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Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos
necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

LOCALIZAÇÃO SUBMARINA UTILIZANDO UM SONAR TIPO IMAGING
EM AMBIENTES 3D

Gabriel Alcantara Costa Silva

Março/2017

Orientador: Ramon Romankevicius Costa

Programa: Engenharia Elétrica

Este trabalho propõe um método de localização utilizando um sonar do tipo
MSIS (Mechanically Scanned Imaging Sonar), o qual se destaca por seu baixo custo
e peso. O método implementa um filtro de partículas, um estimador Bayesiano,
e introduz um modelo de medição baseado na teoria de simulação de sonares. No
conhecimento do autor não há uma abordagem similar na literatura, uma vez que
os métodos atuais de simulação de sonar visam a geração de dados sintéticos para
o reconhecimento de objetos. Esta é a maior contribuição da tese pois permite a
a computação dos valores de intensidade fornecidos pelos sonares do tipo imaging
e ao mesmo tempo é compatível com os métodos já utilizados, como extração de
distância.

Simulações mostram o bom desempenho do método, assim como sua viabilidade
para o uso de imaging sonars na localização submarina. A nova abordagem tornou
possível, sob certas restrições, a extração de informações 3D de um sensor consider-
ado, na literatura, como somente 2D e também em situações em que não há nehnuma
referência no mesmo plano horizontal do eixo de escaneamento do transdutor. A
localização em ambientes 3D complexos é também uma vantagem proporcionada
pelo método proposto.
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Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the
requirements for the degree of Master of Science (M.Sc.)

UNDERWATER LOCALIZATION USING IMAGING SONARS IN 3D
ENVIRONMENTS

Gabriel Alcantara Costa Silva

March/2017

Advisor: Ramon Romankevicius Costa

Department: Electrical Engineering

This work proposes a localization method using a mechanically scanned imaging
sonar (MSIS), which stands out by its low cost and weight. The proposed method
implements a Particle Filter, a Bayesian Estimator, and introduces a measurement
model based on sonar simulation theory. To the best of author’s knowledge, there is
no similar approach in the literature, as sonar simulation current methods target in
syntethic data generation, mostly for object recognition . This stands as the major
contribution of the thesis as allows the introduction of the computation of intensity
values provided by imaging sonars, while maitaining compability with the already
used methods, such as range extraction.

Simulations shows the efficiency of the method as well its viability to the utiliza-
tion of imaging sonar in underwater localization. The new approach make possible,
under certain constraints, the extraction of 3D information from a sensor considered,
in the literature, as 2D and also in situations where there is no reference at the same
horizontal plane of the sensor transducer scanning axis. The localization in complex
3D environment is also an advantage provided by the proposed method.
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Chapter 1

Introduction

1.1 Contextualization

The development of underwater systems has been grown remarkably in the last
years, due to the increase in the complexity and risk of the tasks to be performed.
The inspection, installation and maintenance of underwater structures can be per-
formed by a diver. However, these tasks involve life danger, are slow, expensive
and limited by the depth a human diver. To fulfill the increasing needs of the oil
and gas and hydroeletric industries, as well as deep-sea research, the academic and
industrial communities are focusing on the development of unmanned underwater
vehicles (UUVs) and systems. In this context, the GSCAR (Grupo de Simulação e
Controle em Automação e Robótica)1 group, including the participation of the Lab-
oratório de Controle (LABCON)2 and the Laboratório de Controle e Automação
and Engenharia de Aplicação e Desenvolvimento (LEAD)3, both part of Electrical
Engineering Department (PEE/COPPE/UFRJ), has given a special attention to
submarine robotics. In 2004, the group started the development of a Remotely Op-
erated Vehicle (ROV), called LUMA [6]. The ROV was initially designed to operate
in the inspection of hydroelectric intake tunnel inspection, however in 2007 it was
modified for performing Census of Marine Life in Admiral Bay, in the Antarctic
continent and was sucessful in three expeditions.

In 2013, an underwater system, called ROSA (Robô para Operações em Stoplogs
Alagados), was developed in partnership with the Energia Sustentável do Brasil
(ESBR)4 . The objective of the system is to monitor operations with Stoplogs at the
hydroelectric power plant of Jirau, at the Madeira River. Stoplogs are modular metal
beams that are placed on top of each other to allow the depletion of a hydroelectric

1http://www.coep.ufrj.br/gscar/
2http://www.coep.ufrj.br/gscar/labcon.html
3http://www.coep.ufrj.br/gscar/lead/
4http://www.energiasustentaveldobrasil.com.br/
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turbine. To ensure a tight seal between the first Stoplog and the channel bottom,
the system uses a sonar to map the underwater environment and detect the presence
of debris large enough to interfere with the correct placement of the Stoplog. ROSA
Robot consists of a system with a ground and an underwater embedded electronics.
The latter has four inductive sensors, a pressure sensor, inclination sensors, a pan-
tilt unit and the possibility to connect either a profilling sonar, the Tritech Seaking,
or a Mechanically Scanned Imaging Sonar (MSIS), the Tritech Micron. The ROSA
project was the motivation for this work as presented interesting technical challenges,
such as level variation of the Madeira River and the silt suspension made necessary
a localization system for this underwater robot.

Figure 1.1: ROSA project with ESBR and COPPE teams.

Internationally, there is a wide variety of UUVs for different purposes. Besides
the already two mentioned vehicles developed by our group at the Federal University
of Rio de Janeiro(UFRJ) , it is possible to highlight some of the most important and
recent work in this field in the national (Brazilian) scenario. The Unmanned Vehicles
Laboratory at University of Sao Paulo developed a low cost Autonomous Underwater
Vehicle(AUV) for investigations on dynamics and navigation of this class of vehi-
cle. The AUV, called Pirajuba, has torpedo-like shape and is approximately 1.75m
long [14]. The ROV Laurs, from the Laboratório de Ultra-som e Robótica Subma-
rina at USP, was developed to perform deep sea mission as the retrieve of acoustic
transponders. Recently, a partnership between the BG Group Brazil and the Brazil-
ian Institute of Robotics in Salvador started the FlatFish project, which aims the
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development of a subsea-resident AUV to inspect the infrastructure of oil and gas
sites on demand. The Figure 1.2 presents a glimpse on the national panorama of
unmaned underwater vehicles in Brazil.

(a) ROV LUMA COPPE/UFRJ([6]).
(b) Pirajuba AUV - Poli-USP. ([14]).

(c) FlatFish AUV - BG/BIR([1]). (d) LAURS Laboratório de Ultra-som e
Robótica Submarina-USP

Figure 1.2: Some of the UUVs developed in Brazil.

1.2 Objectives

In order to perform its desired tasks and missions, an underwater robot must
know its own location relative to the objects to be manipulated. Position estimation,
or the so called localization problem consists, therefore, in finding the transformation
or correspondence between the robot’s local coordinate system and a global reference
coordinate system. The problem is not trivial, as the position of the robot usually
cannot be sensed directly. And this is specially true in the underwater scenario,
where sensors that are taken for granted at the surface (LIDAR, GPS, etc) are
simply not available as they use very high frequencies, which have a high attenuation
gradient in underwater environments. Therefore, most underwater systems must
rely on acoustic based devices. Sonars plays a fundamental role in underwater
localization as this devices allow to gather information from the environment without

3



the need of auxiliary infrastructure.
The main objective of this work is to propose a localization method for a generic

undewater vehicle using a Mechanically Scanned Imaging Sonar. This type of sonar
is a common choice among small vehicles such as ROVs and AUVs, due to its low
weight and cost. The intrinsec characteristics of an imaging sonar such as the wide
vertical opening of its sonar beam well suits this type of sonar to perform obsta-
cle avoidance, however introduces ambiguity in the readings. The current methods
present in the literature exploit the mature range finder theory and represent the
sonar beam as a unidimensional beam. As the main contribution of this work, sonar
simulation theory is embedded in the localization loop and allowing the representa-
tion of the shape of an MSIS sonar beam and its interactions with the environment.
This detailment in the representation allows the algorithm to estimate the posi-
tion of underwater systems in complex three dimensional environments and also to
extract information outside the main axis of the sensor.

1.3 Outline of the Thesis

• Chapter 2: Literature Review: Underwater Localization This chapter presents
an overview of the Underwater Localization field and the most recent tech-
niques applied. The principle of operations of sonar devices are also described
in this chapter, as well the methods applied to perform localization using dif-
ferent types of sonar devices. An analysis of the sonar beam processing is
performed and the limitations present in the current methods is defined.

• Chapter 3: This chapter describes the proposed method to localize an un-
derwater vehicle using a Particle Filter and a new measurement model for
an imaging sonar, embedding sonar simulation to cast reference beams. The
reader can find also the mathematical background of stochastic state estima-
tion at the begining of the chapter.

• Chapter 4: The implementation of the proposed method is discussed in this
chapter, as well as its software overview. The results of the method are shown
at the end of the chapter.

• Chapter 5: Conclusion and future work are explored in this chapter.

4



Chapter 2

Literature Review: Underwater
Localization

Localization is the process of estimating the pose of a rigid body within a given
reference coordinate system. Sensors that provide this pose directly, with the ro-
bustness, noise and frequency characteristics required by the robot’s actions, are
usually not available. This is usually solved by fusing the information of multiple
sensors into an estimate of the vehicle’s pose.

How hard the localization process is can depend on several aspects([63]):

• the knowlegde available about the initial state, i.e robot’s initial position;

• how dynamic the environment is;

• if the localization algorithm will have right to control the robot’s actions to
aid the estimation of the system’s pose.

Regarding the knowlegde of the robot’s initial state, the localization problem
can be classified in three general categories, presented in order of complexity:

• Position tracking - the initial pose of the robot is considered to be known, or
at least an assumption of the real pose is made. The system must be able only
to track the robot pose and handle noise present in the measurements, which is
usually considered small and often approximated by an unimodal distribution
(e.g., a Gaussian). This scenario is called a local localization problem, as
the uncertainty is bounded to a region around the robot’s true pose.

• Global localization - The initial pose of the robot is now unkown and the
system must be able to localize itself relying only on the readings of its sensors.
This relaxation on the initial pose knowledge makes the problem more complex,
because the error cannot be assumed to be bounded and the representation of
uncertainties are often not unimodal anymore.
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• Kidnapped robot problem - This problem has the same assumptions on
the initial pose of the robot as the localization problem, but considers that the
robot can be moved or teleported to another position during its operations,
with the “kidnapping” not being announced to the robot. This means that the
system must be able to recover its true pose, regardless of its current belief
about its own state. This is useful to evaluate the capability of the system to
recover from a system failure.

Regarding the environment’s dynamicity, in static environments, only the robot
is considered to move while the environment and all its features are still. In op-
position, in dynamic environments, some elements can change position or state, for
instance moving people, moving furniture or elements. This aspect influences how
the current information about the environment can be used to infer the robot posi-
tion if compared with the previous known map. In very dynamic environments, the
localization problem cannot be separated from a mapping problem.

Regarding whether the robot actions are directly involved in the sensing process,
there are two classifications: passive and active. If the localization algorithm can
interfere in the control of the robot in order to gather specific informations about the
environment, or to move the robot out a region of high ambiguity in the readings,
the localization is defined as active. Otherwise, if the localization algorithm can only
observe the readings and has no further control on the robot’s action, the system is
defined as passive.

Localization in an underwater environment is particularly challenging due to
rapid attenuation of high frequency electromagnetic signals, poor water visibility
and the unstructured nature of the environment itself. This makes the implemen-
tation of general and broad used strategies applied in ground and aerial systems,
as GPS for global localization, ineffective in an underwater scenario. To overcome
this limitations, acoustic based sensors are mainly used. As summarized in [49],
underwater localization techniques can be organized with respect to the kind of sen-
sor used, the auxiliary infrastructure needed and the information available about
the environment. Dead reckoning only uses sensors that give information about the
robot’s own state (speed). To augment dead reckoning, acoustic transponders and
modems can be used to determine the robot’s position by measuring the Time of
Flight of the acoustic signals. Finally, one can also gather data from the environment
to estimate the position of the system.

6



2.1 Dead reckoning

When the system relies only on internal sensors and do not aquire any informa-
tion about the surrounding environment, a robot must use information of its own
movement to be able to estimate its actual position.

