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Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos

necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

SEGURANÇA DE SISTEMAS A EVENTOS DISCRETOS REALIMENTADOS

COM CONTROLADORES DESCONHECIDOS

Tiago Cardoso França

Junho/2017

Orientador: Marcos Vicente de Brito Moreira

Programa: Engenharia Elétrica

Apresenta-se, nesta dissertação, um dispositivo de segurança que lida com ata-

ques cibernéticos e implementação incorreta de controladores em sistemas a eventos

discretos. Um ataque cibernético modifica o comportamento do sistema, e pode

levá-lo a estados inseguros, isto é, estados que podem causar danos aos componen-

tes do sistema ou aos seus operadores. Além disso, uma implementação ou um

projeto de controlador incorreto também pode levar o sistema para estados insegu-

ros. Neste trabalho, considera-se que as modificações são realizadas na lógica de

controle implementada, o que altera o comportamento do sistema e faz com que o

controlador torne-se desconhecido. Tal dispositivo de segurança é desenvolvido para

prevenir que a planta controlada modificada atinja estados inseguros. Entretanto,

em alguns casos, o dispositivo de segurança pode bloquear comportamentos seguros

do sistema. Portanto, é apresentado um algoritmo de verificação do ńıvel de segu-

rança da interação entre o dispositivo e a planta. Os resultados apresentados neste

trabalho são ilustrados em uma planta mecatrônica do Laboratório de Controle e

Automação da Universidade Federal do Rio de Janeiro (UFRJ).
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In this work, we present a safety device that deals with the problem of cyber-

attacks and incorrect implementation of controllers on discrete event systems. A

cyber-attack modifies the behavior of the system, and may lead it to unsafe states,

i.e., states that may cause damage to the system components or its operator. In

addition, an incorrect implementation or design of controllers may also lead the

system to unsafe states. In this work, we assume those changes in the implemented

logic of the controller, which modify the behavior of the system, and thus we assume

the controller to be unknown. The safety device is designed to prevent the modified

controlled plant from reaching unsafe states. However, in some cases, the device

may block safe behaviors of the system. For this reason, we present an algorithm

to verify the safety level of the interaction between the device and the plant. The

results shown in this work are illustrated by a case study in a mechatronic plant in

the Control and Automation Laboratory at the Federal University of Rio de Janeiro.

v



Contents

List of Figures viii

List of Tables xi

1 Introduction 1

2 Preliminaries 4

2.1 Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Notations and definitions . . . . . . . . . . . . . . . . . . . . . 4

2.1.2 Language operations . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Operations on automata . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 Automata under partial observation of events . . . . . . . . . 14

2.3 Controlled discrete event system . . . . . . . . . . . . . . . . . . . . . 17

2.4 Supervisory control theory . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.1 Supervisor with partial controllability . . . . . . . . . . . . . . 21

2.4.2 Supervisor under partial observation . . . . . . . . . . . . . . 26

2.5 Final comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Computation of the safety device 29

3.1 Formulation of the problem . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Computation of a safety device realization . . . . . . . . . . . . . . . 34

3.3 Final comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Implementation of the safety device in a mechatronic system 42

4.1 Mechatronic system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Plant model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Implementation and final comments . . . . . . . . . . . . . . . . . . . 51

5 Conclusions and future works 57

Bibliography 58

vi



A Ladder logic implementation example 64

vii



List of Figures

2.1 State transition diagram of automaton G of Example 2.5. . . . . . . . 9

2.2 Automaton G, Example 2.6. . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Ac(G), CoAc(G) and Trim(G), respectively, of automaton G de-

picted in Figure 2.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Automata G1 and G2, Example 2.7. . . . . . . . . . . . . . . . . . . . 14

2.5 Resulting automata after product and parallel composition of G1 and

G2, Example 2.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6 Automata G with unobservable events and Obs(G,Σo) respectively,

Example 2.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.7 Interaction between all four elements. . . . . . . . . . . . . . . . . . . 17

2.8 Four basic elements of a feedback discrete event system. . . . . . . . . 17

2.9 Behavior of a discrete event system. . . . . . . . . . . . . . . . . . . . 18

2.10 Block diagram of a plant being controlled. . . . . . . . . . . . . . . . 18

2.11 Block diagram of the interaction of plant, controller and supervisor. . 19

2.12 Block diagram of the interaction supervisor and a controlled plant. . . 19

2.13 DES G, Example 2.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.14 Input automata for Algorithm 2.2 in Example 2.11. . . . . . . . . . . 24

2.15 Steps of Algorithm 2.2 in Example 2.11. . . . . . . . . . . . . . . . . 24

2.16 Automaton Haug from Example 2.12. . . . . . . . . . . . . . . . . . . 25

2.17 Automaton G from Example 2.13. . . . . . . . . . . . . . . . . . . . . 26

2.18 Architecture of modular supervisory control. . . . . . . . . . . . . . . 28

3.1 Working tracks of robots and robot behavior automata of Example 3.1. 30

3.2 Independent automata models of Example 3.1. . . . . . . . . . . . . . 30

3.3 Parallel composition of the two automata that model the behavior of

the robots, described in Example 3.1. . . . . . . . . . . . . . . . . . . 31

3.4 Automaton of supervised plant behavior, described in Example 3.2. . 32

3.5 Automaton of supervised plant behavior after cyber-attack, described

in Example 3.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.6 Automaton of a realization of a possible supervisor for the plant in

Example 3.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

viii



3.7 Architecture of interaction between plant, supervisor and safety device. 34

3.8 Automaton G of Example 3.3. . . . . . . . . . . . . . . . . . . . . . . 36

3.9 Final steps of Algorithm 3.1 in Example 3.3. . . . . . . . . . . . . . . 36

3.10 Automata G1, G2, G3, and G4 used in Example 3.4. . . . . . . . . . . 41

3.11 Monitors M1, M2, M3, and M4 of G1, G2, G3, and G4, respectively,

as presented in Example 3.4. . . . . . . . . . . . . . . . . . . . . . . . 41

4.1 Module division of Cube Assembly plant. . . . . . . . . . . . . . . . . 43

4.2 Processing module of Cube Assembly plant. . . . . . . . . . . . . . . 43

4.3 Pneumatic actuators of module 2 of the plant and robotic arm vacuum

gripper models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 Automaton model of the robotic arm rotation. . . . . . . . . . . . . . 45

4.5 State transition diagram of safety device realization W , obtained by

Algorithm 3.1 on the automaton of the robotic arm rotation subsys-

tem, as described in Example 4.1. . . . . . . . . . . . . . . . . . . . . 50

4.6 Parallel composition of automata depicted in Figures 4.3d and 4.3e,

as described in Example 4.2. . . . . . . . . . . . . . . . . . . . . . . . 50

4.7 State transition diagram of safety device realization W , obtained by

Algorithm 3.1 on the automaton of the press horizontal and vertical

pneumatic actuators subsystem, as described in Example 4.2. . . . . . 51

4.8 Parallel composition of automata depicted in Figures 4.3a, 4.3b, and

4.4, as described in Example 4.3. . . . . . . . . . . . . . . . . . . . . 52

4.9 Automaton of a state splitting procedure on the automaton depicted

in Figure 4.8, and the unsafe transitions ArmForward from state

(Re,Re, 4), and ArmBack from state (Re,Ex, 4), as described in

Example 4.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.10 State transition diagram of safety device realization W , obtained by

Algorithm 3.1 on the automaton of the robotic arm horizontal and

vertical pneumatic actuators, and robotic arm rotation subsystem, as

described in Example 4.3. . . . . . . . . . . . . . . . . . . . . . . . . 54

A.1 Initialization module of Ladder logic of Example 4.4. . . . . . . . . . 64

A.2 Events module of Ladder logic of Example 4.4. . . . . . . . . . . . . . 64

A.3 Condition module of Ladder logic of Example 4.4. . . . . . . . . . . . 65

A.4 Condition module of Ladder logic of Example 4.4. . . . . . . . . . . . 66

A.5 Dynamics module of Ladder logic of Example 4.4. . . . . . . . . . . . 67

A.6 Dynamics module of Ladder logic of Example 4.4. . . . . . . . . . . . 68

A.7 Dynamics module of Ladder logic of Example 4.4. . . . . . . . . . . . 69

A.8 Safety device implemented in Ladder logic, for Example 4.4. . . . . . 70

ix



A.9 Action module of Ladder logic with the safety device restrictions of

Example 4.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

x



List of Tables

4.1 Physical meaning of state transition labels of the automata in Figure

4.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Physical meaning of states of the automata in Figure 4.4. . . . . . . . 46

4.3 Physical meaning of state transition label abbreviations of the au-

tomata in Figure 4.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4 Unsafe state combinations of the plant. . . . . . . . . . . . . . . . . . 47

4.5 Unsafe transitions of the plant. . . . . . . . . . . . . . . . . . . . . . 49

xi



Chapter 1

Introduction

In a certain level of abstraction, systems can be modeled as discrete event systems

(DES) [1, 2], whose state space is discrete, and whose evolution is event-driven [2].

Those DESs are controlled by discrete event controllers (DEC), that operate by

processing the signals received from sensors, and commanding signals to actuators.

In order to synthesize a DEC, there are three main approaches in the literature

[3]: (i) logic controller approach [4, 5], (ii) controlled behavior approach [6–8], and

(iii) supervisory control approach [9–12]. Using the (i) logic controller approach,

the designer synthesize the controller by setting input and output variables to read

the actual state of the system, and command actuators in such a way to achieve

the desired controlled behavior. This approach is suitable to small systems and is

based on the experience of the designer, requiring simulations for code validation.

In order to synthesize the DEC, the (ii) controlled behavior approach is based on

the model of the desired behavior for the controlled plant. In this approach, the

controller is obtained by using an algorithm based on the controlled plant model.

The (iii) supervisory control approach is based on algorithms that use the controlled

plant model, and the objective is to design a supervisor that only disables events,

i.e., actuators of the plant, in order to satisfy the specified behavior, and thus, the

supervisory control approach assumes that the plant generates all events. There are

several examples of DESs that can be controlled using the aforementioned theories,

such as assembling stations, chemical processes, and telephony systems. Regardless

the approach used for designing the controller, it is important to assure the security

of the system, i.e., prevent that attacks or control logic modifications cause damages

to the system or its operators.

Security is an important topic of research, and it can be categorized in two

main classes [13]: (i) information flow from the system to the intruder; and (ii)

capabilities of the intruders. These two categories are included in the area of cyber

physical systems. Information flow from the system to the intruder is related with

opacity and aims to hide the behavior of the system to intruders [14–23]. Capability
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of the intruders is related to cyber-attacks and aims to mitigate the damage that

an intruder can cause to the system [24–26]. Cyber-attacks change the controlled

system behavior by modifying the communication between plant and controller,

which makes the system behavior to be different from the expected one, causing

damages to the system components or to its operators, i.e., the system reaches

unsafe states.

In this work, we deal with the safety problem [27, 28], which is a critical property

of cyber physical systems that needs to be ensured, and safety violation is related

to the incorrect implementation or design of controllers. Notice that, the incorrect

implementation of a controller has the same effect as an intrusion, since it also

changes the controlled system behavior.

Several works have been proposed in the area of cyber physical systems [29–37].

Recently, a DES approach to deal with cyber system security has been presented

[24–26]. In these works, cyber-attacks are considered in the communication channels

between plant, supervisor, actuators, and sensors. Moreover, those works do not

consider the effects of a cyber-attack that can change the control logic, and consider

the model of the plant and controller to be known.

In this work, the main objective is to deal with safety against incorrect imple-

mentation or design of controllers and cyber-attacks, which may completely change

the control logic programmed. Notice that, this kind of attack is different from the

attacks considered in [24–26], where the supervisor is not attacked and is known.

Since, we assume that the controller can be attacked, its behavior can be completely

changed by the intruder, being, therefore, unknown to the security device. Thus,

the safety device must not block the normal behaviors programmed by the user in

the unknown implemented controller. In this work, we show how to synthesize a

safety device that is capable of preventing the system from reaching unsafe states,

independently of the control logic implemented.

