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Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos

necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

UM ESTUDO DE REDES NEURAIS CONVOLUCIONAIS PROFUNDAS PARA

APLICAÇÕES DE VISÃO COMPUTACIONAL

Roberto de Moura Estevão Filho

Março/2017

Orientador: José Gabriel Rodŕıguez Carneiro Gomes

Programa: Engenharia Elétrica

Este trabalho apresenta uma introdução a deep learning (aprendizado profundo)

e suas aplicações em tarefas de visão computacional através do uso de redes con-

volucionais. Uma variedade de técnicas para o projeto e treino de redes neurais

profundas são exploradas. Estas técnicas são demonstradas através de estudos de

caso de redes neurais convolucionais aplicadas a reconhecimento de imagens. Estes

estudos de caso contêm análises detalhadas de arquiteturas populares projetadas

para classificação de pequenas imagens. Então, o uso de redes convolucionais para

outras tarefas de visão computacional é discutido. A técnica de class activation

maps é detalhada e implementada, e suas aplicações em localização fracamente su-

pervisionada e interpretação de predições são apresentadas. Por fim, é explorado o

uso de redes neurais profundas aplicadas à transferência de estilo automática, uma

técnica que representa uma imagem ao estilo de outra. Diversas implementações

de transferência de estilo para um ou múltiplos estilos foram combinadas e uma

rede neural treinada em múltiplos estilos é capaz de gerar imagens estilizadas que

são esteticamente agradáveis. Os programas utilizados estão dispońıveis publi-

camente nos links https://github.com/robertomest/convnet-study e https:

//github.com/robertomest/neural-style-keras.
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This work presents an introduction to deep learning and its application to com-

puter vision tasks through the use of convolutional neural networks. Several recent

techniques for designing and training deep neural networks are explored. These tech-

niques are then demonstrated through case studies of convolutional neural networks

applied to image recognition. These case studies provide detailed analysis of po-

pular architectures designed for small image classification. Afterwards, we discuss

the use of convolutional neural networks for other computer vision tasks. The class

activation maps technique is detailed and implemented, and its applications in we-

akly supervised localization and prediction explanation are presented. Last, we

explore how deep neural networks are applied to automatic style transfer, a te-

chnique that renders an image with the style of another. We combine different

implementations of single and multi-style transfer and successfully train a multi-

style neural network that generates aesthetically pleasing stylized images. The

code is publicly available at https://github.com/robertomest/convnet-study

and https://github.com/robertomest/neural-style-keras.
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Chapter 1

Introduction

Deep learning [1] is a recent field of research that studies deep neural networks, their

representation capabilities, and applications. This work focus on networks that were

developed to process images: convolutional neural networks.

Single-layer neural networks have been used for decades and are proved to be uni-

versal approximators to smooth functions. Their application, however, was limited

to small networks (with few parameters) that required handcrafted feature extrac-

tion. Only recently the use of deep (with many layers) large (with many parameters)

neural networks has been successful. Previously, deep networks would fail to sur-

pass the performance of shallow networks. There are several reasons for the recent

success of such networks: novel techniques, the availability of data and computing

power.

Novel techniques for training and designing deep neural networks were essential

for its success. In 2006, researchers were able to train deep networks using a pre-

training scheme that pre-trained individual layers one at time [2–4]. After layers

were pre-trained, the whole network could be fine-tuned. Initially, pre-training was

performed with undirected graphical models called restricted Boltzmann machines

(RBMs) [5–7]. Later, regularized autoencoders, which are a type of neural network,

were also shown to be capable of pre-training with similar results to RBMs [8].

In 2012, a deep convolutional neural network [9] was able to achieve state-of-

the-art performance on large scale object recognition by learning directly from raw

images [10]. This proved that deep neural networks were able to learn features that

were better than carefully handcrafted features. These networks could be trained

fully from scratch (without the need of pre-training) because of parameter reuse and

non-saturating nonlinearities [10, 11]. They were also able to generalize well because

of novel regularization techniques [10, 12].

Nowadays, deep neural networks are used for a variety of applications that in-

clude: object classification, localization, and detection [13–18]; semantic segmenta-

tion [19, 20]; super-resolution [21, 22]; automatic speech recognition [23, 24]; text-

1



to-speech [25]; audio generation [26]; and natural language processing [27–29].

This work is an exploration of recent techniques that apply convolutional neural

networks to computer vision tasks. The text is organized as follows: Chapter 2

introduces the subject of neural networks and discusses convolutional neural net-

works. Chapter 3 presents techniques for improving training and generalization of

deep neural networks. Chapter 4 demonstrates how these techniques may be ap-

plied in the context of image classification through several case studies. Chapter 5

discusses other applications that use convolutional neural networks as feature ex-

tractors. It also includes detailed discussions on class activation maps, which is

a method used for weakly supervised localization and network prediction visual-

ization; and neural style transfer, a technique that transfers style of an image to

another using features extracted from a deep convolutional network. All experi-

ments performed were implemented in Keras [30] and Tensorflow [31], which are

two popular deep learning libraries for the Python programming language. The

code is publicly available at https://github.com/robertomest/convnet-study

and https://github.com/robertomest/neural-style-keras. Finally, Chapter 6

presents conclusions and future study directions.

2
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Chapter 2

Neural Networks 101

This chapter presents the basic tools for building and understanding neural networks.

Its main topics are:

1. what neural networks are and what they do;

2. the fundamentals of training a neural network;

3. how to compute gradients with the backpropagation algorithm;

4. common nonlinearities used in neural networks;

5. convolutional networks and their main components.

An artificial neural network, just like in the biological case, is a group of intercon-

nected neurons. Neurons are units capable of simple operations. The operations

performed by a neuron can be arbitrarily defined, though they are most commonly

a combination of linear operations (such as inner product) and nonlinear functions.

These operations are performed on its inputs and return a scalar. Inputs to a neuron

might be outputs from other neurons or inputs of the neural network.

2.1 Neuron Operation

The most common neuron type is one that performs a weighted sum of its inputs

and applies a nonlinear function to the result. There is also a term independent of

the input, that allows the neuron to be biased. Consider a neuron j with its i-th

input denoted xi,j and the weight of the respective input wi,j. We can compute its

output oj as

zj =
I∑
i=1

xi,jwi,j + bj

oj = σ(zj).

(2.1)

3



The bias term is denoted bj, zj denotes the output of the linear computation of the

neuron, and σ represents the nonlinear function applied to it in order to obtain the

neuron output. The computation of zj can be rewritten with the inner product

zj = wT
j xj + bj, (2.2)

considering the vectors

xj =



x1,j

x2,j
...

xi,j
...

xI,j


, wj =



w1,j

w2,j

...

wi,j
...

wI,j


. (2.3)

2.2 Interconnected Neurons

In most cases, neuron connectivity follows a layered pattern, where neurons are

organized in layers, which receive as their input the output of the previous layer,

and provide their output as input for the next layer. Neurons of the same layer are

not interconnected. Considering these structural choices, all neurons in the same

layer can perform their computation simultaneously. The computation for a whole

layer that contains N neurons can be represented in vector notation as

z = WTx + b

o = σ(z),
(2.4)

with xj = x, since all neurons share the same input, and

W =
[
w1 w2 · · · wj · · · wN

]
, b =



b1

b2
...

bj
...

bN


. (2.5)

Note that the nonlinearity is then applied component-wise.

A simple example of a neural network is provided in Fig. 2.1. This network

is composed of three layers, with 3, 2 and 1 neurons respectively and five inputs.

Since each neuron is connected to every neuron in the previous layer, this layer is
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Figure 2.1: Diagram of a simple neural network. Larger circles denote neurons,
smaller circles denote inputs, and dashed boxes group neurons that belong to the
same layer. Solid lines represent connections.

usually called fully-connected (FC) or dense layer. The last layer is called output

layer, while intermediate layers are called hidden layers. This is, therefore, a neural

network that is three layers deep. Note that, while not shown in these examples,

different layers may contain different neurons, that is, they may perform different

operations. For example, the output layer might use a different activation function

from the intermediate layers. It is also important to keep in mind that the depth of

a network depends on the type of computation performed by the neuron: one could

define a neuron as a unit that computes both the inner product and nonlinearity;

alternatively, one could define two types of neurons, one that computes inner prod-

uct, and one that applies the nonlinearity. The latter would imply a network that

is twice as deep while performing the same computation. As mentioned before, the

complexity of the neurons may be chosen arbitrarily and this may change the depth

of the network by a constant factor [8].

2.3 Neural Networks as Function Approximators

Neural networks are parametric function approximators. Their output is a function

f(x,θ) of their input x and their parameters θ. The network weights, or parameters,

can be tuned so that the output matches a desired function. This process is called

learning.

An important aspect to be considered is the expressiveness of such an approxima-

tor, i.e., which functions it can approximate and how well it can approximate them.

Neural networks have been proved to be able to approximate continuous functions

arbitrarily well given enough neurons in a single hidden layer (also called hidden

units) and under some assumptions on the activation function [32–34]. While the

specifics of such proofs are outside the scope of this work, they mean that, given

enough parameters, a neural network with a single hidden layer is capable of ap-
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proximating any continuous function. These proofs are however not constructive:

there is no indication of the number of required neurons, nor the configuration of

the weights.

One could question the use of more hidden layers, considering single hidden layer

networks are universal approximators themselves. However, studies show that deep

networks can be exponentially more expressive than shallow1 ones, that is, they

can approximate the desired function with exponentially fewer parameters. This

has been proved for logic circuits [35], but it is also conjectured to be true for other

problems [8]. In practice, deep networks have been very successful at tackling several

problems that shallow networks were unable to, mainly those with high-dimensional

input, such as image, video, language and speech processing.

2.4 Neural Networks as Computational Graphs

Neural networks can be defined as directed acyclic graphs, where the nodes are

operations that are applied to the data flowing through them [1]. In general, such

operations are performed on tensors. Layers can be thought of as functions that

are applied to tensors, that may be the output of another layer or the input of

the graph. The total output of the graph is then a function composed of the layer

functions. This idea abstracts the notion of a layer as an ensemble of neurons into a

more general one: a layer can be any sort of intermediate function that transforms

data.

In Fig. 2.2, we present a graph that represents a three-layer network, such as

the one from Fig. 2.1. The data consists of 2-D tensors (which are conventional ma-

trices). Note that this specific representation has two separate operations for what

was previously represented as a single layer: matrix product and nonlinearity. The

complexity of each operation can be chosen arbitrarily. The graph representation

is very useful for determining how each part of the data flows through the network

and how it influences the output (or other chosen data points). It is also useful for

understanding how information flows back from the output to the parameters when

the network is being trained.

2.5 Training a Neural Network

This section describes the fundamentals of training a neural network. More details

are provided in Chapter 3. The process of training a neural network consists of

adjusting its weights so that its output corresponds better to its expected value.

1The terms deep and shallow will be used to refer to networks with more than one hidden layer
and a single hidden layer, respectively.
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× σx

W1

o+

b1

× σ

W2

+

b2

× σ

W3

+

b3

z1 z2 z3h1 h2

Figure 2.2: Graph representation of a three-layer neural network. Nodes with a ×
sign represent matrix product, while nodes with σ represent a nonlinearity.

This is also referred to as learning process or fitting the parameters. In order to

train a neural network, its performance must be measured. Usually, a function that

portrays how poorly the network is performing is used. It is called the loss function.

The loss function l(f(x,θ),y) is a scalar that should be high if the network output

f(x,θ) is very different from the desired result (also called target or ground truth)

y. It should be closer to zero the closer f(x,θ) and y are. The learning process

can then be posed as an optimization problem in which the expected loss must be

minimized over the parameters:

min
θ

Ex[l(f(x,θ),y)]. (2.6)

Since the input distribution is often unknown, or the true values of such samples

are not available, or both, the optimization process is instead carried out on a set of

examples that is called the training set. The objective is then to minimize the loss

over the training set, which should approximate the loss expected value

min
θ

Ex[l(f(x,θ),y)] ≈ min
θ

1

N

N∑
n=1

l(f(xn,θ),yn). (2.7)

2.6 Backpropagating through Graphs

The problem in Eq.(2.7) is usually solved using gradient methods, of which gradient

descent and some of its variants are the most common ones. Applying gradient meth-

ods requires computing the gradient of the average loss with respect to all network

parameters. It also means that all operations in the graph must be differentiable.2

The gradients are usually computed using the backpropagation algorithm.

2Not all functions used in practice are strictly differentiable. Some are non-differentiable at
some points. This does not seem to affect convergence, however, and networks are succesfully
trained with them.

7



2.6.1 The Chain Rule

The chain rule states that, for functions f, g : R→ R,

∂f(g(x))

∂x
=
∂f(g(x))

∂g(x)

∂g(x)

∂x
. (2.8)

It means that, by knowing the derivatives of each function with respect to its input,

the derivative of the composite function can be easily computed by multiplying them.

The chain rule can be extended to the multivariate case: consider the functions

g : RN → RM and f : RM → R. Denoting z = g(x), the derivative of f w.r.t3 a

single input can be computed as

∂f(z)

∂xi
=

M∑
j=1

∂zj
∂xi

∂f(z)

∂zj
. (2.9)

This relationship is usually denoted in vector notation as

∂f(z)

∂x
=
∂z

∂x

T ∂f(z)

∂z
, (2.10)

where

∂f(g(x))

∂x
=



∂f(g(x))

∂x1
∂f(g(x))

∂x2
...

∂f(g(x))

∂xN


(2.11)

is the gradient vector of f w.r.t x and

∂z

∂x
=



∂z1
∂x1

∂z1
∂x2

· · · ∂z1
∂xN

∂z2
∂x1

∂z2
∂x2

...
. . .

∂zM
∂x1

∂zM
∂xN


(2.12)

is the Jacobian matrix of z w.r.t x.

2.6.2 Backprop

The backpropagation algorithm [36], or backprop, is the successive application of

the chain rule in order to efficiently compute gradients along the graph. This can

3The term ‘with respect to’ will be from here on abbreviated as ‘w.r.t’.
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be done by performing a backward pass, from the output to the input, computing

gradients progressively farther from the output. Consider a function f : RN → R
that is a composition of L functions fl : RNl → RNl+1 . The output of an intermediate

function serves as input to the next one: xl+1 = fl(xl). The output of the graph is

o = f(x) = fL(xL). By applying the chain rule, the gradient of f w.r.t its input x

can be computed as
∂f

∂x
=
∂xL
∂x

T ∂o

∂xL
. (2.13)

Applying the chain rule again,

∂f

∂x
=
∂xL−1
∂x

T ∂xL
xL−1

T ∂o

∂xL
. (2.14)

Continuing with this leads to

∂f

∂x
=

L−1∏
l=1

∂xl+1

∂xl

T ∂o

∂xL

=
L−1∏
l=1

∂fl(xl)

∂xl

T ∂fL(xL)

∂xL
.

(2.15)

In short, backprop is about computing the gradient of a complex function by com-

puting several simpler derivatives and multiplying them together. Fig. 2.3 illustrates

a simple example: computing the derivative of the sigmoid function. By knowing

the derivatives of the functions

∂

∂x

(
1

x

)
= −

(
1

x

)2

∂

∂x
(x+ y) = 1

∂

∂x
(ex) = ex

∂

∂x
(xy) = y,

(2.16)

the derivative of the composed function is readily available as

∂σ

x
= e−xσ(x) = σ(x)[1− σ(x)]. (2.17)

Despite the fact that the computation was performed assuming a scalar input, the

extension for the vector case is straightforward: since the nonlinearity is applied

element-wise, the gradient is also computed element-wise, and the products are

element-wise scalar products.