The fundamental idea of Dead Reckoning (DR) is the integration of incremental
movement over time, with the prior knowledge of a previous valid position. This
kind of position estimation provides a good short term accuracy. But, due to conti-
nuous integration of each uncertainty, it introduces an unbounded cumulative error
overtime.

Inertial navigation systems (INS) integrate the linear and angular velocities and
the accelerations provided by embedded sensors to estimate the motion of the sys-
tem. There is a wide variety of inertial sensors available in the market with a wide
price range. In general, the price of the sensor is related with the quality and preci-
sion of measurements and to which depth the sensor is rated for. The most common
sensors applied in DR of underwater systems are the following:

• Doppler Velocity Log (DVL) - The DVL is a hydroacoustic sensor that
measures the relative velocity between the instrument and the sea bottom
(Fig. 2.1). The principle of operation of the DVL is to transmit downlooking
acoustic pulses and analyse the phase shift caused by the doppler effect. A
DVL can provide velocity measurements with a precision of 0.3% or less with a
range of 18 to 100 meters [38]. It can have one or more transducers and with at
least three the sensor is capable of provide a 3D velocity vector. Another sensor
that uses the same principle, but measures the echoes of pulses reflected by
suspended particles is the Acoustic Doppler Current Profile (ADCP or ADP) .
As the name suggests, this device is used to estimate the water current velocity.

Figure 2.1: Examples of different DVL models, each one best suited for a
specific depth and range. ([7]).

• Inertial Measurement Unit (IMU) - This is an integrated system that

7



incorporates accelerometers, gyroscopes and compass in order to provide the
vehicle’s orientation and its velocities, as well the gravitional forces. The
compass gives the heading, or the yaw measurement, of the system based on
Earth’s magnetic field. This kind of sensor is sensitive to objects with a strong
magnetic signature and can, therefore, be biased. Gyroscopes are responsible
for measuring the angular rates of the vehicle and accuracy and drift will vary
on the type of gyroscope used. Fiber Optic Gyros (FOG) and Ring Laser Gyros
(RLG), based on Sagnac interference, provide a drift as low as 0.0001o/h, while
solid-state Micro-Electro-Mechanical Sensors (MEMS) can introduce a drift
error of 60o/h. However due to its small size, weight and cost, MEMS based
IMUs are popular among small ROVs and AUVs. The accelerometers measure
the forces that actuate on the vehicle, including the gravitational force, and
the bias in MEMS system can vary from 0.001 to 1 micro-g [13].

• Pressure sensors - this kind of sensor directly measure the vehicle depth in an
underwater environment (Fig 2.2). The height of the water column above the
sensor can be calculated with high accuracy, due to the much steeper pressure
gradient in water, if compared with air. There are two common types of this
sensor: Strain gauge sensors, which employ metal alloys or silicon crystals.
The resistance of this sensors changes linearly with the pressure applied and
have an overall accuracy up to about 0.1% of full-scale and resolutions up to
0.001%. The other most common type is a quartz crystal pressure sensor,
which can achieve 0.01% and 0.0001% of overall accuracy and resolution at
full-scale, respectively [38]. It is noteworthy that the sensor must be calibrated
and the measurement takes into account only the height of the water column
above the device, if there are changes in the absolute depth of water in the
environment as an effect of tides for example, the true position along the
z − axis will be biased.
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Figure 2.2: Pressure sensor used in the ROSA and Luma projects ([66]).

As a result of the cumulative errors introduced by continuous integration of
measurements, an INS is usually applied in combination with others sensors that
can measure or observe the position (or portion of it) of the system and therefore
bound the error. Inertial systems use an internal motion model and, with its high
sampling rate capability, provides a motion prediction until the measurement of the
complementary and slower sensor arrives. Some devices which can measure, even
indirectly, the position or pose of the vehicle will be described in the next sections

2.2 Acoustic transponders and beacons

Localization using acoustic transponders is achieved by measuring the Time-of-
Flight (TOF) of artificially placed acoustic signal transmitters. Techniques differ
basically with respect to the geometry of the transponder placement. This strategy
has a significant implementation cost, and is also limited to a certain area, as it
needs the placement of beacon(s). The beacons can be organized closed together as
in the Ultrashort and Short Baseline configuration (USBL and SBL), or in a more
sparse way and covering a larger area as in Long Baseline (LBL) and GPS intelligent
buoys.
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2.2.1 Ultrashort and Short Baseline

Ultrashort Baseline(USBL) uses an array of transceivers placed close together
with a spacement on the order of less than 10cm and estimates the relative position
calculating range with the Time fo Flight of the emitted acoustic signal. While
elevation and azimuth angles are calculated based on the phase difference across
different transponders of the array. The transceiver is usually attached to a surface
ship and the transponder is located at the vehicle being tracked, as illustrated in
Figure 2.3. In constrast, Short Baseline or SBL explore the full length of the support
ship and place the transceivers (at least 3) spaced along its hull. That allows the
system to analyse the difference in time of arrival between the multiple acoustic pings
to estimate bearing, while range is calculated by TOF. The basic configuration of a
SBL system is illustrated in Figure 2.4.

Figure 2.3: Basic configuration of an USBL system. ([64]).

Communication in an USBL system employes only one transceiver, usually at-
tached to the support ship, and the transponder coupled to the underwater vehicle.
Therefore, range is limited by the reach of this communication layer. On the other
hand, in SBL systems, is the size of the baseline, i.e the size of the support ship, is
what dictates how spaced the transmitters are and the positional accuracy is highly
affected by this property [49].

In order to georeference the target vehicle, the position of the UBSL transceiver
must be known within the reference frame. This means that a calibration step
is needed to integrate the localization systems from the support vessel (GPS for
example) and the USBL system. Ridao et al. proposes, in [56], a localization
system for an AUV to perform mapping and inspection of hydroelectric dams. The
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Figure 2.4: Basic configuration of a SBL system. ([47]).

USBL transceiver is coupled to a surface buoy responsible for providing absolute
position in world coordinates. The buoy is equipped with a differential GPS and
has a dedicated INS, used to correct the movement of the USBL transceiver during
the estimation of the AUV position.

The arrangement of the USBL transceivers array and the acoustic transponder
is not fixed and different strategies can be applied, depending on the kind of ap-
plication. Batista et al. [3] developed a homing controller to an AUV in which the
underwater vehicle had only to localize with respect to one fixed target. Based on
that, the USBL transceiver was attached to the AUV itself, and a fixed acoustic
transponder was placed at the dock. This has allowed the AUV to calculate directly
the distance and the direction to the docking station. A similar approach, with a
unique transponder fixed on a ship, was implemented by [69] to make possible the
simultaneous positioning of multiple underwater vehicle with respect to one ship.

To overcome the range limitation, Khan et.al [37] applied an acoustic modem
to augment the USBL system’s reach. The authors fused the information of both
devices in order to achieve a system with larger range and more robust to noise, as
the USBL system dows not degrade its readings over time and the acoustic modem
provides accurate range expansion.

SBL systems require 40m baselines for accuracy in deep water [67] and, up to
a certain limit, the larger the baseline the better. However, Smith and Krone [59]
achieved a satisfactory accuracy in a home coming AUV with a 6m portable baseline,
constructed with 1.8m collapsable poles in a star configuration. The main goal of
this compromise was to be able to rapidly deploy the SBL transceivers to localize
the docking station of the AUV.
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2.2.2 Long Baseline and GPS Intelligent Buoys

In a Long Baseline or LBL , a series of widely spaced fixed beacons is spread in the
area intended to be covered. Each transponder has an unique and distinguishable
acoustic signal and the receiver sends an interrogation signal to measure time of
flight of each beacon. The sequence of range measurements allows the system to
trilaterate the position of the interrogation emitter. Each node of the LBL network
must be previously installed and globally referenced. The implementation step can
be performed with an auxilary ship [39]. For larger areas or in regions covered with
ice, where a ship-based survey would be extremely time consuming, a helicopter can
be used to install and georeference each beacon [30]. Vasilescu et al. [65] developed
an AUV capable of deploying, relocating and recovering the static sensor nodes.
Therefore the implementation of a LBL network is not a trivial task and has a non-
negligible associated issue, both cost money and time-wise. A basic configuration of
a LBL system is illustrated in Figure 2.5.

Figure 2.5: Basic configuration of an LBL system. ([47]).

GPS Intelligent Buoys, which are alrealdy georeferenced [2], can replace the fixed
beacon in order to attenuate the already mentioned implementation costs. In [71],
it was proposed a hierachical system in order to implement a large scale localization
system using GPS referenced buoys but with low communication overhead. The
authors categorize between anchor nodes and ordinary nodes, in which only the
former can communicate with GPS enabled buoys.

Another strategy to reduce implementation costs is to avoid the need of geo-
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referencing each buoy. This can be accomplished by the use of a self-localizing
network, as in [11]. Acoustic modems are applied to allow bidirectional communi-
cation between nodes. In addition, self-localizing LBL networks were implemented
without the need of additional hardware with a Simultaneous Localization and Map-
ping (SLAM) approach, then solving the localization problem for both transponders
and vehicle [46].

2.3 Sonar

Sound travels at a speed of approximately 1500m/s in water, what is much slower
if compared with light. However, acoustic signals can travel a much further distance
before being completely attenuated. Sonar is an acronym for Sound, Navigation
and Ranging and exploits this characteristic to gather data from the surrounding
environment. A passive sonar listens to the environment and has the objective to
filter sound signatures of different objects from the background noise. In contrast,
an active sonar transmits an acoustic signal and listens to the returning echo. It can
determine the distance from the insonified target from time of flight of the reflected
signal. The technology was first introduced by Reginald A. Fessenden, driven by the
necessity of detecting submerged vehicles during the first World War. The active
sonar developed operated with 540Hz and had a range of some kilometers [12].
Through the years, technology matured and size and cost of sonar devices allowed
its commercial usage in several applications such as obstacle avoidance, seafloor
mapping, identification of objects and, of course, localization and navigation of
underwater systems.

The operating frequency of an active sonar device dictates its range and how
fine grained its response will be. Lower frequencies propagate better through higher
density materials and will travel further. High-frequency signals will have a shorter
range as a result of its greater attetuation, although it will produce a high detailed
output and a good discrimination between targets [9]. Table 2.1 gives a panorama of
the different ranges achieved with the increase in frequency and also the associated
wavelength.
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Frequency Wavelength Distance
100 Hz 15 m 1000 km or more
1 kHz 1.5 m 100 km or more
10 kHz 15 cm 10km
25 kHz 6 cm 3km
50 kHz 3 cm 1km
100 kHz 1.5 cm 600m
500 kHz 3 mm 150m
1 MHz 1.5 mm 50m

Table 2.1: Range and frequency relation [9]

Active sonars and the respective localizations techniques will be covered by the
scope of this work and will be the focus point on the proposed method. This type
of sonar can be categorized with respect to the data aquisition method, range only
or imaging sonars, and with respect to the number of beams, single or multibeam
sonars.

2.3.1 Single vs. Multibeam Sonars

Single beam sonars emit one pulse (or beam) and listens to the echo from a single
receiving element. Single beam devices can be fixed and point always in the same
direction or can be coupled to a motor, which is responsible for changing the bearing
of the transducer head. Multibeam sonars explore the concept of wave interference.
Combining multiple receiving elements and precisely controlling the timing between
the emission and receiving times, multibeam sonar allows to distinguish the direction
of the returning echoes [9]. The key advantage of a multibeam sonar is that this kind
of device can gather information of a larger area much faster if compared to a single
beam sonar. One can consider a multibeam sonar as a colection of single beams,
therefore a single beam sonar must have its transducer mechanically moved (rotated
or towed) to cover the same insonified area by a multibeam sonar. In addition, for
each discretized position the sensor must be still for the whole ping duration, while
multibeam sonars can produce over 1000 beams within one cycle.

2.3.2 Ranging vs. Imaging Sonars

Ranging sonars provide only one measurement of range per ping, calculated via
TOF. On the other hand, imaging sonars return several intensity measurements,
provenient of multiple echoes reflected in the insonified area. These information
allows to create an image of the multiple objects present on the emitted signal
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direction of travel. Figure 2.6 illustrates the difference between an output of a
profiling sonar and an imaging sonar.

(a) Ranges output from a profiling sonar

(b) Image generated by a Multibeam imaging
sonar

Figure 2.6: Difference between profiling sonar and imaging sonar output.

