
SECURITY AGAINST NETWORK ATTACKS IN SUPERVISORY CONTROL

SYSTEMS

Públio Macedo Lima

Dissertação de Mestrado apresentada ao

Programa de Pós-graduação em Engenharia

Elétrica, COPPE, da Universidade Federal do

Rio de Janeiro, como parte dos requisitos

necessários à obtenção do t́ıtulo de Mestre em

Engenharia Elétrica.

Orientadores: Marcos Vicente de Brito

Moreira

Lilian Kawakami Carvalho

Rio de Janeiro

Março de 2017

Lima, Públio Macedo

Security Against Network Attacks in Supervisory

Control Systems/Públio Macedo Lima. – Rio de Janeiro:

UFRJ/COPPE, 2017.

X, 54 p.: il.; 29, 7cm.

Orientadores: Marcos Vicente de Brito Moreira

Lilian Kawakami Carvalho

Dissertação (mestrado) – UFRJ/COPPE/Programa de

Engenharia Elétrica, 2017.

Referências Bibliográficas: p. 50 – 54.

1. Security. 2. Cyber-physical system. 3. Discrete

event system. 4. Automata. I. Moreira, Marcos Vicente

de Brito et al. II. Universidade Federal do Rio de Janeiro,

COPPE, Programa de Engenharia Elétrica. III. T́ıtulo.

iii

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos

necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

SEGURANÇA CONTRA ATAQUES CIBERNÉTICOS EM SISTEMAS DE

CONTROLE SUPERVISÓRIO

Públio Macedo Lima

Março/2017

Orientadores: Marcos Vicente de Brito Moreira

Lilian Kawakami Carvalho

Programa: Engenharia Elétrica

Sistemas ciberf́ısicos (SCFs) usam as capacidades de comunicações e de com-

putação atuais para monitorar e controlar processos f́ısicos. Para tal, redes de co-

municação são normalmente usadas para conectar os sensores, atuadores e controla-

dores. Com o uso dessas redes de comunicação, a vulnerabilidade de SCFs a ataques

cibernéticos aumentam, que podem levar o sistema para estados não seguros. Um

tipo de ataque em rede é o “ataque do homem do meio” (man-in-the-middle attack),

em que um intruso pode observar, esconder, criar e/ou trocar as informações de um

canal de comunicação atacado. Neste trabalho é proposta uma estratégia de defesa

para detectar e evitar danos causados por “ataques do homem do meio” nos canais

de comunicação de sensores e/ou de controle para o sistema de controle supervisório.

A definição de controlabilidade segura a ataques na rede (Controlabilidade Segura-

AR), que é relacionada com a possibilidade de detectar um ataque a rede e prevenir

que o sistema chegue a estados não seguros é proposta. Alem disso, é proposto um

algoritmo para verificar essa propriedade.

iv

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Master of Science (M.Sc.)

SECURITY AGAINST NETWORK ATTACKS IN SUPERVISORY CONTROL

SYSTEMS

Públio Macedo Lima

March/2017

Advisors: Marcos Vicente de Brito Moreira

Lilian Kawakami Carvalho

Department: Electrical Engineering

Cyber-physical systems (CPSs) integrate computing and communication capa-

bilities to monitor and control physical processes. In order to do so, communication

networks are commonly used to connect sensors, actuators, and controllers to moni-

tor and control physical systems. The use of communication networks increases the

vulnerability of the CPS to cyber attacks that can drive the system to unsafe states.

One of the most powerful cyber attacks is the so-called man-in-the-middle attack,

where the intruder can observe, hide, create or change information in the attacked

network channel. We propose in this work a defense strategy that detects intrusions

and prevents damages caused by man-in-the-middle attacks in the sensor and/or

control communication channels in supervisory control systems. We also introduce

the definition of NA-Safe controllability, that is related with the possibility of de-

tecting an attack in the network and preventing the reach of unsafe states, and we

propose an algorithm to verify this property.

v

Contents

List of Figures viii

Lista de Śımbolos x

1 Introduction 1

2 Background 3

2.1 Discrete event systems . 3

2.1.1 Languages . 4

2.1.2 Automata . 6

2.1.3 Automata language . 7

2.1.4 Operations with automata . 9

2.2 Supervisory control in DES . 12

2.2.1 Controllability . 12

2.2.2 Definitions for supervisory control 13

2.2.3 Realization of a Supervisor . 14

2.2.4 Control under partial observation 15

2.3 Security in cyber-physical systems . 19

2.3.1 Structure of a CPS . 20

2.3.2 Security in CPS . 20

2.3.3 Man-in-the-middle attack . 21

2.4 Final comments . 22

3 Security Against Network Attacks in Supervisory Control Systems 23

3.1 Model of the plant subject to sensor channel attacks 25

3.2 Model of the supervisor subject to supervisory control channel attacks 28

3.3 Model of the closed-loop system subject to network attacks 30

3.4 NA-Safe Controllability . 31

3.4.1 Verification of NA-Safe controllability 32

3.5 Implementation of the Intrusion Detection

Module . 37

3.6 Example . 43

vi

4 Conclusion and Future work 48

Bibliography 50

vii

List of Figures

2.1 Storage unit . 4

2.2 State transition diagram of automaton G of Example 7. 6

2.3 Example of a nondeterministic automaton G of Example 8. 7

2.4 Automaton G of Example 9. 8

2.5 Automaton G of Example 10 . 9

2.6 Accessible part of automaton G of Example 10. 10

2.7 Automaton G of Example 11. 10

2.8 Coaccessible part of automaton G of Example 11. 11

2.9 Automata G1 and G2 of Example 12. 12

2.10 Parallel composition of G1 and G2 of Example 12. 12

2.11 Feedback control S/G . 13

2.12 Automaton G of Example 13 . 14

2.13 Supervisor realization H of Example 13. 15

2.14 Closed-loop system T = G ‖ H of Example 13. 15

2.15 Automaton G of Example 14. 16

2.16 Automaton Gobs of Example 14. 17

2.17 Closed-loop system under partial observation 17

2.18 Example of automaton G and supervisor H of Example 15. 18

2.19 Closed-loop system under partial observation T of Example 15. 18

2.20 Example of structure for CPS . 20

3.1 Closed-loop system under attack . 24

3.2 Intrusion detection module . 25

3.3 Plant model . 26

3.4 Attacked plant model . 27

3.5 Supervisor . 29

3.6 Realization of the attacked Supervisor. 30

3.7 Controlled System . 31

3.8 Attacked controlled system . 31

3.9 Safe part of TA . 35

3.10 Unsafe part of TA . 35

viii

3.11 Renamed unsafe part of TA . 36

3.12 Verifier . 36

3.13 Automaton G of Example 20 . 38

3.14 Supervisor automaton H of Example 20. 38

3.15 Automaton G subject to sensor attack 39

3.16 Closed-loop system subject to attack Ta. 39

3.17 Automata G and H of Example 21. 41

3.18 Automata G̃ and H̃ of Example 21. 42

3.19 Initial house position for cat/mouse example. 44

3.20 Automaton model for mouse/cat problem G. 44

3.21 Supervisor H for cat/mouse example 45

3.22 Similar plant system G̃ from G in cat/mouse example. 45

3.23 Similar supervisor system H̃ from H in cat/mouse example. 45

3.24 Closed-loop system T for cat/mouse example. 46

3.25 Plant model under attack GA for cat/mouse example. 46

3.26 Supervisor model under attack HA for cat/mouse example. 46

3.27 Closed-loop system model under attack TA for cat/mouse example. . 46

3.28 Closed-loop system model unsafe part TU for cat/mouse example. . . 46

3.29 Renamed model of unsafe part TU,R for cat/mouse example. 47

3.30 Verifier model V for cat/mouse example 47

3.31 Observer of safe part for cat/mouse example. 47

ix

Lista de Śımbolos

Ac(G) Accessible part of automaton G, p. 9

CoAc(G) Coaccessible part of automaton G, p. 10

G Model of the plant by deterministic automaton, p. 23

G1 ‖ G2 Parallel composition between automata G1 and G2, p. 11

Gobs Observer of automaton G with unobservable events Σuo, p. 16

H Automaton realization of the supervisor, p. 14

L(G) Generated language by automaton G, p. 8

L/s Post language of L after s, p. 5

Lm(G) Marked language of automaton G, p. 8

T Automaton realization of the closed-loop system S/G, p. 14

CoAc(Ac(G)) Coaccessible part of automaton G, p. 11

UR(x) Unobservable reach of a state x, p. 15

Σ? Kleene-closure of Σ, p. 5

Σs ∈ s At least one of the events that form s belongs to Σs, p. 5

|s| The length of a sequence s, p. 4

L Prefix-closure of L, p. 5

εR(x) ε− reach of state x, p. 8

ε Empty sequence, p. 4

S/G Supervisor S controlling plant G., p. 12

x

Chapter 1

Introduction

Cyber-physical systems (CPSs) integrate computing and communication capabilities

to monitor and control physical processes [1–3]. In order to do so, communication

networks are commonly used to connect sensors, actuators, and controllers in the

feedback system.

The increase in the use of communication networks for monitoring and controling

of physical systems also increases the vulnerability of CPSs to attacks in the network.

Several works in the literature propose strategies to detect and prevent the effects

of cyber attacks considering different approaches [4–12]. The majority of the works

proposed in the literature model the system as a continuous variable dynamic system,

and address the problem of stealthy deception attacks that interfere with the system

state estimation.

Intrusion detection and prevention of damages caused by attacks are considered

in THORSLEY and TENEKETZIS [13] in the context of supervisory control of

discrete event systems. The main objective of the work proposed in [13] is to de-

sign a supervisor that achieves the specification in normal operation and after an

attack. The attacks considered in [13] can be interpreted as an interference in the

communication channel between the supervisor and the system that could be caused

by an intruder attempting to damage the system. In [13], the attacker is able to

completely change the set of enabled events commanded by the supervisor.

Recently, in CARVALHO et al. [14], the problem of intrusion detection and pre-

vention in supervisory control systems, where the attacker has the ability to enable

vulnerable actuator events that are disabled by the supervisor, is addressed. A math-

ematical model for the system under such actuator enablement attacks is obtained,

and a defense strategy that detects attacks online and disables all controllable events

after an attack is detected is proposed.

The attacks considered in [13] and [14] are examples of possible network attacks

in feedback systems. Indeed, there are several types of network attacks, as shown

in [15]. A well-known type of attack in communication networks is the so-called

1

man-in-the-middle attack [16]. In this type of attack, the intruder can observe,

hide, create or even change information that transits from one device to another in

a communication channel. Thus, once the intruder has attacked a sensor and/or

a control communication channel in a supervisory control system, it can lead the

plant to execute traces with the objective to reach unsafe states that can damage the

system. Although this type of attack is one of the most difficult to be executed by

the intruder, its potential to damage the system is very high since the attacker has

freedom to change completely the information that transits in the attacked network

channel.

In this work, we propose a defense strategy that detects intrusions and prevents

damages caused by man-in-the-middle attacks in the sensor and/or control com-

munication channels in supervisory control systems, which includes the results in

LIMA et al. [17]. In order to do so, automaton models of the plant under sensor

channel attacks and of the supervisor under control channel attacks are obtained.

Then, the definition of safe controllability under network attacks, called NA-Safe

controllability, that is related with the possibility of detecting an attack in the net-

work and preventing the reach of unsafe states, is presented. We also propose an

algorithm to verify this property. Finally, the computation of a device that detects

the attacks that lead to unsafe states, called in this work as Intrusion Detection

Module, is proposed. It is important to remark that, differently from [14] and [13],

that only consider attacks in the supervisory control communication channel, we

also consider attacks in the vulnerable sensor communication channels.

A problem in discrete event systems with wide repercussion in the literature is

the problem of failure diagnosis [18–30]. The detection of an attack presented in this

work may be related to this problem. However, the detection of an attack is slightly

different from the detection of a failure, since the objective in this work is to allow a

system to operate even after an attack is detected as long as this operation does not

cause the system any harm, i.e., the objective of this work is to prevent the system

from reaching an unsafe state, instead of just indicating when an unobservable event

has occurred.

The remainder of this work is structured as follows. In Chapter 2 we present

some fundamentals on DES and supervisory control, and then also present a basic

background over security in network communication systems. In Chapter 3 we

propose a model for attacked CPSs and propose the Implementation of the Intrusion

Detection Module, most of the results presented in this chapter has been summarized

in a paper [17] accepted for presentation on an international conference. In Chapter

4 we summarize our contributions in this work and present some possibles future

works.

2

Chapter 2

Background

In this chapter we present the background needed to understand this work. In order

to do so, we divided this chapter into three sections: in Section 2.1 we present the

theoretical background of discrete event systems (DES), including the automaton

model of DES; and in Section 2.2, we introduce the basic ideas of the supervisory

control theory; in Section 2.3 we introduce the structure and security of CPSs, and

present one of the main attacks in network systems.

2.1 Discrete event systems

DESs are dynamic systems in which the set of states is a discrete set, and the

state transitions are only observed at discrete points in time associated with the

occurrence of “events” [31]. We call an event as an instantaneous occurrence that

causes the system to transit from a state to another. The event can be associated

with a specific action, such as a button that is pressed or a sensor that transits from

low to a high value, or any other action or condition that makes the system change

its state.

In opposition to continuous-state systems, the evolution in DESs are not neces-

sarily associated with time. As a consequence, we cannot represent these systems

by differential equations, such as in the case of continuous time system, or difference

equations, in the case of discrete time system. Thus, we need a different formalism

to model and work with this type of system.