9



× ex + 1
x

x

−1 1

σ(x)
−x e−x 1 + e−x 1

1+e−x

1−σ2(x)× 11×−σ2(x)e−x × −σ2(x)−1 × −e−xσ2(x)

Figure 2.3: Computation of the forward and backward passes, represented in black
and red fonts respectively, for a graph that computes the sigmoid function.

2.6.3 Forward and Backward Functions

While applying the chain rule directly is a valid approach to gradient computation,

computing the Jacobian matrix is sometimes inefficient: consider the matrix product

function f(W,x) = WTx. Its inputs are W ∈ RN×M and x ∈ RN . The Jacobian

matrix w.r.t the input vector x is easily obtainable

∂f

∂x
= WT . (2.18)

The Jacobian w.r.t the weight matrix W can be obtained by reshaping W into a

vector ∂f
∂W
∈ RMN×M . However, by calculating the individual derivatives

∂fm
∂wi,j

=

0, m 6= j

xi, m = j
, (2.19)

it becomes clear that the Jacobian is very sparse. If the real objective is to compute

the gradient of a scalar loss function l(f(x;θ),y) w.r.t W, one could apply the chain

rule
∂l

∂wi,j
=

M∑
m=1

∂fm
∂wi,j

∂l

∂fm
. (2.20)

Because of Eq. (2.19), Eq. (2.20) is simplified to

∂l

∂wi,j
=

∂fj
∂wi,j

∂l

∂fj

= xi
∂l

∂fj

∂l

∂W
= x

∂l

∂f

T

.

(2.21)

Computing the gradient directly is much more efficient than the Jacobian-gradient

product. This is true for many other functions and, since only loss gradients are

necessary to train a neural network, it is common to define, for each operation on the
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graph, a function that computes the gradient of the loss w.r.t the operation inputs

given the gradient of the loss w.r.t the operation output. Since the computation of

the actual function performed by the graph is done by following the flow of data

from the input to the output, it is called the forward function. Computing the

gradient, on the other hand, follows the flow of information from the output to the

input and corresponds, therefore, to computing the backward function.

2.6.4 Computing the Gradients of a Neural Network

As a more practical example of backprop, this section discusses the computation

of gradients of the neural network shown in Fig. 2.2. The objective is computing

gradients of the loss (not shown) w.r.t to the parameters: both the weights Wi

and the biases bi. Assume the gradient of the loss, here denoted as l for simplicity,

w.r.t the output o is given. For this particular example, the chosen nonlinearity is

the sigmoid, whose gradient computation has been described in Section 2.6.2. The

gradients can be computed in the following order:

∂l

∂zi
= hi � [1− hi]�

∂l

∂hi
∂l

∂bi
=

∂l

∂zi
∂l

∂Wi

= hi−1
∂l

∂zi

T

∂l

∂hi−1
= Wi

∂l

∂zi
,

(2.22)

where � denotes element-wise product, and with h3 = o and h0 = x. It is important

to note that previously-computed gradients are reused several times on the compu-

tation of other gradients, and this is a major reason for the backprop efficiency.

2.7 Classifying Data with Neural Networks

Despite being able to model continuous functions, neural networks are very often

used in classification tasks. Such tasks involve assigning a label to an input. This

label is discrete and from a specific set. In order to perform classification, neural

networks usually instead output a vector of scores with as many dimensions as there

are classes. The predicted class is then chosen to be the one with the highest score.

2.7.1 Softmax and Maximum Likelihood

Output thresholding, however, is not suitable for the network training because it

makes the output not differentiable. Instead, the output scores are usually trans-

11



formed by a nonlinearity called softmax. The softmax function consists on inter-

preting the scores generated by the network as unnormalized log probabilities. The

probability assigned to a class i by the network given an input is

p(class = i|x) =
ezi∑C
j=1 e

zj
. (2.23)

Training can be done by maximizing the likelihood of the true class c given x:

max
θ

p(class = c|x). (2.24)

This is equivalent to minimizing the negative log likelihood

min
θ
− log(p(class = c|x)). (2.25)

Since the network output is a probability vector p = f(x,θ), this is equivalent to a

loss function

l(f(x,θ),y) = −yT log(p), (2.26)

where the target vector y is a one-hot encoding4 of the desired class. This is equiva-

lent to using as target a probability distribution that assigns 100% of the probability

to the correct class and minimizing the cross-entropy between the distributions. Be-

cause of that, this loss function is frequently referred to as the cross-entropy loss

function.

2.8 Commonly Used Nonlinearities

The nonlinearities present in a neural network are a very important aspect of its

ability to represent complex functions. Despite the fact that the universal approxi-

mation theorem does not make very specific assumptions in regard to the nonlinear-

ities used on a network, there are a small group of functions that are very popular

and have been widely used. Below is a brief discussion on some of them.

2.8.1 Sigmoid Function

The sigmoid function

σ(x) =
1

1 + e−x
(2.27)

is widely used because of few interesting properties: it is bounded 0 < σ(x) < 1,

which means that even if weights get big during training, the outputs would remain

bounded, it is differentiable everywhere, and it has a biological inspiration in the

4All the components of y are zero except the c-th component, which is equal to one.
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sense that it could be interpreted as the firing rate of a biological neuron. Since

the design of artificial neural networks was initially inspired by biological neural

networks, it would make sense if the behaviour of an artificial neuron could be

related to the behaviour of a biological one.

2.8.2 Hyperbolic Tangent Function

The hyperbolic tangent is very closely related to the sigmoid

tanh(x) =
e2x − 1

e2x + 1
= 2

1

1 + e−2x
− 1, (2.28)

and it shares some of its properties: it is also bounded and differentiable everywhere.

It is usually considered as a better alternative to the sigmoid because it is centered

around zero. If an input is distributed with zero mean, then the output mean is

zero too. Zero mean distributions ease the optimization process [37].

2.8.3 Rectified Linear Unit

The rectifier function, usually called ReLU (for Rectified Linear Unit) [11],

σ(x) =

x, x ≥ 0

0, x < 0
(2.29)

is the de facto standard nowadays. It is not centered on zero and it is not differen-

tiable at the origin. Despite that, the fact that it is not bounded from above means

that it has improved gradient signal flow and networks that use this nonlinearity

enjoy much better convergence properties due to smaller ‘vanishing gradient’ prob-

lems [10]. In fact, the use of ReLU is one of the big reasons why deeper networks

are successfully trained. As seen on Section 2.6.4, the gradient of earlier layers is

affected multiplicatively by the derivatives of nonlinearities of later layers. In the

case of the ReLU, the gradient magnitude is not affected for inputs greater than

zero. This means that these gradients are less likely to vanish. The sigmoid, on the

other hand, has derivative ∂σ
∂x
≤ 0.25, which means that successive layers effectively

kill the gradient flow. The same is true for the hyperbolic tangent with derivative
∂ tanh
∂x
≤ 1.

2.9 Convolutional Neural Network

The convolutional neural network, usually referred to as CNN or convnet, is a net-

work that mainly utilizes convolutional layers as feature extractors. They were
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mainly used in image processing tasks, such as image recognition, but are now

applied with great success to many other input types, which are usually high-

dimensional and highly structured inputs. While there is earlier work with similar

structure [38], the first CNN as we know today was used for digits recognition [9].

It featured a stack of convolutional and pooling layers and, on top of it, some

fully-connected layers. In this sense, the convolutional layers were responsible for

obtaining features that would be used by the vanilla neural network on top of it in

order to classify the image of the digit. The key difference between a convolutional

neural network and a regular neural network is that a CNN is designed to process

images: it is intended to handle locally structured data. With the incorporation

of this prior into the architecture, the CNN is much more efficient than a vanilla

neural network: it can perform more computation using much fewer parameters.

The following sections discuss the main components of a CNN: the convolutional

and pooling layers.

2.10 Convolutional Layer

The convolutional layer gets its name from the operation it performs: the convo-

lution. This layer operates on tensors, instead of the usual vectors. Consider an

input x ∈ RC×H×W , which represents an image with C channels, height H and

width W . The layer has a set of weights called filters, or kernels: these filters

have limited width Wf and height Hf, but they always span all the input channels

f f ∈ RC×Hf×Wf . A layer might have F of those filters, in which case the weight

tensor will be F ∈ RF×C×Hf×Wf . Each filter will be slid across the input performing,

at each position, an inner product, through which a scalar activation is obtained5

af,i,j = xi,j · f f + bf . (2.30)

af,i,j is the activation when the filter f f is centered at the region xi,j ∈ RC×Hf×Wf

and bf is the bias term for the filter indexed by f . If the activations are organized

according to the position of the filter on the input, the result is an activation map

af ∈ RHo×Wo , usually referred to as a feature map. The feature maps can then be

stacked to form the total output a ∈ RF×Ho×Wo . The process is illustrated in Fig.

2.4. The dimensions along which the filter slides are usually called the spatial dimen-

sions which, in the case of an image, are height and width. While the explanation

presented considered the case of two spatial dimensions (a 2D convolution), which is

the most common case, they are valid for convolutions of arbitrary dimensionality.

5Strictly speaking, this is correlation, instead of convolution, because the filter is not being
flipped before the product. Since the filter is learned, though, there is no difference.
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Input: x ∈ C ×H ×W Filters: ff ∈ C ×Hf ×Wf Activations: af ∈ Ho ×Wo

inner product stackingslide

f1

f2

f3

a1
a2 a3

Figure 2.4: Illustration of the computation performed on a convolutional layer.

The filter height and width are usually the same, and they are referred to as

simply the filter, or kernel, size K = Hf = Wf. Compared to the input size, the

filter size is usually much smaller. For example, for an input image with each size

ranging from tens to hundreds of pixels, usual filter sizes range from 3 to 9.

2.10.1 Output Size and Padding

The output size differs from the input size because of border effects. Note that

for filter sizes larger than 1, there are less positions at which the filter “fits” the

image than the size of the image. The output size Wo for an arbitrary input spatial

dimension size W can be computed as

Wo = W −K + 1. (2.31)

The input size is usually much larger than the filter size, so this difference is not

very pronounced for a single layer. After many layers, though, the output spatial

dimensions may be quite smaller. To avoid this, it is very common to pad the image

so that the input and the output have the same spatial dimensions as the input:

this is referred to as same or half padding.

Padding the input involves adding elements to the input. The padding size P

determines how many columns/rows are added before the first column/row and after
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the last column/row along that dimension. The padded input size is then

Wp = W + 2P. (2.32)

To preserve the input size, the padding size should be

W + 2P −K + 1 = W

P =
K − 1

2
.

(2.33)

For even filter sizes, which are fairly uncommon, the padding size is not an integer.

This can be solved by the use of asymmetric padding, where the extra half is put

only before the first row/column or after the last row/column.

Most commonly, the input is padded with zeros, which is referred to as zero

padding. Other examples of padding are also useful in more specific situations, such

as reflection padding, where the border elements are reflected: this can arguably

reduce discontinuity and leads to a smoother continuation of the input.

2.10.2 Structured Data and Convolutions

The convolutional layer can be thought of as a collection of neurons just like the

fully-connected layer. Each activation on an activation map can be thought of as

the output of a neuron. These neurons have a restricted receptive field, which

is determined by the filter size. This means that each neuron can only “see” a

small part of the input. Besides, several neurons share weights, since all of those

organized on the same feature map use the same filter in their computation. Both

these properties lead to a massive reduction on the number of parameters when

compared to a fully-connected layer. On the fully-connected case, the weight matrix

has C×H×W×F×Ho×Wo parameters. In contrast, a convolutional layer with the

same output size uses only F×C×K×K parameters. As an example, let us assume

typical values C = 3, H = W = Ho = Wo = 32, F = 16, K = 3. This amounts to

over 50 million parameters for a fully-connected layer and only 432 parameters for

a convolutional layer. While the number of parameters scales with both the input

and output spatial dimensions for the fully-connected layer, the number for the

convolutional layer scales only with the number of channels and the filter size.

The large reduction in the number of parameters is not miraculous. The con-

volutional layer design assumes that the input contains spatially localized features

and that it is interesting to find those features in different parts of the input. A

convolutional layer with 32 filters effectively looks for 32 different spatially localized

patterns along the input. The fully-connected layer can, in turn, look for a different

pattern on each neuron, and the patterns can be arbitrarily sized. On data with
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Figure 2.5: Equivalent receptive field of a neuron.

strong structure such as images, these small patterns can be very useful: they can

be borders, color patterns or brightness variations. Not only are small patterns

important, their location also matters, both in relation to the whole image and to

themselves. By stacking layers, deeper layers can combine these patterns in order

to detect more complex ones. Even if all layers have neurons with a small receptive

field, neurons on deeper layers will naturally have a larger effective receptive field

in relation to the input. This is illustrated in Fig. 2.5, where a neuron on the

second layer has an effective 5× 5 receptive field, with both layers having filter sizes

equal to 3. A deep network with several convolutional layers becomes a hierarchical

structure of increasingly more complex, and less localized, features as the network

gets deeper.

2.11 Pooling Layers

Pooling layers are also very important components of a convolutional neural network.

A pooling layer aggregates spatial information. It also works in a sliding fashion, like

the convolutional layer and it also has a kernel size. It usually does not have weights:

instead, it evaluates a fixed function at each window position. Since it intends to

aggregate spatial information, it operates independently on each channel, unlike the

convolution layer, where the filter took all channels into account. The most common

pooling types are max and average pooling. In the case of max pooling, the output

is the maximum value of all the values inside the window, whereas average pooling

takes the average of those values. Pooling layers also usually use a stride larger than

one: instead of sliding a window at each possible position on the input, the stride

(or step) is larger, so the window skips positions. For example, operating with a
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Stride 1

Stride 2

Figure 2.6: Illustration of a strided operation. Comparison between a 2 × 2 kernel
sliding across an input with stride 1 and 2. Computations that are present on the
operation with stride equal to two have a thicker border.

stride equal to two leads to function evaluation at every other position. See Fig. 2.6

for an illustration.

It is very common to perform pooling with a stride that is the same as the kernel

size, that is, the windows do not overlap. The most common case is where both

kernel size and stride are two, which leads to an output feature map that is half the

size of the input one.

This operation is quite useful for limiting complexity: deeper layers usually con-

tain more filters, so limiting the spatial dimensions of the feature maps is a good way

to constrain complexity. It can also achieve invariance: values on different positions

of the same window are summarized by the same number.

2.11.1 Max Pooling

If the pooling function is the maximum, then the pooling layer is dubbed a max pool-

ing layer. Intuitively, taking the maximum can be useful for obtaining translation

invariance: the output of a convolutional layer is said to be translation equivariant

since a translated input will produce a translated version of the original output. By

applying max pooling, small translations are actually aggregated into the output.

This is interesting in many settings: in image classification, it does not matter where

the object is in the image, all pictures of cats should belong to the class cat. By ag-

gregating translated versions of a feature, one can detect a cat in different positions

using the same computation. In general, max pooling is useful for preserving the

fact that a feature has been detected in the area, even if its exact location is lost.
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Figure 2.7: Example of different types of downsampling.

