consider the automaton G from Figure 3.3 (a). Assume Σo = {a, b, c, d, e}, Σilo1 =

{a} and Σilo2 = {a, c}. Step 1 results in the definition of sets Σ′ilo1 = {a′} and Σ′ilo2 =

{a′, c′}. In Step 2 Σdil1 = {a, b, c, d, e, σf , a′} and Σdil2 = {a, b, c, d, e, σf , a′, c′} are

defined. Then, in Step 3, both Gdil1 and Gdil2 are constructed according to Figure

63

1

2

3

5

6

74

c
a

a′

σf

a

a′
b

b

d

b, de

1

2

3

5

6

74

c
c′

a

a′

σf

a

a′
b

b

d

b, de

(a) Gdil1 (b) Gdil2

Figure 4.11: Automata Gdil1 and Gdil2 constructed according to Algorithm 4.4 where
the red transitions are labeled by the faulty event; the blue transitions are labeled
by a′; and the green transitions are labeled by c′.

4.11. Note how the events subject to intermittent loss of observations are depicted

in green and blue and the fault event is in red.

Consider the occurrence of trace s = cσfad in G. In case events a′ and c′ were

not modeled in automata Gdil1 and Gdil2 , for Σilo1 = {a} the occurrence would lead

the diagnoser to correctly detect a fault occurrence since the event c is observable.

However, for Σilo2 = {a, c} the diagnoser would be uncertain whether the system was

in state 6 or state 7, since the observed sequence would be so = {d}. The dilation

operation allows the sensors monitoring a and c to fail without compromising the

language diagnosability property since the possibility of failure is modeled through

the renamed events a′ and c′.

4.4.4 Verification of robust diagnosability for partially ob-

served discrete event systems

The problem of verification of robust diagnosability for partially observed discrete

event systems addressed in [23], seems, at first, to be very simple and ordinary

comparing to more complex assessments. However, unlike most of the works to

the best of our knowledge, TAKAI [23] proposes a new source of uncertainty to

the diagnosability equation by assuming that an exact model for a system is not

necessarily given; instead, a set of possible models sharing the same event set is the

most accurate information about a system. Each possible model G has an associated

subautomatonGk that models the normal behavior of the system. Another difference

64

in this work: the diagnosability is not based solely on the language generated by the

system. We do not have here any information regarding the occurrence of a faulty

event so that we can search for traces containing it. By the observation of the normal

behavior, diagnosability must be tested regarding the traces that belong to the

language L(G) but exceeds the traces conforming the normal language K ⊆ L(G).

Hence, even though it is an ordinary problem, the notation and methodology here

used demanded a little more sophistication from the transformation mechanism. Let

Algorithm 4.5 Transformation mechanism from the problem of verification of ro-
bust diagnosability for partially observed DESs to GRD

Inputs:

• G = {G1, G2, . . . , Gn} where Gi = (Xi,Σ, fi,Γi, x0), i ∈ Im
• GN = {GN1 , GN2 , . . . , GNn} where GNi

= (XNi
,Σ, fNi

,ΓNi
, x0), i ∈ Im

Output: GT = {GT1 , GT2 , . . . , GTm}
1: Function TAKAI2012TOGRD(G,GN):

1.1: Compute Gcomp = Comp(GN)

1.2: Compute Gp = G||Gcomp = (Xp,Σ, fp,Γp, x0) where xp = (x, xN) for xp ∈ Xp, x ∈
X and xN ∈ XN

1.3: Compute Xc = {xc1 , xc2 , . . . , xck} such that xci = x1, x1 ∈ X, in fp(xp1 , σ) = (xp2)
where xp1 = (x1, xN1), x1, xN1 6= D ∧ xp2 = (x2, xN2), xN2 = D for each state xi ∈ X
and xd2

, . . . , xdk
} for each xci ∈ Xc.

1.4: Compute Xd = {xd1
, xp2
} where xp1

= (x1, xN1
), x1, xN1

6= D ∧ xp2
= (x2, xN2

),
xN2 = D for each state xi ∈ X and xNi ∈ XN . Let xc = x1 denote a state that satisfies
this condition and define Xc = {xc1 , xc2 , . . . , xck}.
1.5: Define GT = (X ∪Xd,Σ ∪ {σf}, fT ,ΓT , x0) where fT (xT , σ) = fN (xN , σ)

1.6: Add the transition fT (xci , σf) = xdi , i = 1, 2, . . . , k, for each xci ∈ Xc and xdi ∈ Xd

1.7: Given that fp(xp1
, σ) = (xp2

), if xp2
= (·, D) ∧D /∈ xp1

∧ x1 = xci ∈ Xc, add the
transition fT (xdi , σ) = x2, i = 1, 2, . . . , k, x2 ∈ xp2 , and define a event set Xs with all
the states x2 ∈ X satisfying this condition.