Example 1 Let us consider a simple storage unit, represented in Figure 2.1, that

can receive only one truck at a time, and let us consider that the truck can either

remove or drop a box in the unit. Assume also that the storage unit has an infinity

capacity, i.e., there is no maximum number of boxes that can be in the storage unit

at the same time. Notice that representing this system by a time-driven system is a

difficult task since there does not exist rules on the arrival of trucks and, therefore,

3

Storage Unit

Figure 2.1: Storage unit

there is no way of determining when a truck will arrive. As a DES on the other

hand, we can assume that the state is the number of boxes in the unit, and consider

two events, a truck drops a box on the unit, which increases the value of the state by

1, or a truck removes a box from the unit, which decreases the value of the state by

1.

Discrete event systems can be modeled by using different formalisms, such as

Petri nets and automata. In this work, systems are modeled by automata. In this

regard, this section is organized as follows. In Subsection 2.1.1 we introduce the no-

tion of languages of a system and some operations with languages, and in Subsection

2.1.2 we present the model of a deterministic and of a nondeterministic automaton.

We also present the language of these automata, and some basic operations using

them.

2.1.1 Languages

A formal way to study DESs is using the theory of languages. DESs are associated

with an event set Σ, that can be seen as an “alphabet”. The concatenation of

events form sequences that can be seen as “words” of a language (notice that in the

literature a sequence is also called “string” or “trace”), and a language of a system

is a set of sequences that the system can execute. The length of a sequence is the

number of events that form it, counting multiple occurrences of the same event, and

it is denoted by |s|. The sequence with zero length is called empty sequence and is

denoted by ε.

Definition 1 (Language) [31]

A language defined over an event set Σ is a set of finite length sequences formed

with events in Σ. 2

Example 2 Let Σ = {a, b}. Then, L = {ε, a, ab, aba, bbaa} is a language defined

over Σ, where the length of sequence “bbaa′′ is |bbaa| = 4.

Let us denote by Σ? the Kleene-closure of the set of events Σ, which consists

of all finite length sequences that can be formed using elements of Σ including the

empty sequence ε.

4

Example 3 Let Σ = {a, b}. The Kleene-closure of Σ is given by Σ? = {ε, a, b, aa, ab, ba, bb, aaa, aab, ...}.
It is important to remark that since L is defined over Σ, then L ⊆ Σ?.

A sequence s can be partitioned as s = tuv, where t is the prefix of s, and v is

its suffix. Notice that ε is always a prefix and a suffix of any sequence.

Example 4 Let sequence s = a. Then it can be partitioned as a = εaε where ε is a

prefix and a suffix of s.

The prefix closure of a language L, denoted by L, is the set formed with all

prefixes of all sequences of L. Formally L = {s ∈ Σ? : (∃t ∈ Σ?)[st ∈ L]}.

Example 5 Let L = {abc, bb}. The prefix-closure of L is given by L = {ε, a, ab, abc, b, bb}.

We can also define the post language after a trace s in a language L, L/s, as

the set formed with the continuation of all sequences of L after s, i.e., L/s = {t ∈
Σ? : st ∈ L}. For example, let L = {ab, abb, acb, bac}, then the post language after

sequence a in the language is L/a = {b, bb, cb}.
Let Σs ⊂ Σ, and let s ∈ Σ?. Then, with a slight abuse of notation we denote by

Σs ∈ s if at least one of the events that form s belongs to Σs.

Another important operation on sequences and languages is the natural projec-

tion operation. Let Σo ⊂ Σ be a set of events. Then, the projection P : Σ? → Σ?
o,

is defined as P (ε) = ε, P (σ) = σ, if σ ∈ Σo or P (σ) = ε, if σ ∈ Σ \ Σo, and

P (sσ) = P (s)P (σ), for all s ∈ Σ? and σ ∈ Σ. Notice that the projection P (s)

erase events that do not belong to Σo in s ∈ Σ?. The projection operation can

be extended to languages by applying them to all sequences in the language [31],

P (L) = {t ∈ Σ?
o : (∃s ∈ L)[P (s) = t]}.

Example 6 If we consider a language L = {a, abc, bbaa, cca, cba} that belongs to

Σ?, where Σ = {a, b, c}, and consider a set Σo = {b, c} ⊂ Σ, the projection P :

Σ? → Σ?
o applied to language L is the projection of each sequence in L, i.e., P (L) =

{ε, bc, bb, cc, cb}.

The inverse projection denoted by P−1 : Σ?
o → 2Σ?

is defined as P−1(s) = {t ∈
Σ? : [P (t) = s]}. The inverse projection can also be applied to a language L ⊆ Σ?

by applying it to all sequences in L [31], P−1(L) = {s ∈ Σ? : (∃t ∈ L)[P (s) = t]}.
A language represents a DES and specifies all sequences that can be executed

in this system, however languages are not always easy to specify or work with and,

therefore, we need another formalism to represent DESs. Another way to model a

DES is by using automata, whose mathematical and graphical representation will

be detailed in Subsection 2.1.2.

5

x

y

z

b

a

b a

Figure 2.2: State transition diagram of automaton G of Example 7.

2.1.2 Automata

An automaton is a device that is capable of representing a language according to

well-defined rules [31]. In this subsection, we first formally introduce the definition

of deterministic and nondeterministic automata, and then relate them to languages

in order to represent DESs. Finally, we present some important operations with

automata.

Deterministic automata

Formally, a deterministic automaton is represented by a five-tuple, G = (X,Σ, f, x0, Xm),

where X is the state-space, Σ is the finite set of events, f : X ×Σ→ X is the tran-

sition function, x0 ∈ X is the initial state of the system, and Xm ⊆ X is the set of

marked states, i.e., states that, for some reason, are important in the system. We

can also define ΓG : X → 2Σ as the active event function in a state of G. Notice that

the set of marked states may be omitted, i.e., the automaton may be represented

by G = (X,Σ, f, x0) which implies that the set of marked states is Xm = ∅.

Example 7 Let us consider automaton G where X = {x, y, z}, Σ = {a, b}, the

transition function f is given by f(x, a) = y, f(x, b) = z, f(y, a) = z and f(y, b) =

y, z is a marked state, i.e., Xm = {z}, and the initial state is x0 = x. The

graphical representation of this automaton is shown in Figure 2.2, where every state

is represented by a circle with its name on it, all transitions are represented by an

arrow that goes from the origin state x to state f(x, σ) labeled with event σ, the

marked state is represented by a double circle, and the initial state have an arrow

on it.

In a deterministic automaton the transition function is unique for each state

and event, i.e., there do not exist two transitions from the same state reaching

different states labelled with the same event. Another characteristic of deterministic

automata is that all transitions have an event label, which means that the system

cannot evolve with ε.

6

X

Y

Z

a

ε

b a

Figure 2.3: Example of a nondeterministic automaton G of Example 8.

The transition function f can be extended recursively to domain X×Σ? in order

to consider a sequence tσ by making f(x, ε) = x, and f(x, tσ) = f(f(x, t), σ).

Nondeterministic automata

A nondeterministic automaton is also a five-tuple G = (X,Σ∪{ε}, fnd, x0, Xm), and

it has the same interpretation as a deterministic automaton, except for fnd that is

now a nondeterministic transition function fnd : X × {ε} → 2X , i.e., the transition

function can now evolve to a subset of X, and the initial state x0 may now be a

subset of X. Moreover, a transition may be labeled with ε in a nondeterministic

automaton. We can also define ΓG as the set of active events in a state of G,

and in the case of nondeterministic it may be extended to consider a set of states

Γ(B) =
⋃
x∈B Γ(x). Xm may also be omitted as in deterministic automata.

Example 8 In order to illustrate a nondeterministic automaton let us consider the

system represented in Figure 2.3, where the initial set of states is given by x0 =

{X,Z}, and the transition function is given by fnd(X, b) = {Y }, fnd(X, ε) = {Z}
and fnd(Y, a) = {Y, Z}.

2.1.3 Automata language

A language is a formal way to describe a DES. As an automaton also represent a DES

it can be related with languages, more specifically each automaton is related with

two languages, the generated language and the marked language. This connection

is made by observing the state transition diagram of an automaton considering its

extended transition function f : X × Σ? → X.

Definition 2 The language generated by a deterministic automaton G = (X,Σ, f, x0, Xm)

7

X

Y

Z

a b

c

Figure 2.4: Automaton G of Example 9.

is:

L(G) := {s ∈ Σ? : f(x0, s) is defined },

and the marked language of automaton G is given by:

Lm(G) := {s ∈ Σ? : f(x0, s) ∈ Xm}.

Example 9 The generated and marked languages of automaton G, shown in Figure

2.4, are, respectively, L(G) = {ε, a, ab, abc, abca, abcab, ...} and Lm(G) = {ab, abcab, abcabcab, ...}.

Similarly, for nondeterministic automata the generated and marked languages are

obtained from the extended transition function fnd. In order to characterize these

languages it is first needed to extend the transition function to domain X × Σ?.

In opposition to deterministic automaton, where f(x, ε) = x, in a nondeterministic

automaton we start defining the ε−reach of a state x, denoted by εR(x), which is the

set of all states, including x, that are reached from state x by following transitions

labeled with ε. This function can be extended to consider a set of states B ⊆ X,

and it is defined by εR(B) := ∪x∈BεR(x)

Then, we can extend the transition function for nondeterministic automata re-

cursively as follows:

f extnd (x, ε) := εR(x),

and for u ∈ Σ?, and e ∈ Σ:

f extnd (x, ue) := εR(z : z ∈ fnd(y, e) for some state y ∈ f extnd (x, u)).

Definition 3 The language generated by a nondeterministic automaton G = (X,Σ∪

8

0 1 2 3 4

5 6 7

a

b c a d

c b

Figure 2.5: Automaton G of Example 10

{ε}, fnd, x0, Xm) is:

L(G) := {s ∈ Σ? : f extnd (x0, s) is defined },

and the marked language of automaton G is given by:

Lm(G) := {s ∈ Σ? : f extnd (x0, s) ∩Xm 6= ∅}.

2.1.4 Operations with automata

We need a set of operations in order to properly work with DESs modeled by au-

tomata. In this regard, we define first, in this subsection, unary operations, and

then compositions operations in order to modify the state transition diagrams of

these automata.

Accessible part

The operation of taking the accessible part of an automaton G is denoted as Ac(G),

and its state set is formed by all states that can be reached after the occurrence of

a sequence s ∈ L(G) from the initial state x0, i.e.:

Ac(G) := {Xac,Σ, fac, x0, Xm,ac},

where

Xac = {x ∈ X : (∃s ∈ Σ?)[f(x0, s) = x]},

Xm,ac = Xm ∩Xac,

fac = f |Xac×Σ→Xac ,

where f |Xac×Σ?→Xac denotes the transition function f restricted to domain Xac×Σ?.

Example 10 In order to illustrate the operation of taking the accessible part of an

automaton, consider automaton G3, represented in Figure 2.5.

Notice that there is no sequence from the initial state that leads to states 3 and

4. Thus, the state transition diagram of the accessible part of automaton G is given

9

0 1 2

5 6 7

a

b c

c b

Figure 2.6: Accessible part of automaton G of Example 10.

0 1 2 3 4

5 6 7

a

b c a d

c b

Figure 2.7: Automaton G of Example 11.

in Figure 2.6.

Coaccessible part

The coaccessible part of an automaton G is denoted as CoAc(G), and its state set

is formed by all states from which there is a sequence that leads the system to a

marked state. Formally,

CoAc(G) := {Xcoac,Σ, fcoac, x0coac, Xm},

where,

Xcoac = {x ∈ X : (∃s ∈ Σ?)[f(x, s) ∈ Xm]},

x0coac =

{
x0, if x0 ∈ Xcoac

undefined, otherwise
,

fcoac = f |Xcoac×Σ?→Xcoac ,

where f |Xcoac×Σ?→Xcoac denotes the transition function f restricted to domain

Xcoac × Σ?

Example 11 In order to illustrate the operation of taking the coaccessible part let

us consider automaton G shown in Figure 2.7.

From automaton G we can find the states from which it is possible to reach a

marked state. Notice that from states {1, 2, 3, 4} it is not possible to reach the marked

state 7. Therefore, CoAc(G) is represented by the state transition diagram shown

in Figure 2.8.

Remark 1 It is important to remark that in the operations of taking the accessi-

ble and the coaccessible part of an automaton G = (X,Σ, f, x0, Xm) the resulting

10

0

5 6 7

a

c b

Figure 2.8: Coaccessible part of automaton G of Example 11.

automaton has Σ as its event set.

Remark 2 The operation of taking the accessible part and the coaccessible part

of an automaton G, is denoted by Trim(G), i.e., Trim(G) = Ac(CoAc(G)) =

CoAc(Ac(G)). An automaton G is called a trim automaton if G = Trim(G).

Parallel composition

In the literature two compositions of automata are defined, the parallel composi-

tion or synchronous composition, and the product composition or completely syn-

chronous composition. As we only use the parallel composition in this work there is

no need to present the product operation.