Since many scenarios have a high-dimensional input and lower dimensional output,

this summarizing technique is often useful.

2.11.2 Average Pooling

An average pooling layer outputs the average of the values inside the kernel. The

average is probably the most intuitive form of summarizing information. Unlike the

maximum function, it does not directly “throw away” most of the information, it

takes all of it into account instead. Averaging is a smooth way to downsample and

serves as an indicator of how much a feature was detected in the area: if a single

neuron has a high value but all others have low values, then the output would still be

low; highly irregular areas with many high and low values will have medium output;

and a high output indicates that the entire area has high activations.

2.11.3 Strided Convolution

Instead of applying pooling layers to subsample feature maps, one might simply use

a larger stride at the convolutional layer. This is equivalent to applying a pooling

function that simply picks the first value in the window, discarding all the others.

See Fig. 2.7 for an example comparing different types of downsampling. Strided

convolution is simple, but it has an advantage when compared to a pooling layer:

instead of computing a big feature map and then reducing it, applying a strided

convolution directly computes the subsampled feature map. Recent work has shown

that, despite the seeming naivety of the method, good results can be obtained using

only strided convolutions as the subsampling technique [39, 40].
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Considerations about padding are also valid when dealing with strided convolu-

tions. Eq. (2.33), however, is not valid for convolutions with stride larger than one.

The output size of a convolutional layer with stride S, input size W , filter size K

and padding P is computed as

Wo =

⌊
W −K + 2P

S

⌋
+ 1. (2.34)

The floor operator is used since a non-integer number indicates that there is not

enough room for another step at the input. It also means that different input sizes

may lead to the same output size.
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Chapter 3

Neural Network Training

Following the brief introduction to the neural network training process in Section

2.5, this chapter provides a more detailed discussion on several aspects of training

neural networks:

1. how to evaluate the performance of a neural network;

2. how neural networks are optimized and commonly used optimizers;

3. techniques used to improve the optimization process, such as weight initializa-

tion strategies and batch normalization;

4. generalization and commonly used regularizers, such as weight decay, dropout,

data augmentation, and global average pooling.

Training a neural network involves optimizing its parameters so as to minimize loss.

The loss to be minimized is the average loss over the training set. The parameters are

optimized with gradient-based methods. More specifically, the optimizers iteratively

update parameters in order to move on parameter space towards local minima. They

do so from a starting weight configuration. The weight initialization is done by

assigning small random values to each weight. If, instead, all weights were initialized

as zero, the symmetry would make their gradients the same, and training would fail

to converge. Simple initialization strategies include sampling from Gaussian and

uniform distributions with small variance. More detailed initialization strategies are

discussed in Section 3.4.

Although weights are trained through an optimization algorithm, there are sev-

eral other aspects of the network that are not adjusted by training and, instead,

must be chosen by the designer. Some examples are: number of hidden units on

an FC layer, number of filters in a convolutional layer, depth (number of layers) of

a network and learning rate. These are usually called hyperparameters. Note that

this name is not limited to numeric values that must be chosen by the designer, as
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any choice can be generically referred to as a hyperparameter. The architecture of a

network, the type of pooling, or activation functions used are all hyperparameters.

3.1 Evaluating a Neural Network

While the average loss over the training set is the function that is directly optimized,

the performance of the neural network should be similar for samples that are part

of the input distribution even if they were not included as training examples. The

ability to make reasonable predictions on samples previously unseen is called gener-

alization. Usually, in order to measure generalization, a new set of samples, which

the network is never trained on, is used. This set is called the test set. The test

set constitutes a better representation of the operation of the network in the wild,

since, after training, it would most likely operate on samples it was never trained

on. The real objective then becomes obtaining a model that has good performance

on the test set.

Notice that, in turn, it is more interesting to tune hyperparameters so as to

maximize performance on the test set. Doing so, however, may bias the result. So,

in order to tune hyperparameters, a part of the train set is usually set aside and

not trained on. This set, called the validation set, is then used as a proxy to the

test set. One expects that, since it is not trained on, performance on the validation

set is also a good measurement of generalization. The advantage is that, even if

hyperparameters are tuned in order to improve validation set performance, the test

set would still be an unbiased measurement of the algorithm performance.

3.2 Optimization by Gradient Descent

Gradient descent is a simple way of optimizing the network parameters. If minimiz-

ing the average loss function over the training set is the goal, one could update the

parameters with gradient descent

θt+1 = θt − η
∂ 1
N

∑N
n=1 l(f(xn,θt),yn)

∂θt

= θt −
η

N

N∑
n=1

∂l(f(xn,θt),yn)

∂θt
,

(3.1)

where N is the number of elements in the train set. This method will converge

to a local minimum, assuming that η, called the learning rate, is greater than zero

and sufficiently small. Computing the update step involves computing the gradients

of the loss w.r.t every example of the training set and averaging those gradients.
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This is referred to as full batch learning. In the case of deep neural networks, the

computation of the loss function and its gradient can be quite expensive. For big

datasets, the cost of a single update step becomes prohibitively high.

Instead of computing all the gradients and averaging them in order to update the

parameters, one could, instead, update the parameters upon every gradient compu-

tation. This is equivalent to approximating the average gradient by a noisy estimate

that involves a single example. This optimization procedure is called Stochastic Gra-

dient Descent (SGD). While it is no longer certain the loss will be lower after each

step, it is expected that, on average, the updates will lead the parameters to their

minimum. In practice, the speedup on each step easily compensates the noisiness

of the estimate, making this a much better alternative than the standard gradient

descent algorithm.

A compromise between both algorithms can be achieved by averaging the gradi-

ents in a subset of the training set. This is usually referred to as mini-batch gradient

descent. Instead of estimating the gradient with a single sample, the estimation is

performed with a mini-batch of samples. The mini-batch size determines the com-

promise between the computation cost and precision of an optimization step: larger

mini-batch sizes lead to more precise estimates of the true gradient, while smaller

sizes lead to faster to computation. In practice, mini-batch learning is particularly

interesting because of parallel computation: a mini-batch might be computed very

fast by computing the gradients with optimized vector operations. This leads to

more precise gradient estimation while keeping its computation quite fast. In prac-

tice, most deep learning models are trained with mini-batches. Usually, when a

network is said to be optimized by SGD, it is most likely the mini-batch version,

which is due to the prevalence of this method. If the gradient is computed with a

single example, it is alternatively called online learning.

3.2.1 Learning Rate

The choice of an adequate learning rate is particularly important. Most notably, if

the learning rate is too large, then the optimization process diverges. A very small

learning rate is also not good, as it makes the already long optimization process

even slower. The loss surface of a deep neural network also contains several saddle

points (regions where gradients will be very small); using a small learning rate might

get the weights “stuck” in such regions. The learning rate is also important with

regard to the noise in the mini-batch gradient estimates: using a larger learning

rate makes the noise larger, which is beneficial because it helps escaping shallow

minima. Reciprocally, a smaller learning rate is interesting because the lower noise

level allows the weights to settle at a point that is closer to bottom of the local
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minimum basin.

These complementary characteristics are usually combined through the use of a

learning rate schedule: at first, a large learning rate is used for faster exploration

of parameter space, thus enabling the optimizer to find good regions on the loss

surface; then the learning rate is reduced, so that the weights settle closer to the

location of a good minimum in this region. There are several types of learning

rate schedule [40–43], the most common being schedules where the learning rate is

lowered in predetermined steps (e.g., after a predetermined number of iterations).

3.3 Commonly Used Optimizers

The gradient descent algorithm performs surprisingly well when applied to neural

networks. It is not, however, free from limitations that are well documented in

convex optimization literature. Most notably, it is slow on ill-conditioned problems.

Along high curvature directions (where gradients are very large), the algorithm

tends to overshoot, causing the optimization steps to perform a zig-zagging path

in parameter space. Along low curvature directions, the algorithm instead updates

parameters very slowly, due to overall smaller gradients.

In convex optimization literature, there are several other methods that were de-

veloped in order to compensate for such shortcomings. In particular, these tend

to estimate curvature and adapt the learning rate along each direction as to com-

pensate for it. While second-order methods are very successful in many optimiza-

tion problems, they are not commonly used when optimizing deep neural networks.

Second-order methods usually require Hessian computation or line-search, which are

not suitable for stochastic optimization [37]. Instead, we mostly rely on first-order

methods with adaptive learning rates. There are several such methods that can

be applied successfully when training neural networks. We focus on two that are

particularly popular: momentum and Adam optimizers.

The momentum [44] update rule is as follows:

gt = grad(l(θt))

vt+1 = µvt − ηgt
θt+1 = θt + vt+1.

(3.2)

The scalar η, again, is the learning rate and 0 < µ < 1 is the amount of momentum.

The vector gt represents the gradients and the grad operator represents their compu-

tation with a mini-batch or otherwise. The momentum update rule is characterized

by updating the parameters with a temporal memory (exponentially weighted av-

erage) of the gradients, instead of the current gradient itself. If a gradient changes
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directions often, as it commonly happens in high curvature directions, the gradients

time averages will return a small vector. In the case of very low curvature directions,

the gradients will slowly add up so that the effective learning rate is increased.

A variant of momentum is Nesterov Accelerated Gradient (NAG) [44], usually

called Nesterov momentum, which has the modified update rule

ḡt = grad(l(θt + µvt))

vt+1 = µvt − ηḡt
θt+1 = θt + vt+1.

(3.3)

When using Nesterov momentum, the gradient is computed with the parameters

updated by the current momentum estimate, that is, the gradient is updated by

‘looking ahead’ and correcting the momentum by the gradient at the updated posi-

tion. Nesterov momentum usually converges faster and avoids oscillations that arise

when using classical momentum [44].

The Adam optimizer [45] is a popular first-order adaptive optimization method.

It adapts the learning rate based on estimates of first and second moments of the

gradient. The update rules are as follows

gt = grad(l(θt))

mt+1 = β1mt + (1− β1)gt
vt+1 = β2vt + (1− β2)g2

t

θt+1 = θt − α
m̂t+1√
v̂t+1 + ε

.

(3.4)

The vectors m and v are the first and second moment estimates, g2
t is the element-

wise square gt�gt, and
√

v̂t+1 is the element-wise square root of v̂t+1. The estimates

are biased, however, since they are initialized as vectors of zeros. The unbiased

estimates are then computed as

m̂t =
mt

1− βt1
v̂t =

vt
1− βt2

.
(3.5)

Empirically, Adam has good convergence properties and is faster than momentum

in most cases. However, it is usually the case that, for many applications with

convolutional neural networks, well-tuned momentum converges to better results.

For that reason, Adam may be quite useful during hyperparameter search, leaving

momentum for a narrower, and more promising, selection of models. Good standard

values of β1 and β2 are 0.9 and 0.999, respectively [45]. Other notable optimizers
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include Adagrad, Adadelta and RMSProp [46–48].

3.4 Weight Initialization Strategies

The optimization process of deep neural networks is quite complex: many parame-

ters interact simultaneously during the computation of the output, which is a very

nonlinear function. Without some care, optimization may fail to converge. A very

common problem is the one of vanishing gradients. After the discussion about back-

prop (see Section 2.6.2), it should be clear that gradients get transformed as they

flow from the output to the input. If the Jacobian matrices have overall small eigen-

values, the gradients get smaller the farther they get from the output. This makes

optimizing shallower layers difficult, and deeper layers depend on that optimization.

Besides, nonlinearities also multiplicatively affect the size of gradients. For nonlin-

earities such as sigmoid and hyperbolic tangent, whose scalar derivatives are mostly

smaller than 1, successive layers of nonlinearity also strongly contribute to vanishing

gradients. This is one of the reasons why ReLU is so successful: for positive outputs,

it does not interfere with gradient flow. One technique that helps alleviate vanishing

gradients is careful weight initialization.

As previously discussed, weights must be randomly initialized in order to avoid

symmetry and to help neurons specialize in different tasks. Simple initialization

schemes include sampling from Gaussian or uniform distributions with fixed vari-

ance. The variance is then a hyperparameter that must be searched. For very

deep models, using a fixed variance may lead to problems during training [49, 50].

Instead, one might initialize the weights keeping in mind data and gradient flow.

Consider a neural network composed of fully connected layers. The n-th layer

transforms its input x(n) ∈ RN(n)
according to equations

z(n) = W(n)Tx(n) + b(n)

x(n+1) = h(n) = σ(z(n)).
(3.6)

The network input is x = x(1) and σ represents the nonlinear function. Recall that

the gradients w.r.t z(n) can be computed as

∂l

∂z(n)
=
∂f(z(n))

∂z(n)
�
(

W(n+1) ∂l

∂z(n+1)

)
. (3.7)

Assume that the elements of W(n) are sampled independently from a zero-mean

distribution with variance v
(n)
w , the nonlinearity is symmetric and is working in a

linear regime, the inputs and the weights are independent from each other, the input

features xi have the same variance, denoted vx, and the bias terms are initialized at
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0. The variance of the output of the layer can then be computed:

x
(n+1)
i =

N(n)∑
j=1

w
(n)
j,i x

(n)
j

var[x
(n+1)
i ] =

N(n)∑
j=1

v(n)w var[x
(n)
j ]

= N (n)v(n)w var[x
(n)
j ].

(3.8)

Computing the right-hand side of Eq. (3.8) recursively until the first layer is reached,

one obtains

var[x
(n+1)
i ] = vx

n∏
k=1

N (k)v(k)w . (3.9)

In the backward pass, the variance of gradients can be similarly computed, assuming
∂f(z)
∂z

= 1,

∂l

∂z(n)
= W(n+1) ∂l

∂z(n+1)

∂l

∂x(n)
= W(n) ∂l

∂x(n+1)

∂l

∂x
(n)
i

=
N(n+1)∑
j=1

w
(n)
i,j

∂l

∂x
(n+1)
j

var

[
∂l

∂x
(n)
i

]
= N (n+1)v(n)w var

[
∂l

∂x
(n+1)
j

]

=
L∏
k=i

N (k+1)v(k)w var

[
∂l

∂x
(L+1)
j

]
.

(3.10)

It should be clear that the variance of weights at each layer affects signal propagation

multiplicatively in both forward and backward passes. In order to keep signals

healthy, we would like

N (n)v(n)w = 1

N (n+1)v(n)w = 1.
(3.11)

While both constraints cannot be satisfied simultaneously (unless layers have the

same number of neurons), a reasonable compromise can be achieved with

v(n)w =
2

N (n) +N (n+1)
. (3.12)

Note that the weights are then sampled from a distribution whose variance depends

on the number of inputs (fan-in) and outputs (fan-out) of the layer. This is known
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as Xavier or Glorot initialization [49].