1.8: Add the transition fT (xs, σ) = f(xs, σ) for each state xs ∈ Xs and for every event
σ ∈ Σ such that Γ(xs) 6= ΓN (xs) ∧ xs /∈ Xc

1.9: Return GT = (X ∪Xd,Σ ∪ {σf}, fT ,ΓT , x0)

2: for i = 1 to m do GTi = TAKAI2012TOGRD(G,GN)

3: Compute the class of automata GT = {GT1 , GT2 , . . . , GTm}

us consider the Algorithm 4.5 where a set of possible models for a system G is given

by the class G and the associated set of possible normal behavior models for the

referred system is given by the class GN . Due to the complexity of this algorithm we

have decided to first define a function for a particular case where we have only one

model G and one associated normal behavior model GN . The function is applied to

each one of the possible models and the output of the algorithm is also a class of

automata, here called as GT .

65

1

2

4

5

3

6

b a

c

e

d

b

e

a, c

c, e

1

2

4

3

b a

d

a

(a) G (b) GN

Figure 4.12: State transition diagrams for the example of Algorithm 4.5.

1

2

4

3

D

b a

c, d, e

Σo

Σo

d

a, b, c, e

b, c, d, e

a

1, 1

2, 23, 3

4, 46, D

4, D2, D

5, D

b a

c d

b

e c

a

a, c

e

d

b

e

c, e

(a) Gcomp (b) Gp = G||Gcomp

Figure 4.13: Complement of GN and the parallel composition Gp from Algorithm
4.5.

66

The proposed function TAKAI2012TOGRD receives G and GN as inputs and

proceeds as follows. Firstly, it computes the complement of automaton GN so that the

events are all active in the feasible event sets of the automaton. Then the synchronous

parallel composition Gp is proposed between G and the complement of GN . By doing so

we can see clearly the transitions and states present in G that are not part of the normal

behavior of the system. From there we start an analytical procedure which main goal is

to construct a new model GT based initially on the normal behavior of the system. We

then detect what is not part of the normal behavior of the system through compositions

with the model G and sort of complete automaton GN with the failure behavior model.

In order to make it compatible with the generalized robust diagnosability definition and

methodology we introduce a faulty event σf to the new model GT so that it clearly marks

the transition from the normal behavior to the failure behavior of the system.

All this information becomes a lot more clear if we consider an example. Before

we go for the example proposed by TAKAI [23], we may work with the state transition

diagrams from Figure 4.12 where (a) models a system and (b) models the normal behavior

of this system. This model is used in order to cover a variety of deviations on a state

transition diagram that must be encompassed by the transformation mechanism. Back to

the example, our idea here is to start from the model depicted in Figure 4.12 (b), include

transitions labeled by a new introduced fault event σf so that normal and failure behaviors

can be easily differentiated from each other and conclude with the completion of the new

automaton following the behavior depicted in Figure 4.12 (a).

By following the steps of Algorithm 4.5 we may start computing automaton Gcomp

and then the parallel composition Gp = G||Gcomp as shown in Figure 4.13. Notice from

Figure 4.13 (b) that there are states xp1 = (x1, xN1) that xN1 = D and that x1 6= D, as

condition imposed in Step 1.4 of the Algorithm 4.5. Precisely, the state set Xc = {2, 3, 4}
and Xd = {xd2 , xd3 , zd4}, since f((2, 2), b) = (5, D), f((3, 3), c) = (6, D) and f((4, 4), e) =

(2, D). Note through Figure 4.12 (b) that these are the states on the edge of the normal

behavior model GN from where transitions leave in the original model G.

The next step defines an automaton GT with the same transition function as GN

and the particularity of having the states in Xd and the fault event σf as part of its

state set and event set, respectively. New step adds the transitions fT (xdi , σf) = (xp2)

according to Step 1.4, as shown in Figure 4.14 (a). The new transitions labeled by the

faulty event are colored red and the new states xdi are colored blue for better visualization.