From the perspective of preventing the system from reaching unsafe states, sev-

eral works in the supervisory control theory has been proposed [9, 38–45]. However,

in these works it is considered that the control logic is known and that it cannot

be changed by a cyber-attack. Thus, despite the fact that the safety device to be

presented in this work is a supervisor with anti-permissive control policy [46, 47], it

deals with a different approach from those in the literature. Moreover, safety levels

are defined based on the interaction of the safety device with the plant, and which

behaviors it may block. In addition, we present the implementation of a safety de-

vice on a mechatronic plant of the Control and Automation Laboratory (LCA) at

the Federal University of Rio de Janeiro (UFRJ).

This work is organized as follows. In Chapter 2, we present all theoretical con-

cepts used for the development of this work. Then, in Chapter 3, we present the

2



problem to be solved and the contributions of this work, such as the algorithm to

synthesize the safety device and the algorithm for verification of safety levels. In

Chapter 4, we present the mechatronic plant, synthesize a safety device and show

the results of the implementation of the safety device in the system. Finally, in

Chapter 5, we present the final considerations and future works.
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Chapter 2

Preliminaries

A Discrete Event System (DES) is a dynamic system whose state space is a discrete

set and the state transition mechanism is event driven. Any system can be modeled

as a DES considering a higher level of abstraction. Also, a DES is a dynamic system

that evolves according to event occurrences, and thus, it is needed to formalize a

structure to describe this class of systems. This formalization should determine the

current state of the system, and define a rule to the state evolution based on event

occurrences.

Considering the set of events as the alphabet of the system, then a trace of events

form a word and a set of traces forms a language. Thus, the set of all possible traces

of a given system is the language generated by this system. The knowledge of

the language of the system and its initial state is sufficient to model a DES, but

this formalization might be too complex in a practical sense. To simplify, DES are

commonly modeled as labeled graph structures. In this work, DESs will be modeled

as automata.

2.1 Languages

A language is a set of traces of events of finite length generated by the system. Thus,

a language is a math formalism that can be used to describe a DES [2].

2.1.1 Notations and definitions

In this work, the notation Σ represents the set of events of a DES. The symbol σ

will be used to represent a generic event, and ε represents the empty event trace.

Let s be a trace, then its length is denoted by ‖ s ‖. By convention, the length of

the empty trace ε is zero. The formal definition of a language is given in the sequel.

Definition 2.1 (Language) A language defined over a set of events Σ is a set of

traces of events of finite length formed using events in Σ.
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Example 2.1 The language L = {ε, a, b, ac, acb} is formed with events of Σ =

{a, b, c} and has five traces, including the empty trace.

There are some operations involving traces and events that can be used to gen-

erate new traces, and therefore, languages. The main operation is the concatenation

of one or more traces, aiming to generate a single one. The trace acb is obtained

by the concatenation of trace ac with event b. Moreover, trace ac is formed by

the concatenation of events a and c. The empty trace ε is the neutral element of

concatenation, then εs = sε = s, where s is a trace of events.

The set formed by all traces of finite length constructed using elements of Σ,

including the empty trace ε, is called the Kleene Closure of Σ, denoted by Σ∗.

Thus, any language generated by a DES, whose event set is Σ, is a subset of Σ∗.

Notice that, ∅, Σ and Σ∗ are languages.

Let us consider a trace s = tuv, where t, u, v ∈ Σ∗. Thus, t is called the prefix of

s, u is a subtrace of s, and v is called the suffix of s. In addition, the notation s/t

will be used to denote the suffix of s after t. If t is not a prefix of s, then s/t is not

defined.

2.1.2 Language operations

The Concatenation and Kleene Closure operations are formally defined over lan-

guages in Definitions 2.2 and 2.3, respectively [2].

Definition 2.2 (Concatenation) Let La, Lb ⊆ Σ∗, then the concatenation LaLb is

defined as:

LaLb = {s ∈ Σ∗ : (s = sasb) ∧ (sa ∈ La) ∧ (sb ∈ Lb)}.

A trace s is in LaLb if, and only if, s can be formed by the concatenation of a

trace in La with a trace in Lb.

Definition 2.3 (Kleene Closure) Let L ⊆ Σ∗, then the Kleene closure of L, L∗, is

defined as:

L∗ = {ε} ∪ L ∪ LL ∪ LLL . . .

The elements of L∗ are generated by the concatenation of a finite amount of

elements of L. Notice that the Kleene Closure operation is idempotent, that means

(L∗)∗ = L∗.

In the sequel, some other operations over languages are defined [2].
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Definition 2.4 (Prefix Closure) Let L ⊆ Σ∗, then

L = {s ∈ Σ∗ : (∃t ∈ Σ∗)[st ∈ L]}.

The prefix closure of a language L, L, is the set of all prefixes of all traces of L.

Notice that L ⊆ L, and L is said to be prefix-closed if L = L.

Definition 2.5 (Post Language) Let L ⊆ Σ∗ and s ∈ L. The post language of L

after s, denoted by L/s, is defined as:

L/s = {t ∈ Σ∗ : st ∈ L}.

By definition, L/s = ∅, if s /∈ L.

The following example illustrates the concatenation and prefix closure operations

applied to languages.

Example 2.2 Let Σ = {a, b, c}, L1 = {ε, a, ab, aab}, and L2 = {c}. Notice that,

since aa /∈ L1 and ε /∈ L2, L1 and L2 are not prefix-closed, then, L1L2 = {c, ac, abc, aabc},
L1 = {ε, a, ab, aa, aab}, L2 = {ε, c}, L∗1 = {ε, a, ab, aab, aa, aaab, aba, aaba, . . . } and

L∗2 = {ε, c, cc, ccc, . . . }.

Remark 2.1 If L = ∅, then L = ∅, and if L 6= ∅, then ε ∈ L necessarily. Moreover,

∅∗ = {ε} and {ε}∗ = {ε}, and the concatenation of a language and the empty set

results in an empty set, i.e., ∅L = L∅ = ∅.

Definition 2.6 (Projection) The projection Ps : Σ∗l → Σ∗s, considering Σs ⊂ Σl, is

defined recursively as:

Ps(ε) = ε,

Ps(σ) =

σ, ifσ ∈ Σs

ε, ifσ ∈ Σl \ Σs

,

Ps(sσ) = P (s)P (σ),∀s ∈ Σ∗l , σ ∈ Σl.

with \ denoting set difference.

Notice that the projection operation erases all events σ ∈ Σl \ Σs of the traces

s ∈ Σ∗l .
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Example 2.3 Consider the sets Σl = {a, b, c} and Σs = {b} and the event traces

s1 = ac and s2 = acb, with s1, s2 ∈ Σ∗l . Then, the projection Ps : Σ∗l → Σ∗s applied

to s1 and s2 equals to Ps(s1) = ε and Ps(s2) = b, respectively.

The inverse projection operation is defined as follows.

Definition 2.7 (Inverse Projection) The inverse projection P−1
s : Σ∗s → 2Σ∗l is

defined as:

P−1
s (t) = {s ∈ Σ∗l : Ps(s) = t}.

For a given trace t formed with events of Σs, the inverse projection operation

P−1
s applied to t generates the set of all traces s ∈ Σ∗l such that Ps(s) = t.

Both projection Ps and inverse projection P−1
s operations can be defined over

languages, applying the operation to all traces in the language. Formally, these

operations applied to a language are defined as follows [2].

Definition 2.8 (Projection Over Languages) Let L ⊆ Σ∗l , then Ps(L) is defined as:

Ps(L) = {t ∈ Σ∗s : (∃s ∈ L)[Ps(s) = t]}

Definition 2.9 (Inverse Projection Over Languages) Let Ls ⊆ Σ∗s, then P−1
s (Ls) is

defined as:

P−1
s (Ls) = {s ∈ Σ∗l : (∃t ∈ Ls)[Ps(s) = t]}

The projection operation can be used to represent the observed language of a

system from an observer that only recognizes events from sensors and controller

commands. Unobservable events are erased from all traces of the language gener-

ated by the system by applying the projection operation, obtaining the observable

language of the system.

The following example illustrates the projection and inverse projection opera-

tions applied to languages.

Example 2.4 Let Σl = {a, b, c}, Σs = {a, b}, and the language L = {a, b, c, ac, abc} ⊂
Σ∗l . Let Ps : Σ∗l → Σ∗s. By applying projection Ps to language L, the events

σ ∈ Σl \ Σs are erased from all traces s ∈ L. In this case, Σl \ Σs = {c}, which

implies that Ps(L) = {ε, a, b, ab}, and P−1
s ({ab}) = {c}∗a{c}∗b{c}∗.
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2.2 Automata

An automaton is a device that is capable of representing a DES. The formal definition

of a deterministic automaton is presented as follows [2].

Definition 2.10 (Deterministic Automaton) A deterministic automaton, denoted

by G, is a six-tuple:

G = (X,Σ, f,Γ, x0, Xm),

where X is the set of states, Σ is the set of events, f : X ×Σ→ X is the transition

function, Γ : X → 2Σ is the active event function, x0 is the initial state, and

Xm ⊆ X is the set of marked states.

Notice that f can be extended from domain X × Σ to domain X × Σ∗ in the

following recursive manner:

f(x, ε) := x,

f(x, sσ) := f(f(x, s), σ), for s ∈ Σ∗ and σ ∈ Σ.

An automaton can be graphically represented by a directed graph called the

state transition diagram. The graph nodes, drawn as circles, are the states, and the

labeled arcs represent the transitions between those states. The events of Σ label

the transitions of the graph.

The initial state is indicated by an arrow and the marked states are represented

by two concentric circles. The arcs graphically represent the transition function

f : X × Σ → X. In Example 2.5, the graphical representation of an automaton is

illustrated.

Example 2.5 Let G = (X,Σ, f,Γ, x0, Xm), where X = {0, 1, 2}, Σ = {a, b}, the

transition function is defined as f(0, a) = 1; f(0, b) = 0; f(1, b) = 2; f(2, a) =

2; f(2, b) = 0, the active event function is defined as Γ(0) = Γ(2) = {a, b}; Γ(1) =

{b}, x0 = 0 and Xm = {2}. G can be graphically represented as the state transition

diagram shown in Figure 2.1.

The generated language and the marked language of an automaton are defined

as follows.

Definition 2.11 (Generated Language) The generated language of a given automa-

ton G = (X,Σ, f,Γ, x0, Xm) is defined as:

L(G) = {s ∈ Σ∗ : f(x0, s) is defined}.

8
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Figure 2.1: State transition diagram of automaton G of Example 2.5.

Definition 2.12 (Marked Language) The marked language of automaton G = (X,Σ, f,Γ, x0, Xm)

is defined as:

Lm(G) = {s ∈ L(G) : f(x0, s) ∈ Xm}.

The language generated by automaton G, L(G), is composed of all feasible traces

from the initial state. It is important to notice that L(G) is prefix-closed by defini-

tion, since a path is feasible only if all its prefixes are also feasible. Moreover, some

events in Σ might not be used in the state transition diagram of G and, henceforth,

do not belong to L(G).

The marked language of automaton G, Lm(G), is a subset of L(G) that contains

all traces s such that f(x0, s) ∈ Xm, i.e., all traces that start in the initial state

and lead to a marked state on the state transition diagram of G. It is important to

notice that, since the states of X do not need to be marked, Lm(G) is not necessarily

prefix-closed.

2.2.1 Operations on automata

In order to analyze a discrete event system modeled as a finite state automaton, it

is necessary to define operations that are capable of modifying its state transition

diagram. Moreover, it is necessary to define some operations that allow to combine

two or more automata, in order to obtain more complex models from the models of

the components of the system.

The transpose GT of a DES G is an automaton that is obtained by inverting all

transitions of G, and is defined as follows [48].