The assumptions made on the derivation of the Glorot initialization are rea-

sonable for nonlinearities like the hyperbolic tangent, which is zero-centered and

has a near-linear regime around the origin, but they are not as reasonable when a

nonlinearity such as ReLU is used. In this case, the variance of z
(n)
i is

var[z
(n)
i ] = N (n)var[w

(n)
j,i x

(n)
j ]. (3.13)

The elements of x(n) are not, however, zero-centered. The variance is then computed

as

var[z
(n)
i ] = N (n)v(n)w E[(x

(n)
j )2]. (3.14)

Note that, since w
(n)
i,j is sampled from a zero-mean symmetric distribution, z

(n)
j also

has zero mean and is symmetric. Therefore, the second moment of its rectified

version x
(n+1)
j is

E[(x
(n+1)
j )2] =

1

2
var[z

(n)
j ]. (3.15)

This leads to a slightly different outcome

var[z
(n)
i ] =

n∏
k=2

N (n)

2
v(n)w var[z1i ]. (3.16)

In order to keep the forward flow stable, we have

v(n)w =
2

N (n)
. (3.17)

In similar fashion, the backward propagation analysis leads to

v(n)w =
2

N (n+1)
. (3.18)

Instead of designing a compromise, the author of [50] argues that either strategy can

be used with good results. In fact, scaling the weights in terms of the fan-in implies

a constant multiplicative factor on the variance of gradients, and vice-versa. These

strategies are called MSRA (Microsoft Research Asia) or He initialization [50]. The

most common strategy involves scaling weights by the fan-in, but both are used in

different implementations.

While these initializations are shown here for a fully-connected layer, they can

be easily adapted to convolutional layers. For a convolutional layer with filter size

K(n) and F (n) filters, the fan-in is N (n) = F (n−1) (K(n)
)2

and the fan-out is N (n+1) =

F (n)
(
K(n)

)2
. The remaining considerations are the same.

There are many other interesting initialization strategies proposed in other works:
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some sample from different distributions, others compensate for different nonlinear-

ities or even work iteratively to ensure stability of propagation [51–53]. The two

initialization strategies presented here are, however, the most popular ones.

3.5 Batch Normalization

As information flows through a network, it gets transformed and its distribution

changes. Therefore, each layer learns to process inputs with different characteristics.

During training, however, as parameters change, the output distributions of layers

also change. This phenomenon is referred to as internal covariate shift [54]. The

change of the input distribution of layers slows down training, which is due to the

need of the layer to adapt itself to the new distribution. One could reduce internal

covariate shift by normalizing the layers inputs so that the distributions remain

mostly constant. For an input x ∈ RD, each dimension i can be normalized by

subtracting the mean and dividing by the standard deviation according to:

x̂i =
xi − E[xi]√

var[xi]
. (3.19)

The mean and variance would be computed through the train set. Note that re-

stricting the input distribution could affect the expressiveness of the layer. In order

to ensure expressiveness is kept, the final output is a scaled and shifted version of

the normalized input

yi = γix̂i + βi. (3.20)

The scalar values γi and βi are learnable parameters that allow the layer to undo

the normalization: if γi =
√

var[xi] and βi = E[xi], then the original input would

be recovered.

Computing statistics on the entire training set, however, is impractical. Since

the distribution is constantly changing, it would require frequent forward passes on

the whole train set. Instead, the Batch Normalization algorithm [54] proposes to use

mini-batch statistics, that are computed on the same forward pass that is used to

compute the next optimization step. These are noisy estimates of the actual mean

and variance, but they are much more efficient to compute. For a mini-batch of size
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Figure 3.1: Graph representation of batch normalization. The dimension index i is
omitted for improved readability.

B, each dimension, denoted as x(i) ∈ RB, can be normalized as follows:

µ
(i)
B =

1

B

B∑
j=1

x
(i)
j

v
(i)
B =

1

B

B∑
j=1

(x
(i)
j − µ(i)

B )2

x̂
(i)
j =

x
(i)
j − µ(i)

B√
v
(i)
B + ε

y
(i)
j = γix̃

(i)
j + βi.

(3.21)

The normalization is essentially the same as in Eq. (3.19), except for the approxi-

mation of the mean and variance by estimates computed using only batch samples,

which are denoted by µ
(i)
B and v

(i)
B , respectively. The small positive scalar value ε is

used to avoid numerical instability in the case of very small variance.

3.5.1 Batch Normalization Backpropagation

Normalizing the inputs and training the model without taking the normalization

into account leads to instability. The optimization procedure should be performed

with gradients being computed with normalization taken into account. Since batch

normalization, usually referred to as batchnorm, is a differentiable transformation,

it can be backpropagated through just like any layer. Fig. 3.1 illustrates the graph

representation of batchnorm. Since the same operation is performed independently

at each dimension of the input, the index i is omitted for convenience. The gradients
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can be computed by backpropagating through the graph as shown below:

∂l

∂β
=

B∑
j=1

∂l

∂yj

∂l

∂γ
=

B∑
j=1

x̂j
∂l

∂yj

∂l

∂x̂j
= γ

∂l

∂yj

∂l

∂s
=

B∑
j=1

∂l

∂x̂j

(−x̃j
s2

)
∂l

∂vB
=

1

2s

∂l

∂s
∂l

∂x̃j
=

2x̃j
B

∂l

∂vB
+

1

s

∂l

∂x̂j

∂l

∂µB
= −

B∑
j=1

∂l

∂x̃j

∂l

∂xj
=

∂l

∂x̃j
+

1

B

∂l

∂µB
.

(3.22)

The gradient w.r.t the input can be rewritten into the more computationally efficient

form
∂l

∂xj
=

γ√
vB + ε

[
∂l

∂yj
− 1

B

(
∂l

∂γ
x̂i +

∂l

∂β

)]
. (3.23)

The parameters γi and βi should also be trained by gradient descent and are usually

initialized as 1 and 0 respectively (i.e. the output is simply the normalized input).

3.5.2 Batch Normalization at Test Time

It is possible to continue using batch statistics during test time, but it is not nec-

essary and, in fact, it has some drawbacks: batch statistics are noisy and, because

of their nature, they cannot be used if inference is performed on a single example.

Since the model parameters are no longer being updated, one could compute the

mean and variance for the whole train set and use the latter as estimates of the

mean and variance of input distributions. Another approach that, despite being

less accurate, is often preferred is to use moving averages of the batch statistics

computed during training as estimates. With fixed mean µ(i) and variance v(i), the

batch normalization layer is simply an affine transformation

y
(i)
j = a(i)x

(i)
j + b(i) (3.24)
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with a(i) = γi√
v(i)+ε

and b(i) =
βi

√
v(i)+ε−µ(i)√
v(i)+ε

.

3.5.3 Applying Batchnorm to a Neural Network

For a fully-connected layer, batchnorm is usually applied before the nonlinearity

x(l+1) = σ(BN(W(l)x(l))). (3.25)

Note that the normalization is invariant to the bias term, so the bias term is usually

not used when a layer is normalized. Instead, the parameters β
(l)
i (there is one for

each dimension) take the bias term place.

While batchnorm has been discussed for a fully-connected layer, its adaptation

for a convolutional layer is quite straightforward: besides normalizing the input

across the batch, the spatial dimensions are all jointly normalized. Essentially, each

input channel is normalized by a single mean and variance (and with one γ and

one β). For an input with batch size B, C channels, height H and width W ,

batch normalization is applied as if the input was a batch of size BHW with C

dimensions. Just as in the fully-connected case, normalization is usually applied

before the nonlinearity.

A batch normalized network usually enjoys faster training time, not only be-

cause of the batch normalization directly but also because batchnorm allows higher

learning rates to be used without any drawbacks. Batchnorm makes the training

process more robust to the initialization: networks are successfully trained for a

wider range of variances in the distribution initial weights are sampled from. Batch-

norm also improves generalization, reducing the need for other regularizers and data

augmentation (see Section 3.6.3 for more information).

3.6 Generalization and Regularization

The previous sections were mostly devoted to improving the optimization of weights

in a neural network, i.e, making them successfully learn from the training set. There

is another very important aspect when training neural networks that relates to their

ability to generalize. In this section, we discuss some aspects of generalization and

techniques to improve it.

The lack of generalization is a problem that happens mostly because of lack of

data. Consider the following example: one could train a convnet to classify images

of cats and bats. Ideally, it should be able to discern a bat from a cat in any image.

Imagine that, however, most pictures of cats available were taken during the day,

while most pictures of bats were taken when it is dark. The network could learn to
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discern the images through their overall brightness: classifying bright images as cats

and dark images as bats. Instead of capturing the true features that would allow

it to discern between cats and bats, it would have captured features that were very

discriminative only in the train set. This problem would have arisen due to lack of

data, i.e., pictures of cats in dark environments and bats in brighter ones.

One important factor that influences generalization is the network’s capacity. A

network with very small capacity is not able to grasp complicated aspects of the

data, and it may not be able to successfully generalize to unseen data. On the other

hand, a network with very large capacity, if trained with limited data, may capture

several aspects of the training data that are not generalizable, i.e, it may learn the

noise that is present due to the finiteness of the training set. This may lead to

degradation of generalization during training. This is usually characterized by the

validation set or test set performance getting worse as the training set performance

continues to improve. This behavior is usually referred to as overfitting.

As a simple example of overfitting, consider the following: a model is trained

to approximate the output of the function y = f(x), which has samples such as

those shown in Fig. 3.2 in blue dots. Assume that the input-output relationship is

unknown and only a few samples are available in the training set, shown in Fig. 3.2

as green ‘×’s. A model with enough capacity might be able to perfectly fit the

training data, with an output such as the one shown in solid lines. This, however,

is not a good hypothesis when we consider the whole input distribution. As such,

this output would, despite fitting the training set very well, perform poorly on a

test set. This is a simple example that illustrates how a model with big capacity

might perform worse than a simple one (shown in dashed lines) because the model

with bigger capacity captures apparent characteristics that are only present due to

lack of data.

There are several techniques that aim to improve generalization and avoid over-

fitting. These are called regularization techniques or regularizers. Regularizers are

not meant to improve train set performance and may, in fact, decrease it. However,

regularized networks usually enjoy higher test set performance. Next, we discuss

some popular regularization techniques that are commonly applied to deep neural

networks.

3.6.1 Weight Decay

A very common regularization technique is weight decay, also referred to as `2 reg-

ularization. It involves modifying the loss function to include a term that penalizes

the norm of weights. For weight matrices, the norm used is the Frobenius norm.
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Figure 3.2: Example of overfitting. Input distribution is represented in blue dots.
Training set samples are shown as green ‘×’s. The solid line shows the output
function from a model that has overfitted. Dashed line shows a simpler hypothesis
that has better generalization.

The regularized loss function is then

L =
1

NB

NB∑
n=1

l
(
f
(
x(n),θ

)
,y(n)

)
+
λ

2

∑
i

‖Wi‖2F. (3.26)

In Eq. 3.26, the scalar NB is the size of the mini-batch, vectors x(n) and y(n) are the

n-th input and target pair in the mini-batch, and Wi represents the weight matrix

at layer i. The summation of the `2 norms is performed over all weight matrices of

the network. The positive scalar λ controls the amount of regularization applied.

The gradient w.r.t a weight matrix becomes

∂L

∂Wi

=
1

NB

NB∑
n=1

∂l
(
f
(
x(n),θ

)
,y(n)

)
∂Wi

+ λWi. (3.27)

Note that, by adding the `2 norm of the weight matrices to the loss function, weight

decay pushes the network into keeping its weights small. This can also be seen at the

gradient expression: when moving on the opposite direction of the gradient, weight

decay steers the direction of the gradient to the origin. Intuitively, small weights are

not very important and, by keeping weights small, network capacity is limited. Only

weights that are very important to minimize loss are allowed to grow, while others

that contribute marginally would be kept small. Hopefully, weights that capture

features that are not very important and contribute to overfitting are suppressed.

Weight decay is also applied in convolutional neural networks. For convolutional
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layers, the filter weight tensor `2 norm is computed in a similar fashion: a sum of

the squares of all elements.

Penalty expressed in terms of other norms may be used for regularization as

well. The `1 norm, for example, is another popular alternative that also encourages

sparsity. Weight decay remains the most popular of such techniques though.

3.6.2 Dropout

Dropout [12, 55] is a regularization technique that involves randomly dropping out-

puts of a layer. Dropout is a layer that, for an input x ∈ RN , outputs

oi = mixi (3.28)

where mi is sampled from a Bernoulli distribution with P (X = 0) = p. If mi = 1,

the output is the same as the input. In the case of mi = 0, the output is 0 and

it is said that the input was dropped. p is then called the dropout probability. m

is effectively a mask that determines which of the previous layer outputs will be

dropped. The dropout probability is a hyperparameter that may be tuned, but

p = 0.5 is a popular choice that seems to work well for most cases. The mask is

sampled at every training step, so the network will have a different configuration for

each mini-batch it processes during training.

Dropout helps generalization mainly because it avoids fragile co-adaptation of

units, which is configured when a unit depends very strongly on other units and

is not useful without them. By preventing strong co-adaptation, one could expect

units to be useful on its own or to depend on a small number of units. While a

long chain of units working as a set may seem useful, it is important that units are

reasonably independent: a unit that serves uniquely as input to one other in the

next layer most likely is not very useful. Useful units would most likely be used

by a large number of units. Likewise, it is expected that a useful unit would be

a combination of several different useful units of the previous layer. By randomly

selecting which inputs are available, dropout enforces such robustness, which leads

to better generalization.

Dropout can also be viewed as a quick way to train an exponential ensemble

of networks, all of which share weights. Assuming that a network with n units

is trained with dropout with probability p = 0.5, there are 2n different network

configurations; see Fig. 3.3 for an example of some configurations in a simple neural

network. One could think of each configuration as a different (thinner) network that

is randomly sampled and trained for a single step. All these networks share weights

since all the units that were not dropped have their weights unaltered. Ensembles

are very often used in competitions since the averaged prediction tends to be more
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Figure 3.3: Illustration of different configurations of a network with dropout. The
leftmost image represents the network with no units dropped, while the two right-
side images represent configurations where some units are dropped. Dropped units
are represented in dashed lines.

accurate than that of a single network [40, 42, 56].

Averaging in an ensemble is usually performed by obtaining each individual

prediction and averaging their outputs. With dropout, this would be impractical,

due to the enormous amount of possible configurations. Instead, the output is

computed by substituting the unit’s output by its expected value. For a unit trained

with drop probability p, its output during test time would then be multiplied by

1 − p. This allows the ensemble prediction to be approximated in a single forward

pass. While this is only an approximation, it tends to work well in practice. In

order to avoid scaling at test time, the most usual implementation of dropout scales

the outputs at training time, so that the expected output is the output of the unit

itself. This means that the dropout layer can be entirely ignored during test time.

The behavior of a dropout layer can then be summarized as

oi =

mixi
1−p , if training

xi, if testing
. (3.29)

A quick note about dropout during the backward pass is in order. The gradient

w.r.t its input can be easily computed

∂oi
∂xi

=
mi

p
∂l

∂x
=

1

p
m� ∂l

∂o
.

(3.30)

In short, the mask is applied to the gradient w.r.t the output, just like it is applied

to the input in the forward pass.

Dropout is extremely popular and is used in many networks. Most convolutional

networks can be benefited by having dropout introduced. Dropout might slow down

training a bit, due to its randomness, but generalization is very often improved. It
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also adds very little overhead during training (and none during testing), making it

a very efficient regularizer.

3.6.3 Batch Normalization as a Regularizer

As discussed in Section 3.5, batch normalization is a powerful technique that eases

the learning process. Another important aspect of it is that it also acts as a regular-

izer [54]. Its regularization properties come mostly from the noise that is introduced

when normalizing with batch statistics. Since the normalization depends on the

batch, the same sample may be normalized differently if it is present in different

batches. Empirically, batch normalized networks generalize better and the use of

other regularizers, such as dropout, can sometimes be reduced (or removed) without

generalization loss.