By concluding this step we have successfully set the boundaries between normal behavior

and failure behavior models of automaton G. Hence, the conclusion of the remaining

steps of function TAKAI2012T0GRD(G,GN) leads to the completion of model GT so

that it generates the language generated by the original system G and is at the same

time aplicable to the generalized robust diagnosability definition. The result is shown in

Figure 4.14 (b), where the transitions added after the boundary setting from normal to

failure behaviors are colored green. Note how GT generates the same language as G and

is perfectly compatible to serve as input for the GRD definition.

67

1

2

4

xd2

3

xd3

xd4

b a

σf d

σf

aσf

1

2

4

xd2

3

xd3
xd4

6

5

b a

σf

b

d

σf

c a
σf

c, e

e

c

e

(a) GT after Step 1.6 (b) GT

Figure 4.14: Function TAKAI2012T0GRD(G,GN) of Algorithm 4.5 where the
blue states are the new one; the red transitions are labeled by the faulty event;
and the green states and transitions are the ones added after the normal behavior
boundary.

The remaining steps of Algorithm 4.5 are responsible for creating the class of automata

GT for i ≥ 1. The main step is simple and consists of using the just presented function

for each Gi ∈ G.

4.5 Final comments

This chapter concentrated all the contributions of this work. In Section 4.1 we have

updated the generalized robust diagnosability definition by relaxing two commonly given

assumptions. In Section 4.2 the most important part of the work was presented where a

modified verification algorithm has improved the computational complexity of the initially

presented verifier as it can be seen in Section 4.3. Besides, adjustments were made causing

the necessary and sufficient theorem proving the correctness of the verifier to change,

along with its proof. Finally and with the objective of showing how the generalized robust

diagnosability definition is indeed capable of encompassing all problems addressed in this

work we presented in Section 4.4, for each paper introduced in Chapter 3, transformation

mechanisms given as simple algorithms in order to adjust the inputs from one definition

to another.

68

Chapter 5

Conclusion and Future Work

The main objectives of this work were: (i) to update the already presented definition

of generalized robust diagnosability by relaxing some assumptions, along with (ii) an

improvement in the computational complexity of the verification algorithm presented to

verify the language robust diagnosability of discrete event systems. In the process, not only

the definition was updated and the computational complexity improved but the verifier got

a little more general in a sense of performing diagnosability, codiagnosability and robust

diagnosability, which demanded a new theorem to prove its correctness to be presented. In

addition, a central goal of this work was (iii) to show whether or not the generalized robust

diagnosability definition could be applied to different problems addressed concerning fault

diagnosis of discrete event systems. Four main concerns and propositions were studied:

diagnosability of DESs subject to permanent sensor failures, not necessarily considering

the sensor to fail from the start of the system operation; robust diagnosis of DESs subject

to permanent loss of observations, which considers that a sensor may fail prior to the first

occurrence of the event it is monitoring and remains out of work through the operation of

the system; robust diagnosis of DESs against intermittent loss of observations, the most

complex and less explored problem among all the others where a sensor may fail at any

time during the system operation and recover its functions as suddenly as it got broken

and the system must be modeled and diagnosed with such a robustness capable of keeping

the language diagnosability property. Finally, the verification of robust diagnosability for

partially-observed DESs arises with the idea of uncertainties in the model of a system

instead of in its language. This work was also complex to deal with since it does not

consider a fault event to occur; instead, the normal behavior of the system is given,

which demands more sophistication of a transformation mechanism to a language based

diagnosability definition - which is the case of the GRD definition.

After deep comprehension of the papers here presented, wide discussions on the adap-

tations necessary to be made on the generalized robust diagnosability definition and its

verifier so that it could safely encompass every single aspect of the problems presented,

the results have corresponded the efforts and we may conclude that the generalized defini-

tion remains updated for the trending topics on fault diagnosis of discrete event systems.

69

Transformation mechanisms with irrelevant computational complexity were developed for

each one of the fault diagnosis approaches, which were tested through the implementa-

tion of the algorithms presented in Python and using the scientific computing program

DESLab. The verification algorithm has now an improved polynomial time computational

complexity that summed to the complexity of the transformation algorithms still remain

an advantageous methodology for the offline verification of language based diagnosability

definitions .

During the development of the work here presented we have had preliminary discussions

concerning a problem that, to be best of our knowledge, has not been explored so far

regarding the possibility of a sensor not only to fail but also to file a wrong information.

Very simple examples may be given to illustrate the concept, starting from temperature

sensors of HVAC systems, that may inform the wrong temperature of a room for the user,

to fingerprint password sensors to access a digital bank account, which may allow that

an incompatible fingerprint, and therefore the wrong user, to accesses an account that

does not belong to him. We understand that an interesting line of work outlines from the

investigation of the relevance of this problem to discrete event systems modeling. Besides,

it is important to understand if the generalized robust diagnosability definition could also

be able to encompass this not yet explored diagnosability problem.