Definition 2.13 (Transpose) Let G = (X,Σ, f,Γ, x0, Xm). The transpose automa-

ton GT is defined as:

GT = (X,Σ, fT ,ΓT , x0, Xm),

9



where, for all x ∈ X, and for all σ ∈ Σ, fT is defined as:

fT (f(x, σ), σ) =

x, if f(x, σ) is defined,

undefined, otherwise.
,

and for all x ∈ X, ΓT is defined as:

ΓT (x) = {σ ∈ Σ : (∃y ∈ X)[f(y, σ) = x]}

The complement of G forms an automaton Gcomp such that Lm(Gcomp) = Σ∗ \
Lm(G). This operations is defined as follows [2].

Definition 2.14 (Complement) Let G = (X,Σ, f,Γ, x0, Xm) be an automaton such

that Lm(G) ⊆ L(G) ⊆ Σ∗. Then, the complement automaton Gcomp, such that

Lm(Gcomp) = Σ∗ \ Lm(G) is formed by the following steps:

1: (∀x ∈ X ∪ {xd})(∀σ ∈ Σ), define ftot(x, σ) =

f(x, σ), if σ ∈ Γ(x)

xd, otherwise
.

2: ∀x ∈ X ∪ {xd}, define Γtot(x) = Σ.

3: Gcomp ← (X ∪ xd,Σ, ftot,Γtot, x0, (X ∪ xd) \Xm).

Basically, in the complement operation L(G) is completed to Σ∗ by adding state

xd to G, and adding transitions from all states x ∈ X ∪{xd} to xd labeled by events

in Σ \ Γ(x). Then, all marked states became unmarked states and all unmarked

states became marked states.

The accessible part of an automaton G is a unary operation that erases all states

of G that are not reachable from the initial state x0 and their associated transitions.

The formal definition of the accessible part of an automaton is presented in the

sequel [2].

Definition 2.15 (Accessible Part) Let G = (X,Σ, f,Γ, x0, Xm). The accessible part

of G, denoted by Ac(G), is defined as:

Ac(G) = (Xac,Σ, fac,Γac, x0, Xac,m),

where Xac = {x ∈ X : (∃s ∈ Σ∗)[f(x0, s) = x]}, fac : Xac × Σ∗ → Xac, Xac,m =

Xm ∩Xac, and Γac : Xac → 2Σ.

10



It is important to notice that, after applying the accessible part operation to

an automaton, the transition function is restricted to the smaller domain, Xac ×Σ.

In addition, the accessible part operation does not change the languages L(G) and

Lm(G).

A state x ∈ X is said to be coaccessible if there is a subtrace from x to a marked

state. The coaccessible part operation erases all states in G, that are not coacces-

sible, and their corresponding transitions. The formal definition of the coaccessible

part of an automaton is presented in the sequel [2].

Definition 2.16 (Coaccessible Part) Let G = (X,Σ, f,Γ, x0, Xm). The coaccessible

part of G, denoted by CoAc(G), is defined as:

CoAc(G) = (Xcoac,Σ, fcoac,Γcoac, x0,coac, Xm),

where Xcoac = {x ∈ X : (∃s ∈ Σ∗)[f(x, s) ∈ Xm]}; x0,coac = x0, if x0 ∈ Xcoac, and x0,coac is undefined, if x0 /∈
Xcoac; fcoac : Xcoac × Σ→ Xcoac; and Γcoac : Xcoac → 2Σ.

It is important to remark that the coaccessible part operation restricts the tran-

sition function to the smaller domain, Xcoac×Σ. Notice that L(CoAc(G)) ⊆ L(G),

and Lm(CoAc(G)) = Lm(G).

An automaton that is both accessible and coaccessible is called Trim. The formal

definition of the trim operation is presented as follows [2].

Definition 2.17 (Trim Operation) Let G = (X,Σ, f,Γ, x0, Xm). The Trim opera-

tion is defined as:

Trim(G) = CoAc[Ac(G)] = Ac[CoAc(G)].

The following example shows the results of the accessible part, coaccessible part

and trim operations applied to an automaton G.

Example 2.6 Consider automaton G depicted in Figure 2.2. Figures 2.3a, 2.3b

and 2.3c show the resulting automata after the accessible part, coaccessible part and

trim operations, respectively.

It is possible to combine two or more automata in order to obtain a new automa-

ton model. In this work, two composition operations are presented: the product

composition and the parallel composition.

The product composition is also called completely synchronous composition, and

is denoted by ×. The formal definition of the product composition is presented in

the sequel [2].

11
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Figure 2.2: Automaton G, Example 2.6.
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Figure 2.3: Ac(G), CoAc(G) and Trim(G), respectively, of automaton G depicted
in Figure 2.2.
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Definition 2.18 (Product Composition) Let G1 = (X1,Σ1, f1,Γ1, x01, Xm1) and

G2 = (X2,Σ2, f2,Γ2, x02, Xm2). Then, the product composition between G1 and G2,

G1 ×G2, is given by:

G1 ×G2 = Ac(X1 ×X2,Σ1 ∪ Σ2, f1×2,Γ1×2, (x01, x02), Xm1 ×Xm2),

where:

f1×2((x1, x2), σ) =

(f1(x1, σ), f2(x2, σ)), if σ ∈ Γ1(x1) ∩ Γ2(x2)

undefined, otherwise,

Γ1×2(x1, x2) = Γ1(x1) ∩ Γ2(x2).

According to Definition 2.18, the transitions of both automata need to be syn-

chronized with a common event, i.e., an event in Σ1 ∩Σ2. Thus, an event occurs in

G1 ×G2 if, and only if, the event occurs in G1 and G2, simultaneously.

The states of G1 × G2 are pairs of the form (x1, x2), where the first component

is a state of G1 and the second one is a state of G2. Moreover, considering that the

product composition synchronizes the automata evolution, the generated language

and the marked language of G1×G2 are L(G1×G2) = L(G1)∩L(G2) and Lm(G1×
G2) = Lm(G1) ∩ Lm(G2), respectively.

The parallel composition, also called synchronous composition, is denoted by

‖. Each automaton in the parallel composition can evolve with transitions that

are labeled by private events, instead of only evolving if the event is feasible in

both automata, as in the product composition. The formal definition of parallel

composition is presented as follows [2].

Definition 2.19 (Parallel Composition) Let G1 = (X1,Σ1, f1,Γ1, x01, Xm1) and

G2 = (X2,Σ2, f2,Γ2, x02, Xm2). The parallel composition between G1 and G2, de-

noted by G1‖G2, is given by:

G1‖G2 = Ac(X1 ×X2,Σ1 ∪ Σ2, f1‖2,Γ1‖2, (x01, x02), Xm1 ×Xm2),

13
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Figure 2.4: Automata G1 and G2, Example 2.7.

where:

f1‖2((x1, x2), σ) =



(f1(x1, σ), f2(x2, σ)), if σ ∈ Γ1(x1) ∩ Γ2(x2)

(f1(x1, σ), x2), if σ ∈ Γ1(x1) \ Σ2

(x1, f2(x2, σ)), if σ ∈ Γ2(x2) \ Σ1

undefined, otherwise.

Γ1‖2(x1, x2) = [Γ1(x1) ∩ Γ2(x2)] ∪ [Γ1(x1) \ Σ2] ∪ [Γ2(x2) \ Σ1].

According to Definition 2.19, the transitions of both automata need to be syn-

chronized if the event is in Σ1 ∩ Σ2, as in the product composition. However, if the

event is in (Σ1 \ Σ2) ∪ (Σ2 \ Σ1), it can occur independently of the synchronization

of the automata. Thus, an event σ ∈ Σ1 ∩ Σ2 can occur in G1‖G2 if σ occurs in G1

and G2 at the same time, and an event σ ∈ (Σ1 \ Σ2) ∪ (Σ2 \ Σ1) can occur as long

as it is feasible in G1 or G2.

In order to obtain the generated and marked languages of G1‖G2, it is needed

to define the following projections:

Pi : (Σ1 ∪ Σ2)∗ → Σ∗i para i = 1, 2.

The generated and marked languages of the parallel composition are given by

L(G1‖G2) = P−1
1 [L(G1)]∩P−1

2 [L(G2)] and Lm(G1‖G2) = P−1
1 [L(G1)]∩P−1

2 [Lm(G2)],

respectively. The product and parallel compositions are illustrated in the following

example.

Example 2.7 Let G1 and G2 be shown in Figures 2.4a and 2.4b, respectively. Fig-

ures 2.5a and 2.5b show the automata computed from the product and parallel com-

positions of G1 and G2, respectively.

2.2.2 Automata under partial observation of events

The set of event in G can be partitioned as Σ = Σo∪̇Σuo, where Σo denotes the set of

observable events and Σuo denotes the set of unobservable events. Observable events

14
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Figure 2.5: Resulting automata after product and parallel composition of G1 and
G2, Example 2.7.

are events that can be recognized by a sensor. On the other hand, unobservable

events have no signal referring to it.

For a system G with unobservable events, the observable language generated

by G is obtained by applying the projection Po : Σ∗ → Σ∗o, resulting in language

Po[L(G)]. In order to obtain the possible states of the system after the observation

of an event trace. It is necessary to construct an automaton called the observer

of G, denoted by Obs(G). Before presenting the algorithm for the construction of

Obs(G), it is necessary to define the unobservable reach function.

Definition 2.20 (Unobservable Reach) Let the G = (X,Σ, f,Γ, x0, Xm), where Σ =

Σo∪̇Σuo. The unobservable reach of an state x ∈ X, denoted by UR(x), is defined

as:

UR(x) = {y ∈ X : (∃t ∈ Σ∗uo)[f(x, t) = y]}. (2.1)

The unobservable reach can also be defined for a set of states B ∈ 2X as follows:

UR(B) =
⋃
x∈B

UR(x). (2.2)

The unobservable reach of a state x provides the set of states that are reached

after the occurrence of a trace s ∈ Σ∗uo from x.

Definition 2.21 (Observer) The observer of an automaton G whose observable

events set is Σo, denoted by Obs(G,Σo), is given by:

Obs(G,Σo) = (Xobs,Σo, fobs,Γobs, x0,obs, Xm,obs),

where Xobs ⊆ 2X and Xm,obs = {B ∈ Xobs : B ∩Xm 6= ∅}. fobs, Γobs and x0,obs are

obtained, by following the steps of Algorithm 2.1 [49].
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Figure 2.6: Automata G with unobservable events and Obs(G,Σo) respectively,
Example 2.8.

Algorithm 2.1 Computation of the observer Obs(G,Σo)

Input: G = (X,Σ, f,Γ, x0, Xm) and Σo, where Σ = Σo∪̇Σuo.

Output: Obs(G) = (Xobs,Σo, fobs,Γobs, x0,obs, Xm,obs).

1: Define x0,obs = UR(x0). Do Xobs = {x0,obs} and X̃obs = Xobs.

2: Xobs = X̃obs and X̃obs = ∅.

3: For each B ∈ Xobs,

3.1: Γobs(B) = (
⋃
x∈B

Γ(x)) ∩ Σo.

3.2: For each σ ∈ Γobs(B),

3.2.1: fobs(B, σ) = UR(x ∈ X : (∃y ∈ B)[x = f(y, σ)]).

3.2.2: X̃obs ← X̃obs ∪ fobs(B, σ).

4: Xobs ← Xobs ∪ X̃obs.

5: Repeat steps 2 to 4 until the conclusion of the accessible part of Obs(G).

6: Xm,obs = {B ∈ Xobs : B ∩Xm 6= ∅}.

Notice that the generated and marked language of automaton Obs(G,Σo) are

L(Obs(G,Σo)) = Po[L(G)] and Lm(Obs(G,Σo)) = Po[Lm(G)], respectively.

Example 2.8 Let G be the automaton shown in Figure 2.6a. X = {0, 1, 2, 3} is

the set of states, and Σ = {a, b, c} is the set of events of G, where Σo = {a, b} and

Σuo = {c}. Then, according to Algorithm 2.1, Obs(G,Σo), presented in Figure 2.6b,

is computed. Notice that, if the system executes the trace t = acb, the observed trace

is Po(t) = ab, and the state estimate is {2, 3}.