3.6.4 Data Augmentation

We have discussed how the lack of data might introduce false structure that is not

generalizable. Getting more data seems the obvious solution. Labeled data, how-

ever, is not easily obtainable and, as such, might be unavailable. One could look,

instead, to artificially increase the dataset size by performing transformations on

the available samples. This processed is called data augmentation. When dealing

with classification problems, the data is augmented with class invariant transforma-

tions. In the case of image classification, this could be image cropping, mirroring,

brightness perturbations, and others.

It is important to note that the augmentation used depends on the task at hand:

digits cannot be flipped (horizontally or vertically) without possibly changing the

class which they belong to. General objects, on the other hand, usually can be

mirrored without their class being changed. Another aspect of the augmentation is

that it should reflect changes that the network is expected to be invariant to. While

mirroring images vertically may be a valid transformation, it may not be very useful

since it is very rare for photographs to be taken upside down.

During test time, there are some alternatives to dealing with data augmentation.

The most common is to simply use the sample as is; this already enjoys improved

generalization from the augmentation used during training. One could, however,

obtain several perturbed inputs by augmenting the original input and consider the

output to be the average of the outputs obtained using these augmented inputs.

While doing so generally improves results, it is more computationally intensive, so

it is not commonly used.
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3.6.5 Global Average Pooling

Several applications of convolutional neural networks include a topology where con-

volutional layers are used as feature extractors for a stack of fully-connected layers

that are used for the output computation. Recall the discussion in Section 2.10.2, FC

layers contain a lot of parameters for the computation they perform. This leads to

a network where the bottom convolutional stack performs most of the computation,

while the FC stack contains most of the parameters. This may lead to cases where

the FC layers overfit. An interesting solution is to limit the number of parameters

in the FC layers by performing global average pooling (GAP) [41].

Global average pooling is a special case of average pooling, where the kernel spans

the whole feature map. For an input of size (C,H,W ), the output would be simply

a C-dimensional vector where each dimension is the average of all values distributed

spatially on the input channel. This vector may then be fed to FC layers, where it

will be processed to generate the output. Notice that, since parameter count for FC

layers depends on input size, this leads to a massive reduction of parameter count.

This is particularly effective in cases where the output does not depend on spatial

information directly. For example, image classification tasks simply output the class

of the image: a picture of a cat should be classified as cat no matter where the

cat is, or how it is oriented spatially. If the features are sufficiently descriptive,

the average of how they are spatially present is usually enough. Since convolutional

layers are much more efficient than fully-connected layers when dealing with spatially

structured data (such as images), it is usually beneficial to put the burden on them

instead of on FC layers. GAP has been adopted with great success and not only

aids in generalization, but also eases computation, since it reduces the number of

operations performed on FC layers.

3.6.6 Mini-Batch Regularization

Optimization via mini-batches also has regularization properties: stochastic learning

usually converges to better solutions than full-batch learning. The noise present in

the gradient estimates may be helpful by causing the weights to escape shallow

local minima [37]. Training with small mini-batches also converges to flat solutions,

while large mini-batch training tends to find solutions that are sharper [57]: the

noise in the estimates obtained with small batches causes the weights to escape very

sharp minima, but not flat ones. Sharp solutions correspond to higher sensitivity to

the weights, which hurts generalization: the solution obtained by the optimization

process is an approximation to a generalized solution; if the loss landscape around

the approximate solution is very sensitive to changes in the weights, then the error

in this approximation is heavily penalized. In general, the use of mini-batches is
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not only necessary, because of the cost of computing gradients, but also desirable,

because it benefits generalization.
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Chapter 4

Convolutional Network

Architectures for Image

Classification

Image classification is a very interesting topic with a variety of applications. While

convnets had success in classifying small images (with sizes around 28× 28 pixels),

such as digits since 1998 [9], it was not until 2012 that a deep convolutional neural

network was able to surpass other techniques that involved complicated pipelines

of handcrafted features for classification of complex objects on large images (on the

order of 256×256 pixels) [10]. This is due to several new techniques (many of which

were discussed in Chapters 2 and 3), as well as more computing power, particularly

due to the use of graphics cards (GPUs). Since then, convnets have been a hot

research topic and several successful architectures have been proposed.

This chapter aims to discuss several such architectures, which were selected not

only because they obtained competitive results on popular benchmark datasets, but

also because they introduced interesting ideas in their design. In particular, this

chapter presents:

1. discussion on classification of small images;

2. benchmark datasets used to evaluate presented architectures;

3. empirical verification of the effectiveness of techniques discussed previously

such as dropout, learning rate scheduling, batch normalization, and others;

4. the Network in Network architecture and the usefulness of 1× 1 convolutions;

5. a VGG-style network;

6. residual learning, pre-activation residual blocks and wide residual networks;
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Figure 4.1: MNIST digits sampled from the dataset.

7. densely connected convolutional networks and their variants.

The architectures presented are used for classification of small images. It is impor-

tant to note, though, that the ideas that made them successful are also applicable to

large images1. The focus on small image classification is due to practical concerns:

large image classification requires much more computing power, not only because

the networks are much larger, but also because the datasets themselves are very big

(some contain millions of images). Since computing resources available were limited,

a study involving smaller images proved more manageable.

Classification performance is usually evaluated through classification accuracy,

which is defined as the ratio between the number of correctly classified samples and

the total number of samples in the dataset. Alternatively, we report results in the

form of classification error rate, which is defined as the ratio between the number of

misclassified samples and the total number of samples in the dataset or, equivalently,

error rate = 1− accuracy.

4.1 Benchmark Datasets

Performance will be measured on four benchmark datasets: MNIST [9], SVHN [58],

CIFAR-10 and CIFAR-100 [59]. These are described below.

The Modified National Institute of Standards and Technology (MNIST) dataset

is a database of handwritten digits2. The digits were normalized to fit a 20 × 20

pixels frame, which is centered on a grayscale 28×28 pixels image. The training and

test sets are composed of 60000 and 10000 samples, respectively. Fig. 4.1 presents

some samples from the dataset. MNIST is a relatively “well-behaved” dataset, where

digits are present in similar sizes and angles. The main source of variation is the

handwriting style of different writers.

The Street View House Numbers (SVHN) dataset3 also contains digits. The

digits, however, were extracted from house numbers in Google Street View. The

digits are presented in 32 × 32 three-channel images (channels representing R, G,

1Most of the architectures presented here have versions that are very successful in large image
benchmark datasets. In fact, several were designed first for large-scale classification tasks and later
adapted to these smaller datasets.

2The MNIST dataset is available for download at: yann.lecun.com/exdb/mnist/
3The SVHN dataset is available for download at: ufldl.stanford.edu/housenumbers/.
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Figure 4.2: SVHN images sampled from the dataset.

Figure 4.3: Images from the CIFAR-10 dataset.

and B colors, respectively) and, in order to preserve aspect ratio, the frames around

the digits are extended if necessary. This leads to some images containing parts, or

entire, digits on the sides. These distracting digits should not be classified: the task

involves classifying only the center digit. The database is divided in training, test

and additional sets that contain around 73000, 26000 and 500000 images, respec-

tively. The additional set contains samples that are considered to be easier since

they were automatically detected with a high detection threshold [58]. While SVHN

dataset digits are mostly printed (and, therefore, do not possess the variability of

handwritten digits), they are subjected to several distortions from the image captur-

ing process. The database is also much larger than MNIST, which is attractive when

training deep neural networks. Fig. 4.2 presents some samples from the database.

Notice the presence of distracting digits on the sides of some images.

The Canadian Institute For Advanced Research (CIFAR) datasets4 are both

labeled subsets of the 80 Million Tiny Images dataset [60]. These datasets are

composed of 32 × 32 natural RGB images for object recognition. The CIFAR-10

dataset is composed of 60000 images separated in 10 classes, with 6000 images

of each class. These images are divided in training and test sets with 50000 and

10000 images, respectively. The classes included in the dataset are varied, including

animals and man-made vehicles. The images were selected from various viewpoints

and perspectives, with the restriction that there must be only one main object in

the scene and that it is clearly distinguishable. The CIFAR-100 dataset is similar,

but there are 60000 images divided in 100 classes, with 600 images of each class.

This makes the task significantly harder: there are ten times more classes and ten

times fewer examples per class. See Fig. 4.3 for an example of images taken from

the CIFAR-10 dataset; images from CIFAR-100 are similar.

4The CIFAR datasets are available at: www.cs.toronto.edu/cifar.html.
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Table 4.1: Baseline network: architecture and hyperparameters.

Operation Kernel size Stride Feature maps Padding Nonlinearity
Network - 28× 28× 1 input

Convolution 5× 5 1 32 SAME ReLU
Average Pooling 2× 2 2

Convolution 5× 5 1 64 SAME ReLU
Average Pooling 2× 2 2
Fully-connected 200 units ReLU

Dropout drop probability = 0.5
Fully-connected 10 units Softmax

Preprocessing Normalize channel mean and variance
Optimizer Nesterov momentum (η = 0.1, µ = 0.9)

Weight decay 10−5

Batch size 128
Epochs 30

Learning rate schedule Divide by 10 after 20 epochs
Weight initialization He initialization (Gaussian)

4.2 Baseline Network

As an introduction, we first discuss a simple convolutional network that will serve as

a baseline. This network features common architectural principles and is composed

of some convolutional and pooling layers that act as feature extractors for fully-

connected layers that are used to make the final prediction. This network will be

evaluated on MNIST, and, since its training is very fast, it will be used to exemplify

concepts discussed in previous chapters.

The network has two convolutional layers, with 32 and 64 filters, respectively.

Each of them is followed by ReLU and Average Pooling. On top of them, there

are two fully-connected layers: a hidden layer with 200 units and dropout with

50% drop probabiliy and an output layer with 10 units (one for each MNIST class)

and softmax nonlinearity. The network is also regularized with weight decay. The

architecture and hyperparameters of the network are detailed in Table 4.1.

The network is trained with cross-entropy loss for 30 epochs. The learning rate

was set according to a schedule: for the first 20 epochs, the optimizer used a learning

rate of 0.1; after 20 epochs, the remaining 10 used a learning schedule of 0.01 (ten

times smaller). A validation set of 10000 samples was used to tune hyperparameters.

After the hyperparameters were tuned, the network was trained in all 60000 training

samples. Using all samples is important due to the limited size of the dataset.

The test set performance obtained after the 30 epochs is 99.4% accuracy (0.6%

classification error rate).

In order to evaluate the regularization properties of dropout, the same network

was also trained without dropout on its hidden FC layer. The network without

dropout had worse generalization, obtaining 0.7% error rate. Their training curves
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Figure 4.4: Baseline network training curves with and without dropout.

are shown in Fig. 4.4. Despite having higher training error (due to dropout noise),

the network regularized with dropout has improved generalization, as expected.

It is also interesting to note the learning dynamics in relation to the learning

rate. By using a schedule, the network is able to use a higher learning rate during

the first stage, which makes for a faster exploration of the parameters space. On

the second stage, a smaller learning rate enables it to settle closer to the minimum.

This is clearly noticeable on the training curves: when the learning rate is lowered,

both training and testing errors converge to a smaller value. Aside from that,

a smaller learning rate also makes the performance more stable, i.e., the metrics

fluctuate much less after convergence. This is particularly important when there is

no validation set, as the training process is “blind”: the parameters used are the

ones obtained at the end of training, since picking the model based on test accuracy

would bias the result.

As a practical example, the network was also trained with fixed learning rates:

0.1 and 0.01, the values of the two phases of the schedule. In both cases, the error

rate is worse, with values around 0.8%. The training curves are shown in Fig. 4.5.

It is also noticeable that the testing error is much more unstable when the learning

rate is higher. While the effects on this small network might not appear significant,

schedules are very important when training larger convnets.

4.3 Using a Neural Network as an Activation

Function: Network in Network

We next discuss the Network in Network (NiN) architecture [41]. The feature ex-

traction of convnets is usually performed by a combination of convolutional and

pooling layers. The convolutional layers perform convolution, which is a linear op-

eration, followed by a nonlinear function. The nonlinear function is essential, for it

enables the model to represent nonlinear relationships. While simple nonlinear func-
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Figure 4.5: Baseline network performance with different learning rates.

Convolution (linear) Micro network Output feature maps

Figure 4.6: Network in network layer: convolution with a micro network as activation
function.

tions such as ReLU are quite successful, one might wonder if using more complex

nonlinearities might enhance the representation power of the layer. In fact, more

complex nonlinear mappings have obtained competitive results [61]. Since neural

networks are universal approximators, they should be able to perform more complex

nonlinear mappings than the usual nonlinearities. For that reason, [41] proposes to

substitute element-wise nonlinearities by “micro networks” that will be slid across

the feature maps, mapping each input vector (a vector that contains the activations

of the different filters in each position) to an output vector. The micro network can

be backpropagated through and its weights should be learned as well. The idea is

illustrated in Fig. 4.6.

This network in network module can be easily implemented using convolutional

layers: the micro network with L layers is equivalent to L 1×1 convolutional layers.
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In short, a network in network module is a convolutional layer with a larger kernel

size, followed by 1 × 1 convolutional layers, with each convolutional layer being

followed by ReLU nonlinearities.

Another important aspect of the architecture is the use of global average pool-

ing. Instead of using a fully-connected layer to obtain class predictions, the last

convolutional layer outputs the same number of feature maps as there are classes.

These maps are averaged and these are considered to be the scores for each class.

As discussed in Section 3.6.5, global average pooling improves generalization, which

is verified in this model [41].

In order to showcase the properties of Batch Normalization discussed in the

previous chapter, we propose a modified NiN architecture that includes batch nor-

malization, which we call Batch Normalized Network in Network (BN-NiN). In order

to compare it with the original model, the architecture remains mostly unchanged,

but some hyperparameters were changed to take advantage of batch normalization.

4.3.1 Classification on Benchmark Datasets

We first evaluate the efficacy of the NiN model on the CIFAR datasets. The archi-

tecture used is mostly unchanged from [41]: the network is composed of three NiN

modules, separated by pooling and dropout layers. After the last module, a global

average pooling layer is used to obtain class scores, which go through a softmax

nonlinearity. Each NiN module uses two 1 × 1 convolutional layers. The architec-

tures used for both CIFAR-10 and CIFAR-100 are essentially the same, the only

difference being the number of filters on the last convolution, which is 10 and 100,

respectively (the same as the number of classes in each dataset). We also evalu-

ate the BN-NiN model with the same number of filters in each convolutional layer,

whose only additional complexity is due to batch normalization.

As in [41], the networks were trained on all 50000 training samples and evaluated

on the 10000 test samples. The regular NiN model was trained for 260 epochs [41].

It was optimized using Nesterov momentum with a scheduled learning rate with an

initial value of 0.025, which is annealed to 0.01 after 200 epochs and to 0.001 after

230 epochs. The BN-NiN model was instead trained for 250 epochs. The learning

rate was also scheduled differently: it has an initial value of 0.1 and is halved

after every 25 epochs. In both cases, the dataset was preprocessed by normalizing

each input channel (R, G, and B) by its mean and variance. We call this “per

channel mean and variance normalization”. This is simpler preprocessing than the

one used in the original implementation, which used global contrast normalization

and ZCA whitening [59] as in [61]. We found that the network performance is not

impaired, so we opted for simpler preprocessing instead. The complete architecture
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Table 4.2: Network in Network: architecture and hyperparameters.