70

Bibliography

[1] RIFKIN, J. The End of Work: Decline of the Global Labor Force and the Dawn of the

Post-market Era, v. 1. New York, NY, Warner Books, 1996.

[2] CASSANDRAS, C. G., LAFORTUNE, S. Introduction to Discrete Event Systems. 2nd

ed. New York, Springer, 2008.

[3] LIN, F. “Diagnosability of discrete event systems and its applications”, Discrete Event

Dynamic Systems: Theory and Applications, v. 4, pp. 197–212, 1994.

[4] SAMPATH, M., SENGUPTA, R., LAFORTUNE, S., et al. “Diagnosability of discrete-

event systems”, IEEE Trans. on Automatic Control, v. 40, n. 9, pp. 1555–1575,

1995.

[5] YOO, T.-S., LAFORTUNE, S. “Polynomial-time verification of diagnosability of par-

tially observed discrete-event systems”, IEEE Trans. on Automatic Control,

v. 47, n. 9, pp. 1491–1495, 2002.

[6] MOREIRA, M. V., JESUS, T. C., BASILIO, J. C. “Polynomial Time Verification

of Decentralized Diagnosability of Discrete Event Systems”, IEEE Trans. on

Automatic Control, v. 56, n. 7, pp. 1679–1684, 2011.

[7] QIU, W., WEN, Q., KUMAR, R. “Decentralized diagnosis of event-driven systems for

safely reacting to failures”, IEEE Trans. on Automation Science and Engineer-

ing, v. 6, n. 2, pp. 362–366, April 2009. doi: 10.1109/TASE.2008.2009093.

[8] DEBOUK, R., LAFORTUNE, S., TENEKETZIS, D. “Coordinated decentralized pro-

tocols for failure diagnosis of discrete event systems”, Discrete Event Dynamic

Systems: Theory and Applications, v. 10, n. 1-2, pp. 33–86, 2000.

[9] TRIPAKIS, S. “Fault diagnosis for timed automata”. In: Springer-Verlag (Ed.), For-

mal Techniques in Real Time and Fault Tolerant Systems, v. 2469, Lecture notes

in Computer Sciences, pp. 205–221, 2002.

[10] ZAD, S. H., KWONG, R. H., WONHAM, W. M. “Fault diagnosis in discrete-event

systems: framework and model reduction”, IEEE Trans. on Automatic Control,

v. 48, n. 7, pp. 1199–1212, 2003.

71

[11] THORSLEY, D., TENEKETZIS, D. “Diagnosability of Stochastic Discrete-Event

Systems”, IEEE Trans. on Automatic Control, v. 50, n. 4, pp. 476–492, 2005.

[12] CONTANT, O., LAFORTUNE, S., TENEKETZIS, D. “Diagnosability of discrete

event systems with modular structure”, Discrete Event Dynamic Systems: The-

ory And Applications, v. 16, n. 1, pp. 9–37, 2006.

[13] QIU, W., KUMAR, R. “Decentralized failure diagnosis of discrete event systems”,

IEEE Trans. on Systems, Man and Cybernetics, Part A, v. 36, n. 2, pp. 384–395,

2006.

[14] WANG, Y., YOO, T. S., LAFORTUNE, S. “Diagnosis of discrete event systems us-

ing decentralized architectures”, Discrete Event Dynamic Systems-Theory And

Applications, v. 17, n. 2, pp. 233–263, 2007.

[15] KUMAR, R., TAKAI, S. “Inference-Based Ambiguity Management in Decentralized

Decision-Making: Decentralized Diagnosis of Discrete-Event Systems”, IEEE

Trans. on Automation Science and Engineering, v. 6, n. 3, pp. 479–491, 2009.

[16] ROHLOFF, K. R. “Sensor Failure Tolerant Supervisory Control”. In: 44th IEEE

Conference on Decision and Control and European Control Conference, pp.

3493–3498, Seville, Spain, 2005.

[17] SANCHEZ, A. M., MONTOYA, F. J. “Safe supervisory control under observability

failure”, Discrete Event Dynamic Systems: Theory and Applications, v. 16, n. 4,

pp. 493–525, 2006.

[18] BASILIO, J. C., LAFORTUNE, S. “Robust codiagnosability of discrete event sys-

tems”. In: Proceedings of the American Control Conference, pp. 2202–2209, St.