The parallel composition is represented by ‖, and thus G1 ‖ G2 denotes the

parallel composition of automata G1 and G2. In the parallel composition, a com-

mon event between two automata can only occur if it is active in both automata

simultaneously. The parallel composition of automata G1 = (X1,Σ1, f1, x01, Xm1)

and G2 = (X2,Σ2, f2, x02, Xm2) is given by:

G1 ‖ G2 := Ac(X1 ×X2,Σ1 ∪ Σ2, f1‖2, (x
1
0, x

2
0), X1

m ×X2
m)

where

f1‖2((x1, x2), σ) =


(f1(x1, σ), f2(x2, σ)) if, σ ∈ ΓG1(x1) ∩ ΓG2(x2)

(f1(x1, σ), x2) if, σ ∈ ΓG1(x1)\Σ2

(x1, f2(x2, σ)) if, σ ∈ ΓG2(x2)\Σ1

undefined, otherwise.

Example 12 Let us consider two automata G1 and G2 represented in Figure 2.9

(a) and (b), respectively, where Σ1 = {a} and Σ2 = {a, b}.
The parallel composition of G1 and G2 is shown in Figure 2.10. Notice that the

event set of G1 ‖ G2 is given by Σ1 ∪ Σ2 = {a, b}.

11

0 1

(a)

a

X

Y

Z

(b)

a

a

a

b

Figure 2.9: Automata G1 and G2 of Example 12.

0, X

1, Y

1, Z

1, X

a
b

a

a

Figure 2.10: Parallel composition of G1 and G2 of Example 12.

2.2 Supervisory control in DES

The automaton model of a DES presented in Section 2.1 may represent the behavior

of an uncontrolled plant. However, if a specification is given, the plant must be

controlled by using a feedback control in order to achieve this specification. In order

to do so a supervisor can be implemented for the system [31, 32].

A supervisory control system limits the behavior of the plant, i.e., the language

generated by the closed-loop system is a subset of L(G), in order to reach a cer-

tain specification. The language L(G) may contain sequences that violate some

conditions, then a specification is defined in order to avoid such sequences.

In this section, we introduce the supervisor, denoted by S. The system G con-

trolled by S is represented in Figure 2.11. The feedback control system is denoted

by S/G, which is read as S controlling G.

2.2.1 Controllability

Controllable events

Let us assume that the set of events Σ is partitioned as Σ = Σc∪̇Σuc, where Σc and

Σuc denote, respectively, the sets of controllable and uncontrollable events of the

system. The controllable events of the system are the events that can be disabled

12

s S(s)

S

G

Figure 2.11: Supervisor S controlling the plant G.

or prevented from happening by the supervisor, while the uncontrollable events are

events that cannot be prevented from happening.

The controllability condition is intuitive and reflects an important notion in

supervisory control [31].

Definition 4 (Controllability) Let K and M = M be languages defined over

event set Σ. Let Σuc be a subset of Σ. Then, K is said to be controllable with respect

to M and Σuc if

KΣuc ∩M ⊆ K.

The concept of controllability can be understood as, any sequence that cannot

be prevented from happening must be legal. In other words, the language expression

for the controllability condition can be rewritten as:

∀s ∈ K,∀e ∈ Σuc, se ∈M ⇒ se ∈ K.

Controllability Theorem

The key result for the existence of a supervisor in the presence of uncontrollable

events is called controllability theorem, and is presented in the sequel [31].

Theorem 1 (Controllability Theorem) Consider G = (X,Σ, f, x0, Xm) and the

set of uncontrollable events Σuc ⊆ Σ. Let K ⊆ L(G), where K 6= ∅. Then, there

exists a supervisor S such that L(S/G) = K if, and only if,

KΣuc ∩ L(G) ⊆ K.

2.2.2 Definitions for supervisory control

The supervisory function

Mathematically, the supervisor is a function S : L(G) → 2Σ, in which controllable

events of G can be disabled or enabled by S. So, for each s ∈ L(G) the set of

enabled events is given by S(s) ∩ ΓG(s). Notice that a supervisor S cannot disable

13

0 1 2 3

a

a

b

b
c

Figure 2.12: Automaton G of Example 13

uncontrollable events. The supervisor is said to be admissible if for all s ∈ L(G),

Σuc ∩ ΓG(f(x0, s)) ⊆ S(s). In this work, we only consider admissible supervisors.

Languages of a supervisor

After defining the supervisor function we can also define the languages that G gen-

erates and marks being controlled by S that is L(S/G) and Lm(S/G).

The generated language by S/G is defined recursively as:

1: ε ∈ L(S/G)

2: [(s ∈ L(S/G)) and (sσ ∈ L(G)) and (σ ∈ S(s))]⇔ [sσ ∈ L(S/G)]

The marked language is defined as:

Lm(S/G) := L(S/G) ∩ Lm(G).

2.2.3 Realization of a Supervisor

After defining the languages of S/G we can define an automaton in order to represent

the whole closed-loop system. In this work the closed-loop system is called T .

Therefore, it is easier if we define a realization H of the function S that when

composed with G generates automaton T, i.e., T = G ‖ H. The supervisor will

then disable controllable events of G generating the automaton of the closed-loop

system.

Example 13 Consider automaton G where state transition diagram shown in Fig-

ure 2.12, and suppose that the specification is to avoid the occurrence of event c.

In order to do so, the supervisor function S may allow the occurrence of all events

except event c. Function S will then be S(s) = {a, b}, where s is any sequence in

{a, b}?.
A realization of this supervisor denoted here by H is presented in Figure 2.13.

Notice that the parallel composition between G and H results in the automaton

T that generates the specified language represented in Figure 2.14.

14

X

a, b

Figure 2.13: Supervisor realization H of Example 13.

0, X 1, X 2, X

a

a

b

b

Figure 2.14: Closed-loop system T = G ‖ H of Example 13.

2.2.4 Control under partial observation

Observable events

Notice that, in real systems, there may exist events whose occurrence are not com-

municated to the supervisor of the plant. In these cases, the set of events can be

partitioned as Σ = Σo∪̇Σuo, where Σo and Σuo are the sets of observable and un-

observable events of the system. The observable events represent those events that

the supervisor can observe, and the unobservable events represent the events of the

plant that do not have sensors to identify their occurrence or are not communicated

to the supervisor.

Observer automaton

For the system operation under partial observation, it is important to construct an

automaton Gobs that generates the natural projection of the language L generated by

automaton G, Po(L). In order to compute Gobs, we first need to define the operation

of obtaining the unobservable reach of a state x ∈ X, which is a generalization of

the notion of ε− reach [31].

Definition 5 (Unobservable reach) The unobservable reach of a state x ∈ X,

denoted by UR(x), is defined as:

UR(x) = {y ∈ X : (∃t ∈ Σ?
uo)(f(x, t) = y)}. (2.1)

15

0 1 2

3

c

b

b

a

Figure 2.15: Automaton G of Example 14.

The unobservable reach can also be defined for a set of states B ∈ 2X as:

UR(B) =
⋃
x∈B

UR(x). (2.2)

Using definition of unobservable reach we can present an algorithm for the com-

putation of Gobs = (Xobs,Σo, fobs, x0,obs) [31, 33].

Algorithm 1 Observer automaton

Input: G = (X,Σ, f, x0).

Output: Observer automaton Gobs = (Xobs,Σo, fobs, x0,obs).

1: Define x0,obs = UR(x0). Do Xobs = {x0,obs} and X̃obs = Xobs.

2: X̄obs = X̃obs, X̃obs = ∅.

3: For each B ∈ X̄obs do

3.1: ΓGobs
(B) =

(⋃
x∈B ΓG(x)

)
∩ Σo.

3.2: For each σ ∈ ΓGobs
(B),

fobs(B, σ) = UR({x ∈ X : (∃y ∈ B)[x = f(y, σ)]}).

3.3: X̃obs ← X̃obs ∪ fobs(B, σ).

4: Xobs ← Xobs ∪ X̃obs.

5: Repeat steps 2 to 4 until all accessible part of Gobs is constructed.

Example 14 Let us consider an automaton G, represented in Figure 2.15, with set

of observable events Σo = {a, b}.
Then, the observer of G, Gobs is represented in Figure 2.16. Notice that, since

event c is unobservable, the system cannot differentiate if it is on state 1 or state 0

before an occurrence of event b.

16

0, 1 2 1

3

b b

a

Figure 2.16: Automaton Gobs of Example 14.

s

Sp(s)

Sp

G

P (s)

P

Figure 2.17: Closed-loop system under partial observation

Controllability and observability

The controllability theorem 1 is not sufficient for the construction of a supervisor

under partial observation. As stated in [31], the observability is defined by:

Definition 6 (observability) Let K and M = M be languages defined over event

set Σ. Let Σc be a subset of Σ, let P : Σ? → Σ?
o be a projection. K is said to be

observable with respect to M, Σo, and Σc if for all s ∈ K and for all σ ∈ Σc,

(sσ /∈ K) and (sσ ∈M)⇒ P−1[P (s)]σ ∩K = ∅.

The concept of observability can be understood as: if you cannot differentiate

between two strings then this two strings should enable the same controllable events.

The supervisor under partial observation observes just the projection of the se-

quence that was executed by the system. The closed-loop system under partial

observation is depicted in Figure 2.17.

The closed-loop system considered in this case is then SP/G and we can define

the language of this closed-loop system similarly to the case with full observation

by:

1: ε ∈ L(SP/G)

2: [(s ∈ L(SP/G)) and (sσ ∈ L(G)) and (σ ∈ SP (P (s)))]⇔ [sσ ∈ L(SP/G)]

Example 15 Consider the realization of a system represented by G, depicted in

Figure 2.18 (a), with observable event set Σo = {a, b} and controllable event set

17

0 1 2

3 4

(a)

a

X Y

Z

(b)

c

b

b

aa c

b

c
a

a

a
b

Figure 2.18: Example of automaton G and supervisor H of Example 15.

0, X 1, Y 2, Y

3, Za

aa c

b

a

Figure 2.19: Closed-loop system under partial observation T of Example 15.

Σc = {a, c}. Let H be the realization of the supervisor that controls this system,

shown in Figure 2.18 (b). Notice that all uncontrollable events must be active in all

states of H in order to be admissible, and also that as the supervisor only “sees”

observable events, then a transition labeled by an unobservable event cannot change

the state of H, i.e., all transitions with unobservable events must be a self-loop. It is

important to remark that as c is an unobservable event, the projection of a sequence

s and the projection of sc is the same. So the state in H cannot change with an

occurrence of c. In addition the event b is an uncontrollable event, and then, for

the supervisor to be admissible, b must be always enabled in the supervisor when it

is active in the plant. Therefore, b is active in all states of the supervisor. The

closed-loop system under partial observation T is represented in Figure 2.19.

Construction of a P-supervisor

In Subsection 2.2.3 it is presented how to obtain a realization of a supervisor S

for a system with full observation, however for systems under partial observation

the construction of a P-supervisor SP is not straightforward. With the specification

language L(SP/G) = K, we first build a trim automaton R that generates and marks

K. Notice that the event set of R is Σ and Σo is the subset of observable events.

Then, we build the observer of R, Robs, corresponding to the set of observable events

Σo. Since all states of R are marked then all states of Robs are also marked.

Here, differently from the supervisor S with full observation, automaton Robs

does not encode the set of enabled events by function Sp, because the set of events

18

in Robs is Σo. However, since each state of Robs is a set of events of R we can recover

the control actions by examining the states of R.

Let s be the string of observable events executed by the plant, and xobs,current be

the state in Robs after the execution of s. Then:

SrealP (t) =
⋃

x∈xobs,current

[ΓR(x)].

where ΓR is the active event function of R. Then, in order to create the control

function, we need to include the controllable events that are not observable. Then

for each state xobs ∈ Xobs we add self loops for all unobservable events that appear

in ⋃
x∈xobs

[ΓR(x)]

The supervisory control theory found in the literature is wider than presented in

this section, e.g., there are modular approaches [34, 35], the use of abstractions for

supervisory control systems [36, 37], hierarchical control [38, 39], etc. However, in

this work, we consider an existing supervisor, and therefore, there is no need to

cover all these topics.

In order to position this work with respect to other works in the literature,

and formulate the problem addressed in this work, a background on cyber-physical

systems and security is needed. In this regard, in Section 2.3 we present some

background of CPSs and security.

2.3 Security in cyber-physical systems

Cyber-physical systems are systems that integrate computing and communication

capabilities to monitor and control physical processes. An example of this type of

system is a smart grid, and there are several works in the literature that address

the problem of security in CPS [1–3, 10, 40–42]. In RAWAT and BAJRACHARYA

[42], for instance, the authors make a review in smart grids security and show the

difference between a smart grid and the traditional Internet, and then present the

vulnerabilities in smart grids. The authors in [42] also show that the majority of

the cyber attacks in smart grids are due to malicious threats in the communication

network.

This section is divided as follows: in Section 2.3.1 we present the structure of

a network, commonly used in CPS. In Section 2.3.2 we describe the structure and

challenges in security of a CPS. Finally, in Section 2.3.3, we present the type of

attack considered in this work called man-in-the-middle attack.

19

Physical Plant

Actuator 1 Actuator m Sensor 1 Sensor n

Controler

b b b b b b

Figure 2.20: Example of structure for CPS

2.3.1 Structure of a CPS

As a CPS is a wide concept then the structure of a CPS can be a simple connection

between two physical systems or a complex network, like Internet connection with

all its layers and protocols in order to control a physical system, for example, a home

automation system.

As, in this work, we do not explore all the layers and protocols used in complex

networks, there is no need to describe this type of network here. Therefore, we

present a simple structure of a CPS as described in [43]. The structure considered in

this work is shown in Figure 2.20, in which the physical channel of communication is

represented by the solid lines, and the communication flow is represented by dashed

lines.