Operation Kernel size Stride Feature maps Padding Nonlinearity
Network - Input 32× 32× 3

NiN Module 5× 5 MNIST: 128, 96, 48
CIFAR: 192, 168, 96
SVHN: 128, 96, 64

Max Pooling 3× 3 2 SAME
Dropout drop probability = 0.5

NiN Module 5× 5 MNIST: 128, 96, 48
CIFAR: 192, 192, 192
SVHN: 320, 256, 128

Average Pooling 3× 3 2 SAME
Dropout drop probability = 0.5

NiN Module 5× 5 MNIST: 128, 96, 10
CIFAR: 192, 192, 10(100)
SVHN: 384, 256, 10

Global Average Pooling softmax
NiN Module - K, F1, F2, F3

Convolution K 1 F1 SAME ReLU
Convolution 1 1 F2 ReLU
Convolution 1 1 F3 ReLU

Preprocessing Per channel mean and variance normalization
Optimizer Nesterov momentum µ = 0.9

MNIST: η = 0.02
CIFAR: η = 0.025
SVHN: η = 0.025

Weight Decay 10−4

Batch size MNIST: 128
CIFAR: 64
SVHN: 64

Epochs MNIST: 60
CIFAR: 260
SVHN: 40

Learning rate schedule MNIST: Divide by 2 after 40 epochs and by 5 after 50 epochs
CIFAR: Divide by 10 after 200 and 230 epochs
SVHN: Divide by 10 after 20 and 30 epochs

Weight initialization Gaussian with 0.05 standard deviation

and hyperparameters are detailed in Tables 4.2 and 4.3.

Since there is no validation set, the models are trained and test set performance

is reported with the final configuration. For the CIFAR-10 dataset, the NiN model

obtained 10.34% error rate on the test set. The BN-NiN model obtains 8.85% error

rate. On the CIFAR-100 dataset, they obtain 35.13% and 30.66%, respectively. The

training curves are shown in Figs. 4.7 and 4.8.

The models are also evaluated with data augmentation. The data augmentation

scheme applied is widely used [40, 41, 61–64]: images are padded with 4 pixels on

each side and a random 32 × 32 crop is selected. The crop is also flipped horizon-

tally with 50% probability. The augmented datasets are denoted CIFAR-10+ and

CIFAR-100+. No changes are made to any hyperparameters when training on the

augmented datasets. The NiN and BN-NiN models obtain error rates of 8.36% and

7.14% on CIFAR-10+ and of 31.29% and 28.96% on CIFAR-100+, respectively. The
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Table 4.3: Batch Normalized Network in Network: architecture and hyperparame-
ters.

Operation Kernel size Stride Feature maps Padding Nonlinearity
Network - Input 32× 32× 3

NiN Module 5× 5 MNIST: 128, 96, 48
CIFAR: 192, 168, 96
SVHN: 128, 96, 64

Max Pooling 3× 3 2 SAME
Dropout drop probability = 0.5

NiN Module 5× 5 MNIST: 128, 96, 48
CIFAR: 192, 192, 192
SVHN: 320, 256, 128

Average Pooling 3× 3 2 SAME
Dropout drop probability = 0.5

NiN Module 5× 5 MNIST: 128, 96, 10
CIFAR: 192, 192, 10(100)
SVHN: 384, 256, 10

Global Average Pooling softmax
NiN Module - K, F1, F2, F3

Convolution K 1 F1 SAME BN-ReLU
Convolution 1 1 F2 BN-ReLU
Convolution 1 1 F3 BN-ReLU

Preprocessing Per channel mean and variance normalization
Optimizer Nesterov momentum (η = 0.1, µ = 0.9)

Weight Decay 10−4

Batch size MNIST: 128
CIFAR: 64
SVHN: 64

Epochs MNIST: 30
CIFAR: 250
SVHN: 40

Learning rate schedule MNIST: Divide by 10 after 20 epochs
CIFAR: Divide by 2 every 25 epochs
SVHN: Divide by 10 after 20 and 30 epochs

Weight initialization He initialization (Gaussian)
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Figure 4.7: Training curves for the NiN and BN-NiN models on CIFAR-10.
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Figure 4.8: Training curves for the NiN and BN-NiN models on CIFAR-100.

training curves are shown in Figs. 4.9 and 4.10.

We next evaluate performance on the SVHN dataset. Like in [61], for each

class, 400 and 200 samples are withheld from the training and extra sets to form

a validation set, and all other samples are used for training. The validation set

is never trained on and is used for hyperparameter tuning and model selection.

The dataset is normalized by the same process described for the CIFAR datasets.

Both networks (NiN and BN-NiN) are trained for 40 epochs. The learning rate is

scheduled by dividing it by 10 after 20 epochs and again after 30 epochs. After

training is finished, the model with the best validation accuracy is evaluated on the

test set. The NiN and BN-NiN models achieve 2.39% and 1.78% error rate on the

test set, respectively. The training curves are shown in Fig. 4.11.

Finally, the models are evaluated on the MNIST dataset. The NiN model requires

a more careful tuning of the hyperparameters and is trained for 60 epochs. The

learning rate is scheduled by dividing it by 2 after 40 epochs and by 5 after 50

epochs. The BN-NiN model presents no convergence issues and is trained for only

30 epochs. The schedule is also simpler, with the learning rate being divided by 10

after 20 epochs. At the end of training, they achieve 0.49% and 0.33% error rate on

the test set, respectively. Training curves are shown in Fig. 4.12.

4.3.2 The Power of 1× 1 Convolutions

Despite not being able to grasp spatial structure due to their restricted receptive

field, 1× 1 convolutions are very useful. Most notably, they are extremely efficient:

the number of parameters as well as the amount of computation are both dependent

on the receptive field size, which means that even small filter sizes such as 3 × 3
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Figure 4.9: Training curves for the NiN and BN-NiN models on CIFAR-10+.
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Figure 4.10: Training curves for the NiN and BN-NiN models on CIFAR-100+.

50



0 5 10 15 20 25 30 35 40
Epochs

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

E
rr

or

NiN training error
NiN validation error
BN­NiN training error
BN­NiN validation error

Figure 4.11: Training curves for the NiN and BN-NiN models on SVHN.
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Figure 4.12: Training curves for the NiN and BN-NiN models on MNIST.
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are 9 times more demanding. Besides, they are still able to perform a mapping

that takes all channels in consideration. For these reasons, 1 × 1 convolutions can

be used to reduce dimensionality, by reducing the number of feature maps, before

more expensive convolutions are used. This is a sort of embedding, where high-

dimensional sparse data is compressed into a low dimension representation [42].

By using 1 × 1 convolutions, the network can be designed to perform less com-

putation without much loss in expressiveness (making it more efficient), and with

a smaller number of parameters, which may act as a regularizer as well as ease

training. These properties are exploited in the NiN module and have also been put

to good use in other well-known architectures, such as GoogleNet [42, 65, 66] and

ResNet [40, 67]. Both of them are winners of the ImageNet Large Scale Visual

Recognition Competition (ILSVRC) [68, 69]5.

4.4 VGG-Style Network

VGG (Visual Geometry Group) networks [70] were popularized after the ILSVRC

2014. Despite not winning the classification challenge, they became popular due to

their simplicity in design: its feature extractors are composed only by stacks of 3×3

convolutions, each followed by max pooling. Each stack has a fixed number of filters

and after each pooling, the number of filters is doubled, keeping computation costs

mostly constant. Even with this simple design, it was able to achieve very good

results in large image classification.

The architecture explored next, which we call BN-VGG6, utilizes the VGG design

principles, combined with batch normalization, to small image classification. It is a

network with 15 weight layers, 13 of them being convolutional layers and the last two

being FC layers that generate the class scores. Like the batch normalized version of

the NiN architecture, every ReLU is preceded by a batch normalization layer. The

network is also regularized by dropout layers as well as weight decay.

We evaluate the network on the CIFAR datasets and use the same hyperparam-

eters for both. The datasets are preprocessed the same way as in the NiN case

and the learning rate schedule follows that of the BN-NiN. Detailed information

regarding the architecture and hyperparameters is available in Table 4.4.

The BN-VGG network achieves 8.53% and 32.34% error rates for CIFAR-10 and

CIFAR-100, respectively. When data augmentation is used, the network achieves

6.56% and 29.64% error rates for CIFAR-10+ and CIFAR-100+, respectively. Train-

5For more information about the ImageNet challenges visit http://www.image-
net.org/challenges/LSVRC

6This network is based on the VGG-like network proposed by S. Zagoruyko (unpublished).
Please see torch.ch/blog/2015/07/30/cifar.html. His implementation is available at: github.
com/szagoruyko/cifar.torch.
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Table 4.4: BN-VGG: architecture and hyperparameters.

Operation Kernel size Stride Feature maps Nonlinearity Dropout
all convolutions use SAME padding

Network - Input 32× 32× 3
Conv + Dropout 3× 3 1 64 BN-ReLU 0.3

Convolution 3× 3 1 64 BN-ReLU
Max Pooling 2× 2 2

Conv + Dropout 3× 3 1 128 BN-ReLU 0.4
Convolution 3× 3 1 128 BN-ReLU
Max Pooling 2× 2 2

2× Conv + Dropout 3× 3 1 256 BN-ReLU 0.4
Convolution 3× 3 1 256 BN-ReLU
Max Pooling 2× 2 2

2× Conv + Dropout 3× 3 1 512 BN-ReLU 0.4
Convolution 3× 3 1 512 BN-ReLU
Max Pooling 2× 2 2

2× Conv + Dropout 3× 3 1 512 BN-ReLU 0.4
Convolution 3× 3 1 512 BN-ReLU
Max Pooling 2× 2 2

Fully-Connected 512 units BN-ReLU 0.5
Fully-Connected 10(100) units softmax

Conv + Dropout - F , P
Convolution 3× 3 1 F BN-ReLU

Dropout drop probability = P
Preprocessing Per channel mean and variance normalization

Optimizer Nesterov momentum (η = 0.1, µ = 0.9)
Weight Decay 5× 10−4

Batch size 64
Epochs 250

Learning rate schedule Divide by 2 every 25 epochs
Weight initialization He initialization (Gaussian)

ing curves are shown in Fig. 4.13 and Fig. 4.14. The good performance of the network

indicates that small receptive field convolutions are an effective way to build a deep

network.

The BN-VGG architecture has many more parameters than BN-NiN and yet

does not overfit. This is because of the extensive use of regularizers. Regarding

performance in CIFAR-10, BN-VGG is a bit more accurate than BN-NiN when

no data augmentation is used. BN-VGG also seems to benefit more from data

augmentation, probably because of the larger number of parameters. In CIFAR-

100, BN-VGG performs worse than BN-NiN, which indicates that the large number

of parameters is not as beneficial with a very restricted number of examples per

class. This is also supported by that fact that, while still worse, performance on

CIFAR-100+ is much closer to the results obtained with BN-NiN.

53



0 50 100 150 200 250
Epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

E
rr

or

CIFAR­10 training error
CIFAR­10 testing error
CIFAR­10+ training error
CIFAR­10+ testing error

Figure 4.13: Training curves for BN-VGG on CIFAR-10 and CIFAR-10+.

0 50 100 150 200 250
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

E
rr

or

CIFAR­100 training error
CIFAR­100 testing error
CIFAR­100+ training error
CIFAR­100+ testing error

Figure 4.14: Training curves for BN-VGG on CIFAR-100 and CIFAR-100+.
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4.5 Residual Learning: Extreme Depth with

Identity Mappings

The success of increasingly deep networks seems to indicate that depth is a very

important factor on the expressiveness of neural networks. Several advances in image

recognition were obtained by simply training larger and deeper networks [10, 40, 42,

70]. Increasing the depth indiscriminately, however, usually leads to problems. More

specifically, very deep networks start to exhibit worse performance than shallower

counterparts. While deeper networks usually have more parameters, the lackluster

performance does not seem to be caused by overfitting: very deep networks many

times perform worse on the training set than shallower ones. Vanishing gradients

also do not seem to be the whole reason. Even carefully initialized networks that

also feature batch normalization suffer from this problem [40]: these networks fail

to converge to good minima even when their gradients are seemingly healthy [40].

The aforementioned reasons indicate a fundamental difficulty in the optimization

process that causes performance degradation. On the worst case, the extra layers

could simply be set to compute the identity function and training performance would

be the same as in shallower networks. The optimizers currently used seem to be

unable to find such solutions. With this in mind, [40] proposes a reparametrization

of the function computed by a layer in the form of a residual mapping. Instead of

training a layer to compute a desired function h(x), it is instead trained to compute

the residual function f(x) = h(x) − x. The original function is easily recovered as

h(x) = x+f(x). This can be interpreted as biasing the layers to implement functions

that resemble the identity function: on the beginning of training, since weights are

initialized randomly around zero, layers would start with functions close to the

identity. The optimization process could then recover identity mapping by driving

the layer weights toward zero or change them to implement a different function.

In the context of a graph, this formulation is realized with a shortcut connection

from the input to the output, that is added to the result of the operation that

implements the residual function. The block that includes both the residual function

and shortcut connection is the building block of residual networks (ResNets) and is

called residual unit or residual block. The residual block can be propagated through

and trained just like any other layer in the network.

4.5.1 Residual Blocks on a ConvNet

In the case of a convnet, the residual function f(x) may be realized by one or sev-

eral convolutional layers (along with normalization layers and nonlinearities). The

addition of the input and output feature maps is performed element-wise. We first
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Figure 4.15: Diagrams of residual blocks. Connections with batch normalization
and ReLU are denoted with the ‘BN - ReLU’ tag on their side.

consider a residual block with a residual function that is implemented by two 3× 3

convolutional layers with F filters. The first convolution is followed by batch nor-

malization and ReLU layers. The output of the second convolution is then added

to the input and batch normalization and ReLU is applied on the sum, as shown in

Fig. 4.15a. We call this the regular residual block. Note that the naive approach of

applying the nonlinearity before the addition would cause the output of the residual

function to be non-negative, which in turn makes the output of the blocks monoton-

ically increasing and might affect the expressiveness of the network [67]. Because of

the element-wise addition, the residual output should have the same shape as the

input. In the case where output dimensions are changed, the shortcut performs a

mapping with a 1 × 1 convolutional layer, as shown in Fig. 4.15c. Shortcuts that

contain 1× 1 convolutions are called projection shortcuts, because they project the

input feature maps into the output feature map dimensions.

There is a second residual block considered that features three convolutional

layers. Instead of two 3× 3× F convolutions, the block is composed of 1× 1× F ,

3× 3× F and 1× 1× 4F convolutional layers. On this case, the input is expected

to have 4F channels. Because of how the 1 × 1 convolutions are used to compress

the information before the most computationally intensive 3× 3 convolution, this is

called the bottleneck residual block, illustrated in Fig. 4.15b. The bottleneck and

the regular residual blocks have similar computation requirements.
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4.5.2 Pre-activation Residual Blocks

The residual blocks discussed do not strictly adhere to the residual formulation

discussed because a nonlinearity is applied after the addition operation. These op-

erations cause multiplicative modifications to the gradients as they travel backwards

through the graph, which may degrade performance [67]. As discussed before, mov-

ing the nonlinearity inside the residual block is not advisable. Instead, [67] proposes

an asymmetric scheme where the nonlinearity (along with the associated batch nor-

malization) is applied only to the path towards the next residual function, leaving

the shortcut of the next block unaffected. The process is illustrated in Fig. 4.16a.