Ranging Sonars

The beam pattern or beam shape is the first key difference between a ranging
and an imaging sonar. Whether it is desirable to have a very focused beam shape
or a more wide one splits the two categories apart. A ranging sonar has a conical
beam that can be approximated by a pencil beam shape and therefore provides an
accurate cross-sectional profile. Figure 2.7 illustrates the pencilar beam shape.

Figure 2.7: Pencil beam shape of a ranging sonar ([9]).
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The most simple sonar with this beam pattern is an echo sounder. This device
is composed by single fixed transducer, usually mounted towards the seabed. Es-
timating the distance by TOF, echo-sounders are generally applied as altimeters,
measuring the distance of the vehicle to the sea floor. Fairfield et al. [17, 19] imple-
mented a SLAM algorithm for an AUV for exploration of Flooded Sinkholes using
an array of echo sounders. The vehicle was equiped with 54 sonars displaced around
its body and each device has a beam opening of two degrees. Range measurements
up to 200m were gathered to form a map of the cenotes of Sistema Zacatón in
Tamaulipas, Mexico.

A mechanically scanned profiling sonar follows the same principle of the echo-
sounder, although the transducer head is attached to a stepper motor. The sensor
can provide up to a 360o scan, with a beam width as low as 0.45o. The output
of a profiling sensor consists of distance measurements to the first target hit and
the respective angular position of the motor. This two measurements together can
generate a scan in polar coordinates, what can compare to a profiling sonar with a
2D laserscanner. However, as sounds travels much slower, the time the transducer
must wait for the returning signal is much longer and results in a lower sampling
rate. Depending on the criteria adopted to consider an echo as a valid hit, the
sampling rate can be increased or decreased. If the sensor considers the first echo
above a threshold as a valid return, the duration of a single ping will be shorter
if compared to considering the peak echo as a detection. Instead of receiving the
first hit and moving the transducer head, the sensor must wait a time long enough
to allow a possible return coming from an object within the maximum range of
the sensor. Profiling sonars are applied in localization and mapping of underwater
vehicle analogously to 2D lasescanners, taking into account the lower sampling rate
and poorer accuracy. In [40],a SLAM navigation method was proposed to map a
large seafloor area using artificially deployed landmarks as vertical pole-like acoustic
reflectors. Maurelli et al. demonstrated a localization system without the need
to deploy any artificial infrastructure and proposed a featureless particle filter to
localize an AUV [44, 45].

To overcome the slow scan times, a multibeam echo sounder or multibeam pro-
filer can be appplied. Instead of only one transducer, this kind of sensor is composed
of an array of hydrophones and are capable of measuring a whole 2D scan sector
simultaneously. This kind of sensors are applied in the construction of bathymetric
maps. Figure 2.8 illustrates the three types of range-only sonar. Barkby et al. pre-
sented a solution to the SLAM problem of constructing bathymetric maps using a
particle filter. A multibeam sonar with 120 beams, with 3 degrees opening each, was
responsible for gathering the profile of the seafloor and the algorithm was sucessful
to handle large areas, even with little or no overlap in the mapping process. In [18],
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Fairfield et al. proposed a similar method from [17, 19], however an active localiza-
tion strategy was used to implement a mapping of large featureless area of ocean
floor. The 256 × 1o beams spread in a downward facing 150o fan were deliberately
moved to regions that are predicted to reduce the vehicle’s position uncertainty and
therefore improved the convergence and accuracy of the whole method.

(a) Echo sounder sonar (b) Mechanically Scanned Profiling sonar

(c) Multibeam Profiler Sonar

Figure 2.8: Most common range-only sonars (adapted from [52]).

Imaging Sonars

As exemplified in Figure 2.6, an imaging sonar produces an image of the insonified
area, similar to the operation of a radar. However, in contrast with the highly
focused pencilar beam of ranging sonars, an imaging sonar has a fan shaped beam,
as illustrated in Fig. 2.9. This format, with a wide vertical beamwidth and a small
horizontal opening, is well suited to perform obstacle avoidance and navigation.
Objects or targets present above or bellow the transducer axis will be detected, while
maintaning a good horizontal angular resolution. The Tritech Micron, a common
choice for imaging sonar in small ROVs and AUVs given its low weight and affordable
price (LUMA, ROSA and Flatfish all have one unit), has a vertical beamwidth of
35o while the horizontal opening is of only 3o.

As the emitted pulse covers a greater area than in the ranging sonars case, mul-
tiple returning echoes, reflected from different distances, may arrive within a single
ping. Therefore, instead of returning a single ranging value, imaging sonars return
an array of every reflection above a threshold. To do so, the sonar listens to the
returning echoes in pre-defined periods of time for each acoustic signal transmited.
This approach allows the imaging sonar to associate each reflection to a particular
time of arrival. In other words, each element of the output array corresponds to a
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Figure 2.9: Fan shaped Beam the associated bin readings representation ([9]).

specific distance from the transducer head. By varying the length of the listening
period, the sensor can achieve a higher resolution along the beam axis or a greater
range, as the total number of discretized spaces tends to be fixed on the sonar device
(limited sized array message). This discretized time period (or equidistant regions)
are illustrated in Figure 2.10.

Another particular characteristic introduced by the fan shaped beam is that
portions of the acoustic signal may hit targets with a greater angle of incidence if
compared to the almost orthogonal incident pencilar beam from a ranging sonar.
This means that the intensity of the returning echoes will vary depending on how
perpendicular the target is to the transducer beam axis. In conclusion, to be able
to show the nuances between objects in the image, the output of an imaging sonar
is an array of intensities of the returning echoes. The beam is discretized along
the transducer axis and each element is called bin. Each bin is associated to a
distance with the respective TOF of that particular region of space. The top part
of Figure 2.11 illustrates the intensities received by an imaging sonar in the scenario
illustrated by its bottom part. It is possible to visualize the backscattered signal from
the seabed being much weaker than the high intensity return from the bump on the
floor. Most of the imaging sonar have a Time Varyng Gain (TVG) to compensate
the attetuantion due the distance travelled within maximum range.

Figure 2.11 also allows the reader to visualize an important phenomenom which
is fundamental to the interpretation of a sonar image: shadows. The region behind
an hit target is not insonified and therefore cannot produce any echo. This can be
perceived as a region of no intensity reading after a high peak return. Sonars opera-
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(a) Short pulse provides high accuracy but small range

(b) Long pulse provides a longer range but compromises accuracy

Figure 2.10: Comparison between a short and long pulse length and its influency in
the accuracy along the transducer axis (adapted from [9]).

tors are trained to identify objects by their shadows as they can produce much more
semantic information than their reflections, what is exemplified in Figure 2.12. The
height of the object responsible by a strong reflection can be inferred by the length
of the shadows casted on the image. Object identification and tracking methods
based on the analysis of the image produced by an imaging sonar also implement
this strategy [48].

The wide vertical opening is particularly useful for detecting the presence of an
object in the insonified area, which is why this type of sonar is often used in obstacle
avoidance. However, it also introduces an indetermination of the vertical position,
as can be seen in Figure 2.13. Due to this indetermination, many authors consider
that only a 2D projection can be inferred and all 3D information is lost in this
process. This assumption tends to simplify a imaging sonar as a very noisy range
sensor, as it will be discussed in the Section 2.3.3.

Within this category of sonar, considering the beam shape as a comparison pa-
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Figure 2.11: Example of intensity readings from a imaging sonar ([52]).

Figure 2.12: Sonar images genearted by a FLS sonar and their respective and in-
dentifiable shadows (adapted from [22]).

rameter, the most simple is the Side Scan sonar and its fixed fan shaped beam. A
Side Scan sonar is designed for imaging large seabed areas, usually on marine sur-
veys and mapping. The sonar is usually towed by a ship or submarine and is faced
towards the seafloor. Its wide angle fan shaped beam produces intensity image slices
that are stitched togheter along the direction of motion. The towing operation and
the downfacing orientation of the sensor make this type of sonar sensitive to the
trajectory realized by the vehicle. As there is no overlap between two consecutive
readings, the sensor is dependent on multipass missions and there must be an over-
laping between the readings from adjacent tracks. With this constraint in mind,
Ruiz et. al proposed a landmark based SLAM algorithm using a sidescan sonar [57],
while Maurice et al. proposed a hybrid system, which integrates global range con-
straints, coming from GPS position of a surface vehicle or buoy and communicated
to the system via acoustic modems, to a side-scan sonar [20].

A Mechanically Scanned Imaging Sonar(MSIS) is analogous to a mechanically
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Figure 2.13: Ambiguity in the vertical position ([52]).

scanned profiler and have a stepper motor to swipe the transducer head. The fan
shaped beam is then rotated up to 360o to gather a full scan. As in the profiler
sensor, the ping period has a direct impact in the sampling rate. If the bin length
is set to increase range, the sensor must wait longer to move to the next bearing
position.

(a) Mechanically Scanned Imaging Sonar (b) Forward Looking Imaging Sonar

(c) Sidescan Sonar

Figure 2.14: Most common active sonar types (adapted from [52]).

MSIS devices are being used in relatively small AUVs thanks to its small size, low
weight and low cost. Other relevant aspect, however, is that they have comparatively
low resolutions and a very low sampling rates. It has therefore been mainly applied
in the localization of underwater vehicles in small areas and structured or partially
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structured environments with features easy to detect. In [53], a MSIS device is used
in a AUV developed for the inspection of hydroelectric dams and it was proposed
a SLAM algorithm based in the extraction of line features of planar structures of
artificially made environments. As the sampling rate of the sonar is very low, the
vehicle cannot be considered to stand still during a full scan and the distortion caused
by the vehicle’s motion had to be corrected based on the information from the dead
reckoning system. The full 360o scan is considered as a 2D plane reading and each
beam is transformed into a single distance measurement by thresholding. However
the fan shaped beam has a wide horizontal opening if compared to a laserscanner
for example. To overcome this limitation it was proposed, in [54, 55], an extended
sonar model taking into account the horizontal beam width and dealing with the
uncertainties on the incidence angle.

As an alternative to the feature extraction of the environment, Hernandez et
al. [25] proposed a probabilistic scan matching algorithm using a MSIS device. This
technique estimates the robot relative displacement between two configurations by
maximizing the overlap between two range scans. The MSISpIC, which is an ex-
tension of the pIC method (probabilistic Iterative Correspondence) specific for MSIS
sensors, aims to take into account the noisy and sparse measurements obtained from
a MSIS in order to better estimate the displacement between scans. This approach
also uses the data from a dead reckoning to compensate the motion of the robot
during the scans. Later, Mallios et al. extends the MSISpIC approach by main-
taining each new pose of a scan on a second Augmented State Extended Kalman
Filter (ASEKF), and compare the scans with previous scans that are in the nearby
area [41]. Maurelli et al. implemented the same algorithm used for a mechanically
scanned profilling sonar with an MSIS device, raising satisfatory results in a 2.5D
environment. However, it was not clear how the vertical ambiguity was dealt by the
authors.

Finally, a Multibeam Forward Imaging Sonar or Foward-Looking Sonar (FLS)
uses an array of receivers to identify the direction of the returning echoes and can
scan a larger horizontal sector per ping. The Tritech Gemini 720i, used in the
FlatFish AUV scans a 120o sector composed by 256 beams. A FLS can achieve high
resolution (8mm in range for the Gemini), however the prices can be also very high,
specially if compared to a MSIS. Figure 2.15 illustrates the beam shape of a FLS
and how the environment is insonified. As it single beam counterpart, a multibeam
forward looking sonar is primarly used to obstacle avoidance and vertical features
dectetion.

Karoui et al. proposed an automatic sea-surface object detection analysing FLS
images sequences and it was capable to detect and track man made objects, such as
buoys, boats and vessels. The method was based on the sound signature imprinted

22



in the sonar output [36]. In [68], a undersea inspection of ship hull is implemented
using a hovering AUV equipped with a FLS sonar. The sonar was a DIDSON with
a vertical beamwidth of 12o and 28.8o of horizontal FOV, in which 512 beams are
uniformly spaced. The localization and mapping algorithm was based on the iden-
tification of deployed targets which position was previously measured by a team of
divers. Johannsson et al. [32] proposed a method for ship hull inspection and harbor
surveillance using the same AUV platform, but instead of relying on an auxiliary
infrastructure (deployed landmarks), the authors extracted natural features based
on sharp transitions on the sonar image. In [28], Hurtos et al. proposed a Fourier-
Based featureless mosaicing method, which analysed the phase correlation between
two consecutive sonar images, later it achivied real time processing using the same
method [29].