The communications between devices in a CPS normally use specific protocols

for the area for which they are designed. For example, in power grids, it is com-

monly used the Distributed Networking Protocol 3.0 (DNP3), which is standard in

North America for power grids, or the International Electrotechnical Commission

(IEC) 61850, created to substitute DNP3 in smart grids. More information on these

protocols can be found in [42].

On the other hand, the authors of RAWAT and BAJRACHARYA [42] also de-

scribe the security challenges in smart grids, which have some factors that must be

taken into account in every security system for CPS. This structure and character-

istics are best explained in the following section.

2.3.2 Security in CPS

There are important characteristics that every networked system must have in order

to work properly. These characteristics are known as the CIA triad [44], which are,

confidentiality, integrity and availability (CIA triad). Every security protocol should

20

not compromise any of these factors.

Confidentiality refers to giving access only to authorized people, i.e., any request

made by unauthorized parties cannot be executed. Protecting the integrity of in-

formation indicates protecting this data from being adulterated by an unauthorized

source. Availability means that all information must be available to authorized

parties.

There are two main groups of attacks, they can be classified as “active” when it

attempts to alter system resources or affects their operation, or classified as “pas-

sive” when attempts to learn or make use of information from the system but does

not affect system resources. Active attacks, by definition, compromise integrity or

availability. On the other hand, “passive” attacks compromises confidentiality.

The most common attack in Internet are: (i) the Denial-of-service attack (DoS)

or Distributed Denial-of-service attack (DDoS), targeting availability, which consists

of requesting a service from different sources at the same time, and with this over-

loading, the system becomes unavailable; (ii) Port Scanning attack, which consists

of sending requests to different ports, and then construe this information in order

to facilitate future attacks; (iii) Trojan Horse, which consists of sending a virus or

worm disguised as something else that an user may open, and then creating loop-

holes in the system in order to leak information or creating security breaches such

that an attack can be executed; (iv) Brute force attack, which targets confidential-

ity, and is a type of password cracking, it consists of trying every combination of

password until cracking it.

Another attack, that has increased its use in the last years is called man-in-the-

middle attack (MITM). The MITM attack is classified as “active” as it can change

data, making it a more dangerous attack than the others previously presented.

2.3.3 Man-in-the-middle attack

A dangerous attack in computer security is the MITM attack [45]. In 2016, a wide

survey on this type of attack was presented in CONTI et al. [46] where the authors

show that the MITM attack has been considered as one of the most dangerous

attacks against network security in the literature.

The MITM is an attack where the attacker compromises a communication chan-

nel between two devices. Once compromised the attacker can see, send or change

data from this channel, i.e., the attacker can intercept, modify, change, or replace

target communication traffic data. Notice that the MITM attack is different from a

simple eavesdropper, since in the latter type of attack the malicious agent can only

retrieve information.

The major concern for security in networked connected systems is to maintain

21

the CIA triad. The MITM is an attack that compromises all factors of the CIA triad,

since it compromises confidentiality, by eavesdropping on the communication; it also

attacks integrity since it can intercept the communication and modify messages;

and lastly it endanger availability, by intercepting and destroying messages. In this

regard, a MITM attack is a serious threat to CPSs.

2.4 Final comments

In this chapter, in Section 2.1, we define DES, and present the main difference

between DES and time-driven systems. It is also shown how to model DESs us-

ing automata, and we define formally the languages generated and marked by an

automaton. In Section 2.1 we show two types of automata, namely deterministic

and nondeterministic automata, and show how to relate each of them with their

corresponding languages.

In the following, we present automaton operations. First, it is shown how to

take the accessible part and the coaccessible part of an automaton, and then we

also present how to operate with two automata in order to compose then with the

parallel composition, generating a new automaton.

In Section 2.2, we present some basic notions of the supervisory control theory.

We associate the supervisor with a function S and then show how we can make an

automaton realization H of this supervisor in order to compose it with the plant. In

Section 2.2 we also define controllability for DES. In Subsection 2.2.4 we show how

the systems behave under partial observation, and how the supervisor must operate

under this situation is shown.

In Section 2.3 the concept of CPS is introduced and we present a basic knowledge

about security in networked communication system. It is presented some common

attacks that compromises a network based system, and then we introduce the man-

in-the-middle attack.

In this work, we assume that the attacker has used a MITM attack to compromise

a networked based communication between plant and supervisor. The malicious

agent in this scenario is able to attack two different types of communication channel:

a sensor channel from the supervisor to the plant; or a supervisory control channel

from the supervisor to the plant. In the MITM attack the malicious agent can hide,

create or change events transmitted in the attacked communication channel. In the

next chapter we model this scenario, and then develop a way to identify and verify

if the MITM attack would be critical to the system.

22

Chapter 3

Security Against Network Attacks

in Supervisory Control Systems

The increase in the use of networks in the feedback control system also increases its

vulnerability to malicious attacks. Depending on the type of attack executed by the

intruder, the information in the network can be corrupted or completely changed,

driving the feedback system to undesirable and unsafe states. One of the most

powerful attacks that can be executed is the so-called man-in-the-middle attack. In

this type of attack the intruder can observe, hide, create or change the information

that transits in the attacked communication channel.

In this work we consider a networked supervisory control system as shown in

Figure 3.1. We assume that the communication between supervisor and plant, and

conversely, is carried out by using several different channels. The channels that

are used to send information, gathered by sensors, from the plant to the supervisor

are denoted as sensor channels, and the channels that transmit the control actions,

enabling actuators, from supervisor to plant are called supervisory control channels.

In Figure 3.1, we can see the communication channels, where the physical bus and

its connections with the devices in the system are represented by solid lines, and the

flow of information by dashed lines. The plant in the networked supervisory control

system is modeled by a deterministic automaton G = (X,Σ, f, x0), the realization

of the supervisor S is modeled by a deterministic automaton H = (XH ,Σ, fH , x0H),

and the closed-loop system model T = (XT ,Σ, fT , x0T) is obtained by the parallel

composition T = G‖H. We consider that the plant has a set of unsafe states denoted

by XUS ⊂ X, and we assume that the supervisor is designed to avoid the plant from

reaching any unsafe state x ∈ XUS, i.e., no unsafe states are reachable in T .

Let us consider that there are vulnerable communication channels in the net-

worked supervisory control system of Figure 3.1, and assume that the intruder can

execute MITM attacks, i.e., the information in the attacked channel can be com-

pletely changed by the intruder. Let us also assume that both sensor communication

23

Physical Plant

Actuator 1 Actuator m Sensor 1 Sensor n

Supervisor

Control

Attack

Sensor

Attack
b b b

Channel Channel
b b b

Figure 3.1: Closed-loop system under attack

channels and supervisory control communication channels, can be attacked. Thus,

the intruder can hide, insert or change events whose occurrence is detected by sensors

in the plant, and can modify the enabling action commanded by the supervisor to

the actuators of the plant connected through attacked channels, with the objective

to drive the system to reach unsafe states. Let chsi and chaj , for i = 1, . . . , ns and

j = 1, . . . , na, denote the attacked sensor channels and the attacked supervisory con-

trol channels, respectively, where ns is the number of attacked sensor channels and na

is the number of attacked supervisory control channels. Let Σsi ⊂ Σo and Σaj ⊂ Σc,

denote, respectively, the set of observable events transmitted through channel chsi
and the set of controllable events enabled through channel chaj . Then, the set of

events associated with the vulnerable sensor channels is defined as Σvs =
∑ns

i=1 Σsi ,

and the set of events associated with the vulnerable supervisory control channels is

defined as Σva =
⋃na

j=1 Σaj .

The following assumption over the model of the system is made in LIMA et al.

[17], and is also considered initially in this work.

A1. the sets of controllable and observable events are disjoint, i.e., Σo ∩Σc = ∅.
Assumption A1 will be relaxed later in this chapter.

In this work, we propose the design of an Intrusion Detection Module that,

as shown in Figure 3.2, observes the traces observed by the supervisor and, after

detecting an intrusion that certainly leads to unsafe states, prevents the system from

reaching these states by forcing the supervisor to disable all controllable events of the

system. It is important to remark that the Intrusion Detection Module allows that

traces generated after network attacks, that do not belong to the language generated

by the closed-loop system T , be executed if these traces lead to safe states.

The existence of the Intrusion Detection Module depends on the language of

the system, and on the vulnerable event sets Σvs and Σva. Thus, we present in

24

Plant

Supervisor

Module
Intrusion Detection

Figure 3.2: Intrusion detection module.

the sequel the modelling of the system under sensor channel attacks and control

channel attacks, and then we present the definition of NA-Safe controllability that

is associated with the capability of detecting and preventing damages caused by

network attacks.

3.1 Model of the plant subject to sensor channel

attacks

Since the Intrusion Detection Module observes the same traces that the supervisor

observes, and assuming that the attack has been executed in sensor communication

channels, then, in order to model this type of attack, we propose an algorithm

for the construction of a nondeterministic automaton GA, from automaton G, that

generates all possible traces modified by the attacks in the sensor channels. In order

to do so, we define the sensor attack function AS : Σ? → 2Σ?
as follows.

AS(σ) =

{
Σ?
vs, if σ ∈ Σvs ∪ {ε}

Σ?
vs{σ}Σ?

vs, if σ ∈ Σ \ Σvs

AS(sσ) = AS(s)AS(σ), for all s ∈ Σ?, and σ ∈ Σ.

Function AS can be extended to a language K ⊆ Σ? by applying AS(s) to all

traces s ∈ K. It can be seen that when a trace s ∈ L is executed by the plant

G, the intruder can modify s to obtain any trace in AS(s) by removing, replacing

and/or adding events belonging to Σvs. Thus, the supervisor may observe any trace

in Po[AS(s)], where Po : Σ? → Σ?
o is a projection. In order to illustrate this fact,

consider Σ = Σo = {a, b, c}, Σvs = {a, c} and trace s = abba. Since events a and c

can be removed, replaced and/or added, then, when trace s is executed by the plant,

the intruder is able to generate any trace in AS(s) = {a, c}?{b}{a, c}?{b}{a, c}?.
Therefore, when the feedback system is subject to sensor communication attacks,

25

0 1 2

3 4 5 6 7

d

c
g

b

e

g d a e

Figure 3.3: Model of the plant G.

the decisions of the supervisor can drive the plant to an unsafe state, since it is based

on Po[As(L(G))], we denote the set of unsafe states of the plant by XUS. In the

following algorithm, we construct an automaton that generates language AS(L(G)).

Algorithm 2 Computation of automaton GA that models the plant subject to sensor

channel attacks

Input:

• G = (X,Σ, f, x0) [Plant model]

• Σvs ⊆ Σo [Set of vulnerable observable events]

Output:

• GA = (X,ΣA, fA, x0) [Model of the plant subject to sensor channel attacks]

1: Define ΣA = Σ ∪ {ε}.

2: Define fA(x, σ), ∀x ∈ X, and ∀σ ∈ ΣA, as follows:

fA(x, σ) =



{f(x, σ)}, if σ ∈ ΓG(x) ∧ σ ∈ Σ \ Σvs,

{x} ∪ {f(x, σv) : σv ∈ ΓG(x) ∩ Σvs},
if σ ∈ Σvs,

{f(x, σv) : σv ∈ ΓG(x) ∩ Σvs}, if σ = ε,

undefined, otherwise.

Example 16 Let G be the automaton model of the plant shown in Figure 3.3, where

Σ = Σo = {a, b, c, d, e}, and consider that only one sensor channel, that transmits

the observation of event c to the supervisor, is attacked. In this case, Σvs = {c}.
Following the steps of Algorithm 2, we obtain the model of the plant subject to sensor

channel attacks GA, shown in Figure 3.4.

It is important to notice that GA is a nondeterministic automaton, since it models

the false observation of events when the plant does not change its state (modeled by

26

0 1 2

3
4 5 6 7

d

c

g

g

g, ε
e,g

b

g, ε

g

d

g

a

g

e

g g

Figure 3.4: Model of the plant subject to sensor channel attacks GA.

the self-loops labeled with events in Σvs), and also the creation of transitions labeled

with ε, and events in Σvs, in parallel with all transitions labeled with any event in

Σvs, to represent the actions of the intruder of deleting and changing the observation

of events, respectively. 2

The following propositions show that the language generated by GA represents

all possible modifications in the traces of L(G) after sensor channel attacks.

Proposition 1 Let XG(t) ⊆ X denote the set of states that can be reached in G

after the occurrence of a trace t ∈ AS(L(G)), i.e., XG(t) = {x ∈ X : (∃s ∈ L(G))[t ∈
AS(s) ∧ f(x0, s) = x]}. Then, XG(t) = f eA(x0, t), where f eA is obtained from fA by

extending its domain to X × Σ?.

Proof: The proof is by induction in the length of trace t.

(i) Basis step. Since the malicious agent can only remove events belonging to Σvs,

only traces s ∈ Σ?
vs can be modified to t = ε and, consequently, XG(ε) is equal to the

set of states inX that are reached inG from x0 by following a trace in Σ?
vs. According

to the definition of fA, for all x ∈ X, fA(x, ε) = {f(x, σv) : σv ∈ ΓG(x) ∩ Σvs}.
Therefore, XG(ε) = f eA(x0, ε).

(ii) Induction hypothesis. For all t ∈ Σ? such that |t| ≤ n, XG(t) = f eA(x0, t).