The use of asymmetric activations is equivalent to pre-activating the convolu-

tions, i.e., using the activation function before the convolutional layers instead of

after. The dashed box in Fig. 4.16a delimits the equivalent pre-activation block.

Figs. 4.16b and 4.16c illustrate the regular and bottleneck pre-activation residual

blocks, respectively.

Using pre-activation blocks allows information to flow unimpeded through the

shortcuts, which helps training deeper networks. Consider a residual network with

N layers. The n-th layer performs a transformation hn(xn) = xn+ f̄(x), where f̄(x)

represents the pre-activated block and xn = h(xn−1) is the input of layer n. The

output of the n-th layer can be computed as

xn+1 = x +
n∑
i=1

f̄(xi), (4.1)

where x = x1 is the input of the network. The output can be expressed as

o = xN+1 = x1 +
N∑
i=1

f̄(xi)

= xn +
N∑
i=n

f̄(xi).

(4.2)

Conversely, the gradient of the loss l w.r.t the n-th input is

∂l

xn
=

∂l

xN

∂xN
xn

=
∂l

xN

(
1 +

∂l

∂xn

N−1∑
i=n

f̄(xi)

)
.

(4.3)

According to Eq.(4.3), the gradient can be decomposed into two additive terms. The

first represents the gradient flow through the shortcuts and the second represents the

gradient flows through the residual functions. We see that gradients flow through
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Figure 4.16: Diagrams of pre-activation residual blocks. The red path in Fig. 4.16a
highlights the asymmetric path that contains the activation, and the dashed box
delimits the pre-activation block.

the shortcuts without being modified and even if layer weights are very small, the

gradient should not vanish. The only time gradient does not flow directly through

the shortcut path is when a residual block contains a projection shorcut to map

different input and output sizes. Pre-activated blocks that contain projection also

feature a slight difference from other pre-activated blocks: since both paths contain

convolutions, both are pre-activated, i.e, there is no asymmetry.

Architectures using post-activation residual blocks were successfully trained with

depths of hundreds of layers, which was not possible with plain networks [40]. If

pre-activation blocks are used, networks with more than a thousand layers can be

trained [67].

4.5.3 Residual Architectures for CIFAR datasets

In this section, we evaluate the performance of deep residual networks on the CIFAR

datasets. All networks evaluated are designed as in [40, 67]: the first layer is a 3× 3

convolutional layer with 16 filters, then 3 stacks of n residual blocks are used, with

16, 32 and 64 filters, respectively. The first residual blocks of the second and third

stacks perform subsampling by means of a 2-strided convolution. Therefore, the

stacks operate on feature maps with sizes 32 × 32, 16 × 16 and 8 × 8, respectively.
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after a foward slash.

This is a VGG-style design that doubles the number of filters after subsampling

the feature maps. After the residual stacks, global average pooling is applied and

a fully-connected layer with softmax activation is used to obtain class probabilities.

The overall architecture is shown in Fig. 4.17a. Downsampling blocks are shown

in Figs. 4.17b and 4.17c. All downsampling is handled using strided convolutions

(except for the global average pooling), like in [39].

We consider both regular and bottleneck residual networks. All networks use

pre-activation. The total depth of a regular network is N = 6n + 2: the first

convolutional layer, 3 stacks of n residual blocks containing 2 convolutions each,

and the FC output layer. For bottleneck networks, the depth is N = 9n + 2, since

bottleneck blocks contain 3 convolutions. The networks were tested for several values

of n and each network is denoted as ResNet-N , e.g., the network with n = 3 regular

residual blocks per stack is denoted ResNet-20.

All networks were trained on CIFAR-10+ and used the same hyperparameters.

They were trained with Nesterov momentum (µ = 0.9) for 164 epochs, with an initial

learning rate of 0.1, that was divided by 10 after 50% (82) and again after 75% (123)
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Table 4.5: Error rates of residual networks trained on CIFAR-10+.

Network # parameters Error (%) Residual Block
ResNet-20 (n = 3) 272K 7.68 Regular
ResNet-32 (n = 5) 467K 6.94 Regular
ResNet-44 (n = 7) 661K 6.60 Regular
ResNet-56 (n = 9) 856K 6.46 Regular
ResNet-65 (n = 7) 683K 6.29 Bottleneck
ResNet-83 (n = 9) 868K 5.86 Bottleneck
ResNet-110 (n = 18) 1.7M 5.97 Regular
ResNet-164 (n = 18) 1.7M 5.47 Bottleneck

of epochs were completed. All networks were regularized with weight decay of 10−4.

Table 4.5 presents the error rate of increasingly deep networks. Training curves are

shown in Fig. 4.18. We see that even very deep networks, with over 100 layers, have

no optimization difficulty and accuracy increases steadily with depth. Regarding

residual block type, the use of bottleneck blocks allows for deeper networks that are

more accurate while keeping parameter count low.

4.5.4 Wide Residual Networks

The residual architectures discussed so far have showcased the representation power

of very deep networks: even thin networks, with few filters per convolutional layers,

are capable of achieving good performance. Using few filters per layer also keeps

the parameter count low despite the increased depth and allows the networks to

generalize well even without regularization techniques such as dropout. Using deep

thin networks has one disadvantage however: since layers depend on the output of

previous ones, the computation must be done sequentially for each layer. This limits

the amount of parallel computation that can be performed, which is particularly

detrimental because this is the kind of computation GPUs excel at. In fact, very

deep networks may be slower to train compared to shallower ones even if they contain

fewer parameters.

Motivated by this, [71] proposes wide residual networks. These networks follow

essentially the same previously discussed architecture with an additional hyperpa-

rameter: the widening factor. A network with widening factor k has k times more

filters in each layer. Wide residual networks are interesting because they allow

for better use of parallel computation. We compare these networks to the thin

(k = 1) residual networks presented on the CIFAR-10+ dataset. A wide residual

network with depth N and widening factor k is denoted as WRN-(N, k). These

networks were trained for a total of 200 epochs. They were optimized with Nes-

terov momentum using an initial learning rate of 0.1, which is divided by 5 after

60, 120, and 160 epochs; constant amount of momentum µ = 0.9; and mini-batches
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Figure 4.18: Training curves for ResNets on CIFAR-10+.

of 64 samples. The network is regularized with weight decay of 5 × 10−4. Two

wide ResNets (both using regular residual blocks) were evaluated: WRN-(40, 4) and

WRN-(28, 10). They obtain 4.87% and 4.57% error rates, respectively. Both re-

sults are better than ResNet-164 and also train faster, despite having many more

parameters. The training curves are shown in Fig. 4.19.

These results indicate that residual architectures are not only useful for building

extremely deep networks: they are also successful when building wider, not as deep

networks. It is also evidence that depth is not the only way to effectively improve

expressiveness: these networks have good generalization and do not overfit, despite

being much wider and having more parameters. These results also agree with con-

jectures that say that, as long as a network is deep enough, it should be able to

efficiently learn from data [8]. Note that while these networks are shallower than

the thin ResNets studied before, they are still quite deep: much deeper than archi-

tectures studied previously such as NiN and BN-VGG. By building deep, but not

overly deep, wide nets, it is possible to achieve a good compromise between depth

and width that makes the network expressive while still keeping it computationally

efficient.
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Figure 4.19: Training curves for wide ResNets on CIFAR-10+.

4.5.5 Residual Networks Family

Residual architectures became extremely popular after their impressive results in

the ILSVRC2015. The principle of residual networks is also very simple: simply by

using shortcut connections, the optimization of deep networks is improved. Several

researchers began experimenting with ResNet variants and a whole family of them

exists today. This family includes: multi-residual networks [72], which use residual

units with several branches; Inception-ResNet [66], a residual version of the Inception

architecture; networks with stochastic depth, which are ResNets that are trained

using a method similar to dropout that drops entire layers [73]; and others [74–76].

There are also works that seek a better understanding of how residual networks

represent functions [77, 78].

4.6 Effectively Reusing Features with Densely

Connected Convolutional Networks

After the big success of residual networks, it became clear that shortcut connections

were a good alternative when building very deep neural networks. Densely Con-

nected Convolutional Networks (DenseNets) [64] also use shortcut connections, but

with a very different objective. While residual networks use shortcuts for ease of

optimization and improved gradient flow, DenseNets main design consideration is

feature reuse.

A DenseNet is composed mostly of dense blocks. Inside a dense block, every layer

is connected to all its predecessors. This dense connectivity pattern, in contrast with
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the usual one where each layer is connected only to the previous one, is the reason

for the name of this architecture. A dense block can be implemented through the use

of skip connections that, instead of performing addition like in ResNets, concatenate

input features with output features. It is important to note that, since the outputs

of the layers are concatenated, the inputs of each layer get larger the deeper the

layer is inside the dense block. If a dense block input has k0 feature maps and each

layer has k output feature maps, the i-th layer will have k0 + (i− 1)k feature maps

as input. For this reason, the number of output feature maps in each layer is called

the growth rate of the dense block. The number of layers inside a dense block is

denoted n. An illustration of a dense block is provided in Fig.4.20.

Because of how a dense block concatenates feature maps, subsampling techniques

cannot be applied inside of it. Instead, a DenseNet is divided in several dense blocks

of different spatial resolutions. Between such blocks, a transition block performs

subsampling operations. The transition block considered here is composed of a

pre-activated 1 × 1 convolutional layer and a standard average pooling layer. The

transition block is illustrated in Fig.4.21. Generally, the input and the output of a

transition block have the same number of feature maps. Only spatial dimensions

are changed.

The structure of DenseNets have some desirable properties, among which the
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most prominent is feature reuse. Because of the connectivity pattern, a layer has

direct access to the output of all previous layers and the block input. Feature reuse

also results in parameter efficiency: since layers do not have to recompute useful

features, they can instead compute fewer feature maps. While regular architecture

may have hundreds of output feature maps, typical growth rates are in the order

of tens. Each layer makes a small contribution to the “collective knowledge” of

the network, which is made available to all layers after it. In regards to gradient

flow, the reuse of the output of a layer in several instances of the network results

in gradient flowing back from many paths. These paths can be interpreted as a

form of deep supervision [63, 64], akin to the effects of auxiliary classifiers present

in deeply-supervised networks [63] and Inception architectures [65]. In regards to

the transition block, it is responsible for capturing information and summarizing it

spatially. By using a 1 × 1 convolutional layer before the pooling operation, it is

able to transform the feature maps into representations that are more appropriate

in lower spatial resolution.

4.6.1 DenseNet Classification

We test the performance of DenseNet architectures on the CIFAR, and SVHN

datasets. The architecture used for all three datasets is described next. The in-

put is first transformed by a 3× 3 convolutional layer with 16 filters. The output of

this layer is fed to three dense blocks of decreasing spatial resolution (32×32, 16×16

and 8 × 8). Between each dense block, there is a transition layer that halves the

height and width of the feature maps and keeps the number of them the same. The

number of layers n and the growth k are the same for all three dense blocks. After

the last dense block, global average pooling is applied and the output is mapped

to class probabilities by an FC layer with softmax activation. Therefore, the total

depth of the network is N = 3n + 4: 1 for the first convolution, 3n for the dense

blocks, 2 for the transition blocks and 1 for the FC layer. A network with total

depth N and growth size k is denoted as DenseNet-(N, k).

All networks are trained with Nesterov momentum (µ = 0.9) with initial learning

rate 0.1. The learning rate is divided by 10 after 50% and again after 75% of the

epochs have been completed. Networks were trained for 300 epochs in the CIFAR

datasets and 40 epochs in the SVHN dataset. All networks are regularized with

weight decay of 10−4. For datasets without augmentation (CIFAR-10, CIFAR-100,

SVHN), all convolutions are regularized with dropout with probability of 20%. For

data augmented datasets (CIFAR-10+, CIFAR-100+) there is no dropout.

We evaluate DenseNet-(40, 12), a relatively small network with only about 1M

parameters. This network achieves 6.53%, 5.53%, 27.25% and 25.83% error rates on
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the CIFAR-10, CIFAR-10+, CIFAR-100, and CIFAR-100+ datasets, respectively.

When trained on the SVHN dataset, it achieves 1.86% error rate. Training curves

are shown in Figs. 4.22, 4.23, and 4.24.
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Figure 4.22: Training curves for DenseNet-(40, 12) on CIFAR-10 and CIFAR-10+.
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Figure 4.23: Training curves for DenseNet-(40, 12) on CIFAR-100 and CIFAR-100+.

DenseNets are more accurate than ResNets with similar number of parame-

ters [64], and large DenseNets achieve state-of-the-art results on small image bench-

mark datasets. DenseNets have also been applied to large-scale classification and

yield performance comparable to ResNets with significantly fewer parameters [64].

A version of DenseNet was also used for semantic segmentation, obtaining state-of-

the-art results on benchmark datasets [79].
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Figure 4.24: Training curves for DenseNet-(40, 12) on SVHN.

4.6.2 DenseNet Variants

While DenseNets are very efficient, there are some modifications that improve them

even further. This section aims to analyze some characteristics of DenseNets and

how they motivate the design of variants that exploit them. Because of its design, a

dense block allows for layers to have access to all feature maps from previous layers.

In order to evaluate how the layers utilize this connectivity, we compute the average

squared weight of each input to a layer. Consider the j-th layer of the network: it

has C
(j)
i feature maps as inputs and outputs C

(j)
o feature maps. For filters with sizes

H(j) and W (j), the set of filters is a tensor F(j) ∈ RC
(j)
o ×C

(j)
i ×H

(j)×W (j)
. In order to

quantify the importance of each input feature map to the layer, we compute

mi,j =


1

C
(j)
o H(j)W (j)

∑
o,h,w(f

(j)
o,i,h,w)2, i < C

(j)
i

0, i ≥ C
(j)
i

. (4.4)

The matrix M should then indicate how important feature map i is to layer j: high

values indicate that weights that connect outputs feature maps to input map i are

high, which means the feature map is important; while low values indicate that

these weights are low and, therefore, the input map is relatively unimportant. This

matrix is plotted in the form of a heat map, shown in Fig. 4.25.

The heat map in Fig. 4.25 indicates that layers have fairly distributed weights,

i.e., they tend to use the features obtained from several different layers, including

early ones. In fact, experiments show that if the input feature maps are restricted

to only those of recent layers, then performance is impaired [64]7. This indicates

7This experiment, along with some similar analysis with respect to input feature map impor-
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Figure 4.25: Importance of input feature maps for DenseNet-(40, 12) trained on
CIFAR-10+. Each column is normalized so that its maximum value is 1 for improved
visualization.

that the dense connectivity pattern in DenseNets is, in fact, very important.

A more careful analysis, however, leads to the observation that, while each layer

has distributed weights, this distribution is relatively sparse: a specific layer only

takes a limited number of layers into account when computing its output. The

previous attempt to limit the number of input feature maps failed because it was

based on the assumption that recent feature maps are the most important, which

is not true. Instead, it is would be interesting to select the most important feature

maps for each individual layer. This can be efficiently implemented with the use of

bottleneck layers : a 1× 1 convolutional layer is used to map the input feature maps

into a fixed number of feature maps that will serve as input to the original 3 × 3

convolutional layer. This allows each layer to learn how to select and/or combine

relevant input feature maps before computing its output. We follow [64] and use

4k (k denoting the growth rate) bottleneck feature maps. A DenseNet that uses

tance, is available in the first version of the paper. These discussions were later removed from the
paper due to space constraints. The interested reader should read previous versions of the paper
(also available on ArXiv) for more information.
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bottleneck layers is denoted DenseNet-B.