Example 2.8 shows the observer Obs(G,Σo) of an automaton G with unobserv-

able events. Notice that each state in Obs(G,Σo) is a set of estimated states in G

after the observation of a trace of events.
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Figure 2.7: Interaction between all four elements.
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(b) Controller
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(c) Sensor

A0 A1

c

cu

(d) Actuator

Figure 2.8: Four basic elements of a feedback discrete event system.

2.3 Controlled discrete event system

A controlled discrete event system is usually composed of four elements: plant, con-

troller, sensors, and actuators. The plant and the controller interact as follows: the

plant sends signals to the controller through sensors, and the controller sends com-

mand signals to the plant through actuators [12]. This relationship is represented

in Figure 2.7.

Each of the four elements can be represented as an automaton, as illustrated

in the example of Figure 2.8. In Figure 2.8a, the automaton of the plant has only

unobservable events, referring to the lack of logical signals as an intrinsic event.

On the other hand, the automaton of the controller (Figure 2.8b) has only observ-

able events, referring to the communication with the controller being composed of

logical signals. To allow the interaction, i.e., synchronization between those two

automata, the automata of the sensor and actuator, presented in Figures 2.8c and

2.8d, respectively, have events of both plant and controller automata.

The behavior of the controlled system can be generated by the parallel compo-

sition of all four automata, as shown in Figure 2.9. Such system first executes a

physical action on the plant, then the sensor recognizes this event and communicates

it to the controller. The controller, after considering the occurrence of the event,

sends a logical signal to the actuator. This signal is, then, translated into a physical

action to be applied in the plant.
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Figure 2.9: Behavior of a discrete event system.
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o

Figure 2.10: Block diagram of a plant being controlled.

The block diagram of a controlled DES with partial observation is represented in

Figure 2.10, where P p
o : Σ∗ → Σp∗

o denotes a projection operation, where Σp
o is the set

of observable events of the plant. The lack of sensors is the physical interpretation

of unobservable events, as presented in Section 2.2.2.

The controller is a reactive element that receives signals from sensors and sends

signals to actuators, and there exist several methods proposed in the literature

for the design of discrete event controllers [3–5, 11, 50]. The controller is usually

implemented on a Programmable Logic Controller (PLC) or the control action can

be executed by a human operator that checks panels and press buttons. Depending

on the PLC programming methodology, or the training of human operators, the

plant might have undesired behaviors, specially if DES theory is not applied at the

designing stage of the DEC.

2.4 Supervisory control theory

Differently from the controller, the supervisor is used to restrict behaviors on the

system, in a higher level. This is done by disabling events in the system states.

The interaction between plant and controller remains the same, and the supervisor

observes events of the plant and controller. This interaction is represented in the

block diagram of Figure 2.11. Notice that, since only part of the command events

may be observable, then it is necessary to introduce the projection P c
o : Σ∗ → Σc∗

o ,

where Σc
o denotes the set of events of the controller that can be observed by the

supervisor. Considering the abstraction of the controlled plant behavior, the block

diagram of Figure 2.11 can be simplified leading to the block diagram of Figure 2.12,

where Po : Σ∗ → Σ∗o, and Σo = Σp
o ∪ Σc

o.
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Figure 2.11: Block diagram of the interaction of plant, controller and supervisor.
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Figure 2.12: Block diagram of the interaction supervisor and a controlled plant.

Let us consider that automaton G models the controlled behavior of the system,

i.e., G is obtained by the parallel composition of the plant, controller, sensors and

actuators automata. Then, language L(G) may contain traces that lead the system

to undesirable states, i.e., states that might be unsafe or block the system [2]. The

sublanguage of L(G) that contains all admissible traces is called admissible language,

and is denoted by La. The behavior described by La is the maximal admissible

behavior of the system. Usually the supervisor cannot force the controlled plant

to execute only traces that are in the admissible behavior, but can guarantee that

only traces in a subset of La be executed. In addition, the controlled plant to be

supervised have some behavior requirements to follow, and thus, it is, in general,

defined a sublanguage of La, denoted by Lr, that contains all traces that satisfy

this minimal required behavior. Summarizing, languages La, Lr, and L(G), relate

to each other as Lr ⊆ La ⊆ L(G).

In order to design a supervisor, the desired behavior, described by specification

language K, need to contain Lr and also be a subset of La, i.e., Lr ⊆ K ⊆ La ⊆
L(G). Moreover, different bounds for the specification language K can be defined

as desired language Ldes and tolerated language Ltol. Then, specification language

K must achieve as much as possible of Ldes without ever exceeding Ltol. Thus, Ltol

is essentially equal to La, but Ldes is different from Lr in such a way that K ∩ Ldes

is not necessarily equal to Ldes, and there are no K ′ ⊆ Ltol such that K ′ can be

realized as a supervisor and (K ∩ Ldes) ⊂ (K ′ ∩ Ldes).

After defining specification languageK, the next step is to synthesize a supervisor
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S. However, some events cannot be disabled. Thus, Σ needs to be partitioned in

a set of controllable events Σc, and a set of uncontrollable events Σuc. Hence, the

supervisor can be represented as a function defined as S : Po(L(G))→ 2Σ, as shown

in Figure 2.12, where G stands for the automaton of the Plant+Controller. Thus,

for each s ∈ L(G), the set of enabled events in S controlling G, denoted by S/G, is

S(Po(s)) ∩ Γ(f(x0, s)). Also, S cannot disable uncontrollable events, which means

that Γ(f(x0, s)) ∩ Σuc ⊆ S(Po(s)) for every s ∈ L(G).

Considering function S, the generated and marked languages of S/G are defined

as follows:

Definition 2.22 (Languages generated and marked by S/G) The language gener-

ated by S/G is defined recursively as:

1. ε ∈ L(S/G);

2. [(s ∈ L(S/G)) ∧ (sσ ∈ L(G)) ∧ (σ ∈ S(s))]⇔ [sσ ∈ L(S/G)].

The language marked by S/G is defined as:

Lm(S/G) := L(S/G) ∩ Lm(G).

A supervised system is said to be blocking if there is a state that cannot reach a

marked state due to a disabled event or a characteristic of the system. A blocking

supervised system is defined in the sequel.

Definition 2.23 (Blocking supervised system) The DES S/G is blocking if

L(S/G) 6= Lm(S/G)

and nonblocking when

L(S/G) = Lm(S/G)

Example 2.9 Let G be the automaton depicted in Figure 2.13a, and consider that

La = L(G). Let the required language be defined as Lr = {ε, a, aa, aaa, ...}, and

K = Lm(G). Thus, the supervisor S, such that S/G = K, can be realized as

automaton H, shown in Figure 2.13b, and the state transition diagram of G‖H is

depicted in Figure 2.13c.
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Figure 2.13: DES G, Example 2.9.

2.4.1 Supervisor with partial controllability

In this section, the controllability problem [2] is addressed. The observability prob-

lem will be addressed in another section, and thus, in this section, all events are

considered observable.

Definition 2.24 (Controllability) Consider G = (X,Σ, f,Γ, x0, Xm) and let Σ =

Σc∪̇Σuc, where Σuc is the set of uncontrollable events. Let K ⊆ L(G), where K 6= ∅.
Then K is said to be controllable with respect to L(G), and Σuc if

KΣuc ∩ L(G) ⊆ K.

According to Definition 2.24 [2], if there exists an event σuc ∈ Σuc such that

s ∈ K, sσuc ∈ L(G), and sσuc /∈ K, then there does not exist a supervisor S

such that S/G = K. Notice that, by definition, if K is controllable, than K is

controllable.

Example 2.10 Let G be the automaton depicted in Figure 2.13a, where Σuc = {b}.
If K = Lm(G), then the supervisor of Example 2.9, depicted in Figure 2.13b, is

capable of keeping the system inside the specification language. However, if the spec-

ification language is set to also reach state 2, then K is uncontrollable with respect

to L(G) and Σuc, since the supervisor enables event c in state 0 but cannot disable

event b after the occurrence of c, which leads the system out of the specification

language.

Controllable languages in L(G) have the following properties [2].

1. If K1 and K2 are controllable, then K1 ∪K2 is controllable.

2. If K1 and K2 are controllable, then K1 ∩K2 is not necessarily controllable.
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3. If K1 ∩ K2 = (K1 ∩K2) and K1 and K2 are controllable, then K1 ∩ K2 is

controllable.

4. If K1 and K2 are prefix-closed and controllable, then K1 ∩K2 is prefix-closed

and controllable.

Let us also define the class of controllable sublanguages of K, Cin(K), and the

class of prefix-closed and controllable superlanguages of K, CCout(K), as follows:

Cin(K) := {L ⊆ K : LΣuc ∩ L(G) ⊆ L}

CCout(K) := {L ⊆ Σ∗ : (K ⊆ L ⊆ L(G)) ∧ (L = L) ∧ (LΣuc ∩ L(G) ⊆ L)}

From the controllability definition and its properties, it is possible to define two

other languages derived from a specification K ⊂ L(G):

• K↑C , the supremal controllable sublanguage of K;

• K↓C , the infimal prefix-closed and controllable superlanguage of K.

The supremal controllable sublanguage of K, K↑C , refers to a subset of K that

is controllable and contains all controllable sublanguages of K. Thus, K↑C can be

defined as follows:

K↑C :=
⋃

L∈Cin(K)

L.

Notice that, since, according to property 1, the union of controllable languages

is a controllable language, then K↑C ∈ Cin(K). In the worst case, K↑C = ∅, since

∅ ∈ Cin(K), and, if K is controllable, then K↑C = K. The standard algorithm to

obtain K↑C of a language K is presented in the sequel [2].

Algorithm 2.2 Algorithm for the computation of K↑C

Inputs: G = (X,Σ, f,Γ, x0), where Σ = Σc∪̇Σuc, the specification language K ⊆
L(G), and H = (Y,Σ, g,ΓH , y0, Ym), where Lm(H) = K and L(H) = K.

Outputs: K↑C and HK, where L(HK) = K↑C.

1: Mark all states of G.

2: Define H0 = (Y0,Σ, g0,ΓH0 , (y0, x0), Y0,m) = H×G, where Y0 ⊆ Y ×X. Define

i = 0.

3: Calculate (The notation “|” stands for “restricted to”)
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3.1:

Y ′i = {(y, x) ∈ Yi : Γ(x) ∩ Σuc ⊆ ΓHi
(y, x)}

g′i = gi|Y ′i
Γ′Hi

= ΓHi
|g′i

Y ′i,m = Yi,m ∩ Y ′i

3.2: Define Hi+1 = Trim(Y ′i ,Σ, g
′
i, (y0, x0), Y ′i,m).

If Hi+1 is the empty automaton, i.e., (y0, x0) is deleted in the above cal-

culation, then K↑C = ∅, HK ← Hi+1 and STOP.

Otherwise, define (Yi+1,Σ, gi+1,ΓHi+1
, (y0, x0), Yi+1,m) as Hi+1.

4: If Hi+1 = Hi, then HK ← (Yi+1,Σ, gi+1,ΓHi+1
, (y0, x0), Yi+1) and K↑C ←

Lm(Hi+1) and STOP.

Otherwise, i← i+ 1 and go to Step 3.

Example 2.11 Let G be the automaton depicted in Figure 2.14a. Let the specifi-

cation K = {a}∗{b}{a}∗ ∪ {a}∗{c} and the set of uncontrollable events Σuc = {d}.
Thus, an automaton H, such that Lm(H) = K and L(H) = K, is shown in Figure

2.14b. According to Algorithm 2.2, in the first step all states of G are marked, as

shown in Figure 2.15a. Then, H0 is defined as the product composition H × G,

which, in this case, has the same marked and generated language as H, as depicted

in Figure 2.15b. Thus, Y0 = {(0, 0), (1, 1), (2, 2)} and Γ(0) ∩ Σuc = ∅ ⊆ ΓH0((0, 0)),

Γ(1) ∩ Σuc = ∅ ⊆ ΓH0((1, 1)), and Γ(2) ∩ Σuc = {d} * ΓH0((2, 2)) = ∅. This implies

that state (2, 2) is not in Y1. The Trim operation leads to the automaton depicted in

Figure 2.15c. Since H1 6= H0, then step 3 is repeated, which leads to H2 = H1, and,

therefore, the output of algorithm is K↑C = Lm(H1), where HK is shown in Figure

2.15d.