(iii) Inductive step. Let us consider a trace tn+1 = tσ such that |t| = n. Then,

|tn+1| = n + 1. According to the induction hypothesis, XG(t) = f eA(x0, t), which

implies that XG(tn+1) is the set of states of G that can be reached from a state

in f eA(x0, t) by following a trace sσ such that σ ∈ AS(sσ). The following cases can

occur:

(a) If σ ∈ Σvs, then a trace in Σ?
vs may have occurred in the plant, and its observation

removed by the malicious agent that allows the observation of only one event σ.

27

Then, XG(tn+1) = XG(t) ∪ {x ∈ X : (∃x′ ∈ XG(t) ∧ ∃sv ∈ Σ?
vs)[f(x′, sv) = x]}.

According to the definition of fA, for all x ∈ X, fA(x, σ) = {x} ∪ {f(x, σv) : σv ∈
ΓG(x) ∩ Σvs} if σ ∈ Σvs, and fA(x, ε) = {f(x, σv) : σv ∈ ΓG(x) ∩ Σvs}. Then, we

conclude that XG(tn+1) = f eA(x0, tn+1).

(b) If σ ∈ Σ \Σvs, then event σ occurred since the malicious agent cannot alter the

observation of events in Σ \ Σvs. Moreover, a trace in Σ?
vs may have occurred in

the plant and its observation removed by the malicious agent. Then, XG(tn+1) =

{x ∈ X : (∃x′ ∈ XG(t) ∧ ∃sv, s′v ∈ Σ?
vs)[f(x′, svσs

′
v) = x]}. According to the

definition of fA, if σ ∈ ΓG(x) ∩ (Σ \ Σvs), then, for all x ∈ X, fA(x, σ) = f(x, σ).

In addition, fA(x, ε) = {f(x, σv) : σv ∈ ΓG(x) ∩ Σvs}. Therefore, we conclude that

XG(tn+1) = f eA(x0, tn+1).

Proposition 2 L(GA) = AS(L(G)).

Proof: The proof is by induction in the length of the traces of Σ?.

(i) Basis step. By definition, ε ∈ L(GA), and ε ∈ AS(L(G)) since ε ∈ AS(ε) ⊆
AS(L(G)).

(ii) Induction hypothesis. For all s ∈ Σ? such that |s| ≤ n, s ∈ L(GA) if, and

only if, s ∈ AS(L(G)).

(iii) Inductive step. Consider a trace sσ ∈ Σ?, where |s| = n. Notice that

languages L(GA) and AS(L(G)) are prefix-closed. Then, by using the induction

hypothesis, we conclude that it is sufficient to consider s ∈ L(GA) ∩ AS(L(G)).

There are two possible cases: (a) when σ ∈ Σvs, according to the definition of fA,

for all x ∈ f eA(x0, s), fA(x, σ) is always defined, which implies that sσ ∈ L(GA).

In addition, since sσ ∈ {s}AS(ε) ⊆ AS(L(G)), then sσ ∈ AS(L(G)). Thus, sσ ∈
L(GA) ∩ AS(L(G)); (b) when σ ∈ (Σ \ Σvs), sσ ∈ L(GA) if and only if (∃x ∈
f eA(x0, s))[σ ∈ ΓG(x)] ⇔ (∃s′ ∈ L(G))[s ∈ AS(s′) ∧ s′σ ∈ L(G)] ⇔ sσ ∈ AS(L(G)),

where the first equivalence relation is a consequence of Proposition 1, and the last

relation is a consequence of the definition of AS.

3.2 Model of the supervisor subject to supervi-

sory control channel attacks

If the attack occurs in the supervisory control communication channel, the intruder

has the ability to enable or disable controllable events associated with the actuators

of the plant. In this case, the intruder drives the plant to unsafe states by changing

the enablement of the vulnerable events in Σva. Thus, in order to model the attacks

in the supervisory control channels, we modify the model of the supervisor by allow-

ing the modifications that the intruder can execute in the vulnerable controllable

28

X Y Z
d

a, g

g

a

b

a, g, e

Figure 3.5: Supervisor realization H.

events. It is important to remark that only the attacks that lead to unsafe states are

considered in this work. Thus, it is not important to model the disabling actions of

the attack, since, when this happens, the supervisory control system does not allow

the plant to reach an unsafe state.

In the following algorithm we present a method to generate a deterministic au-

tomaton HA that models the supervisor after attacks in the supervisory control

communication channels.

Algorithm 3 Computation of automaton HA that models the supervisor subject to

control channel attacks

Input:

• H = (XH ,Σ, fH , x0H) [Supervisor model]

• Σva ⊆ Σc [Set of vulnerable controllable events]

Output:

• HA = (XH ,Σ, fHA, x0H). [Model of the supervisor subject to control channel

attacks]

1: Define fHA(x, σ), ∀x ∈ XH , ∀σ ∈ Σ as follows:

fHA(x, σ) =


fH(x, σ), if σ ∈ ΓH(x)

x, if σ ∈ Σva \ ΓH(x)

undefined, otherwise.

Example 17 Let G be the plant shown in Figure 3.3, where Σc = {b, c, d, e}, and

let H = (XH ,Σ, fH , x0H), depicted in Figure 3.5, be a realization of the supervisor

S of the system.

Assume that the set of vulnerable controllable events is Σva = {e}. Then, using

Algorithm 3, we obtain the realization of the supervisor after control attacks HA

29

X Y Z
d

a, g, c

g

a, c

b

a, e, g, c

Figure 3.6: Realization of the supervisor after control channel attacks HA.

shown in Figure 3.6. Notice that HA is obtained from H by adding self-loops in the

states x of H, labeled with the events in Σva that are not feasible in x. 2

It is important to remark that since the intruder has the capability of completely

changing the enablement of the events in Σva, then these events become uncontrol-

lable. This fact is modeled by the self-loops added in supervisor HA.

Proposition 3 For all traces so ∈ Po[L(G)],

ΓHA
(fHA(x0H , so)) = ΓH(fH(x0H , so)) ∪ Σva.

Proof: The proof is straightforward from the construction of HA.

3.3 Model of the closed-loop system subject to

network attacks

In accordance with Section 3.1, the behavior of G in the presence of sensor channel

attacks is modeled by the nondeterministic automaton GA and, in accordance with

Section 3.2, the supervisor realization subject to control channel attacks is modeled

by the deterministic automaton HA. Then, the closed-loop system subject to net-

work attacks can be modeled by TA = (XTA,ΣTA, fTA, x0TA) = GA‖HA. Notice that

the vulnerable events of Σva are uncontrollable after the attack. Thus, we need to

define the new set of controllable events of the attacked system as Σca = Σc\Σva. In

addition, we define the set of unsafe states of TA asXTA
US = {(x, y) ∈ XTA : x ∈ XUS}.

Remark 3 If there is no sensor channel attack, i.e., Σvs = ∅, (resp. control channel

attack, i.e., Σva = ∅), then automaton GA (resp. HA) will be equal to G (resp. H).

Therefore, the method presented here can be straightforwardly used when the system

is subject only to control channel attacks (resp. sensor channel attacks).

Example 18 Let us consider the system modeled by automaton G, depicted in Fig-

ure 3.3, where Σo = {a, b, c, d, e} and XUS = {6}, and the supervisor realization

30

(0, X) (1, Y) (2, Z)
d g

b

e

Figure 3.7: Automaton for the closed-loop system (T).

(6, z)(5, y)(3, x)

(0, x)

(4, y)

(2, z)

(1, y)

b

ε

ea

d
e

d

Figure 3.8: Automaton of the closed-loop system subject to network attacks TA.

H presented in Figure 3.5. Notice that there is no unsafe state in the closed-loop

system T = G‖H shown in Figure 3.7, which shows that the supervisor avoids the

reach of unsafe states.

Consider now a sensor channel attack such that Σvs = {c}, and a control channel

attack such that Σva = {e}. Then, the attacked closed-loop system TA = GA‖HA,

depicted in Figure 3.8, has the set of unsafe states XTA
US = {(6, z)}, which means

that the intruder is capable of driving the system to reach an unsafe state after the

attacks. 2

3.4 NA-Safe Controllability

Depending on the attack executed by the intruder, the closed-loop system can reach

unsafe states in XTA
US . Thus, in order to prevent damages to the plant, we propose in

this work the implementation of a module that is capable of identifying traces such

that their continuations certainly lead to states in XTA
US , and then block the system

before an unsafe state is reached.

Let LTA denote the language generated by TA. Then, LTA can be partitioned as

LTA = Ls(TA)∪̇Lus(TA), where Ls(TA) denotes the safe language, composed of traces

s ∈ LTA such that we cannot reach an unsafe state in XTA
US after the occurrence of

s, i.e., Ls(TA) = {s ∈ LTA : (∀t ∈ LTA/s)[f eTA(x0TA, st) ∩XTA
US = ∅]}, and Lus(TA)

denotes the unsafe language, composed of traces s ∈ LTA such that we can reach

an unsafe state in XTA
US after the occurrence of s, i.e., Lus(TA) = {s ∈ LTA : (∃t ∈

LTA/s)[f
e
TA(x0TA, st) ∩XTA

US 6= ∅]}. Notice that a trace in the unsafe language may

be part of the normal behavior of the system, i.e., may belong to the language

31

generated by T , LT , or even be part of Ls(TA). Therefore, the module may act only

after distinguishing traces of LTA that will certainly reach an unsafe state, and do

not belong to the language generated by the system before an attack LT .

We present in the sequel a property of the language of the closed-loop system

subject to network attacks, LTA, that is associated with the capability of designing

the Intrusion Detection Module.

Definition 7 (NA-Safe Controllability) Let TA be the automaton model of the

closed-loop system subject to network attacks, and let T denote the automaton of

the closed-loop system without network attacks. Let LT and LTA be the generated

languages of T and TA, respectively. Then, LTA is said to be NA-Safe Controllable

with respect to Po : Σ? → Σ?
o and a set of unsafe states XTA

US if

(∀s ∈ LTA)[f eTA(x0TA, s) ∩XTA
US 6= ∅]⇒ (s = s1s2)[(∀ω ∈ LT ∪ Ls(TA))[Po(s1) 6=

Po(ω)] ∧ (Σca ∈ s2)]. 2

According to Definition 7, LTA is NA-safe controllable if all traces s ∈ LTA, that lead

the system to an unsafe state in XTA
US , have an unsafe prefix s1 ∈ Lus(TA) that can

be distinguished from any safe and normal traces of the system, and a continuation

s2 that has an event from Σca, which allow that unsafe traces that certainly lead the

system to an unsafe state be detected, and the reach of unsafe states prevented by

disabling the controllable events of Σca.

Notice that, the supervisor could be designed to disable all controllable events

of the plant after detecting the observation of traces that do not belong to Po(LT).

However, this approach would be more restrictive than the approach proposed in

this work, since the system can execute safe traces in Ls(TA) after an attack that

do not represent danger to the system.

3.4.1 Verification of NA-Safe controllability

In order to present an algorithm for the verification of NA-Safe controllability, we

need to define two functions, namely, the rename function and the uncontrollable

reach function.

The rename function R [47] is defined, for all σ ∈ Σ ∪ {ε}, as follows.

R(σ) =

{
σ, if σ ∈ Σo ∪ {ε}
σR, if σ ∈ Σuo

Notice that, the function R can be extended to a set of events Σ by:

R(Σ) =
⋃
σ∈Σ

R(σ).

32

Let G = (X,Σ, fnd, x0, Xm) be a nondeterministic automaton. The uncontrol-

lable reach UR is defined, for all state x ∈ X and a set of uncontrollable events Σuc,

as UR(x,Σuc) = {y ∈ X : (∃t ∈ Σ?
uc)[f

e
nd(x, t) = y]}. This function is extended to a

set of states B ⊆ X as UR(B,Σuc) =
⋃
x∈B UR(x,Σuc).

Algorithm 4 NA-Safe Controllability Verifier

Inputs:

• T = (XT ,ΣT , fT , x0T) [Automaton model of the closed-loop system]

• TA = (XTA,ΣTA, fTA, x0TA) [Automaton model of the closed-loop system sub-

ject to network attacks]

• Σca [Set of controllable events of TA]

• XTA
US ⊂ XTA [Set of unsafe states]

Output: NASafeCont ∈ {TRUE,FALSE}

1: Compute TU and TS as follows:

1.1: Define XTA
US as the set of marked states of TA.

1.2: Define TU = CoAc(TA) = (XU ,ΣA, fU , x0U , X
TA
US), and unmark its states.

1.3: Define XTA \XU as the set of marked states of TA.

1.4: Define T ′S = CoAc(TA), and unmark its states.

1.5: Construct automaton TS such that L(TS) = L(T ′S) ∪ LT .

2: Construct automaton TU,R = (XU ,ΣR, fR, x0U), where ΣR = R(ΣA) and fR(x,R(σ)) =

f(x, σ),∀σ ∈ ΣA.

3: Compute V = (XV ,ΣV , fV , x0V) = TS‖TU,R.

4: Compute the unsafe region USR, and unsafe boundary USB, as follows:

4.1: Define the transpose of TA as T TA = (XTA,ΣA, f
T
TA, x0TA) where fTTA(x, σ) =

y ⇔ fTA(y, σ) = x, ∀x, y ∈ XTA, and ∀σ ∈ ΣA.

4.2: Define the unsafe region from T TA as USR = UR(XTA
US ,Σuca), where

Σuca = Σ \ Σca.

4.3: Define the unsafe boundary from T TA as USB = {x ∈ XTA \ USR : (∃σ ∈
ΣA) ∧ (∃y ∈ USR)[fTTA(y, σ) = x]}.