Figure 2.15: Beam shape of a FLS and the representation of a horizontal beam
discretization ([15]).

2.3.3 Beam segmentation and range extraction

All sonar based techniques described have the necessity to evaluate the incoming
sonar beams or scans with some reference, which allows the system to observe some
portion of the environment and infer its position. Profiling sonars are modelled as
range finder sensors and its beam forming process, which aims to achieve a very
narrow penciclar shaped beam, allows the direct analogy with the well mature laser
based localization theory [31]. The returning echo TOF is converted to a distance
measurement based on the speed of sound in water and it is compared to a reference
distance, usually obtained in a ray casting process. This process simulates an unidi-
mensional ray, which travels from the origin of the sensor until it intersecs with some
object in the map that represents the environment (as illustrated in Figure 2.16).
Due to limitations of producing a colimated sound “ray”, the angular precision of
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a sonar will always be much lower if compared to a LIDAR (Light Detection and
Ranging) system.

Figure 2.16: Horizontal ray casting from a sensor to a target.

Some authors incorporated this limitations into localization and or mapping
process, as for instance, Fairfield et. al represented the pencilar beam shaped as
a narrow cone, which was constructed as a bundle of rays casted from the sonar
head transducer origin. This concept is illustrated in Figure 2.17, which the cone
model is represented in an Octree map, a type of grid that divides the space in
octants to increase memory efficiency [27]. This representantion was implemented
with an echo sounder sonar in [19] and also with a multibeam profiler [18]. A pre-
computation approach can be implemented to cope with the high processing power
demand, however the memory requirements of a lookup table can be significant
depending on the size and resolution of map.

Figure 2.17: Cone model used by Fairfield et al. [18] in opposition to a ideal ray
model.

The approximation of a profiling sonar as a pure range finder sensor, even though
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not optimal, has shown to be efficient as discussed in Section 2.3.2. However, a
imaging sonar demands some data processing to be able to provide a range value.

In order to extract a range measurement from an imaging sonar beam, the inten-
sity profile is processed with the goal of extracting its local maxima, where the high
peak intensity values are considered as returning echoes from significant targets. In
[53], it was proposed a segmentation method that first filters out the background
noise using simply a pre-defined thereshold. Then, the algorithm searches for the
local maxima in the intensity array. The range measurements associated with peak
intensity bins are then taken into account, discarding the intensity value. It is worth
noting that this segmentation criteria can handle more than one distance reading
per beam, what is an expansion of the basic range finder sensor representation. In a
following paper [54], a refinement on the beam segmentation is proposed and a min-
imum distance between two local maxima is adopted. This criteria tries to avoid the
computation of different range measurements for a same object. The same segmen-
tation method is applied in [55]. Dinamically thresholding can be applied to filter
the background noise and Heidarsson et al. [24] proposed a histogram analysis of
the intensities of each beam array. A threshold is set between the first two intensity
value modes, assuming that the first mode contains only low strengh echoes from
background noise.

Once the beam segmentation process is concluded, a range reference must be
determined. In the particular approach proposed by Ribas et al. [53], reference
ranges are geometric defined on a line-feature map, as illustrated in Figure 2.18b.
This approach cannot represent the vertical position of this lines, what means that
the representation of the environement is limited to 2D maps and the lines are
“infinite walls”, what in the test scenario of the platform is already a simplification
that not fully represents the world (Figure 2.18a).

Following the same segmentation method, a probabilistic scan matching tech-
nique is applied to estimate the displacement between two scans[25, 41–43]. Either
the feature or the featureless approach uses a full scan as measurement, what means
that both need to cope with the slow sampling rate presented by a mechanically
scanned imaging sonar. The sonar head cannot be assumed to stand still and re-
mains at the same position during the whole scan and the scan distortion induced
by the movement needs to be corrected, as illustrated in Figure 2.19.

In addition, [44, 45, 50] have shown that is possible to use a similar approach to
localize an underwater vehicle with a MSIS, analysing only single beams at a time.
The authors implemented a particle filter and for each particle they compare the
range measurements filtered from the real sonar beam r with a simulated reading
s. The simulated array s was computed by ray-tracing algorithm and the authors
exchange a profiling sonar and MSIS sonar without expliciting any change in the

25



(a) CIRS water tank at University of Girona ([? ].

(b) Multiple line intersection along the way of
travel (adapted from[53]).

Figure 2.18: Water tank test sceneario at University of Girona and the filtered
readings generated by a MSIS.

Figure 2.19: Motion induced distortion correction ([43]).
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proposed method. For that reason it was assumed that only a horizontal beam is
considered and the vertical opening of the sonar is not taken into account on the
mentioned papers.

Even though some authors incorporated intrisec and specific sonar character-
istics, as the representation of a profilling sonar beam as a narrow cone [18] and
the incorporation of backscattering properties to better deal with the narrow hori-
zontal opening of imaging sonars [53–55]. All the presented methods so far do not
cope with the wide vertical beamwidth and make simplifications on the principle
of operations of an imaging sonar to represent it as a range finder sensor. This
simplifications reflect on the environment representation and in how the reference
or observation of the state can be determined. The first major assumption considers
that the vertical ambiguity introduced by the wide vertical beamwidth, presented in
the Section 2.3.2, eliminates all 3D information and limits the imaging sonar to a 2D
sensor. For that reason, the applications of the imaging sonar sensor for localization,
in the author knowledge, are currently limited to 2.5D maps. The reference range
cannot be determined in 3D complex environments with the geometric or ray cast-
ing approach, as the wide vertical opening is not represented in these methods. In
addition, when an imaging sonar is modelled as a range finder sensor, the intensity
value of each returning echo becomes meaningless and it is discarded. Therefore, a
more detailed sensor model, which can simulate the behavior of wide beam shape
and its propagation, could explore the currently unused information provided by the
devices to deal with more complex environments and converge more efficiently.
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Chapter 3

Underwater Localization with an
Imaging Sonar

To deal with the localization problem of underwater systems, acoustic signals are
best suited as it is not rapidly attenuated as high frequency ones. Acoustic beacons
requires high implementation and operations costs, with the use of support vessels.
Therefore, for small AUVs and underwater systems, the use of sonar devices to
gather information about the environment is well suited, as they provide flexibility
to operate in different locations without the need of any additional infraestructure.
Imaging sonar plays an important role in this scenario as its wide vertical beam
allows a good obstacle avoidance capability.

This work proposes a localization method using a mechanically scanned imaging
sonar (MSIS), which stands out by its low cost and weight. The proposed method
implements a Particle Filter, a Bayesian Estimator, and introduces a measurement
model based on sonar simulation theory. To the best of author’s knowledge, there
is no similar approach in the literature, as the current sonar simulation methods
target synthetic data generation for object recognition. This stands as the major
contribution of this work and allows the representation of the full beam shape of
imaging sonars and the computation of intensity values. This detailment in the
representation allows the algorithm to estimate the position of underwater systems
in complex three dimensional environments and also to extract information outside
the main axis of the sensor. To understand the proposed solution key concepts of re-
cursive and stochastic state estimation must be introduced. The material presented
in Section 3.1 is mainly based on [63].
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3.1 Recursive and Stochastic state estimation

A model-based paradigm, predominant in the 1970s, assumes a fully modeled
and deterministic robot and environment [62]. The space-state model of a system
(or robot) encodes all the relevant information to describe its behavior through time.
Although, recent robotics aplications, specially in the field of mobile robots, operate
in much more unstructured and dynamic environments. The level of uncertainty
that this kind of system is exposed is much higher if compared to "classic" robotics
applications as assembly lines, which perform the exact same task exaustively. The
drift caused by an unmodelled underwater current, exact weight distribution and
the noisy readings coming from a sonar sensor are examples of uncertainties that
underwater robots are exposed. Therefore, the assumption that the behavior of the
system is fully modeled and its state estimation is correct needs to be reevaluated.

Hence to cope with this kind of applications, the main idea of probabilistic (or
stochastic) state estimation is to explicity model the underlying uncertainties. In-
stead of estimating the state in a deterministic way, considering that the model is
exact, the probabilistic paradigm estimates the true state using probability distri-
butions. In other words, the main goal is to estimate how likely to be true the
estimation is.

In order to present the basic theory of stochastic state estimation, it is important
to first introduce some concepts.

The state transition function that models the behavior and evolution of the esti-
mated state during time cannot be represented by a deterministic function. Instead,
the concept of a state transition probability must be introduced:

p(xt|x0:t−1, u1:t, z0:t−1). (3.1)

where it defines all the possible new states that can be reached given the previous
states, control inputs and measurements1. However, one can assume the complete-
ness of state xt and that it satisfies the Markov property, i.e the current state
encodes all the information about the previous states and control inputs. Therefore,
all future conditional probabilities depend only on the current state and do not rely
on any of the past states x0:t−1, control inputs u0:t−1 or measurements z0:t−1. It is
possible to represent Eq. 3.1 as being conditioned only to the previous state xt−1

and the last control input ut:

p(xt|x0:t−1, u1:t, z0:t−1) = p(xt|xt−1, ut). (3.2)
1The same convention from [63] is adopted, it is considered that the robot or the particular

system executes the control input ut before it performs the latest measurement zt.
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Once the uncertainties are explicity taken into account on the process system
modelling, the prediction the state evolution, introduced in 3.2, will accumulate the
errors and will become meaningless over time. Unless it is grounded on observations
of the actual state. The process, in which measurements zt are generated, can be also
expressed by a conditional probability distribution, called measurement probability
distribution. Analogously with the state transition probability, and considereing the
completeness of the state it can be defined as:

p(zt|x0:t−1, z1:t−1, u1:t) = p(zt|xt). (3.3)

This probability distribution defines how likely the measurement zt is to happend,
given the state xt. This distribution is not always trivial to be defined and will play
a fundamental role in the development of this work. On top of that, rarely the state
of a system can be measured directly. For that reason, it is defined as the internal
belief bel(xt) of the system, all the information available to the robot about the true
state and the environment at a given time t:

bel(xt) = p(xt|z1:t, u1:t). (3.4)

Eq. 3.4 is a probability distribution over the state xt at time t, conditioned on
all past measurements z1:t and all past controls u1:t. It represents the knowledge
of the system about its actual state and assigns a probability (or density value) to
each possible hypothesis of the true state.

3.1.1 General Bayes Filter

The Bayesian filtering is the base of probabilistic robotics and relies on the Bayes
Rule to maintain the internal belief of the system recursively. The Bayes Rules allows
one to infer a quantity x from the available data y:

p(x|y) =
p(y|x)p(x)

p(y)
. (3.5)

The probability p(x | y) is called the posterior probability distribution over the
random variable X. In robotics the posterior distribution is defined by the belief,
introduced by Equation 3.4. The prior probability distribution summarizes the
knowledge of the system prior the incorporation of the latest measurement zt and
is denoted bel(xt):

bel(xt) = p(xt|z1:t−1, u1:t). (3.6)

Given an initial state estimate xt0 , the BF calculates the posterior recursively
in two steps: a prediction step and a correction step. The first step of the Bayes
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filter is responsible for incorporating the control input ut to the previous belief of
the system bel(xt−1). Expanding the prior distribution bel(xt) using the theorem of
total probability, it can be written as:

bel(xt) =

∫
p(xt|xt−1, ut)p(xt−1|z1:t−1, u1:t−1)dxt−1

=

∫
p(xt|xt−1, ut)bel(xt−1)dxt−1.

(3.7)

The prediction step is then the computation of the prior internal belief of the
system bel(xt) expressed as a convolution of posterior belief at time t − 1 with the
state transition probability, that describes the influence of the lastest control input
ut over the last state xt−1. With the arrival of the lastest sensor measurements, the
prediction is corrected in the second step. This can be explained based on the Bayes
Rule (Equation 3.5) applied to the posterior as follows:

bel(xt) = p(xt|z1:t, u1:t) =
p(zt|xt, z1:t−1, u1:t)p(xt|z1:t−1, u1:t)

p(zt|z1:t, u1:t)
. (3.8)

Once again exploring the completeness of the state xt, the history of previous
measurements and controls provide no additional information and Eq. 3.8 can be
simplified as:

bel(xt) =
p(zt|xt, z1:t−1, u1:t)p(xt|z1:t−1, u1:t)

p(zt|z1:t, u1:t)
Markov

=
p(zt|xt)p(xt|z1:t−1, u1:t)

p(zt|z1:t, u1:t)
. (3.9)

One may recognize the measurement probabilty (Eq. 3.3) as the first term of
the numerator, and the prior bel(xt) as the second term. Due the fact that the
denominator in Eq 3.9 doesn’t depend on the state xt, it will be constant to any
value of xt and can be replaced by a normalizer variable η:

bel(xt) = ηp(zt|xt)bel(xt). (3.10)

In conclusion, the correction step computes the current posterior belief by mul-
tiplying the prior bel(xt) by the probability that the measurement zt may have been
observed.