The infimal prefix-closed and controllable superlanguage of K, K↓C , refer to a

superset of K that is either prefix-closed, controllable, and is a subset of all prefix-

closed and controllable superlanguages of K. Thus, K↓C can be defined as follows:

K↓C :=
⋂

L∈CCout(K)

L.

According to property 4, all languages in CCout(K) are prefix-closed and control-

lable, then, K↓C is prefix-closed and controllable. Notice that, in the worst case,

K↓C = L(G), since L(G) ∈ CCout(K) by definition, and, if K is controllable, then
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Figure 2.14: Input automata for Algorithm 2.2 in Example 2.11.
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(a) G after Step 1.

0, 0 1, 1
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(b) H0 = H ×G, Step 2.
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(c) H1 after Step 3.
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a

b

a

(d) Output HK .

Figure 2.15: Steps of Algorithm 2.2 in Example 2.11.
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Figure 2.16: Automaton Haug from Example 2.12.

K↓C = K. The standard algorithm to obtain K↓C of a language K is shown in the

sequel [2].

Algorithm 2.3 Algorithm for Computation of K↓C

Input: G = (X,Σ, f,Γ, x0, Xm), where Σ = Σc∪̇Σuc, the specification language

K ∈ L(G) and H = (Y,Σ, g,ΓH , y0, Ym), where L(H) = K.

Output: K↓C and HK, where L(HK) = K↓C.

1: Define Yaug = Y ∪ {yaug}.

2: For all y ∈ Yaug, define Γaug(y) = ΓH(y) ∪ Σuc.

3: (∀y ∈ Yaug)(∀σ ∈ Σ) Define:

gaug(y, σ) =


g(y, σ), if g(y, σ) is defined

yaug, if g(y, σ) is undefined and σ ∈ Σuc

undefined, otherwise.

4: Define Haug = (Yaug,Σ, gaug,Γaug, y0, Ym).

5: Set HK = Haug ×G, and K↓C = L(HK).

Example 2.12 Let G, K and Σuc be the same presented in Example 2.11. Thus,

H is shown in Figure 2.14b. According to Algorithm 2.3, add state yaug to the set

of states in H and create transitions from all states to yaug labeled by d, as depicted

in Figure 2.16 and call this automaton Haug. The product composition Haug × G,

in this example, have the same generated language as G, i.e., L(Haug ×G) = L(G).

Then, HK = G and K↓C = L(G).
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Figure 2.17: Automaton G from Example 2.13.

2.4.2 Supervisor under partial observation

As mentioned in Section 2.2.2, an event can be unobservable. In supervisory con-

trol, an unobservable event can lead the supervisor to disable events that should

not be disabled, according to the specification. In order to prevent the supervisor

from disabling an specific behavior, the specification language K have to satisfy the

observability condition. The observability condition can be defined as follows [2]:

Definition 2.25 (Observability) Let G = (X,Σ, f,Γ, x0, Xm) and K ⊆ Σ∗. Let

Σ = Σc∪̇Σuc = Σo∪̇Σuo, and let Po : Σ∗ → Σ∗o be a projection function. Then, K is

said to be observable with respect to L(G), Σo, and Σc if, ∀s ∈ K and ∀σ ∈ Σc,

(sσ /∈ K) and (sσ ∈ L(G))⇒ P−1
o [Po(s)]σ ∩K = ∅.

According to Definition 2.25, if the supervisor cannot distinguish between two

traces, then these traces should require the same control action, thus, if an event

must be disabled after the observation of a trace, then this event should not be part

of specification language. If the specified language does not satisfy the observability

condition, then there are traces s, t ∈ K such that P (s) = P (t) and sσ ∈ K, but

tσ /∈ K. Thus, a supervisor cannot decide to disable or not event σ.

Example 2.13 Let G be an automaton as depicted in Figure 2.17. Let K =

Lm(G) ∪ {a}∗{e}, and Σuo = {e} be the set of unobservable events. Thus, since

the supervisor does not distinguish between states 0 and 2, then the supervisor can-

not decide to disable event b.

In order to guarantee the existence of a supervisor for unobservable languages K,

it is possible to define control policies to determine which events should be disabled

by the supervisor. There are two possible control polices that can be used to classify

a supervisor as permissive or anti-permissive. These control policies are defined as

follows [46, 47].
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Definition 2.26 (Control Policy) Let G be an automaton, where Σ = Σo∪̇Σuo. Let

Po : Σ∗ → Σ∗o be the projection function, K ⊆ L(G) be the specification language,

and S : Po(L(G))→ 2Σ be a supervisor for automaton G. Then, a supervisor is said

to be permissive if, for each s ∈ Po(L(G)) and σ ∈ Σ,

P−1
o (s){σ} ∩K 6= ∅ ⇔ σ ∈ S(s),

and a supervisor is said to be anti-permissive if, for each s ∈ Po(L(G)) and σ ∈ Σ,

(P−1
o (s) ∩K){σ} ∩ (L(G) \K) 6= ∅ ⇔ σ /∈ S(s).

If the supervisor cannot distinguish between two traces, then these traces should

require the same control action. In addition, if this control action may exceed the

specification language, then the control policy determine if the supervisor should or

should not disable this event. A permissive supervisor does not disable the event,

and an anti-permissive supervisor disables the event. Thus, it is important to remark

that, specification language K has a set inclusion relation with L(S/G) depending

on the control policy [46, 47].

Proposition 2.1 Let G be an automaton, where Σ = Σo∪̇Σuo. Let Po : Σ∗ → Σ∗o

be the projection function, and K ⊆ L(G) be the specification language. Let the

supervisors SP : Po(L(G)) → 2Σ and SA : Po(L(G)) → 2Σ be permissive and anti-

permissive, respectively. Then,

L(SA/G) ⊆ K ⊆ L(SP/G).

It is important to remark that the control of the discrete event system is also

possible with two or more supervisors. Thus, it is necessary to define the architec-

ture of the interaction between supervisors and plant. There are plenty of presented

architectures that are possible to implement [2], and, in this work, we use the mod-

ular supervisory control architecture, as depicted in Figure 2.18 [2]. In the modular

supervisory control, an event in the plant is feasible only if both supervisors allow

its triggering.

2.5 Final comments

In this chapter, we presented the basic theory of discrete event systems that is

used in this work. First we introduced the notions of DES, languages, and defined
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Figure 2.18: Architecture of modular supervisory control.

language operations. Then, we presented the automata as a DES formalism, and

also presented automata under partial observation of events. Moreover, we presented

the control on discrete event systems and its architecture. The supervisory control

theory with partial controllability and under partial observability of events have also

been presented. In the next chapter, we present and formalize the safety device for

preventing the system from reaching unsafe states, and we show how to obtain a

safety device realization from the automaton plant model.
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Chapter 3

Computation of the safety device

In the supervisory control of DESs, the main objective is to restrict the system

behavior in such a way that the system satisfies a set of specifications. In this

chapter, the safety device is introduced, as a device that restricts the behavior of

controlled discrete event systems, so it cannot reach unsafe or critical states when

the system suffers a cyber-attack that change the control action provided by the

supervisor, or when it is not implemented or designed correctly.

3.1 Formulation of the problem

A DES has, in general, several components, and these components interact in order

to complete tasks. This interaction, if incorrectly controlled or if an attack occurs

in the system, may damage the system components or may harm operators that

are close to the system. These states, associated with dangerous operations of the

system, are called in this work unsafe states. Hence, the set of unsafe states is

defined as follows.

Definition 3.1 (Set of Unsafe States) Let X be the set of states of a given DES.

Then, the set of unsafe states XUS is defined as:

XUS := {x ∈ X : x is unsafe}.

In addition, behaviors that leads to an unsafe state are called in this work unsafe

behaviors, and behaviors that does not leads to unsafe states are called normal

behaviors.

Example 3.1 Let us consider two robots working on individual tracks with three

stations, that share a central station, as depicted in Figure 3.1. The positions of
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Figure 3.1: Working tracks of robots and robot behavior automata of Example 3.1.

0H 1H 2H

R R

LL

(a) Automaton model of the robot in the hor-
izontal track of Example 3.1.

0V

1V

2V

D

DU

U

(b) Automaton model of the robot in the
vertical track of Example 3.1.

Figure 3.2: Independent automata models of Example 3.1.

each robot can be modeled as in the automata shown in Figure 3.2, where 0H, 1H

and 2H are possible stations of the robot that moves in horizontal direction, 0V ,

1V and 2V are the stations of the robot that moves in vertical direction, and R,

L, U and D represents the robots moving right, left, up and down, respectively.

The parallel composition of these automata is depicted in Figure 3.3. Notice that

state (1H, 1V ) represents a collision between the robots, and thus, in this example,

XUS = {(1H, 1V )}.

Notice that, in order to prevent the system from reaching unsafe states, one solu-

tion is to model a supervisor that disable the last controllable event before all unsafe

states. However, depending on the structure of the supervisor and controlled plant,

the system can be susceptible to cyber-attacks, which modifies the programmed be-

havior and may lead the plant to reach unsafe states. Moreover, if the supervisor

or controller is frequently reprogrammed, a mistake on the programming may also

lead to unsafe states.
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Figure 3.3: Parallel composition of the two automata that model the behavior of
the robots, described in Example 3.1.

Example 3.2 Consider the DES described in Example 3.1. Let S be a supervisor

that restricts the behavior of the robots in such a way that the robots take turns

to cross the track, starting with the horizontal robot. Then, the automaton of the

supervised plant is shown in Figure 3.4. Hence, if the supervised plant is attacked in

such a way that event L is not disabled in state (2H, 1V ), then, the plant can reach

the unsafe state (1H, 1V ), as shown in Figure 3.5.

In addition, consider a supervisor attached to the plant that could not be at-

tacked, and assume that this supervisor has been programmed to never let the robots

collide, in Example 3.2. Thus, the state transition diagram of a realization of such

supervisor is depicted in Figure 3.6. Notice that, if such supervisor is implemented

as described, then, the plant never reach the unsafe state, despite the behavior pro-

grammed in the controller. Such supervisor can be invulnerable to attacks by a

cryptography technique, and can only be modified with a password.

In this work we address the problem of computing a realization of a device that

disable transitions that reach unsafe states, and does not prevent the evolution of the

programmed control, despite knowing the control behavior designed. By hypothesis,

the control behavior is designed to never reach an unsafe state. Then, we call such

device as safety device and present how to compute it from the model of the plant.

It is important to remark that since the safety device is directly connected to the

plant, it recognizes every observable event and disable every actuator without any

intervention of a cyber-attack. This assumption is reasonable, since a control logic

can be protected by cryptography, and is only accessed locally and in possession of
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Figure 3.4: Automaton of supervised plant behavior, described in Example 3.2.
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Figure 3.5: Automaton of supervised plant behavior after cyber-attack, described
in Example 3.2.
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Figure 3.6: Automaton of a realization of a possible supervisor for the plant in
Example 3.2.

a password.

The safety device prevents the plant from reaching unsafe states. Therefore,

there is an unsafe language LUS ⊆ L(G) such that for all s ∈ LUS, ∃t ∈ {s} such

that f(x0, t) is an unsafe state, i.e., the unsafe language is formed by all feasible

traces in the plant that reach or pass through an unsafe state. Analogously, the safe

language is defined as LS = L(G) \ LUS, which is prefix-closed by definition.

Since the safety device can be implemented in a controlled system, it is neces-

sary to define the architecture of the interaction between safety device, supervisor

and plant. The architecture used in this work is the modular supervisory control

architecture [2]. This scheme is depicted in Figure 3.7. Moreover, since the safety

device is implemented to disable events that lead the system to unsafe states, no

other feasible trace in the plant should be blocked. Thus, for all states x ∈ X,

M(x) ∩ S(x) = S(x), since the unknown supervisor, by hypothesis, does not allow

the system to reach unsafe states.