5: If there exists a state xV = (xS, xU) ∈ XV such that xU ∈ USR ∪ USB then

NASafeCont = FALSE, otherwise NASafeCont = TRUE.

33

In Algorithm 4, we describe a method for verifying the NA-Safe controllability

of LTA. The verification is based on the construction of the verifier automaton

V = TS‖TU,R, where the language generated by TS is LT ∪Ls(TA), and the language

generated by TU,R is composed of all renamed unsafe traces of LTA. As shown in

[47], all traces of V are associated with a trace in LT ∪Ls(TA) and a trace in Lus(TA)

that have the same projection. Thus, if a trace of V reaches a state xV = (xS, xU),

where xU ∈ USR ∪ USB, then there exist an unsafe trace in Lus(TA), and a trace

in LT ∪ Ls(TA) that cannot be distinguished, and since state xU is in the unsafe

boundary or in the unsafe region, it is impossible to prevent reaching an unsafe

state by disabling controllable events.

Theorem 2 The language generated by TA, LTA, is NA-safe controllable with re-

spect of XTA
US and Po : Σ? → Σ?

o if, and only if, NASafeCont = TRUE.

Proof: (⇒) Let us first consider that NASafeCont = FALSE. Then, there

exists a state xV = (xS, xU) ∈ XV such that either xU ∈ USR, or xU ∈ USB. Since

V = TS‖TU,R, then, in accordance with [47], ∃ω ∈ L(TS) and ∃s1 ∈ L(TU) such

that Po(ω) = Po(s1). If xU ∈ USB, then there exists an event σ ∈ Σca such that

f eTA(x0TA, s1σ)∩USR 6= ∅. According to the construction of USR, there exists a trace

s̄2 ∈ Σ?
uca such that f eTA(x0TA, s1σs̄2)∩XTA

US 6= ∅. Thus, defining trace s = s1σs̄2, we

conclude that s violates Definition 7 since there exists ω ∈ LT ∪ Ls(TA)) such that

Po(s1) = Po(ω), and Σca /∈ s̄2. Therefore, language LTA is not NA-Safe controllable.

On the other hand, if xU ∈ USR, then, ∃ω ∈ L(TS) and ∃s1 ∈ L(TU) such that

Po(ω) = Po(s1) and f eTA(x0TA, s1) ∩ USR 6= ∅. According to the definition of USR,

there exists a trace s2 ∈ Σ?
uca, such that f eTA(x0TA, s1s2) ∩XTA

US 6= ∅, which violates

Definition 7, and language LTA is not NA-Safe controllable.

(⇐) Let us consider now that NASafeCont = TRUE. Then, for all xV =

(xS, xU) ∈ XV , we have that xU /∈ USB and xU /∈ USR. Since, as shown in

[47], the verifier represents only the traces of L(TS) and L(TU) that have the same

projection, we conclude that for all traces s1 ∈ L(TU) that reaches a state in USB,

Po(s1) /∈ Po(L(TS)). From the constructions of USR and USB, each state x ∈ XTA
US

of TA is reached from a state in USB through a trace s2 = σs̄2, where σ ∈ Σca

and s̄2 ∈ Σ?
uca. Therefore, for all trace s ∈ LTA, f eTA(x0TA, s) ∩ XTA

US 6= ∅ ⇒ (s =

s1s2)[(∀ω ∈ L(TS))[Po(s1) 6= Po(ω)] ∧ (Σca ∈ s2)]. Since, L(TS) = LT ∪ Ls(TA), we

conclude that language LTA is NA-Safe controllable.

Example 19 Let us consider again the plant automaton of Example 16, depicted

in Figure 3.3, where Σo = {a, b, c, d, e} and Σc = {b, c, d, e}, and assume that Σvs =

{c} and Σva = {e}. Then, automata T and TA, shown in Figures 3.7 and 3.8,

respectively, are computed as presented in Example 18. In this case Σca = Σc\Σva =

{b, c, d}, and XTA
US = {(6, z)}.

34

(0, x) (1, y) (2, z)
d g

e

b

Figure 3.9: Automaton TS.

(0, x) (1, y)

(2, z)

(1, z)

(3, x)

(4, x) (5, y)

(5, z)

(6, y)

(6, z)

(7, z)

d

c

g

g

g

e, g
b

g, ε

g

d

g

a

g

g a

e

g

g

g

g

g

Figure 3.10: Automaton TU .

According to the first step of Algorithm 4, automata TS and TU , depicted in

Figures 3.9 and 3.10, respectively, are computed, in this work the unsafe region is

represented by a gray filled state, and the unsafe boundary by a state with gray hashed

state. Then, in Step 2, automaton TU,R, depicted in Figure 3.11 is computed by re-

naming the events in Σuo of TU , and in Step 3, the verifier automaton V, shown in

Figure 3.12, is computed. In order to verify the NA-Safe controllability of LTA, it is

important to find the unsafe region USR and unsafe boundary USB of TA. By fol-

lowing the procedure presented in Step 4, we obtain USR = {(5, y), (6, z), (4, y)} and,

USB = {(3, x)}. Since there is a state ((0, x), (3, x)) in verifier V, and (3, x) is in the

unsafe boundary USB, LTA is not NA-Safe controllable. Notice that it is easy to find

the traces s and ω that violate the NA-Safe controllability condition. In this example,

s = εdae ∈ L(TU), associated with path ((0, x), ε, (3, x), d, (4, y), a, (5, y), e, (6, z)),

has prefix s1 = εd with the same projection as the trace ω = d ∈ L(TS), associated

path ((0, x), d, (1, y)). Since a, e ∈ Σuca, the suffix of s, s2 = ae ∈ Σ?
uca, then LTA is

not NA-Safe controllable.

35

(0, x) (1, y)

(2, z)

(1, z)

(3, x)

(4, x) (5, y)

(5, z)

(6, y)

(6, z)

(7, z)

d

cr

g

g

g

er, g
b

g, ε

g

d

g

a

g

g a

er

g

g

g

g

g

Figure 3.11: Automaton TU,R.

(0, X), (0, x) (1, Y), (1, y)

(2, Z), (2, z)

(2, Z), (1, z)

(1, Y), (2, y)

(0, X), (3, x) (0, X), (4, x) (1, Y), (5, y) (2, Z), (5, z)

d

cr
g

g ε

er, eb

ε d g

g

g

Figure 3.12: Verifier automaton V .

36

3.5 Implementation of the Intrusion Detection

Module

We show in the sequel that the NA-Safe controllability of LTA is a necessary and

sufficient condition for the existence of the Intrusion Detection Module.

Theorem 3 Let G be the automaton model of the plant with set of unsafe states

XUS, controlled by a supervisor S, and subject to network attacks. Then, there

exists an Intrusion Detection Module that is capable of preventing G from reaching

an unsafe state in XUS if, and only if, LTA is NA-Safe controllable with respect to

Po : Σ? → Σo and XTA
US .

Proof: (⇒) Assume that LTA is not NA-safe controllable. Then, according

to Definition 7, there exits s ∈ LTA such that f eTA(x0A, s) ∩ XTA
US 6= ∅, and, for all

s1 and s2 such that s = s1s2, either (i) there exists w ∈ LT ∪ Ls(TA) such that

Po(s1) = Po(w), or; (ii) s2 ∈ Σ?
uca. In case (i), it is impossible to obtain a module

that can force the supervisor to disable the controllable events after observing Po(s1),

because this observation cannot be distinguished from the observation of a trace w

generated by the closed-loop system without the occurrence of attacks (w ∈ LT),

or a trace w that belongs to the prefix closure of the safe language (w ∈ Ls(TA)).

In case (ii), even if a module forces the supervisor to disable all controllable events,

the system can reach an unsafe state, since s2 is composed only of uncontrollable

and/or vulnerable controllable events.

(⇐) Assume now that LTA is NA-Safe controllable, and construct automaton

TS as presented in Step 1 of Algorithm 4. Consider an Intrusion Detection Module

that checks if the trace observed by the supervisor belongs to Po[L(TS)] and, when

this does not occur, the Intrusion Detection Module forces the supervisor to disable

all controllable events. According to Definition 7, every trace s ∈ LTA such that

f eTA(x0A, s)∩XTA
US 6= ∅ can be partitioned as s = s1s2 where, for all w ∈ LT ∪Ls(TA),

Po(w) 6= Po(s1) and Σca ∈ s2. Therefore, the Intrusion Detection Module will force

the supervisor to disable all controllable events after the observation of Po(s1), since

Po(s1) 6∈ Po[LT ∪ Ls(TA)] = Po[L(TS)]. As a consequence, the system will not be

able to generate the unsafe trace s, because s2 has at least one controllable event

that can be disabled by the supervisor, and cannot be enabled by the intruder.

Therefore, the Intrusion Detection Module, based on TS, is capable of preventing G

from reaching unsafe states in the presence of network attacks.

According to Theorem 3, the Intrusion Detection Module must observe the traces

observed by the supervisor, and verify if this trace belongs to Po(L(TS)). If the

observed trace does not belong to Po(L(TS)), then the Intrusion Detection Module

must send an information to the supervisor to disable all controllable events.

37

0 1 2

3

a

b

b

c

Figure 3.13: Automaton G of Example 20

0

a, b

Figure 3.14: Supervisor automaton H of Example 20.

In [25], a Petri net diagnoser is proposed for online failure diagnosis. The Petri

net diagnoser is constructed based on the normal behavior of the system, and the

occurrence of the failure event is diagnosed when the observed trace does not belong

to the observation of the normal language of the system. Thus, since the Intrusion

Detection Module must verify if the observed trace belongs to the observation of

language L(TS), the same method proposed in [25] can be used to obtain the In-

trusion Detection Module, considering L(TS) as the normal language of the system.

We refer to [25] for further details on the implementation of the Intrusion Detection

Module as a Petri net.

It is critical for the correct construction of the Intrusion Detection Model that

the system be modeled according to assumption A1. If A1 is violated the model

of the system subject to an attack may enable a controllable event incorrectly, as

shown in Example 20.

Example 20 Consider automaton G represented in Figure 3.13. Let Σc = {a, c}
be the set of controllable events, and Σo = {c} be the set of observable events.

Let automaton H, presented in Figure 3.14 be a supervisor for G.

Notice that, in this case, performing a sensor attack with compromised events

Σvs = {c} should not disable nor enable any controllable events, since it only alters

the observation of c, and the supervisor does not enable c in any of its states. How-

ever, the attacked plant G, represented in Figure 3.15, will have a transition to state

3 with event ε.

In this case, the closed-loop system under attack Ta shown in 3.16, has a state

(3, 0) which represents that an event c has been executed although it should be disabled

38

0 1 2

3

a
c

b

c

b

c

c, ε

c

Figure 3.15: Automaton G subject to sensor attack

0, 0 1, 0 2, 0

3, 0

a

b

b

ε

Figure 3.16: Closed-loop system subject to attack Ta.

by the supervisor.

For any controlled system T = G ‖ H where set Σ has events controllable and

observable, i.e., Σc ∩ Σo 6= ∅, it is possible to obtain a similar controlled system

T̃ = G̃ ‖ H̃ with disjoint sets of controllable events and observable events.

Definition 8 (Similar events) Two events α and β are said to be similar if they

represent the same physical occurrence.

Definition 9 (Similar closed-loop models) Two closed-loop models, T = G ‖
H and T̃ = G̃ ‖ H̃, where G = (X,Σ, f, x0), H = (XH ,Σ, fH , x0H), G̃ = (X̃, Σ̃, f̃ , x̃0)

and H̃ = (X̃H , Σ̃, f̃H , x̃0H), with the same set of observable events Σo, are said to be

similar if two conditions are satisfied.

i. The two systems have the same observation, i.e., Po(L(T)) = P̃o(L(T̃)) where

Po : Σ? → Σ?
o and P̃o : Σ̃? → Σ?

o.

ii. If a controllable event is enabled after a sequence s in T it should have a

similar event enabled in T̃ after a sequence with same projection as s, s̃, i.e.,

Po(s) = P̃o(s̃).

A similar system with Σo∩Σc = ∅ from any system can be obtained by Algorithm

5.

39

Algorithm 5 Computation of automaton G̃ and H̃ where T̃ = G̃ ‖ H̃ models a

similar system as system T = G ‖ H composed by automata G and H.

Input:

• G = (X,Σ, f, x0) [Plant model]

• H = (XH ,Σ, fH , x0H) [Supervisor model]

• Σc ⊆ Σ [Set of controllable events]

• Σo ⊆ Σ [Set of observable events]

Output:

• G̃ = (X̃, Σ̃, f̃ , x̃0). [New model of the plant]

• H̃ = (X̃H , Σ̃, f̃H , x̃0H). [New model of the supervisor]

• Σ̃c [New set of controllable events]

• Σ̃o [New set of observable events]

1: Define Σ̃c = {σc : ∀σ ∈ Σc}

2: Define Σ̃o = Σo

3: Define G̃ as:

3.1: Define X̃ = X

3.2: Update X̃ by (∀x ∈ X), (∀σ ∈ ΓG(x)), if [σ ∈ (Σc∩Σo)]→ X̃ = X̃ ∪{xσ}

3.2: Define Σ̃ = Σ \ (Σc \ Σo) ∪ Σ̃c

3.3: Define f̃ as follows:

∀x ∈ X, ∀σ ∈ ΓG(x) :

if σ /∈ Σc then f̃(x, σ) = f(x, σ)

if σ ∈ Σc \ Σo then f̃(x, σc) = f(x, σ)

if σ ∈ Σc ∩ Σo then f̃(x, σc) = xσ and f̃(xσ, σ) = f(x, σ)

4: Define H̃ as:

4.1: Define X̃H = XH .