The Bayes Filter can be summarized as in Algorithm 1 and it is possible to
visualize that given an intial internal belief bel(xt0), i.e an initial guess, the Bayes
Filter can recursively update the internal state estimation of the system based on
the incoming control inputs and measurements. Even though the filter is robust to
unmodeled dynamics, inaccuracies in the probabilistic models, and approximation
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errors [63], the algorithm requires the exact calculation of the probability distribu-
tions presented at each step. In practice, there are, except for very simple estimation
problems, no closed solutions for the integral in line 3 (Eq. 3.7) and the product in
line 4 (Eq. 3.10). The most common practical implementations of the Bayes Filter
will be presented in the rest of this section.

Algorithm 1 Bayes Filter Pseudocode
BayesFilter(bel(xt−1, ut, zt)

1: for all xt do
2: bel(xt) =

∫
p(xt|xt−1, ut)bel(xt−1)dxt−1

3: bel(xt) = ηp(zt|xt)p(xt|z1:t−1, u1:t)

return bel(xt)

3.1.2 Kalman Filter

The Kalman Filter (KF) [35] relies on some important assumptions and simplifi-
cations of the general Bayes Filter to be able to introduce a practical implementation
to real world problems. The first assumption is that the beliefs are assumed to be
Multivariate Normal Distributions(MVN), described by its two moments, the mean
µt and covariance Σt.

bel(xt) = N (xt, µt,Σt) =
exp{(xt − µt)TΣ−1

t (xt − µt)}√
det2πΣt

. (3.11)

To this assumption holds, the state transition and measurement probability fun-
tions (Equations 3.1 and 3.3) must be linear functions in its arguments, with a zero
mean Gaussian noise associated:

xt = Axt−1 +But + εt, (3.12)

zt = Cxt + δt, (3.13)

where A is a square matrix of size n× n, respecting the state vector xt dimensions,
and B is n ×m, where m is the dimension of the control input vector ut. Finally
C is a k × n matrix with k being the dimension of the measurement vector zt. The
randomness of the state transition and the measurement noise are represented by
the addition of the gaussian noise vectors εt and δt, which have zero mean and known
covariance R and Q, respectively. As Eq. 3.12 and 3.13 are linear in its arguments
with additive Gaussian noise, the state transition and measumerent probabilities are
defined as MVN:

p(xt|xt−1, ut) =
exp{−1

2
(xt − Axt−1 −But)TR−1(xt − Axt−1 −But)}√

det2πR
, (3.14)
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p(zt|xt) =
exp{(−1

2
zt − Cxt)TQ−1(zt − Cxt)}√

det2πQ
. (3.15)

To ensure that the posterior is always a Gaussian, one more assumption needs
to be made and the initial belief bel(x0) must also be normal distributed as

bel(x0) =
exp{(x0 − µ0)

TΣ−1
0 (x0 − µ0)}√

det2πΣ0

. (3.16)

As the Bayes Filter, the KF has basically a prediction and a correction step.
The prediction step calculates bel(xt), which is normal distributed and represented
by the two moments µt and Σt by incorporating the latest control ut. The mean is
updated using the state transition function 3.12:

µt = Atµt−1 +Btut, (3.17)

Σt = AtΣt−1A
T
t +R. (3.18)

In addition, the prior covariance Σt is updated considering that the current state
depends on the previous one through the linear matrix A and the contribution of the
Gaussian noise is introduced by R. The formal justification of the KF is extensive
and will be kept outside the scope of this work without any loss in compreension.
The reader can look at [35, 63] for a complete formal mathematical derivation.

The correction step is balanced by the introduction of the Kalman Gain Kt,
which acts as a blending factor and specifies how much weight the measurement zt
should have in the correction of the posterior mean and covariance. The KF defines
its gain Kt in order to minimize the posterior covariance error [70] and is calculated
as follows:

Kt = ΣtC
T
t (CtΣtC

T
t +Q)−1. (3.19)

Once defined the Kalman gain for the time t, the correction step can be performed
and the posterior mean µt and covariance Σt can be updated.

µt = µt +Kt(zt − Ctµt), (3.20)

Σt = (I −KtCt)Σt. (3.21)

One of the key advantages of the Kalman Filter is its computational efficiency.
The complexity of the algorithm is lower bounded by the matrix inversion opera-
tions involved in the calculation of the Kalman Gain, which is O(k2.8) and k is the
dimension of the measurement vector zt. And the matrixes multiplication imposes
a complexity of order O(n2), with n being the number of states. Depending on the
applications one term can dominate the other, e.g in mapping application, where
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the state space can have hundreds up to thousands dimensions, the dominant term
is the complexity O(n2).

It is important to note that the Kalman Filter constraints narrow the state space
representation to linear systems with a Gaussian noise, what make this approach
limited to more simple models and unimodal distributions. Applications with mul-
tiple hypothesis, such as global estimation, are not well suited to be implemented
with a KF. In a global localization problem, the initial state cannot be represented
by a unimodal MVN as stated in Equation 3.16. Otherwise to trully encode the
notion of a unknown initial belief, the covariance Σ0 should be infinite.

Extensions and variants of the KF could be implemented to handle some of the
addressed limitations, as a Multi-Hypothesis Kalman Filter (MHKF), where a mix-
ture of Gaussian distributions is applied to cope with multimodal distributions. In
the case of non-linear systems, a linearization of the state transition and measure-
ment models can be performed as in the Extended Kalman Filter (EKF), where the
linearization is obtained via a first-order Taylor series expansion. The Unscented
Kalman Filter (UKF)[34] uses a stochastic linearization with a weighted statisti-
cal linear regression process. However, all these techniques are constrained to cases
where the Gaussian-linear assumption is a suitable approximation, otherwise a more
flexible posterior representation is needed.

Algorithm 2 Kalman Filter Pseudocode
procedure KalmanFilter(µt−1,Σt−1, ut, zt)

1: µt = Atµt−1 +Btut
2: Σt = AtΣt−1A

T
t +R

3: Kt = ΣtC
T
t (CtΣtC

T
t +Q)−1

4: µt = µt +Kt(zt − Ctµt)
5: Σt = (I −KtCt)Σt

return µt,Σt

3.1.3 Particle Filter

Particle filter (PF) [62] is called a nonparametric filter, what means that the
probability distributions involved in the state estimation does not depend on a fixed
set of parameters to be represented. Therefore the filter has more flexibility and the
distributions are not limited to a fixed funtional form, as in the case of the Kalman
Filter. This characteristic allows particle filters to solve the global localization and
the kidnapped robot problems, that were remaining as open problems. The PF is
a variation of a Sequential Monte Carlo Filter [5] and approximates the internal
belief of the system by a set of N random samples x[m]

t , or particles, drawn from the
internal belief of the system bel(xt). A Monte Carlo estimator approximates the a
probability distribution as:
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p(x) =
1

N

N∑
m=1

δxmt (xt), (3.22)

where δxmt denotes the Dirac delta point mass function centered on xmt . If there are
enough samples, this nonparametric approximation can represent a much broader
and complex space of distributions. Strongly nonlinear systems and multimodal
distributions are well handled by this type of filter. However, this flexibility comes
with a high computational cost as the number of particles increases.

The key idea is that each particle x[m]
t represents a concrete instantiation of the

state xt and the posterior distribution bel(xt) is approximated by the set of particles
χt := x

[1]
t , x

[2]
t , . . . , x

[M ]
t . To the representation be accurate, each particle x[m]

t should
have a probability to be drawn and included in χt proportional to the posterior
probability bel(xt) or, in other words, proportional to how likely to be true the state
instantiation x[m]

t is:
x
[m]
t ∼ p(xt|z1:t, u1:t). (3.23)

Eq. 3.23 implies that the regions of the state space with a greater concentration
of particles will have a higher likelihood of the true state to be located in that region.
Although, sampling directly from any arbitrary function or probability distribution
is not always possible and to overcome this problem a method called Importance
Sampling (IS) is applied. The key idea of IS is to approximate a target distribution
f(x) by a set of weighted samples drawn from a second distribution g(x), called
importance distribution. This distribution is considered to be easy to sample from.
Figure 3.1 illustrates this concept. Supose that we want to estimate the target dis-
tribution f represented in red by a set of samples (blue). However it is only possible
to sample from a proposal distribution g (green), illustrated in 3.1(b). By weighting
each sample it is possible to represent the target distribution by the samples from
the proposal (3.1(c)). To understand the method first consider the expected value
of an arbitrary function h(x) over the target distribution as given as:

Eh(x)(f(x)) =

∫
h(x)f(x)dx. (3.24)

By assuming that f and g have the same support, i.e if f(x) > 0 → g(x) > 0.
The integral in 3.24 can be rewritten as, without any harm

Eh(x)(f(x)) =

∫
h(x)

g(x)f(x)

g(x)
dx. (3.25)

As the importance or proposal distribution is choosen to be easily sampled from,
it can be approximated by its Monte Carlo estimation (Eq. 3.22). Equation 3.25
can be then approximated as
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∫
h(x)

f(x)

g(x)

1

N

N∑
i=1

δxmt (xt)dx ≈
1

N

N∑
i=1

f(xm)

g(xm)
h(xm). (3.26)

If we define wm = p(xm)
g(xm)

, it is possible to reformulate the approximation of the
target distribution f(x) as an equivalent Monte Carlo approximation from weighted
samples from the proposal distribuition:

f(x) ≈ 1

N

N∑
i=1

wmδxmt (xt). (3.27)

Figure 3.1: Importance sampling exemplification [63]

The proposal distribution must be carefully choosen to approximates the target
distribution bel(xt). Due the recursive nature of the filter, each particle x[m]

t is
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generated based on the particle x[m]
t−1 ∈ χt−1, which is assumed to be distributed

according to bel(xt−1). The proposal distribution is then defined as:

p(xt|xt−1, ut)bel(xt−1), (3.28)

what involves the ability to sample from the state transition probability. This topic
will be deeper discussed when the motion model for an underwater vehicle is pre-
sented in Section 3.3. To define the weight w[m] of each particle it is useful to
consider the particle filter carries the whole sequence of states from which particle
was generated x[m]

0:t = x
[m]
0 , x

[m]
1 , . . . x

[m]
t . This is an artifact to help with the weight

calculations and with this concept in mind it is possible to define the posterior over
all states sequences:

bel(x0:t) =p(x0:t|z1:t, u1:t)
Bayes
= ηp(zt|x0:t, z1:t−1, u1:t)p(x0:t|z1:t−1, u1:t)

Markov
= ηp(zt|xt)p(x0:t|z1:t−1, u1:t)

=ηp(zt|xt)p(xt|x0:t−1, z1:t−1, u1:t)p(x0:t−1|z1:t−1, u1:t)

Markov
= ηp(zt|xt)p(xt|xt−1, ut)p(x0:t−1|z1:t−1, u1:t−1).

(3.29)

The weight of each particle can be then defined as:

w
[m]
t =

target distribution

proposal distribution

= η
p(zt|xt)p(xt|xt−1, ut)p(x0:t−1|z1:t−1, u1:t−1)

p(xt|xt−1, ut)p(x0:t−1|z1:t−1, u1:t−1)

= ηp(zt|xt).