The safety device is a function M : Po(L(G)) → 2Σ where, for each trace in

Po(L(G)), a combination of events in Σ is disabled by the safety device M , according

to the following rule.

Rule 3.1 Let G be an automaton, where Σ = Σo∪̇Σuo, and XUS are the set of

unsafe states. Let Po : Σ∗ → Σ∗o be a projection function, LS = L(G) \ LUS be the

safe language, and consider the safety device M : Po(L(G)) → 2Σ. Then, for each
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Figure 3.7: Architecture of interaction between plant, supervisor and safety device.

s ∈ Po(L(G)) and σ ∈ Σ,

(P−1
o (s) ∩ L↑CS ){σ} ∩ (L(G) \ L↑CS ) 6= ∅ ⇔ σ /∈M(s).

Notice that, since the objective of the safety device is to prevent the plant from

reaching unsafe states, then a realization of M is based on the safe language LS,

and is considered to have an anti-permissive control policy. Thus, the language

generated by M/G never exceeds LS.

3.2 Computation of a safety device realization

Since the safety device is implemented to disable events that lead the system to

unsafe states, no other feasible trace in the plant should be blocked. Thus, for all

states x ∈ X, M(x) ∩ S(x) = S(x), since the unknown supervisor, by hypothesis,

does not allow the system to reach unsafe states. Thus, as in [2], the safety device

must be permissive for every possible supervisory control applied to the plant.

Before obtaining the algorithm for computing a realization W for the safety

device M , it is necessary to make the following definition.

Definition 3.2 (Reach) Let G = (X,Σ, f,Γ, x0, Xm), where Σs ⊆ Σ. The reach

function RG
Σs

: X → 2X is defined as:

RG
Σs

(x) = {y ∈ X : (∃t ∈ Σ∗s)[f(x, t) = y]}

The algorithm for obtaining a realization W for M from LS is shown in the

sequel.
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Algorithm 3.1 Algorithm for computing a realization W for the safety device

Input: G = (X,Σ, f,Γ, x0, Xm), where Σ = Σc∪̇Σuc = Σo∪̇Σuo, and the set of

unsafe states XUS.

Output: Realization W for M .

1: Compute GT as presented in Definition 2.13.

2: Define the unsafe region as the set XUR =
⋃

x∈XUS

RGT

Σuc
(x).

3: Define the safe region as the set XS = X \XUR.

4: Define GS = (XS,Σ, fS,ΓS, x0, XS), where fS = f |XS×Σ→XS
and (∀x ∈ XS)(∀σ ∈

Σ)[(σ ∈ ΓS(x)) ⇐⇒ (fS(x, σ) is defined)].

5: Define the safe region boundary as the set XB = {x ∈ XS : (∃σ ∈ Σc)(∃y ∈
XUR)[f(x, σ) = y]}.

6: Define f ′S(x, σ) = fS(x, σ), ∀x ∈ XS and ∀σ ∈ Σ, and Γ′S(x) = ΓS(x), ∀x ∈
XS.

7: For all x ∈ XB, do:

7.1: Σ′ = {σ ∈ Σc : (∃y ∈ XUR)[f(x, σ) = y]}.

7.2: For all y ∈ RGT

Σuo
(x), do:

7.2.1: For all σ ∈ Σ′, do:

7.2.1.1: f ′S(y, σ) is undefined.

7.2.1.2: Γ′S(y)← Γ′S(y) \ {σ}.

7.2.2: Redefine G′S = (XS,Σ, f
′
S,Γ

′
S, x0, XS).

8: W = Ac(G′S).

In the first step of Algorithm 3.1, automaton G is transposed. In the next step

the unsafe region XUR is defined as the set of all states in GT that are reachable

from a state in XUS with a trace s ∈ Σ∗uc. Notice that, from any state in the unsafe

region, the safety device no longer have control to prevent the plant from reaching

unsafe states. Thus, all states in the unsafe region are removed from automaton G,

forming GS. Moreover, in the same sense as a supervisor, the safety device must be

controllable and observable. In order to do so, it is necessary to exist an observable

event before the disabled controllable event. Thus, in Step 7 of Algorithm 3.1, from
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Figure 3.8: Automaton G of Example 3.3.
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Example 3.3.
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Figure 3.9: Final steps of Algorithm 3.1 in Example 3.3.

each state x in the set of boundary safe states, all states that are reachable from

a trace s ∈ Σ∗uo are found, and the same controllable events that the safety device

disables in x are disabled. Then, state f(x, σ) is added to the set of boundary safe

states and Step 7 is repeated. Notice that the event σ disabled in x prevents the

plant from reaching unsafe states from state x. Moreover, if state x is reached after

the occurrence of an unobservable event, then, the safety device does not recognize

if the plant is in state x, and must disable σ before reaching state x. However,

disabling σ may prevent the system from reaching states in the normal behavior,

and this problem is addressed in the following sections.

Example 3.3 Let G be the automaton depicted in Figure 3.8, where Σuo = {c} and

Σuc = {d}, and let XUS = {3} be the set of unsafe states. Then, as described in

Algorithm 3.1, define the unsafe region as XUR = {2, 3}, and remove all states in

the unsafe region from G, as shown in Figure 3.9a. Notice that the automaton in

Figure 3.9a disables event b when on state 1. However, c is unobservable and the

safety device would not capable of distinguishing between states 1 and 0. If the safety

device cannot distinguish states 1 and 0, then, it must also disable event b in state

0. Thus, in this example, the set of boundary safe states is {0, 1} and a realization

W is depicted in Figure 3.9b.

In order to prove the existence of a safety device realization, and the correctness

of Algorithm 3.1, a lemma is presented in the sequel.
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Lemma 3.1 Let G = (X,Σ, f,Γ, x0, Xm), where Σ = Σc∪̇Σuc = Σo∪̇Σuo, and let

XUS ⊆ X be the set of unsafe states. Let LUS = {s ∈ L(G) : (∃t ∈ {s})[f(x0, t) ∈
XUS]}, LS = L(G) \LUS, and W = (Y,Σ, g,ΓW , y0, Y ) be a realization of the safety

device M for plant G, obtained according to Algorithm 3.1. Then, L(W ) ⊆ L↑CS .

Proof: Notice that, according to the definition of LS, a realization for LS should

be obtained by eliminating all states in XUR of G, and their associated transitions,

and then, taking its accessible part. This procedure is carried out in Steps 1 to 4 of

Algorithm 3.1, generating automaton GS. Thus, L↑CS = L(GS).

Since W is computed from GS by removing transitions labeled with uncon-

trollable events, and taking the accessible part of the resulting automaton, then

L(W ) ⊆ L(GS) = L↑CS , which concludes the proof.

Theorem 3.1 (Existence) Let G = (X,Σ, f,Γ, x0, Xm), where Σ = Σc∪̇Σuc =

Σo∪̇Σuo, and let XUS ⊆ X be the set of unsafe states. Let LUS = {s ∈ L(G) :

(∃t ∈ {s})[f(x0, t) ∈ XUS]}, and LS = L(G) \ LUS, where L↑CS 6= ∅. Then, there

exists an automaton W = (Y,Σ, g,ΓW , y0, Y ) as a realization of the safety device M

for plant G, obtained according to Algorithm 3.1.

Proof: Notice that, L↑CS = ∅ if, and only if, exists s ∈ Σ∗uc such that f(x0, s) ∈
LUS. According to Step 3 of Algorithm 3.1, x0 ∈ XS, since L↑CS 6= ∅ by hypoth-

esis. Moreover, notice that, in Algorithm 3.1, no other state is removed from the

automaton, and then, in the worst case, y0 = x0, which concludes the proof.

Theorem 3.2 (Correctness) Let G = (X,Σ, f,Γ, x0, Xm), where Σ = Σc∪̇Σuc =

Σo∪̇Σuo, and let XUS ⊆ X be the set of unsafe states. Let Po : Σ∗ → Σ∗o be

a projection function, LUS = {s ∈ L(G) : (∃t ∈ {s})[f(x0, t) ∈ XUS]}, LS =

L(G) \ LUS, and W = (Y,Σ, g,ΓW , y0, Y ) be a realization of the safety device M

for plant G, obtained according to Algorithm 3.1. Then, for each s ∈ Po(L(G)) and

σ ∈ Σ,

(P−1
o (s) ∩ L↑CS ){σ} ∩ (L(G) \ L↑CS ) 6= ∅ ⇔ (∀t ∈ P−1

o (s) ∩ L(G))[σ /∈ ΓW (g(y0, t))]

Proof: (⇒) Assume that there exist s ∈ Po(L(G)) and σ ∈ Σ such that (P−1
o (s)∩

L↑CS ){σ} ∩ (L(G) \L↑CS ) 6= ∅. Then, there exists u ∈ P−1
o (s) such that u ∈ L↑CS , and

uσ ∈ L(G) \L↑CS . Let us assume now that there exists t ∈ P−1
o (s)∩L(G) such that

σ ∈ ΓW (g(y0, t)). Then, according to Step 5 of Algorithm 3.1, f(x0, u) ∈ XB, i.e.,

state f(x0, u) is in the safe region boundary, which implies that f(x0, uσ) ∈ XUR.

According to Step 7 of Algorithm 3.1, all states reached from traces with the same
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observation as u, must have event σ disabled, which contradicts the assumption that

there exists t ∈ P−1
o (s) ∩ L(G) such that σ ∈ ΓW (g(y0, t)).

(⇐) If there exists s ∈ Po(L(G)) and σ ∈ Σ such that (P−1
o (s)∩L↑CS ){σ}∩(L(G)\

L↑CS ) = ∅, then, according to Algorithm 3.1, [(P−1
o (s) ∩ L↑CS ){σ}] ∩ L(G) ⊆ L(W ).

Thus, (∀t ∈ P−1
o (s) ∩ L(G)), σ ∈ ΓW (g(y0, t)), which concludes the proof.

Notice that the sufficient condition is proved by showing that the safety device

is anti-permissive, i.e., disable event σ after all traces t ∈ P−1
o (s) ∩ L(G) such

that s exceeds the safe language LS. Moreover, the necessary condition is proved

by showing that the safety device only disables event σ if there exists a trace t ∈
P−1
o (s) ∩ L(G), such that tσ /∈ L↑CS .

According to Lemma 3.1, the safety device can block traces in LS. This blocking

can be detrimental or not for the system. To analyze the effect of the safety device

on the system, we define in the sequel levels of influence of the safety device over

the safe language of the system. These levels are defined over the automaton of the

plant and its marked states. There are four levels, defined as follows:

Definition 3.3 (Safety Levels) Let G be an automaton, where Xm is the set of

marked states, and let XUS be the set of unsafe states. Notice that, by definition, all

safety devices block all traces in LUS and, by hypothesis, LUS ∩ Lm(G) = ∅. Then,

the following safety levels can be defined:

• Level 1: the safety device blocks only traces in LUS;

• Level 2: the safety device might block some traces in L(G) \ [Lm(G) ∪ LUS];

• Level 3: the safety device might block some traces in Lm(G), but not all traces

in Lm(G); and

• Level 4: the safety device blocks all traces in Lm(G).

Notice that a safety device in level 1 is also in levels 2 and 3, and a safety device

in level 2 is also in level 3. However, there are safety devices that are in level 2

and are not in level 1, and also there exist safety devices that are in level 3 and not

in level 2. Moreover, safety device in level 4 are neither in levels 1, 2 nor 3. This

relation defines an inclusion characteristic.

Notice that, it is necessary to verify the safety level of device M after computing

a safety device realization W from Algorithm 3.1, to conclude the application on

the plant. Due to the inclusion characteristic of levels, the safety level verifications

must be done from level 1 to level 4.

The verification of the safety level is computed as follows:
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Algorithm 3.2 Algorithm for safety level verification of realization W

Input: G = (X,Σ, f,Γ, x0, Xm), where Σ = Σc∪̇Σuc = Σo∪̇Σuo, the set of unsafe

states XUS, and safety device realization W obtained from Algorithm 3.1.