40

4.2: Define f̃H as follows:

∀x ∈ XH ,∀σ ∈ ΓH(x) :

if σ /∈ Σc then f̃H(x, σ) = fH(x, σ)

if σ ∈ Σc \ Σo then f̃H(x, σc) = x

if σ ∈ Σc ∩ Σo then f̃H(x, σc) = x and f̃H(x, σ) = fH(x, σ)

Notice that, this algorithm represents the partition of all event σ that are con-

trollable and observable into two events such that one is a similar controllable event

σc but it is not observable, and one is observable σ but not controllable. Notice that,

it is also needed to ensure that they always occur together, i.e., there should not

be events between σc and σ. In order to facilitate notation we also create similar

events for events that are controllable and not observable in the original system.

Notice that in step 1 of Algorithm 5 we rename events from the original system so

any event σc is similar to the event σ in the original system.

0 1

2

3

(a)

X Y

Z

(b)

a, d
a, c, d

a

c

b

d

b

c
b

c,d

Figure 3.17: Automata G and H of Example 21.

Example 21 Let us consider two automata G and H represented in Figure 3.17 (a)

and (b), respectively, let Σc = {a, b} be the set of controllable events, and Σo = {b, c}
be the set of observable events. Following the Algorithm 5 we construct G̃ as an image

of G where for every event α that is both controllable and observable we create a new

state xα, and then separate event α in its controllable part αc and observable part α.

In addition, we rename any controllable event β that are not observable as βc. The

new automata G̃ and H̃, obtained by following Algorithm 5, with inputs G, H,Σc

and Σo are presented in Figure 3.18, where the controllable events are Σ̃c = {ac, bc}
and observable events are Σ̃o = {b, c}.

Proposition 4 A system T = G ‖ H composed by automata G and H, and a

system T̃ composed by G̃ and H̃ generated by Algorithm 5, are similar.

41

0 1

1b

2

3

(a)

X Y

Z

(b)

ac, d, bc
ac, c, d, bc

ac

c

bc

b

d

b

c
b

b,c,d

Figure 3.18: Automata G̃ and H̃ of Example 21.

Proof: The proof is done in two steps. First we prove that the systems are

similar if either G or H are empty automata, and then we use induction to prove

that for non-empty G and H the systems are also similar.

Since automata G and H have the same event Σ, then if any of them are empty

the composition will also be empty. By construction if G is empty, then G̃ will be

empty, and if H is empty, then H̃ will be empty. Since H̃ and G̃ are also defined over

the same Σ̃ then the composition will also be empty, making the systems similar.

For non-empty G and H the proof is by induction in the size of a sequence in

the generated language by G ‖ H.

(i) Basis step. If both G and H have generated language equal to {ε} then

by construction both G̃ and H̃ will also have the generated language equal to {ε},
and then they will have the same empty observation and will always enable no

controllable events, so the systems are similar.

(ii) Induction hypothesis. For all t ∈ Σ? such that |t| ≤ n, if t ∈ Po(L(T)) then

t ∈ Po(L(T̃)) and if an event α is enabled in T after t then there is a similar event

enabled in T̃ after a sequence with same projection as t.

(iii) Inductive step. Let us consider a trace tn+1 = tσ ∈ L(T) such that |t| = n.

Then, |tn+1| = n + 1. According to the induction hypothesis, if t ∈ Po(L(T)) then

t ∈ P̃o(L(T̃)) and if an event α is enabled in T after t then there is an similar event

enabled in T̃ after a sequence with same projection as t, by following a trace sσ such

that σ ∈ Σ. The following cases can occur:

(a) If σ ∈ Σc ∩ Σo, then by the construction of G̃ there will be a trace tσcσ such

that σc is controllable and σ is observable. In the supervisor on the other hand

the occurrence σc will be enabled, and then the observable event σ will make the

supervisor transit to the original state where the controllable events after an original

sequence tσ are enabled. Since σc is not observable the observation of the sequence

tσcσ will be tσ as the original trace.

(b) If σ ∈ Σc \ Σo, then by the construction of G̃ there will be a trace tσc such

42

that σc is similar to σ, in the supervisor on the other hand the occurrence σc will

be enabled as a loop and since σ is not observable in other to H be admissible the

event σ cannot make the supervisor transit to a different state so the controllable

events after an original sequence tσ will be enabled. In this regard since σc is not

observable the observation of the sequence tσc will be t as the original trace.

(c) If σ /∈ Σc. by construction of G̃ and H̃ the system will also have the same

transition σ after sequence t with the same properties, therefore the system will be

similar.

Since any system has a similar system such that Σc ∩ Σo = ∅, i.e., with set

of controllable events and set of observable events disjoint, then, in this work, we

consider systems in which the sets of controllable events and observable events do

not have events in common.

3.6 Example

In order to illustrate this work, let us consider an example and obtain the Intrusion

Detection Module for the system under MITM attacks. In order to do so, we will use

a cat/mouse problem, which consists of a maze divided into rooms with doors, and

the events are the passing of a mouse through a door. Each door may have a sensor

to detect the passing of the mouse and/or actuators that close or open the door

making events associated with these doors controllable. Sensors from different doors

may be connected to the same channel, and then can be transmitted with the same

observation, also a command from the control may open or close simultaneously

more than one door. Thus, distinct doors may have same observation and same

control signal. In these cases, there is no need to differentiate events, and then we

will represent them by the same event. The maze in this example is shown in Figure

3.19. In the maze there are a cat, which always stays in the same room, a mouse,

and food. The control objective is to remotely open or close the doors to allow the

mouse to eat the food, and do not reach the same room of the cat. In this example,

the set of controllable events is given by Σc = {a, b, c}, and the set of observable

events is given by Σo = {a, b, d, e}.
This system can be modelled by automaton G presented in Figure 3.20 where

each state represents the room that the mouse has reached. Then, if the system

is in state 7, the mouse has reached the room where the cat is. Since this case

should be avoided, we will consider the set of unsafe states as XUS = {7}. Notice

that in this scenario there are two ways to feed the mouse. The mouse can either

go through room 1 executing sequence dc, or through rooms 3 and 4, executing

sequence adb, and then, after eating the food, the mouse can transit through rooms

43

0

1

2

3
4

56

7

Mouse

Food

Cat

a

b

d

c

c

d
e

c
e

Figure 3.19: Initial house position for cat/mouse example.

0 1 2

3 4 5 6 7

d

a

d

b

e c e

c

c

Figure 3.20: Automaton model for mouse/cat problem G.

1 and 2 executing event c.

Since the control objective is to feed the mouse, and avoid reaching room 7,

we could just specify that the mouse can pass to room 2 and make a realization

of a supervisor that enables all the ways to reach this room, through rooms 3 and

4, or through room 1. Notice that disabling the occurrence of event c after the

observation of event e would avoid the mouse from reaching room 7. However, since

event e is uncontrollable this would represent a risk, because the mouse would be

able to move to room 5 and will not be able to return. In this regard, a more

appropriate supervisor H, represented in Figure 3.21, would only enable the mouse

to move from room 1 to room 2 where the food is, and then, there is no need to

disable its return to room 1. Notice that this supervisor is admissible, since whenever

an uncontrollable event is active in the plant it is enabled in the supervisor. Thus,

it is important to enable uncontrollable events in every state of H.

In order to implement a Intrusion Detection Module, assumption A1 must be

valid. Notice that in this case this assumption is violated, since events a and b are

controllable and observable. Then, we can follow Algorithm 5 in order to ensure

that sets of controllable and observable events are disjoint. We generate the sim-

44

0 1
d

e d, e, c

Figure 3.21: Supervisor H for cat/mouse example.

0

0a

1 2

3 4

4b

5 6 7

d

ac

a

cc

cc

d e

bc
b

cc e

Figure 3.22: Similar plant system G̃ from G in cat/mouse example.

ilar system T̃ formed by automata G̃ and H̃ represented in Figures 3.22 and 3.23

respectively, with set of controllable events given by Σ̃c = {ac, bc, cc} and the set of

observable events is given by Σ̃o = {a, b, d, e}.
We present the closed-loop system T̃ = G̃ ‖ H̃ in Figure 3.24.

We consider vulnerable communications channels and then model MITM attacks

in this system. Let us consider these vulnerable sensor channels transmit the set of

events Σvs = {a}. Thus, the attacked system GA is represented in Figure 3.25.

Let us also consider vulnerable supervisory control channels that enables set of

events Σva = {ac}. The supervisor under attack HA is represented in Figure 3.26.

If this supervisory control operates without an Intrusion Detection Module, the

resulting attacked closed-loop system TA would be represented in Figure 3.27. Notice

that the state (7, 1) represents that the mouse has reached the room where the cat

is, i.e., the system achieved unsafe state 7.

In order to verify if it is possible to avoid reaching the unsafe state, we generate

the verifier proposed in 3.4. Following Algorithm 4 we define XTA
US = {(7, 1)} as the

set of marked states of TA and then generate TU as CoAc(TA), for this case TU is

represented in Figure 3.28.

We then generate TS. Notice that the automaton T ′S = T , and then the automa-

ton TS is also equal to T , represented in Figure 3.24.

With TS and TU defined, we rename unobservable events in TU generating au-

0 1
d

e d, e, cc

Figure 3.23: Similar supervisor system H̃ from H in cat/mouse example.

45

(0, 0) (1, 1) (2, 1)
d

cc

cc

Figure 3.24: Closed-loop system T for cat/mouse example.

0

0a

1 2

3 4

4b

5 6 7

d

ac

a

a, ε

a

cc

a

cc

a

d

a

bc

e

a

b
a

cc

a

e

a a

Figure 3.25: Plant model under attack GA for cat/mouse example.

0 1
d

e, ac d, e, ac, cc

Figure 3.26: Supervisor model under attack HA for cat/mouse example.

(0, 0)

(0a, 0)

(1, 1) 2, 1

(3, 0) (4, 1) (5, 1) (6, 1) (7, 1)

d

ac

ε

cc

cc

d e cc e

Figure 3.27: Closed-loop system model under attack TA for cat/mouse example.

(0, 0)

(0a, 0) (3, 0) (4, 1) (5, 1) (6, 1) (7, 1)

ac

ε d e cc e

Figure 3.28: Closed-loop system model unsafe part TU for cat/mouse example.

46

(0, 0)

(0a, 0) (3, 0) (4, 1) (5, 1) (6, 1) (7, 1)

acr

ε dr e ccr e

Figure 3.29: Renamed model of unsafe part TU,R for cat/mouse example.

((0, 0), (0, 0))

((0, 0), (0a, 0)) ((0, 0), (3, 0)) ((0, 0), (4, 1))

((1, 1), (0, 0))

((2, 1), (0, 0))

((1, 1), (0a, 0)) ((1, 1), (3, 0)) ((1, 1), (4, 1))

((2, 1), (0a, 0)) ((2, 1), (3, 0)) ((2, 1), (4, 1))cc cc

cc cc cc cc
cc cc

acr ε dr

d acr

d d d

acr

ε

ε

dr

dr

Figure 3.30: Verifier model V for cat/mouse example

tomaton TU,R represented in Figure 3.29.

The verifier is then given by V = TS ‖ TU,R, represented in Figure 3.30. In this

case the unsafe region is given by USR = {(7, 1), (6, 1)} and the unsafe boundary is

given by USb = {(5, 1)}.
Notice that, the verifier does not reach a state on the unsafe boundary nor a

state in the unsafe region, then, an Intrusion Detection Module can be successfully

implemented in this plant, avoiding the attacker to lead the mouse to reach room 7.

(0, 0) (1, 1), (2, 1)
d

cc

Figure 3.31: Observer of safe part for cat/mouse example.

The Intrusion Detection Module would be implemented by using the safe part TS

depicted in Figure 3.24, and then by taking the observer of this automaton shown

in Figure 3.31. If the system generates an observed trace that is not represented in

TS, the Intrusion Detection Module blocks all controllable events. Notice that, in

this example the Intrusion Detection Module may not see an occurrence of event a,

since it is attacked. The mouse would, then, be able to go to room 5, however, once

observed event e the module would block all controllable events preventing c from

being executed, so the mouse would never reach room 7.

47

Chapter 4

Conclusion and Future work

In this work, we propose the implementation of an Intrusion Detection Module

that is capable of preventing damages caused by attacks in sensor and/or control

communication channels in networked supervisory control systems.

In order to implement this device, models of the plant subject to sensor channel

attacks, and of the supervisor subject to control channel attacks are needed. We

consider man-in-the-middle attacks (MITM) for these models, and in Sections 3.1

and 3.2 we present a way to properly modify the plant and supervisor in order to

generate these models subject to this type of attack. We also present, in Section

3.3, a way to properly combine these models in order to construct the model of the

closed-loop system subject to attack.

In Section 3.4 we present the definition of NA-Safe controllability, which is a

property of the language of a DES subject to attacks, that leads to a necessary and

sufficient condition for the existence of the Intrusion Detection Module. We also

propose an algorithm to verify this property.

In Section 3.5 we refer to [25], and indicate a way to use the authors result

in order to implement the Intrusion Detection Module proposed in this work in

an online application. Also in Section 3.5 we define similar systems and propose

an algorithm to generate a similar system with disjoint sets of controllable and

observable events in order to relax assumption A1.