(3.30)

Particle weights or importance factors are responsible for incorporating the mea-
surement zt into the particle set. The weights describes how likely the measurement
zt is considered to happen under the state hypothesis x[m]

t .
The particle filter algorithm, as represented in Algorithm 3 estimates the poste-

rior bel(xt) from the previous belief, or in the particular representation, estimates
χt based on the particles from χt−1. There is however a remaining step on PF al-
gorithm, described in lines 7 to 9. The Resampling or Importance Resampling step
draws samples with replacement from the posterior distribution with a likelihood
proportional to their weights. Low weight particles will have a higher chance to
be replaced by high weighted particles, which are more likely to be closer to the
true state. IR does not change the number of particles, it just modifies how they
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are distributed, redistributing a weighted approximated density to an unweighted
density. The particle set χt that was originally distributed according to the prior
distribution bel(xt) is resample to be approximately distributed according to the
posterior bel(xt) = ηp(zt|x[m]

t )bel(xt).
The resampling step reduces the covariance of the state estimation, however it

induces a loss of divertisity in the particle set. Therefore, it should not be performed
at every iteration step, with the risk of ending up with only one dominant particle.
On the other side, if one resamples the particle set too seldom or not at all, the
particles will start to diverge, and may end up in regions with low probability. The
periodicity in which the resampling occurs must be well tuned. The most common
criteria to analyse the degeneracy of the particles distribution is the effective sample
size (or effective number of particles):

Neff =
1∑N

m=1(w
[m]
t )2

. (3.31)

Once Neff drops below a threshold value e.g. Neff < N
2

, the particles the
resampling step takes place, otherwise the weights are updated according to [26]:

w
[m]
t = p(zt|x[m]

t )w
[m]
t−1. (3.32)

Another side effect of the resampling step is called particle deprivation and occurs
due to the randomness nature of the filter. A series of random particle replacements
can wipe all the particles near the true state and the filter would struggle to recover
from a wrong convergence. This drawback can be avoided introducing a small set of
randomly generated particles as implemented in [45] within the localization system
of an AUV. This method deteriorates the state estimation as introduces particles
that are not necessarly near the true state and should not be performed at every
step. A practical implementation is to spread some particles if the maximum value
of the particles weights is bellow a threshold.

3.2 State Vector

To localize an underwater vehicle in a 3D complex environment it is necessary
6Degrees of freedom (DOF) to describe its pose. Three for the position of the system
and three for its orientation with respect to an inertial reference frame Σi(Oi −
xyz). In low speed underwater systems, a fixed-earth frame can be considered as
fixed inertial reference frame. The body-fixed reference frame Σb(Ob− xbybzb) of an
underwater vehicle has its origin Ob usually placed on the center of gravity of the
vehicle when this point is in the principal plane of symmetry or at any arbritary
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Algorithm 3 Particle Filter Pseudocode
ParticleFilter(χt−1,Σt, ut, zt)

1: χt = χt = ∅
2: for m = 1 to M do
3: sample x[m]

t ∼ p(xt|ut, x[m]
t−1)

4: w
[m]
t = p(zt|x[m]

t )w
[m]
t−1

5: χt = χt + 〈x[m], w[m]〉
6: if Neff < M/2 then
7: for m = 1 to M do
8: draw i with probability ∝ w

[i]
t

9: add x[i]t to χt
return χt

point for better convenience. The orientation of the body coordinate frame in marine
vehicles is aligned with the principal axes of inertia [21], as ilustrated in Figure 3.2.:

• xb -longitudinal axis (pointing forward)

• yb - transversal axis directed to right-hand facing forward, or starboard

• zb - normal axis (directed from top to bottom)

Figure 3.2: Inertial and body-fixed coordinate frames

Lets define η1 ∈ R3 as the vector of the body position in the inertial reference
frame

η1 =

xy
z

 . (3.33)
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The orientation is defined by the vector η2 ∈ R3 that represent Euler-angles for
roll (φ), pitch (θ) and yaw (ψ), also relative to the fixed reference frame.

η2 =

φθ
ψ

 . (3.34)

The orientation of the sytem can be represented also by a rotation matrix Rab ∈
SO(3), that rotates the coordinate frame Σb to Σa. SO(3) is the special orthogonal
group of order 3 :

SO(3) = {R ∈ R3×3 : RRT = I3×3, det(R) = 1}, (3.35)

and I3×3 denotes the Identity matrix of order 3. The orientation of the vehicle
in the inertial frame can be expressed by the composition of elementary rotations,
computed via premultiplication, as Rib = Rz(ψ)Ry(θ)Rx(φ) where Rl is a rotation
matrix around the l-axis.

Rib =

cψcθ −sψcφ+ cψsθsφ sψsφ+ cψsθcφ

sψcθ cψcφ+ sψsθsφ −cψsφ+ sψsθcφ

−sθ cθsφ cθcφ

 , (3.36)

where sβ and cβ stands for sin(β) and cos(β), respectively. In conclusion, the state
vector that fully describes the pose of the vehicle relative to the inertial reference
frame is

xt =

[
η1

η2

]
= [x, y, z, φ, θ, ψ]T . (3.37)

Although as discussed in 3.1.3, the convergence of the Monte Carlo estimation
depends on the number of samples. Therefore, it would require a high number of
particles to achieve a good approximation of the posterior distribution over a six
dimensional state variable.

The proposed localization method is not specific to a given particular underwater
vehicle or system, however there are some assumptions that can be made without
compromising the validity or how generic the solution is. Most of the underwater
vehicle are passively stable in roll and pitch axis and, if not, it can be considered
that a good absolute measurement can be achievied with the usage of a IMU and
a DR system as discussed in Section 2.1. For this reasons, the state estimation can
directly use the values for the roll and pitch axis, with a fixed error distribution.
The measurements from a calibrated pressure sensor returns an estimation of the
vehicle’s depth (position in the z − axis) and can have zero mean Gaussian error
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associated with variance σ2
z . On the other side, a compass measurement can be

affected by ferromagnetic structures, specially in man-made environment as hydro-
electric plants, and therefore can be biased. Finally, as the measurement model,
discussed in Section 3.4, is not continuous in the x and y axis and these dimensions
still need to be sampled.

In summary, depth, pitch and roll are considered as instrumented with strapdown
high update sensors and provide a direct measurement of z, φ, ψ. There is no direct
sensor for the remaining dimensions and therefore the PF has to sample these degrees
of freedom.

xt = (

sampled︷ ︸︸ ︷
x, y, θ, z, φ, ψ︸ ︷︷ ︸

directly measured

)T . (3.38)

3.3 Motion Model

As introduced in Section 3.1, the state transition probability p(xt|xt−1, ut) plays
a fundamental role in the prediction step of any practical Bayesian Filtering imple-
mentation. Aiming to maintain a solution as generic as possible, the motion model
of the vehicle is assumed as a kinematic model. More complex dynamic models
are hardly available and are highly dependent on specific parameters that strongly
differ for each different vehicle. Design aspects such as position and orientation of
the vehicle’s thursters, weight distribution, buoyancy and drag effects may drasti-
cally affect how the vehicle behaves and therefore its model. The kinematic model
describes, basically, the motion of the robot, without considering the forces that
caused it. The vehicle is represented as a rigid body, i.e the distance between any
two given points of the vehicle is considered constant. As stated in Section 3.2, it is
assumed the presence of a DR system and the localization loop has direct access to
the linear and angular velocities represented on the vehicle coordinate frame as:

ν =

[
ν1

ν2

]
= [u, v, w, p, q, r]T , Section (3.39)

where ν1 = [u, v, w]T is the linear velocities vector of the origin of the body-fixed
frame Σb related to surge, sway and heave, respectively, and ν2 = [p, q, r]T is the
angular velocites vector related to the roll, pitch and yaw.

As the proposed localization method implements a particle filter, there is no need
to compute the entire state transition probability distribution for arbitrary xt, ut
and xt−1. Instead, it suffices to be able to sample from this distribution as discussed
in Section 3.1.3. The abitily to sample from the motion model means that given ut
and xt−1, one must be able to generate a random instantiation of xt drawn according
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to p(xt|ut, xt−1). Each particle state is thus updated considering the displacement
travelled by the vehicle during the period ∆t between two consecutives time instants,
assuming a constant velocity within the interval and Gaussian error. Firstly, let us
define the deterministic kinematic model of an underwater vehicle. Thorpe and
Whyte [61] summarized a generic 6-DOF model for an underwater vehicle. As the
linear and angular velocities are expressed in the body-fixed coordinate frame, it is
necessary to perform a coordinate frame transformation to derive the state. The
linear velocities of the vehicle can be expressed in the inertial coordinate frame as

η̇1 = Rib · ν1, (3.40)

where the vector η̇1 ∈ R3 is the time derivative of the position vector η1 expressed in
the inertial frame. The vector η̇2 ∈ R3, expressed in the inertial frame, is the time
derivative of the orientation and is related to the body-fixed angular velocity by a
proper Jacobian matrix

η̇2 = Jk,o(η2)
−1ν2, (3.41)

where

Jk,o(η2) =

1 0 −sθ
0 cφ cθsφ

0 −sφ cθcφ

 . (3.42)

It is worth noting that the Jacobian matrix is not inversible for every pitch angle
value θ. There are singularities for θ = ±(2l + 1)π

2
rad, with l ∈ N, i.e. when the

vehicle is in full vertical orientation, what is not common for this class of vehicles.
Otherwise, a quaternion representation should be preferred. The transformation
between the velocities expressed in body-fixed frame to inertial reference frame can
be then expressed as

ẋt =

[
η̇1

η̇2

]
=

[
Rib O3×3

O3×3 J−1
k,o

]
︸ ︷︷ ︸

J

ν. (3.43)

Considering the velocities constant within the time interval ∆t, the evolution of
the pose of the vehicle can be expressed as:

xt = xt−1 + J(xt−1)ν∆t. (3.44)

Once Equation 3.44 is defined, the probabilistic model can be then derived.
The velocities represent the control data or input ut, as they carry the information
about the change of state, or position, perfomed by the robot. Considering that the
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actual velocities differ from the inputs ν, a zero mean Gaussian additive noise, with
covariance Σν , is associated to the velocities readings:

then define the controle signal ut = ν̂, whereν̂ is given by

ν̂ = ν +N (0,Σν), (3.45)

Σν =



σ2
u 0 0 0 0 0

0 σ2
v 0 0 0 0

0 0 σ2
w 0 0 0

0 0 0 σ2
p 0 0

0 0 0 0 σ2
q 0

0 0 0 0 0 σ2
r


. (3.46)

The process noise also accounts for the uncertainty introduced by the simplifica-
tions when considering a kinematic model instead of a dynamic one. If a minimum
update rate, i.e an small ∆t, is satisfied, this model can estimate the motion of an
underwater vehicle with good accuracy and the divergences to more complex models
are attenuated.

Therefore, each particle is updated with a random velocity value ν∗t , drawn
from the probability distribution N (ν∗, ν,Σnu). The particle x[m]

t is generated by a
disturbed velocity vector integrated over the previous state instantiation x[m]

t−1. This
randomness in prediction step describes the uncertainties in the process and also
helps the filter to explore new regions of the state-space after convergence, as the
particles are spread.

3.4 Measurement Model

The additive nature of the noise present in the motion process also tends to
diverge the estimation of the true state and, as discussed before in section 3.1,
a measurement must be introduced to correct the internal belief of the system.
The measurement model, which implements the measurement probability distribu-
tion (Eq. 3.3), focuses on describing the intrinsec uncertainties of the measurement
generation process. As the main idea of probabilistic robotics, an accurate sen-
sor model is often hard, or even impossible, to achieve and not always desirable.
The modelling of a perfect measurement model demands a high time-wise cost and
can rely on unobservable variables. Thus, the conditional probability distribution
p(zt|xt) enconpasses the uncertainties and returns an evaluation of the probability
of a measurement zt to happen given the state xt.

As discussed in section 2.3.2, the mechanically scanned sonar Tritech Micron
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is becoming a popular choice in the development of small underwater vehicle such
as ROVs and AUVs, due its cheap price and reduced weight and size. However,
as ranging sensor theory is already mature, imaging sonar are applied mainly as
really noisy range finder sensor. In addition, authors consider imaging sonar as 2D
scan sensor, as a result of the vertical ambiguty introduced by the wide vertical
beamwidth. This section will formalize the ranging model and present the proposed
imaging or intensity sensor model.