Output: Level 1, 2, 3 or 4.

1: Define f ′ = f |X\XS×Σ→X\XUS
, Γ′ = Γ|X\XUS→Σ, and G′ = (X\XUS,Σ, f

′,Γ′, x0, Xm)

2: Define GS = Ac(G′)

3: Define W (m) =, G
(m)
S =, Trim(G)(m)

4: If (W (m))comp ×G(m)
S and W (m) × (G

(m)
S )comp have no marked states, then:

4.1: Return Layer 1.

4.2: STOP.

5: If (Trim(G)(m))comp ×W (m) has nor marked states, then:

5.1: Return Layer 2.

5.2: STOP.

6: If W‖G does not have marked states, then:

6.1: Return Layer 3.

6.2: STOP.

7: Return Layer 4.

Algorithm 3.2 verifies the safety level of realization W . In the first step of

Algorithm 3.2, all unsafe states and its associated transitions are removed from

plant automaton G, and the accessible part GS = Ac(G′) of the reduced automaton

G′ is taken. In the next step, it is verified if languages L(W ) and LS are the

same, by computing its respective automata with all states marked, and the product

composition is computed between (W (m))comp and G
(m)
S , then, between W (m) and

(G
(m)
S )comp. If there are no marked states in (W (m))comp×G(m)

S andW (m)×(G
(m)
S )comp,

which certify that L(W ) = LS, i.e., the safety device only blocks traces in LUS.

Then, safety device realization W is concluded to be in safety level 1. Else, the set

inclusion Lm(G) ⊆ L(W ) is verified. Automata W and Trim(G) are used for this

verification, since L(Trim(G)) = Lm(G). Then, the product composition between

(Trim(G)(m))comp andW (m) is computed. If (Trim(G)(m))comp×W (m) has no marked
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states, then, realization safety device W is confirmed to be in safety level 2, since

this concludes that all traces in Lm(G) are feasible in W . However, in case there

are marked states in (Trim(G)(m))comp ×W (m), then, W‖G is verified. If W‖G has

no marked states, then W is considered to be in safety level 4, else, W is in safety

level 3.

Example 3.4 Let G1, G2, G3, and G4 be the automata depicted in Figures 3.10a,

3.10b, 3.10c, and 3.10d, respectively. Moreover, consider that all four automata have

the event set defined as Σ = Σc∪̇Σuc = Σo∪̇Σuo = {a, b, c, d, e}, where Σuc = {d},
and Σuo = {e}, and also, consider that state 3 is unsafe. Then, their respective

safety device realizations W1, W2, W3, and W4, shown in Figure 3.11, are on safety

levels 1, 2, 3, and 4, respectively. Notice that, G1 has a controllable event before

the unsafe state, and, then, all traces in the safe language are feasible. Also, safety

device W1 allows G1 to reach state 2, which is a deadlock, since restricting deadlock

behaviors is not the intention of the safety device. Automaton G2 has unsafe state 3

and unsafe region state {2, 3}, which are blocked by W2, and state 2 is reachable by

the safe language. In addition, automaton G3 also has a controllable event before the

unsafe state, but event e is unobservable, and it is impossible to distinguish between

states 0 and 2. Then, W3 disables event b in states 0 and 2, which blocks some

traces in Lm(G3). Finally, realization W4 also disables event b in states 0 and 2 in

automaton G4, however all traces in Lm(G4) are blocked.

3.3 Final comments

In this chapter, we presented the safety device for preventing the controlled plant to

reach unsafe states, where the control of the plant is unknown. Then, we presented

the architecture used for safety device, control, supervisor and plant interaction.

Also, we formalized a realization of the safety device and showed how to obtain

this realization from the plant model. Moreover, safety devices can be classified in

safety levels and the algorithm for verification of safety levels is also presented in

this chapter. In the next chapter we test the developed theory in a mechatronic

system and implement the safety device for preventing control configurations from

damaging the plant.
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Figure 3.10: Automata G1, G2, G3, and G4 used in Example 3.4.
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Figure 3.11: Monitors M1, M2, M3, and M4 of G1, G2, G3, and G4, respectively, as
presented in Example 3.4.
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Chapter 4

Implementation of the safety

device in a mechatronic system

In this chapter, we describe the cube assembling mechatronic system used as the

illustrative example for the application of the safety device. This mechatronic system

is a module of the industrial cube assembly and storage system that can be found

at the Control and Automation Laboratory (LCA) of the Federal University of Rio

de Janeiro (UFRJ). The safety device was implemented using the Siemens software,

Totally Integrated Automation Portal (TIA Portal).

4.1 Mechatronic system

The plant is a Cube Assembly mechatronic system, built by Christiani Technical

Institute for Vocation Training [51]. This plant has three connected modules, as

shown in Figure 4.1, which represent functionalities that simulate industrial pro-

cesses, as raw material selection, processing, and storage. However, only module 2,

depicted in Figure 4.2, is used in this work. Module 2 is responsible for transporting

the cube pieces between modules, and assembling cubes. The transportation is done

by a robotic arm, which has a pneumatic mechanism that activates a suction cup in

order to pick up, transport and deliver cube pieces. The assembling of two pieces is

done by a press, which also has pneumatic mechanisms.

4.2 Plant model

In order to build a safety device to the plant, it is necessary to model all feasible

events of the plant without control. Thus, the automaton model must represent

physical restrictions of actuators, and space limitations of queues. The processing

module has six pneumatic actuators, three in the press and three in the robotic arm.
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Figure 4.1: Module division of Cube Assembly plant.

Figure 4.2: Processing module of Cube Assembly plant.
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(a) Robotic arm vertical pneu-
matic actuator model.
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(b) Robotic arm horizontal
pneumatic actuator model.
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ArmGrip
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(c) Robotic arm vacuum grip-
per model.
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(d) Press vertical pneumatic
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(e) Press horizontal pneumatic
actuator model.

Re Ex
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(f) Press door pneumatic actu-
ator model.

Figure 4.3: Pneumatic actuators of module 2 of the plant and robotic arm vacuum
gripper models.

Each pneumatic actuator is modeled as an automaton with two states, extended and

retracted, as depicted in Figure 4.3. In these automata, states Re and Ex represent

that the pneumatic actuator is retracted and extended, respectively. Also, states

De and Ac in Figure 4.3c represent the vacuum gripper deactivated and activated,

respectively. Moreover, since the states are retracted or extended, and deactivated

or activated, then, the label of the state transition is the signal emitted to the

pneumatic actuator. Thus, the state transitions label abbreviations in Figure 4.3

are explained in Table 4.1.

The robotic arm rotates on its axis and has three important positions: calibrat-

ing, facing the conveyor, and facing the press. Each position has a relative angle that

is measured using an encoder, which are 0◦, 90◦, and 180◦, respectively. As a redun-

dancy to the encoder, there is an inductive sensor that identify a certain position of

the robotic arm and calibrates the encoder to 0◦. Thus, besides the states that refer

to angle positions, the robotic arm rotates clockwise and counter-clockwise. Then,

the automaton model of the robotic arm rotation is depicted in Figure 4.4. Each

state and state transition label has a physical meaning that are described in Tables

4.2 and 4.3, respectively.

Algorithm 3.1 needs both automaton model of the plant and all unsafe states in

the model. The complete automaton model of the plant is the parallel composition

of the automata in Figures 4.3 and 4.4. However, the state transition diagram is
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Table 4.1: Physical meaning of state transition labels of the automata in Figure 4.3.

Abbreviation Meaning Figure
ArmUp Vertical pneumatic actuator moves the robotic arm up. 4.3a

ArmDown Vertical pneumatic actuator moves the robotic arm down. 4.3a
ArmForward Horizontal pneumatic actuator moves the robotic arm forward. 4.3b
ArmBack Horizontal pneumatic actuator moves the robotic arm back. 4.3b
ArmGrip Activates the vacuum gripper of the robotic arm. 4.3c
PressDown Vertical pneumatic actuator moves the press down to assemble

cube pieces.
4.3d

PressUp Vertical pneumatic actuator moves the press up. 4.3d
PressOutside Horizontal pneumatic actuator moves the press outside of the

case.
4.3e

PressInside Horizontal pneumatic actuator moves the press inside of the
case.

4.3e

PressClose Door’s pneumatic actuator closes the case. 4.3f
PressOpen Door’s pneumatic actuator opens the case. 4.3f

0 1 2

3 4 5

6 7 8

ArmCounter

ArmCounter ArmClock

ArmClock

ArmCounter

ArmCounter ArmClock

ArmClock

ArmCounter

ArmCounter ArmClock

ArmClock

90◦

180◦

IndSensor

90◦

Figure 4.4: Automaton model of the robotic arm rotation.
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Table 4.2: Physical meaning of states of the automata in Figure 4.4.

States Physical Meaning
0, 1, and 2 Robotic arm last faced 0◦.
3, 4, and 5 Robotic arm last faced 90◦.
6, 7, and 8 Robotic arm last faced 180◦.
0, 3, and 6 Robotic arm rotating counter-clockwise.
1, 4, and 7 Robotic arm not rotating.
2, 5, and 8 Robotic arm rotating clockwise.

Table 4.3: Physical meaning of state transition label abbreviations of the automata
in Figure 4.4.

Abbreviation Physical Meaning
ArmCounter Robotic arm starts rotating counter-clockwise.
ArmClock Robotic arm starts rotating clockwise.
IndSensor Inductive sensor identify a metallic totem that represents 0◦ position.

90◦ Robotic arm encoder reach the value that represents 90◦ position.
180◦ Robotic arm encoder reach the value that represents 180◦ position.

not shown in this work, since this parallel composition results in an automaton with

576 states. Thus, the unsafe states are represented by a combination of states in

different automata. All unsafe state combinations are listed in Table 4.4.

It is important to remark that some unsafe behaviors are based on transitions,

and not on states. Those unsafe transitions lead to a state that might be reached

also by safe transitions. An unsafe transition is defined as a state transition that

may cause damage to the system components or may harm operators that are close

to the system, even if it evolves the system from a safe state to another safe state.

Thus, in order to distinguish those behaviors, the plant needs to be slightly changed

using a state splitting procedure [2], as defined in the sequel.

Definition 4.1 (State Splitting) Let G = (X,Σ, f,Γ, x0, Xm) and let (x, σ) be the

unsafe transition, where x ∈ X, σ ∈ Σ, and f(x, σ) ∈ X. Then, automaton G′ that

distinguish (x, σ) from other transitions that reach f(x, σ) is formed by the following

steps:

1: Define X ′ = X ∪ {x′} and f ′(y, ω) = f(y, ω), for all y ∈ X and for all ω ∈ Σ.

2: f ′(x, σ)← x′.

3: G′ = (X ′,Σ, f ′,Γ, x0, Xm)

The state splitting procedure presented in Definition 4.1 adds an unsafe state

that is only reachable by the unsafe transition. Hence, in order to obtain the state
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Table 4.4: Unsafe state combinations of the plant.

State
Combinations
(Figure,State)

Physical Meaning Consequence of Reaching Unsafe
State Combination

(4.4,2) Robotic arm in the 0◦ region,
and rotating clockwise.

Robotic arm collides with other
components of the mechatronic
system.

(4.4,6) Robotic arm in the 180◦ region,
and rotating counter-clockwise.

Robotic arm collides with other
components of the mechatronic
system.

(4.3d,Ex)
(4.3e,Ex)

Press horizontal and vertical
pneumatic actuators extended.

Press pneumatic actuators col-
lide.

(4.3e,Ex)
(4.3f,Ex)

Press horizontal pneumatic actu-
ator extended, and door closed.

Press horizontal actuator and
door collide.

(4.3b,Ex)
(4.4,3)

Robotic arm horizontal pneu-
matic actuator extended, and ro-
tating counter-clockwise in the
90◦ region.

Robotic arm collides with press
structure.

(4.3b,Ex)
(4.4,8)

Robotic arm horizontal pneu-
matic actuator extended, and ro-
tating clockwise in the 180◦ re-
gion.