In Section 3.6 we presented an example to illustrate the use of the Intrusion De-

tection Module, where it is shown that, without the module, the system would be

unsafe after an attack, i.e., if a malicious agent performs a successful attack in the

system, it could get the system to an unsafe state. However, after the implemen-

tation of the Intrusion Detection Module controllable events of the system would

be disabled preventing unsafe states to be reached. In this regard the Intrusion

Detection Module may prevent damage to real systems under attack.

In summary this work contributes with the literature by:

48

• Generating the plant model under MITM attack in the sensor channel.

• Generating the supervisor model under MITM attack in the supervisory con-

trol channel.

• Defining NA-Safe Controllability, which ensures the possibility to create an

Intrusion Detection Module.

• Creating a verification algorithm to ensure that a system under attack is NA-

Safe Controllable.

• Indicating how to implement the Intrusion Detection Module.

Future Works

CPS security is a relatively new area of study, in this regard the continuation of this

work may cover various different areas. An approach as a future work would be to

study other types of network based attacks and/or how to prevent or identify them

before they reach the supervisor or plant improving the communication system.

This work can also develop a DES approach to improve the Intrusion Detection

Module so it may be even more permissive and just block the system before the last

controllable event out of the unsafe boundary.

Moreover, another way to improve the Intrusion Detection Module would be to

study self-healing, i.e., return to the normal operation of the system after an attack.

Notice that in this implementation of the Intrusion Detection Module the system is

blocked once an attack is detected. However, in some systems, it is possible to enable

some events in order to recover from the attack and return to the specification.

49

Bibliography

[1] SHI, J., WAN, J., YAN, H., et al. “A survey of cyber-physical systems”. In:

Wireless Communications and Signal Processing (WCSP), 2011 Interna-

tional Conference on, pp. 1–6. IEEE, 2011.

[2] BAHETI, R., GILL, H. “Cyber-physical Systems”. In: Samad, T., Annaswamy,

A. (Eds.), The Impact of Control Technology, 2011.

[3] MO, Y., KIM, T. H.-J., BRANCIK, K., et al. “Cyber–physical security of a

smart grid infrastructure”, Proceedings of the IEEE, v. 100, n. 1, pp. 195–

209, 2012.

[4] MO, Y., SINOPOLI, B. “False data injection attacks in control systems”. In:

Preprints of the 1st Workshop on Secure Control Systems, pp. 1–6, 2010.

[5] TEIXEIRA, A., AMIN, S., SANDBERG, H., et al. “Cyber security analysis of

state estimators in electric power systems”. In: 49th IEEE Conference on

Decision and Control (CDC), pp. 5991–5998, 2010.

[6] FAWZI, H., TABUADA, P., DIGGAVI, S. “Secure state-estimation for dynam-

ical systems under active adversaries”. In: 49th Annual Allerton Confer-

ence on Communication, Control, and Computing (Allerton), pp. 337–

344, Sept 2011.

[7] SMITH, R. S. “A decoupled feedback structure for covertly appropriating net-

worked control systems”, IFAC Proceedings Volumes, v. 44, n. 1, pp. 90–

95, 2011.

[8] SUNDARAM, S., HADJICOSTIS, C. N. “Distributed function calculation via

linear iterative strategies in the presence of malicious agents”, IEEE

Transactions on Automatic Control, v. 56, n. 7, pp. 1495–1508, 2011.

[9] AMIN, S., LITRICO, X., SASTRY, S., et al. “Cyber Security of Water SCADA

Systems - Part I: Analysis and Experimentation of Stealthy Deception

Attacks”, IEEE Transactions on Control Systems Technology, v. 21, n. 5,

50

pp. 1963–1970, Sept 2013. ISSN: 1063-6536. doi: 10.1109/TCST.2012.

2211873.

[10] PASQUALETTI, F., DÖRFLER, F., BULLO, F. “Attack detection and iden-

tification in cyber-physical systems”, IEEE Transactions on Automatic

Control, v. 58, n. 11, pp. 2715–2729, 2013.

[11] FAWZI, H., TABUADA, P., DIGGAVI, S. “Secure Estimation and Control for

Cyber-Physical Systems Under Adversarial Attacks”, IEEE Transactions

on Automatic Control, v. 59, n. 6, pp. 1454–1467, June 2014. ISSN: 0018-

9286. doi: 10.1109/TAC.2014.2303233.

[12] ZHANG, H., CHENG, P., WU, J., et al. “Online deception attack against

remote state estimation”, IFAC Proceedings Volumes, v. 47, n. 3, pp. 128–

133, 2014.

[13] THORSLEY, D., TENEKETZIS, D. “Intrusion detection in controlled discrete

event systems”. In: Proceedings of the 45th IEEE Conference on Decision

and Control, pp. 6047–6054. IEEE, 2006.

[14] CARVALHO, L. K., WU, Y.-C., KWONG, R., et al. “Detection and prevention

of actuator enablement attacks in supervisory control systems”. In: 2016

13th International Workshop on Discrete Event Systems (WODES), pp.

298–305. IEEE, 2016.

[15] KUMAR, V., SRIVASTAVA, J., LAZAREVIC, A. Managing cyber threats.

Springer, 2005.

[16] COMER, D. Computer networks and internets. Pearson/Prentice Hall, 2009.

[17] LIMA, P. M., ALVES, M. V. S., MOREIRA, M. V., et al. “Security Against

Network Attacks in Supervisory Control Systems”. In: The 20th World

Congress of the International Federation of Automatic Control (IFAC),

accepted for publication, 2017.

[18] ZAD, S., KWONG, R., WONHAM, W. “Fault diagnosis in discrete-event

systems: framework and model reduction”, IEEE Trans. on Automatic

Control, v. 48, n. 7, pp. 1199–1212, 2003.

[19] DEBOUK, R., LAFORTUNE, S., TENEKETZIS, D. “Coordinated decentral-

ized protocols for failure diagnosis of discrete event systems”. In: Decision

and Control, 1998. Proceedings of the 37th IEEE Conference on, v. 4, pp.

3763–3768. IEEE, 1998.

51

[20] SAMPATH, M., SENGUPTA, R., LAFORTUNE, S., et al. “Failure diagno-

sis using discrete-event models”, IEEE transactions on control systems

technology, v. 4, n. 2, pp. 105–124, 1996.

[21] SAMPATH, M., SENGUPTA, R., LAFORTUNE, S., et al. “Diagnosability of

discrete-event systems”, IEEE Transactions on Automatic Control, v. 40,

n. 9, pp. 1555–1575, 1995.

[22] CARVALHO, L. K., MOREIRA, M. V., BASILIO, J. C. “Generalized robust di-

agnosability of discrete event systems”, IFAC Proceedings Volumes, v. 44,

n. 1, pp. 8737–8742, 2011.

[23] CARVALHO, L. K., BASILIO, J. C., MOREIRA, M. V. “Robust diagnosis

of discrete event systems against intermittent loss of observations”, Auto-

matica, v. 48, n. 9, pp. 2068–2078, 2012.

[24] CARVALHO, L. K., MOREIRA, M. V., BASILIO, J. C., et al. “Robust diag-

nosis of discrete-event systems against permanent loss of observations”,

Automatica, v. 49, n. 1, pp. 223–231, 2013.

[25] CABRAL, F. G., MOREIRA, M. V., DIENE, O., et al. “A Petri net diag-

noser for discrete event systems modeled by finite state automata”, IEEE

Transactions on Automatic Control, v. 60, n. 1, pp. 59–71, 2015.

[26] LIMA, S. T., BASILIO, J. C., LAFORTUNE, S., et al. “Robust diagnosis

of discrete-event systems subject to permanent sensor failures”, IFAC

Proceedings Volumes, v. 43, n. 12, pp. 90–97, 2010.

[27] JESUS, T. C., MOREIRA, M. V., BASILIO, J. C., et al. “Diagnóstico de falhas

em tempo real de sistemas a eventos discretos descritos por autômatos

finitos”. In: Proceedings of the XVIII Congresso Brasileiro de Automática,

Bonito, pp. 712–719, 2010.

[28] TOMOLA, J. H., DE OLIVEIRA CABRAL, F. G., CARVALHO, L. K., et al.

“Robust Disjunctive-Codiagnosability of Discrete-Event Systems Against

Permanent Loss of Observations”, IEEE Transactions on Automatic Con-

trol, 2016.

[29] SANTORO, L. P. M., MOREIRA, M. V., BASILIO, J. C. “Computation of

minimal diagnosis bases of Discrete-Event Systems using verifiers.” v. 77,

pp. 93–102, 2017.

[30] MOREIRA, M. V., BASILIO, J. C., CABRAL, F. G. “”Polynomial Time

Verification of Decentralized Diagnosability of Discrete Event Systems“

52

Versus ”Decentralized Failure Diagnosis of Discrete Event Systems“: A

Critical Appraisal”, IEEE Transactions on Automatic Control, v. 61, n. 1,

pp. 178–181, 2016.

[31] CASSANDRAS, CHRISTOS GLAFORTUNE, S. Introduction to discrete event

systems. Springer, 2008.

[32] RAMADGE, P. J., WONHAM, W. M. “The control of discrete event systems”.

In: Proc. IEEE, Special Issue on Discrete Event Systems, v. 77, pp. 81–98,

1989.

[33] BASILIO, J. C., CARVALHO, L. K., MOREIRA, M. V. “Diagnose de falhas

em sistemas a eventos discretos modelados por autômatos finitos”, Revista

Controle & Automaçao, v. 21, n. 5, pp. 510–533, 2010.

[34] DE QUEIROZ, M. H., CURY, J. E. “Modular supervisory control of large

scale discrete event systems”. In: Discrete Event Systems, Springer, pp.

103–110, 2000.

[35] HILL, R., TILBURY, D., LAFORTUNE, S. “Modular supervisory control with

equivalence-based conflict resolution”. In: American Control Conference,

2008, pp. 491–498. IEEE, 2008.

[36] PENA, P. N., CURY, J. E., LAFORTUNE, S. “Verification of nonconflict of su-

pervisors using abstractions”, IEEE Transactions on Automatic Control,

v. 54, n. 12, pp. 2803–2815, 2009.

[37] HILL, R. C., TILBURY, D. M. “Modular supervisory control of discrete-event

systems with abstraction and incremental hierarchical construction”. In:

Discrete Event Systems, 2006 8th International Workshop on, pp. 399–

406. IEEE, 2006.

[38] SCHMIDT, K., MOOR, T., PERK, S. “Nonblocking hierarchical control of

decentralized discrete event systems”, IEEE Transactions on Automatic

Control, v. 53, n. 10, pp. 2252–2265, 2008.

[39] DA CUNHA, A. E. C., CURY, J. E. R. “Hierarchical supervisory control based

on discrete event systems with flexible marking”, IEEE Transactions on

Automatic Control, v. 52, n. 12, pp. 2242–2253, 2007.

[40] DETKEN, K.-O., GENZEL, C.-H., RUDOLPH, D. C., et al. “Integrity Protec-

tion in a Smart Grid Environment for Wireless Access of Smart Meters”.

In: The 2 nd IEEE International Symposium on Wireless Systems within

53

the Conferences on Intelligent Data Acquisition and Advanced Computing

Systems, pp. 79–86. IEEE, 2014.

[41] GIANI, A., BITAR, E., GARCIA, M., et al. “Smart Grid Data Integrity At-

tacks”, IEEE Transactions on Smart Grid, v. 4, n. 3, pp. 1244–1253,

2013.

[42] RAWAT, D. B., BAJRACHARYA, C. “Cyber security for smart grid systems:

Status, challenges and perspectives”. In: SoutheastCon 2015, pp. 1–6.

IEEE, 2015.

[43] YANG, T. C. “Networked control system: a brief survey”, IEE Proceedings-

Control Theory and Applications, v. 153, n. 4, pp. 403–412, 2006.

[44] GREENE, S. S. Security policies and procedures. New Jersey: Pearson Educa-

tion, 2006.

[45] BELLOVIN, A. E. K. E. “A Password-Based Protocol Secure Against Dic-

tionary Attacks and Password File Compromise”. In: Proceedings of the

First ACM Conference on Computer and Communications Security, pp.

244–250, 1993.

[46] CONTI, M., DRAGONI, N., LESYK, V. “A Survey of Man In The Mid-

dle Attacks”, IEEE Communications Surveys & Tutorials, v. 18, n. 3,

pp. 2027–2051, 2016.

[47] MOREIRA, M. V., JESUS, T. C., BASILIO, J. C. “Polynomial time verifi-

cation of decentralized diagnosability of discrete event systems”, IEEE

Transactions on Automatic Control, v. 56, n. 7, pp. 1679–1684, 2011.

54

	List of Figures
	Lista de Símbolos
	Introduction
	Background
	Discrete event systems
	Languages
	Automata
	Automata language
	Operations with automata

	Supervisory control in DES
	Controllability
	Definitions for supervisory control
	Realization of a Supervisor
	Control under partial observation

	Security in cyber-physical systems
	Structure of a CPS
	Security in CPS
	Man-in-the-middle attack

	Final comments

	Security Against Network Attacks in Supervisory Control Systems
	Model of the plant subject to sensor channel attacks
	Model of the supervisor subject to supervisory control channel attacks
	Model of the closed-loop system subject to network attacks
	NA-Safe Controllability
	Verification of NA-Safe controllability

	Implementation of the Intrusion Detection Module
	Example

	Conclusion and Future work
	Bibliography