3.4.1 Range Finder Model

The range finder model approximates a sonar beam (or a laser beam) as an ideal
unidimensional ray and measure the range to the first object along the direction of
travel. The noise in this range measurement, i.e the error between a reference or true
range z∗t and the measured range zt, is usually modeled by a narrow Gaussian with
mean zt and standard deviation σhit[63]. This error arises from the limited resolution
of range sensors, environmental aspects as atmosferic effect for airborne systems or
water pressure and temperature for underwater sensors. On LIDAR systems, that
Gaussian is fairly narrow, while on sonars its profile is much wider.

phit(zt|xt,m) =

ηN (zt, z
∗
t , σ

2
hit), if 0 ≤ zt < zmax

0, otherwise
(3.47)

where η is a normalizer variable and the values measured by the range sensor are
limited to its maximum range zmax. The computation of the range z∗t is usually
made by a ray-casting process, where the distance to first object intersected by a
ray is assumed as the reference measurement. Even though this model can be robust
enough to encompass the uncertanties and noise provenient from the sensor and was
sucessfully implemented within underwater vehicle’s localization systems, there is a
limitation on the represetantion of the environment and only 2.5D (elevation maps)
can be represented. While the ray-casting method well represents the extremely
narrow beam of a laser sensor, the wide vertical opening of imaging sonars cannot
be represented by a single unidimensional ray and the simulated rays can be only
casted horizontally. Another important characteristic of considering an imaging
sonar as a range sensor is that all the values regarding the intensity of the echoes
are discarded as the measurement model cannot provide a reference to compare
them.
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3.4.2 Imaging sonar sensor model

To represent the beam shape of an imaging sonar and be able to cast a refer-
ence beam inside an environment it is necessary to introduce some sonar simulation
theory.

Sonar Simulation

The propagation of sound in water, with a sound source located at (xs, ys, zs)

and modelled as punctual with a Dirac delta (δ) spatial distribution function, can
be described by the acoustic version of the wave equation [16]

∂2p

∂x2
+
∂2p

∂y2
+
∂2p

∂z2
− 1

c2
∂2p

∂t2
= −δ(x− xs, y − ys, z − zs)s(t), (3.48)

which considers a second order differential equation for the acoustic pressure p,
as a function of the of space (x, y, z) and time (t) related to the point source.
Equation 3.48 assumes water density constant and the speed of sound c known or
measured. In addition, if one assumes the case of a infinite water mass around the
acoustic signal source, the acoustic pressure can be expressed as [10]:

p(x, y, z, t) =
s(t− r

c
)

4πr
, (3.49)

where r is the range from the point source:

r =
√

(x− xs)2 + (y − ys)2 + (z − zs)2 (3.50)

The implementation of a sonar simulation following this model can achieved with
a ray cast implementation as seen in [4, 18], where the volume insonified by the sonar
beam is discretized by multiple rays, what comes with a high computational cost.
To improve processing speed, Guériot and Sintes [23] used a tube tracing approach,
in which the wave front is divided in subregions. Rays are used as support for a
volume description of the insonified area, and the tubes are built on the top of
neighboring rays using four of them as borders. This approach reduces the number
of rays casted and handles better the intersection or footprint of the incoming sound
with the objects facets.

A frequency domain analysis of the model presented in Eq. 3.48 was performed
by Coiras and Groen [10], where a simulator for a side-scan sonar was implemented
and in [58], the proposed method was adapted for a forward looking imaging sonar.
The simulator considers the surface of simulated objects are discretized in facets or
k surface patches and after several simplifications a intensity model for the contri-
bution of a point r can be defined as:
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I(r) = KΘ(r)R(r)n̂ · r̂ (3.51)

where Θ represents the intensity of the illuminating sound wave s(t) at point r
and group all the beam-pattern properties as intensity variations caused by the
sensor’s beam-profile, spherical spreading loss, TVG and other corrections. R is
the reflectivity of the of the insonified region, K is a normalization constant and r̂,
n̂ are the vectors from the origin of the sensor to the surface point and its normal
vector respectively. This states that the scattering model corresponds to Lambertian
illumination model for diffuse reflectance, and the perceived brightness of a surface
is independent of the direction of observation and depends only on the angle between
the incidence beam and the surface patch normal.

Eq. 3.51 allows the simulation of a sonar beam, composed by an array of inten-
sities values outputed, defined as

Is = [i1s, i
2
s, . . . , i

N
s ] (3.52)

where in is the intensity value on the n-th element of the array and N is its size.
Given the measured intensity values Ir by the sonar, an error function between the
simulated and measures intenisties is defined as gaussian distribution centered in
the simulated intensity ins with variance σ2

int

p(inr |ins ) = N (inr , i
n
s , σ

2
int) =

1√
2πσ2

int

e
− (ins−inr )2

2σ2
int (3.53)

The measurement probability function p(zt|xt) can be described by the contri-
bution of every intensity received by the sonar and should reflect how similar the
two arrays are

p(zt|xt) =
1

N

N∑
n=1

N (inr , i
n
s , σ

2
int) (3.54)

The weight of the particle is then updated following w[m]
t = p(zt|x[m]

t )w
[m]
t−1 as in

Eq. 3.32. The representation of the likelihood function as a Mixture of Gaussians
in oposition to a pure Gaussian likelihood, was preferred to avoid a high sensitivity
to noise. As a single near zero value would be dominant in the computation of the
product of the single likelihood function presented in Eq. 3.53.
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Chapter 4

Implementation and Results

4.1 Software Overview

The filter was implemented using the Robotics Construction Kit(ROCK)[33]1.
ROCK is a software framework specifically developed for the easy development and
deploy of robotic systems. As in the last years the scale and scope of robotics had
drastically grown, many frameworks came up to fulfill the need of this demanding
area, as rewrite everything from scratch each time a new system is deployed has no
logical sense. The two most popular available frameworks are ROS (Robot Operating
System) [51] and the Orocos RTT (Real Time Toolkit) [60]. ROCK is component
based, what means that there is a separation between the communication layer and
specific functionalities. These contrasts with the common approach of developing
components or nodes, whose behavior is very often dependent on many of internal
states, which are therefore hard to assess externally. As the framework is based on
the Orocos RTT, real-time application can be easily implemented and this fact is a
key advantage in modern robotic systems.

All core funcionality code is written in C++ and Ruby scripts are used to start,
connect and monitor components. As mentioned, there is a separation between the
functionality layer and communication layer. The funcionalities are encapsulated in
libraries and remain independent of the framework and can be reused or maintained
outside ROCK environment. The components, on the other side, are responsible for
integrating the functionality of the library, exposing its functionality to the system.
Figure 4.1 illustrates how the library was constructed and its main funcionalities.

The particle filter class implements the generic functionalities discussed in Sec-
tion 3.1.3 and the pose particle class stores a x− y position 2D vector and a double
for the yaw orientation value and weight. As explained in section 3.4, the gen-
eration of a meaningful reference measurement value z∗t plays a fundamental role

1http://rock-robotics.org
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Figure 4.1: Imaging sonar localization and its main functionalities.

in the weight evaluation of each particle. The sonar simulation class is, then, re-
sponsible for generating the reference measurement and its implementation will be
discussed further in Section 4.1.1. The Pose Estimator class implements the specific
probabilistic distribution models discussed through Sections 3.3 and 3.4.2.

Figure 4.2: Imaging sonar localization component.

The imaging sonar localization component (Figure 4.2) is responsible for initial-
ization, configuration, communication and computation of the filter. As well manage
all ports and align the incoming data for a correct processing.

The vizkit3d-world is responsible for the representation of the underwater scene
and its components, such as robots or underwater vehicles. The elements present in
the environment are defined by means of SDF2 (Simulation Description Format) files,
an XML format used to describe simulated models and environments. As illustrated
in Figure 4.3, this representation allows the simulation of multiple environments
types and the representation of complex structures, such as strutuctural components,
underwater machinery, etc.

2http://sdformat.org
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Figure 4.3: Representation of different complex underwater environments using SDF
files.

4.1.1 Sonar Simulation Implementation

The sonar simulation was based on the method proposed by Cerqueira et al.
[8], where a simulator of both FLS and MSIS sonars that relies on the parallel
processing power of modern Graphical Processing Units (GPU) to speed up 3D
graphics processing. The simulator is written in C++ as a ROCK package and the
framework’s graphical engines, based on the OpenSceneGraph3 library, is responsible
of the 3D rendering.

The sonar sensor is represented as a camera of the 3D rendering process, with
same horizontal and vertical field of view (FOV-X, FOV-Y) specified by the type of
sonar in the configuration file of its component.

Sonar data are simulated by a shader process based on OpenGL Shading Lan-
guage (GLSL)4 which allows to handle the rendering pipeline executed on the GPU.
Its output is a 3-channel matrix that contains the intensity, range and bearing for
each part of the 3D underwater scene that is visible from the viewpoint of the sonar
sensor.

The first channel is the bearing representation in the camera, or angle distortion
channel, and it is reponsible for addressing the regions of the rendered image to its
respective beams. As all pixels in a column of the angle distortion channel image
have the same angle value, then each column from the other two channels can be
subdivided in separate beams or subimages. The angle distortion matrix has 0.0

3http://www.openscenegraph.org/
4http://www.opengl.org/documentation/glsl/
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Figure 4.4: A graphical representation of the individual steps to get from the Open-
SceneGraph scene to a sonar beam data structure. ([8]).

value in the center column, and 1.0 value in both border columns which represents
FOV-X half value. In the case of a single beam (MSIS) sonar, all the columns are
mapped to the unique beam and the head position of the sensor is automatically
rotated to change the direction of the horizontal FOV.

The intensity channel simulates the echo refletion energy based on the dot pro-
duct between the incident vector coming from the sonar ray and the surface normal,
what is aligned with the Lambertian ilumination model presented in Eq.3.51. Fi-
nally, the third channel stores the depth or range data of the rendered area inside
the FOV of the sonar. Each pixel is a depth measurement, i.e. the 3D Euclidean
distance between the camera focal point and the object’s surface point. For depth
data, the minimum value portrays a close object while the maximum value repre-
sents a far object, limited by sonar max range. The convertion from the 3-channel
matrix subimages to sonar data, represented by the array of bin intensities, is made
using the depth and intensity values (with its respective columns addressed by the
angle distortion matrix). Each bin intensity value is calculated based on the accumu-
lated intensity contribution from every individual pixel intensity value that sits on
a particular bin sector, according to the range value from the depth channel matrix.
Therefore, the accumulated intensity of each bin Ibin is calculated as follows:

Ibin =
n∑
x=1

1

n
sig(i(x)), (4.1)

where n is the number of pixels that have the same depth value, i.e. the same
distance from the sensor, i(.) is the intensity value of the pixel and sig(.) is a sigmoid
function. In order to count how many pixels contribute to a given bin, a depth
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histogram is calculated and the bin number is proportional to the real distance from
the sensor. In other words, the initial bins represent the closest distances and the
last one represents the maximum specified range. Figure 4.4 illustrates the selection
of a beam on the angle distortion matrix and the contribution of two pixels to the
respective bin.

The simulator prioritizes efficiency and makes some simplifications, such as not
specifying material properties to allow different refractions values depending on ma-
terial type as in [15], and discard effects like multipath. However it is considerably
faster, as for 150 sampling frames, the proposed method produced one multibeam
sonar data every 121.44 milliseconds and one single beam sonar data every 8.5 mil-
liseconds, if compared with the sampling rates achieved by the similar simulator
presented in [15] (1 second) and [58] (2.5 minutes). The output of the sonar simula-
tion can be visualized in Figure 4.5a, where the sonar sensor is placed inside a metal
structure with closed form (Fig. 4.5b) . Figure 4.6b represents the sonar readings in
a more complex structure such as a oil and gas underwater manifold and a sunken
ship (Fig. 4.6a.

(a) Sonar readings with the sonar placed in-
side a metal framerwork structure (b) Closed red metal framework map

Figure 4.5: Sonar Simulation in an structured environment.

(a) Sonar readings with the sonar placed be-
tween the two structures.

(b) Complex structures such as oil and gas
manifold and sunken ship

Figure 4.6: Sonar Simulation in a unstructured environment.
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4.1.2 Particle weight computation

In order to compute the weight of each particle w[m]t ∈ χ, its full pose must be
constructed at the correction step. Each particle samples the dimensions [x, y, ψ],
which must be merged with the incoming data from the pressure sensor and the
inclination from the last reading before the incoming sonar data. The sonar data
structure is represented by a timestamp, representing the time that sample arrived,
an angle value and an array of intensities, representing the bins. After the compu-
tation of each particle pose, the filter must be able to query a single simulated sonar
beam for every particle. The 3D shader rendering process needed to be isolated
and to cope with this requirement and all the vehicle visualization tools and vehicle
physics simulation present on the Gazebo5 framework were separated and only the
sonar data was computed. For each simulated beam, the filter assigns a weight for
the respecticve particle as defined in 3.54.