Robotic arm collides with press
structure.

(4.3a,Re)
(4.3b,Ex)

(4.4,5)

Robotic arm horizontal pneu-
matic actuator extended, verti-
cal pneumatic actuator retracted
and rotating clockwise in the 90◦

region.

Robotic arm collides with other
components of the mechatronic
system.

(4.3a,Re)
(4.3b,Ex)

(4.4,0)

Robotic arm horizontal pneu-
matic actuator extended, verti-
cal pneumatic actuator retracted
and rotating counter-clockwise
in the 0◦ region.

Robotic arm collides with other
components of the mechatronic
system.
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transition diagram of the plant that distinguish all unsafe behaviors by using states,

then it is necessary to apply the state splitting procedure for each unsafe transition

described in Table 4.5.

Since, all necessary inputs for Algorithm 3.1 are already computed and described,

we can now obtain realization W for the interaction behavior of the robotic arm and

the press. Since the complete automaton model of the system has 582 states, it is

not depicted in this work. Then, for clarification reasons, we break the system model

in three subsystems that are presented in the sequel.

Example 4.1 The first example is regarding the robotic arm rotation automaton

subsystem depicted in Figure 4.4. There are two unsafe states in the robotic arm

rotation behavior, states 2 and 6, according to Table 4.4. Thus, in order to compute

realization W using Algorithm 3.1, we must first transpose the plant automaton and

then find the unsafe region by the computation of the uncontrollable reach. Notice

that, all events are controllable and observable, which implies that the safety device

is at safety level 1. Hence, safety device realization W , depicted in Figure 4.5, is ob-

tained by removing all unsafe states of the automaton. Notice that, the implemented

safety device needs to disable events ArmClock in state 1, and ArmCounter in state

7.

Example 4.2 The second example is regarding horizontal and vertical pneumatic

actuators subsystems of the press. The automaton that models the behavior of this

subsystem is the parallel composition of the automata depicted in Figures 4.3d and

4.3e, and the resulting automaton is shown in Figure 4.6. Only state (Ex,Ex) is

an unsafe state in the press horizontal and vertical pneumatic actuators behavior,

according to Table 4.4. Again, all events in the automaton plant are controllable

and observable, which implies that the safety device is also at safety level 1. Hence,

safety device realization W , depicted in Figure 4.7, is obtained by removing all unsafe

states of the automaton. Notice that, the implemented safety device needs to disable

events PressDown in state (Ex,Re), and PressOutside in state (Re,Ex).

Example 4.3 The third example is regarding the robotic arm horizontal and verti-

cal pneumatic actuators, and robotic arm rotation subsystem. The automaton that

models the behavior of this subsystem is the parallel composition of the automata

depicted in Figures 4.3a, 4.3b, and 4.4, and the resulting automaton is shown in

Figure 4.8. There are two unsafe transitions in the robotic arm behavior, transition

ArmForward from state (Re,Re, 4), and ArmBack from state (Re,Ex, 4), accord-

ing to Table 4.5. Since the unsafe behavior is an unsafe transition, it is necessary to

apply the state splitting procedure, and the resulting automaton is depicted in Figure
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Table 4.5: Unsafe transitions of the plant.

Previous
State

Combinations
(Figure,State)

Unsafe
Transition

Physical Meaning Consequence of Unsafe
Transition

(4.3a,Re)
(4.3b,Re)

(4.4,4)

ArmForward Robotic arm stopped in
the 90◦ region, horizontal
and vertical pneumatic
actuators retracted.

Robotic arm collides
with other components
of the mechatronic
system.

(4.3a,Re)
(4.3b,Ex)

(4.4,4)

ArmBack Robotic arm stopped in
the 90◦ region, horizontal
pneumatic actuator ex-
tended and vertical pneu-
matic actuator retracted.

Robotic arm collides
with other components
of the mechatronic
system.

(4.3a,Re)
(4.3b,Ex)
(4.3e,Re)

(4.4,7)

PressOutside Robotic arm stopped in
the 180◦ region, hori-
zontal pneumatic actua-
tor extended, and ver-
tical pneumatic actuator
retracted. Press hori-
zontal pneumatic actua-
tor retracted.

Press horizontal pneu-
matic actuator collides
with robotic arm.

(4.3a,Re)
(4.3b,Ex)
(4.3e,Ex)

(4.4,7)

PressInside Robotic arm stopped in
the 180◦ region, hori-
zontal pneumatic actua-
tor extended, and ver-
tical pneumatic actuator
retracted. Press hori-
zontal pneumatic actua-
tor Extended.

Press horizontal pneu-
matic actuator collides
with robotic arm.

(4.3a,Re)
(4.3b,Re)
(4.3e,Ex)

(4.4,7)

ArmForward Robotic arm stopped
in the 180◦ region,
horizontal and vertical
pneumatic actuators
retracted. Press horizon-
tal pneumatic actuator
Extended.

Robotic arm horizontal
pneumatic actuator col-
lides with press.

(4.3a,Re)
(4.3b,Ex)
(4.3e,Ex)

(4.4,7)

ArmBack Robotic arm stopped in
the 180◦ region, hori-
zontal pneumatic actua-
tor extended and vertical
pneumatic actuator re-
tracted. Press horizontal
pneumatic actuator Ex-
tended.

Robotic arm horizontal
pneumatic actuator col-
lides with press.
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Figure 4.5: State transition diagram of safety device realization W , obtained by
Algorithm 3.1 on the automaton of the robotic arm rotation subsystem, as described
in Example 4.1.
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Figure 4.6: Parallel composition of automata depicted in Figures 4.3d and 4.3e, as
described in Example 4.2.
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Figure 4.7: State transition diagram of safety device realization W , obtained by
Algorithm 3.1 on the automaton of the press horizontal and vertical pneumatic
actuators subsystem, as described in Example 4.2.

4.9. In addition, all events in the automaton plant are controllable and observable,

which implies that the safety device is at safety level 1. Hence, safety device re-

alization W , depicted in Figure 4.10, is obtained by removing all unsafe states of

the automaton. Notice that, the implemented safety device needs to disable events

ArmForward in state (Re,Re, 4), and ArmBack in state (Re,Ex, 4).

Examples 4.1, 4.2 and 4.3 cover all possible difficulties related to Algorithm 3.1,

and, now it is possible to compute Algorithm 3.1 for the parallel composition of the

automata depicted in Figures 4.3 and 4.4, and the unsafe states described in Tables

4.4 and 4.5.

4.3 Implementation and final comments

In order to implement the safety device in a programmable logic controller, it is

first necessary to compute the observer of the system. In [52], a Petri net diagnoser

for discrete event systems modeled by finite state automata is proposed. The Petri

net diagnoser is computed from a binary Petri net, called Petri net state observer,

whose marking, after the observation of a trace, corresponds to the state estimate of

the automaton model of the system. The Petri net state observer proposed in [52]

has polynomial growth with the size of the automaton model of the system, and can

be used to implement the observer of the plant. Moreover, a conversion method of

the Petri net diagnoser into Ladder logic for the implementation on a programmable

logic controller is also proposed in [52].
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Figure 4.8: Parallel composition of automata depicted in Figures 4.3a, 4.3b, and
4.4, as described in Example 4.3.
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Figure 4.9: Automaton of a state splitting procedure on the automaton depicted
in Figure 4.8, and the unsafe transitions ArmForward from state (Re,Re, 4), and
ArmBack from state (Re,Ex, 4), as described in Example 4.3.
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Figure 4.10: State transition diagram of safety device realization W , obtained by Al-
gorithm 3.1 on the automaton of the robotic arm horizontal and vertical pneumatic
actuators, and robotic arm rotation subsystem, as described in Example 4.3.
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It is important to remark that the system is modular system, where the global

system model is obtained from the parallel composition of several subsystems. Thus,

in order to implement the observer of the plant, it is necessary to implement the

observer of each subsystem [53], and then, the safety device. In this case, all events

in this system are controllable and observable, and there is no event in common

between two automata that model the subsystems. This condition allows the safety

device to recognize the exact state of the system, as proved in [54].

Then, for this implementation, all automata in Figures 4.3 and 4.4 were sepa-

rately converted to Ladder logic, and the safety device was implemented based on

the combination of states of the automata. In addition, the disabling logic for the

safety device was implemented by energizing a coil for each controllable event of the

plant, i.e., for each actuator that might be disabled. This coil opens a normally

closed contact that must precede each output coil on the controller that represents

this actuator. Moreover, the safety device coil is energized when the plant model

reaches a state previous to an unsafe state or an unsafe transition. The coil to be

energized in this state is the coil related to the disabled event. In the sequel, we

present an example of conversion from automaton to Ladder logic, based on the

subsystem of Example 4.1.

Example 4.4 In order to implement the subsystem described in Example 4.1 and

its respective safety device, the automaton depicted in Figure 4.4 was converted to

Ladder logic. The Ladder logic implemented is divided in 4 modules (Appendix A),

initialization module (Figure A.1), events module (Figure A.2), conditions module

(Figures A.3 and A.4), and dynamics module (Figures A.5, A.6, and A.7). Then,

two output coils, referring to actuators ArmCounter and ArmClock, were imple-

mented to be disabled after the opening of theirs respective contacts. Each of this

contacts is commanded to open by reaching states P7 and P1 in the automaton of

the plant, respectively. Thus, as shown in Figure A.8, when the system reaches state

1, the normally opened contact related to this state was closed, and the coil of the

safety device related to event ArmClock is energized. Analogously, when the system

reaches state 7, its respectively normally opened contact is closed, and the coil of the

safety device related to event ArmCounter is energized. These energized coils of the

safety device open two normally closed contacts that precede their respective output

coils, as depicted in Figure A.9.

The safety device was successfully implemented in the mechatronic system mod-

ule of cube processing found in the Control and Automation Laboratory at the

Federal University of Rio de Janeiro. In order to implement the safety device, we

converted the plant model into Ladder logic and used its states to determine in
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which states combination the device must disable the events. Then, in the next

chapter, we present the conclusions and future work.
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Chapter 5

Conclusions and future works

In this work, we address the problem of cyber-attacks that change the logic of the

discrete event control, and the problem of incorrect implementation or design of

the control logic. In addition, the modified, or incorrectly implemented, control is

considered to be unknown before and after the attack.

Thus, we propose a safety device that prevents the system from reaching unsafe

states, with a minimum level of interaction with any possible controller implemented

in the system. We also present a formal method for obtaining this safety device from

the automaton model of the plant. Then, we present a verification algorithm for the

safety level of the plant. These safety levels identify the blocked behaviors of the

system.

Finally, a safety device is implemented in a mechatronic plant located at the

Control and Automation Laboratory (LCA) at the Federal University Rio de Janeiro

(UFRJ).

For future works, we propose the analysis of the effects of modular implemen-

tation of the safety device on the safety level, which we expect the safety device to

block behaviors that the non-modular implementation does not block. In addition,

we intend to work on the expansion of the language of the safety device with a better

decision-making on which events the device disables, based on the knowledge of the

specification language. Moreover, the design of the safety device should consider

a reduced knowledge of the specification language and the effects on the decision-

making. Finally, we expect to search for better alternatives for devices in safety

levels 3 and 4.
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Appendix A

Ladder logic implementation

example

InitMem
M10.0

P1
M0.1
S

InitMem
M10.0
S

Figure A.1: Initialization module of Ladder logic of Example 4.4.
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Figure A.2: Events module of Ladder logic of Example 4.4.
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Figure A.3: Condition module of Ladder logic of Example 4.4.
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Figure A.4: Condition module of Ladder logic of Example 4.4.
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Figure A.5: Dynamics module of Ladder logic of Example 4.4.
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Figure A.6: Dynamics module of Ladder logic of Example 4.4.
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Figure A.7: Dynamics module of Ladder logic of Example 4.4.
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Figure A.8: Safety device implemented in Ladder logic, for Example 4.4.
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Figure A.9: Action module of Ladder logic with the safety device restrictions of
Example 4.4.
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