Louis, Missouri, 2009.

[19] CARVALHO, L. K., BASILIO, J. C., MOREIRA, M. V. “Robust diagnosability of

discrete event systems subject to intermittent sensor failures”. In: Preprints of

the 10th International Workshop on Discrete Event Systems, pp. 94–99, Berlin,

Germany, 2010.

[20] CARVALHO, L. K., MOREIRA, M. V., BASILIO, J. C., et al. “Robust diagnosis

of discrete-event systems against permanent loss of observations”, Automatica,

v. 49, n. 1, pp. 223–231, 2012.

[21] CARVALHO, L. K., BASILIO, J. C., MOREIRA, M. V. “Robust diagnosis of discrete

event systems against intermittent loss of observations”, Automatica, v. 48, n. 1,

pp. 2068–2078, 2012.

[22] TAKAI, S. “Robust failure diagnosis of partially observed discrete event systems”.

In: Preprints of 10th International Workshop on Discrete Event Systems, pp.

215–220, Berlin, Germany, 2010.

72

[23] TAKAI, S. “Verification of robust diagnosability for partially observed discrete event

systems”, Automatica, v. 48, n. 8, pp. 1913–1919, 2012.

[24] ATHANASOPOULOU, E., LINGXI, L., HADJICOSTIS, C. “Maximum Likelihood

Failure Diagnosis in Finite State Machines Under Unreliable Observations”,

IEEE Trans. on Automatic Control, v. 55, n. 3, pp. 579 –593, 2010.

[25] THORSLEY, D., YOO, T.-S., GARCIA, H. “Diagnosability of Stochastic Discrete-

Event Systems Under Unreliable Observations”. In: Proc. of the 2008 American

Control Conference, pp. 1158–1365, Seatle, WA, 2008.

[26] KANAGAWA, N., TAKAI, S. “Diagnosability of discrete event systems subject to

permanent sensor failures”, International Journal of Control, v. 88, n. 12,

pp. 2598–2610, 2015.

[27] CARVALHO, L. K., MOREIRA, M. V., BASILIO, J. C. “Generalized robust diag-

nosability of discrete event systems”. In: Proc. of 18th IFAC World Congress,

pp. 8737–8742, Milan, Italy, 2011.

[28] BASILIO, J. C., LIMA, S. T. S., LAFORTUNE, S., et al. “Computation of minimal

event bases that ensure diagnosability”, Discrete Event Dynamic Systems, v. 22,

n. 3, pp. 249–292, 2012.

[29] CORMEN, T. H., LEISERSON, C. E., RIVEST, R. L., et al. Introduction to algo-

rithms, v. 2. MIT press Cambridge, 2001.

[30] LIMA, S. T. S., BASILIO, J. C., LAFORTUNE, S., et al. “Robust diagnosis of

discrete-event systems subject to permanent sensor failures”. In: Preprints of the

10th International Workshop on Discrete Event Systems, pp. 100–107, Berlin,

Germany, 2010.

[31] WANG, Y., YOO, T. S., LAFORTUNE, S. “Diagnosis of discrete event systems

using decentralized architectures”, Discrete Event Dynamic Systems: Theory

And Applications, v. 17, n. 2, pp. 233–263, 2007.

73

	List of Figures
	Introduction
	Discrete event systems theory
	Languages
	Notation and Definitions
	Operations on Languages

	Automata
	Operations on Automata

	Diagnosability of discrete event systems
	Verification of decentralized diagnosability of discrete event systems
	Final comments

	Different approaches on fault diagnosis of discrete event systems
	Diagnosability of discrete event systems subject to permanent sensor failures
	Robust diagnosis of discrete event systems against permanent loss of observation
	Robust diagnosis of discrete event systems against intermittent loss of observations
	Verification of robust diagnosability for partially observed discrete event systems
	Generalized robust diagnosability of discrete event systems
	Final comments

	Verification of generalized robust diagnosability on discrete event systems
	Updates on the generalized robust diagnosability definition
	The updated verification algorithm for generalized robust diagnosability of discrete event systems
	Computational complexity of the new verifier automaton
	Transformation mechanisms
	Diagnosability of discrete event systems subject to permanent sensor failures
	Robust diagnosis of discrete event systems against permanent loss of observations
	Robust diagnosis of discrete event systems against intermittent loss of observations
	Verification of robust diagnosability for partially observed discrete event systems

	Final comments

	Conclusion and Future Work
	Bibliography