4.2 Simulations Results

The map used is a representation of a 10×5m underwater structure, constructed
with metal beams arranged in a trellis pattern. The map is defined in a XMl file and
is illustrated in Figure 4.7. This environment represents the classical test scenario
as it has the shape of a pool or structured environment with vertical walls. This
scenario is also present in real application as the he Stoplog well (where the Stoplog
are inserted to stop the water flow) in the context of the ROSA project, and is also
explored by [52–55]. The competition SAUCE-E Student Autonomous Underwater
Challenge - Europe6 made it the stardard target, introducing many of it challenges
inside a pool or in a Harbor. However, it is worth noting that the trellis structure
introduces complexity in the map if compared to a concrete wall. A ray casting
based algorithm, for example, would struggle with misreadings between the metal
beams.

4.2.1 Tracking

The tracking problem consists in estimating the true state, given a good initial
guess, and track its evolution during the trajectory performed by the vehicle. To
evaluate this problem, the sonar sensor origin was considered at the vehicle or body
coordinate frame. The parameters used in the simulations were chosen to optimize
the perform of the algorithm and are listed in Table 4.1, where bel(x0) is the mean of
the initial belief of the system, represented by a MVN with variances σ0pos for the x

5http://gazebosim.org/
6http://sauc-europe.org
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Figure 4.7: Test scenario of structured environment.

and y dimensions and σ0ori for the yaw angle. σu, σv, σr are the significant variances
in the velocities input (Eq. 3.45) and σint, σspu , σspv , σspr are the measurement model
variance (Eq. 3.54) and the spread function variances for the linear and angular
velocities. A further discussion in the impact of these parameters will be made in
the final considerations at the end of this section.

Table 4.1: Parameters tracking problem.

bel(x0) x0 σ0pos σ0ori σu σv σr σint σspu σspv σspr
[−1, .25] [−.5, .5] [.7, .7]m .3rad 10% 10% 10% .1 .2 .2 .02

To illustrate the evolution of the filter, lets consider the particles that were first
spread around the position [x0, y0] = [−1, 0.25]T with variance equal 0.7 in both
directions. With the arrival of the first sonar samples, the particles were resample
to the distribution represented in the Figure 4.8. The yellow particles are defined
as high weight particles and the red particles as low weight ones. This fact is due
the readings provenient from the sonar that is represented by the coordinate frame
and the surving particles were the ones within the same distance to the wall in
the direction of the x − axis (represented in red) and bearing close to zero. The
ambiguity in the y position is because until this step, the sonar did not provide
any information that allowed the filter to better distinguish the likelyhood of any
particle lying in that line.

Figure 4.9 shows the results of the filter with different number of particles follow-
ing a pre-defined trajectory, represented by the full green line. The trajectory was in
coplanar with the xy plane to make the visualization easier and as while testing all
the dimensions sampled by the filter. From the results analysis it is possible to see
that the filter converges for each of the three simulations. Although, as the number
of particles decreases, the uncertainty introduced by the velocity input noise has a
higher impact in the filter estimation. There is no enough particles to keep tracking
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Figure 4.8: Test scenario of structured environment.

the true state and the filter starts to diverge. The filter has to spread the particles
to push particles in a region of convergence, this effect is obvious in the simulation
with 10 particles and it is illustrated in Figure 4.10. This effect illustrates also the
capability of the filter to recover from a kidnapped robot problem. As the number
of particles grows, the initial convergence speed is also increased, as the chances of
particles to be initialized near the true state grows. However, for a tracking problem
the difference between the number of particles above a certain level is not worth the
computational effort. The 50 and 100 particles simulations have similiar results in
the particular scenario.

4.2.2 Global Localization and kidnapped robot problem

The global localization problem introduces more complexity in the state estima-
tion, because the the robot can be initialized in any region of the space state, what
naturally demands a bigger number of particles. The parameters used in this simu-
lations are the same in the tracking simulation, only increasing the initial spread to
cover the entire map.

Table 4.2: Parameters global localization problem.

bel(x0) x0 σ0pos σ0ori σu σv σr σint σspu σspv σspr
[−1, 0.25] [0, 0] [3, 1]m 1rad 10% 10% 10% 0.1 0.2 0.2 0.02
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Figure 4.9: Tracking results for 10, 50 and 100 particles (v=0.1m/s).

(a) Filter starts to diverge. (b) Particles after being spread.

(c) Reconvergence after the particles being
spread

Figure 4.10: Illustration of the spread function avoiding the filter to diverge.

In this scenario the initialization of the filter with 10 particles was not enough to
achieve a convergence to the true state, as can be seen in the Figure 4.12. With 100
particles, the algorithm sucessfully converged with incoming of the first sonar sam-
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Figure 4.11: Particles spread in the entire map.

ples, as the particles were well spread over the state space. The case of 50 particles
is a good example of the kidnapped robot problem, as the initial distribution did
not covered the region of the true initial state and all the particles were associated
with low weights. As result, the particles were bouncing around the map and at
each iteration being more spread due the low maximum weight of the distribution.
After a few steps some particles landed near the true state and the convergence was
sucessfull. But it is needed to highlight the randomness of this process, what does
not ensure the convergence in this case.

Figure 4.12: Global Localization results for 10, 50 and 100 particles (v=0.1m/s).
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4.2.3 Contribution of the method

There are two situations, in the opinion of the author, in which the proposed
method surpasses the current localization methods using imaging sonar openly avail-
able in the literature. The first scenario is when the vehicle must pass by a ho-
rizontal opening, as a gate entrance or a very wide cave, the idea is illustrated in
Figure 4.13a. The current range-based methods would have no avaiable information
about the environment as the horizontal ray-casting would hit no target at any bear-
ing (Fig. 4.13b). Geometric approaches are also limited in this situation as the line
feature based map cannot represent this environment due to the before mentioned
2D limitation.

(a) Trajectory through a horizontal opening
and no walls.

(b) Ray-casting methods cannot observe the
environment.

Figure 4.13: Horizontal opening scenario where current range methods fail.

The proposed method was capable to cast beams into the map and gather in-
tensity data from both elements above and beneath the vehicle. The wide vertical
opening of the sonar allows to sense any target within the ±15o line of sight. The
parameters used in the simulation are stated in the Table 4.3. The trajectory and
the convergence of the filter can be analysed in Figure 4.14, where the vehicle was
hovering at 4m deep.

Table 4.3: Passing through horizontal opening problem

bel(x0) x0 σ0pos σ0ori σu σv σr σint σspu σspv σspr
[0, 0] [−4, 0.5] [3, 1]m 0.3rad 10% 10% 10% 0.1 0.2 0.2 0.02

The second contribution of this work is to refuse the hipothesis that the vertical
ambiguity introduced by the wide vertical opening reduces this type of sonar to a 2D
sensor. The proposed work does not eliminate the vertical ambiguity within the bin
arc, however the method can extract some information about the 3D environment.
As the depth sensor provides only a measurement from the water column above
the vehicle and not an absolute position along the z-axis, it was introduced another
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Figure 4.14: Horizontal opening problem results for 100 particles(v=0.1m/s).

dimension to be sampled by the filter, a water column offset wc. This parameter is
important in systems that cannot measure the altitude to the ground, as in the case
of the ROV LUMA which does not have a DVL or similar system. The case of the
robot ROSA, where tide of the river changes dayly is also well represented under
this constraints. The environment where the added dimension wc was tested is in
an open and 3D map, with the presence of a oil and gas manifold and a sunked ship.
This map presents a challenge both to the estimation of the x, y, ψ, as well provides a
bottom reference. This characteristic is fundamental to the convergence of the water
column offset parameter, as it allows the extraction of vertical information based on
the distance to the first ground reading. In a situation where there is no horizontal
reference (ground or celling) as in the red metal trellis map, the water column initial
distribution would remain constant until a suitable reference appears. If the sonar
can see inferior or superior limit of the structure for example, the particle outside
this range would be eliminated. Figure 4.15 illustrates the initial spread of wc and
Figure 4.16 the final convergence of the filter.

4.2.4 Final Considerations

As in any particle filter implementation, the convergence of the filter depends on
the correct tuning of the parameters and it is important to understand the effect of
each one to aid in this process. The initilization parameters bel(x0), σ0pos , σ0ori are of
immediate understanding, as this parameters control the format of the initial belief
distribution. Other initialization methods can be applied, as an uniform distribution
for example.
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Figure 4.15: Initial spread of the filter in a complex environment.

Figure 4.16: Convergence of the filter, inclusive in z in a complex 3D environment.

The motion model parameters can be understood as how the motion prediction
can be trusted. If there is access to a good model, and the velocities and inclination
input noises are slow these parameters can be decreased. If the incoming noise is
relatively big, there is the need to raise this parameters value. A bigger variance
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in the velocities input is translated as a more normal distributed spread during the
update step. This characteristic degrades the estimation, but at the same time
allows the filter to realocate particles in regions closer to the true state and avoid a
possible divergence.

The degration of the estimation is also introduced by the spread function param-
eters σspv , σspr , however this effect is only prominent when the maximum weight is
low. If one increases the value of this parameters, the filter would be able to recover
easily from a kidnapped robot problem, but if the values are set too high, the spread
could prohibit the convergence itself.

Finally, the measurement model variance σ2
int dictates the width of the error

function on Eq. 3.54. As its value is decreased, the filter becomes more selective and
the convergence speed increases. However if the sensor is considered too accurate
this can have serious impact on the filter. To understand this the reader can imagine
a deterministic sensor, the measurement distribution function is going to be zero for
all most the entire space state. In conclusion, the probability of the samples of the
proposal distribution to be exactly on this submanifold of the state space is going
to be practically zero and only the particle with a perfect match would have non
zero weights assigned and the resampling step becomes ill conditioned.
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Chapter 5

Conclusion

5.1 Contributions

This work proposed a localization algorithm using a mechanically scanned imag-
ing sonar based on a new perspective on how to model this sensor. The literature
review pointed that the current methods adapt the characteristics of this type of
sonar to match the well mature range finder sensor localization theory. However,
this introduces simplifications that do not fully explore the potencial of the system
and discard useful data.

A mesurement model based on the intensities values of each sonar beam is pro-
posed and validated by simulations using a Particle Filter. This type of filter is
well suited for this application as it can handle the global localization problems,
where the inital state of the system is unknown, as well handles a wide range of
measurement functions.

In order to evaluate the incoming sonar data, sonar simulation was embedded in
the algorithm and the wide vertical beam opening was represented to cast simulated
beams. This allows the filter to converge in scenarios where the current methods
would fail and stands as the major contribution of this thesis. The first scenario is in
a situation where there is no reference at the same horizontal plane of the sensor’s
transducer axis and the system must explore the full vertical field of view of the
sensor to be able to observe the map. In addition, the incorporation of the vertical
ambiguity in the sensor model allowed the system to extract 3D dimensional infor-
mation if a horizontal reference is present. An offset depth parameter was sampled
by the filter showed convergence in the orthognal dimension of the sensor plane.
Considering that the sonar properties incoporated to the model do not invalidate
any of the current methods, the algorithm opens possibilities to be exploited, both
in the proposed intensity model as well with the range finder model.
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5.2 Future Works

According to the main ideas developed in the current thesis, some research topics
for future works are:

• Validate the algorithm and the proposed measurement model in a real system.
Propose a calibration method to normalize real intensity readings and the
sonar simulation. As this work was already developed with this mindset,
using the Robotics Construction Kit framework, what allows the evaluation of
different systems.

• Compare the proposed intensity measurement model with the range finder
model, including an expansion of the range finder model using the imaging
sonar beam shape.

• Expand the measurement model to enconpass a Forward Looking sonar. As
this is the multibeam counterpart of the mechanically scanned imaging sonar,
there is no reason to believe that a study using this type of sensor could not
be performed unsing the methods proposed in this work.

• Evaluate the impact of the simplifications made in the simulation of the refer-
ence sonar beams, such as multipath, reverberation and sound speed variation.
As well compare the results and computational efficiency with other models.

• Incorporate the beam shape properties of imaging sonars to map the environ-
ment and propose a Simultaneous Localization and Mapping algorithm using
a mechanically scanned imaging sonar. The map representation used in this
work, while well suited for a localization only algorithm, as it provides flex-
ibility in representation of arbitrary shapes and high detailment capability,
demands some study on how to adapt it to handle a mapping step and how
to represent notions of occupancy and uncertanties.
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