Another aspect of the connectivity is that layers on the second and third dense

blocks do not seem to utilize layers from the transition blocks as much as the features

from layers inside the dense block. The fact that most layers use only a few of the

transition layer’s feature maps could mean that features computed by the transition

layers are redundant. This is motivation for the second modification: compression.

In the original design, transition layers were used only for spatial downsampling

and kept the number of feature maps the same. A DenseNet that uses compression,

denoted DenseNet-C, has transition layers that, for an input with Ci feature maps,

output Co = θCi feature maps. The scalar θ < 1, called the compression factor,

controls how much the feature maps are compressed. We follow [64] and use θ = 0.5.

In order to evaluate these variations on the DenseNet architecture, a DenseNet-

BC (that uses both bottleneck and compression) was trained on the CIFAR datasets,

both with and without data augmentation. The total depth of the network is now

N = 6n + 4, since bottleneck layers contain two convolutional layers. The model

tested is a DenseNet-BC-(100, 12), i.e., a network with n = 16 bottleneck layers

per dense block and growth rate k = 12. Despite being deeper than the vanilla

DenseNet, it has fewer parameters (0.8M, compared to the original 1M). This net-

work was trained with the same hyperparameters as the original DenseNet, and

obtained 5.91%, 4.58%, 24.96%, and 22.29% error rates on the CIFAR-10, CIFAR-

10+, CIFAR-100, and CIFAR-100+ datasets, respectively. The training curves are

shown in Figs. 4.26 and 4.27. All these results are improved when compared to the

vanilla DenseNet. Larger DenseNets also follow the same trend, with BC variants

performing consistently better than vanilla counterparts. All in all, these modifica-

tions are capable of further improving an already very efficient architecture.

4.7 Architectures Recap

In this chapter, we discussed several architectures for image classification and evalu-

ated them on benchmark datasets. The results are summarized in Table 4.6. Due to

hyperparameter choice, framework differences, and others, some results differ from

those claimed in the original implementations; these results are, however, consistent

enough for the discussion presented in this work.

The first architecture presented was a fairly simple convnet containing two con-

volutional layers that were used as feature extractors for the classifier, implemented

using FC layers. It served as an introduction to the general topology of convnets

for classification, as well as a good platform for testing some concepts discussed in

previous chapters, such as dropout and learning rate scheduling. It was, however,

fairly simple and relied too much on FC layers, which increased the parameter count:
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Figure 4.26: Training curves for DenseNet-BC-(100, 12) on CIFAR-10 and CIFAR-
10+.
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Figure 4.27: Training curves for DenseNet-BC-(100, 12) on CIFAR-100 and CIFAR-
100+.

this network had more than 680 thousand parameters despite being quite shallow.

The network in network architecture was described next. It is a very interesting

architecture because it highlights the power and efficiency of 1 × 1 convolutions,

which are used extensively to great success in several other architectures. It also

introduces global average pooling, a technique that is very useful as a regularizer

and reduces the number of parameters in the output FC layer; GAP is also widely

used in other architectures. The batch normalized version, BN-NiN, also served as a

nice example of the usefulness of batch normalization as a technique to improve the

optimization process as well as generalization. The BN-VGG architecture was then
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discussed. It showcased how a simple design process can be used to good effect to

build deep networks. It is also an example of how a large network (with 15 million

parameters) can generalize well with the regularization techniques discussed: the

use of weight decay, batch normalization, and a lot of dropout allows the model to

generalize well even in datasets with limited data.

We then explored architectures that use shortcut connections. Residual net-

works attack the optimization problem that arises when training very deep net-

works. Residual learning is interesting not only because it enables training networks

that are hundreds of layers deep, but also because it speeds up the optimization

process. These very deep residual networks are also very efficient: ResNet-56 has 17

times fewer parameters than BN-VGG and obtains better performance. Even when

compared to NiN architectures, which are more efficient than BN-VGG, ResNet-32

outperforms BN-NiN with 3.4 times fewer parameters. An alternative approach is

then discussed in the form of wide residual networks. These networks reduce depth

in favor of increased width. While these networks have many more parameters, and,

as such, are not as efficient, they can outperform very deep thin ResNets. Wide

ResNets are also attractive in the sense that they allow for more parallel computa-

tion. Finally, we investigate DenseNets. These networks use shortcut connections

in order to improve feature reuse. They are even more efficient than ResNets, and

the reduced parameter count also helps with generalization. The DenseNet vari-

ants, with bottleneck layers and compression, are even more efficient, outperforming

vanilla DenseNets and, consequently, all the other architectures discussed previously.
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Table 4.6: Performance on benchmark datasets. Values reported are percentage
error rates.

Network Depth # parameters MNIST C10 C10+ C100 C100+ SVHN
Baseline 4 682K 0.6
NiN 9 358K 0.49

1.6M 10.34 8.36 35.13 31.29
2M 2.39

BN-NiN 9 358K 0.33
1.6M 8.85 7.14 30.66 28.96
2M 1.78

BN-VGG 15 15M 8.53 6.56 32.34 29.64
ResNet 20 272K 7.68

32 467K 6.94
44 661K 6.6
56 856K 6.46
65 683K 6.29
83 868K 5.86

110 1.7M 5.97
164 1.7M 5.47

Wide ResNet
k = 4 38 8.9M 4.87

k = 10 26 36.5M 4.57
DenseNet 40 1M 6.53 5.53 27.25 25.83 1.86
DenseNet-BC 100 768K 5.91 4.58 24.96 22.29
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Chapter 5

Beyond Classification: ConvNets

as Feature Extractors

The most important aspect of a convnet is its feature extractor, that is characterized

by convolutional and pooling layers. If the network is used for classification, a simple

classifier on top of such features is used to obtain class predictions. The unparalleled

results in such tasks are evidence that these features can be learned to be very

discriminant [10, 40, 42, 70]. Other applications may require features with different

characteristics. This chapter discusses:

1. the transferability of features learned by convolutional networks;

2. convnets as off-the-shelf feature extractors;

3. alternative computer vision tasks at which convnets excel;

4. class activation maps: a technique that uses features learned by a convnet for

weakly supervised localization and visualization of network predictions;

5. neural style transfer: the use of convolutional neural networks for rendering

images in the style of another. Iterative method, single-style networks, and

multi-style networks.

Much work has been done to evaluate what features these networks learn and how

generic they are. There are several techniques that seek to understand how networks

interpret images by visualizing their features [80–82]. Related work reconstructs

images based on their feature description [83].

There are studies that evaluate the transferability of features by using features

learned in one dataset on another, which is a technique usually called transfer learn-

ing. Some of these works show, through several experiments, that off-the-shelf con-

vnet features are very powerful and can obtain state-of-the-art performance even

when compared to task-specific handcrafted features [84, 85]. The authors of [86]
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demonstrate how features get progressively more specialized the deeper the layer

they are extracted from: shallow features are very generic pattern detectors, while

deep features are more descriptive and specialized to the particular task the net-

work was trained on. This indicates that the depth at which features are extracted

depends on the similarity between the task the network was trained on and the task

the features will be transferred to. The work of [87] demonstrates how one could

take advantage of transfer learning on data-restricted settings: a convnet can be

trained on a large labeled dataset (such as ImageNet [68]) and later fine-tuned to

a smaller dataset with state-of-the-art results. This fine-tuning technique was also

applied in object detection [13].

CNNs can also be trained to perform multiple tasks, such as classification and

localization. These tasks are performed with shared features [13, 88]. This makes

CNNs particularly useful for object detection [13–18, 88], with some techniques

being capable of performing detection in real time [18].

CNN feature extraction has also been applied in image transformation tasks,

where an input image is transformed into an output image. This is usually performed

by encoding the input image into more abstract features that can then be mapped

to the corresponding output image. Image transformation can be done with fully-

convolutional neural networks. These networks have the advantage of being able

to process images of any size. Examples of image transformation tasks include:

semantic segmentation [19, 79], super-resolution [21, 22], colorization [89–91], and

style transfer [22, 92].

5.1 Understanding Predictions with Class Acti-

vation Maps

In the last chapter, several architectures for image classification were presented.

This section presents a technique that uses the features computed by the networks

to visualize how the scores for each class are distributed spatially. There is a variety

of work that seeks to understand the predictions of neural networks [81, 93–96]:

[81] uses saliency maps computed with backprop to determine the importance of

input pixels for the predicted class; [93] discusses how convnets trained on scene

classification learn object detectors, despite not being trained to detect specific

objects; [94] studies how convnets are able to localize objects despite being trained

only with class annotations. These studies are useful for several reasons: they help

elucidate how convnets make predictions, which may be used to guide network design

as well as to explain mistakes; and they show the potential of convnets for weakly

supervised localization. This type of learning is termed weakly supervised because
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there is no specific annotation for localization bounding boxes. The network learns

to localize objects when trained only with class annotations.

We focus our discussion on class activation maps (CAM) [95]. This technique is

able to generate class-specific maps that indicate discriminative regions in the input

image. The original work focuses on generating maps for networks that are trained

on large images and how these maps can be used for understanding predictions and

localizing class objects; we apply these maps to the networks discussed in Chapter 4.

Experiments show how CAMs may be used for weakly supervised localization as well

as to better understand the “thought process” of these networks.

Recall the NiN architecture presented in Section 4.3: it was composed entirely

of convolutional and pooling layers, i.e., there were no FC layers used to compute

class predictions. Instead, the output features maps f i ∈ RH×W were averaged with

global average pooling and these values were used as class scores ci:

ci =
1

HW

∑
h,w

fi,h,w. (5.1)

This essentially means that the output features in each feature map correspond to

how strongly each input region contributes to the respective class. Because of the

pooling operations along the network, these feature maps are smaller than the input

image. Class activation maps can be easily obtained by upsamping the feature maps

back to the input size. These CAMs should roughly correspond to heat maps that

indicate input regions that activate their respective classes. One could interpret

these heat maps as to where in the image the network pays attention to when

it makes its prediction. An example of a CAM obtained through this method is

available in Fig. 5.1: it demonstrates that the network pays attention to the airplane

on the left and ignores the object on the right when making its prediction. In this

and all the following examples the feature maps were upsampled using bilinear

interpolation.

Obtaining CAMs is fairly simple in architectures that already have feature maps

that encode class-level features. This was, in fact, one of the advantages claimed by

the authors of the NiN architecture [41]. Several other architectures use GAP in a

slightly different way: they perform pooling of convolutional features and then map

the resulting vector into class scores using a fully-connected layer. Denoting v the

vector of features obtained after GAP, W the weight matrix of the FC layer, and b
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(a) Input image. (b) Generated activation
map for predicted class
’airplane’.

(c) Heat map on top of the
reference image.

Figure 5.1: Example of a class activation map obtained with the NiN architecture.
Images were scaled for easier visualization.

the corresponding bias vector, this operation is described as below:

vi = GAP(fi,h,w)

vi =
1

HW

∑
h,w

fi,h,w

cj = FC(v)

= wT
j v + b

=
∑
i

wj,ivi + bj

=
1

HW

∑
h,w,i

wj,ifi,h,w + bj.

(5.2)

In short, each weight matrix column wj encodes how important each feature map

is for its respective class. Note that Eq. 5.2 can be rewritten as

cj =
1

HW

∑
h,w

(∑
i

wj,ifi,h,w + bj

)

= GAP

(∑
i

wj,ifi,h,w + bj

)
= GAP(mj,h,w).

(5.3)

Eq. 5.3 demonstrates that using an FC layer after GAP is equivalent to performing

GAP on a transformation of the feature maps f j, denoted as mj. In fact, this

transformation is easily implemented as a 1 × 1 convolutional layer (without any

nonlinearity). Note that this equivalent representation has the same form of the NiN

architecture: a 1×1 convolution that generates feature maps that encode class-level
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(a) Input image. (b) Generated activation
map for predicted class
’airplane’.

(c) Heat map on top of the
reference image.

Figure 5.2: Example of a class activation map obtained with the DenseNet archi-
tecture. Images were scaled for easier visualization.

features before the GAP layer1. CAMs may then be extracted by transforming the

output feature maps using a 1× 1 convolutional layer that shares the weights of the

FC layer, W and b.

This transformation can be applied to networks such as the ResNets and

DenseNets presented in Chapter 4. An example is shown in Fig. 5.2: the CAM for

the same input image presented in Fig. 5.1 is obtained using the DenseNet-(40, 12)

trained on the CIFAR-10+ dataset. Note that not only the DenseNet-(40, 12) model

achieves better classification performance, but its CAM is also more well localized

than the NiN model. This agrees with the intuition that networks classify images

by learning to detect objects in them [93].

5.1.1 Weakly Supervised Localization

It is expected that regions that contribute heavily in the classification process are

probably regions that contain the object of interest itself. This means that the

activation map may be used as a guideline for localizing the object of interest in the

image. In order to obtain a bounding box, the activation map is thresholded and

the smallest box that contains all activations above such threshold is selected2. For

our experiments, we use the DenseNet-(40, 12) architecture trained on CIFAR-10+.

Some examples are shown in Fig. 5.3. It is interesting that, although the network

has never been trained on any localization task, through this simple method we

are able to extract reasonable bounding boxes. In several examples, the bounding

1The only difference is that the last convolutional layer in NiN includes the nonlinearity, which
is not the case for the equivalent representation obtained.

2This process is simpler than the one used in [95], where an algorithm selects the bounding box
that covers the largest connected component in the thresholded map. The images studied in this
work are smaller (and simpler), so a simpler method still performs adequately for the purposes of
this discussion.
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boxes only contain part of the object in the image: this is because the network

focuses mostly on the most discriminant parts of each class, such as animal faces.

Ultimately, the database is very simple, and the small size of the images limits the

variations of position and perspective the objects are available on. Despite such

limitations, these simple cases are still able to showcase how networks naturally

learn to localize objects. More complex examples with larger images are available

in works such as [93–95].

5.1.2 Investigating Classification Mistakes

CAMs may also be used to understand mistakes made by the network: by seeing

where the network was looking at when it made its prediction, it may be possible

to explain why the image was misclassified. Several examples of mistakes are shown

in Fig. 5.4. The first example is the image of a dog that is misclassified as a cat.

By looking at the CAM for the predicted class, we see that the network most likely

classified the image as a cat because of the apparent striped pattern of the fur. The

network seems to ignore the dog’s muzzle, probably the most dog-discriminant part

of the image, when making its predictions. The second example also features a dog.

This image is misclassified as a horse, with the second most probable class being

deer. This probably happens because most horse and deer images in the dataset

have this sort of perspective, with the animal standing with the whole body exposed.

Pictures of dogs are usually taken from a closer perspective, with the face appearing

prominently. Also note that the biggest evidence that this is in fact a dog is the

person close to it: humans are able to easily perceive the relative sizes of the animal

and the person standing close to it. We can see through the CAM that the network

does not pay attention to the person standing there: this sort of relationship is not

captured by the network. The third example is the image of a frog that is incorrectly

classified as a dog. Interestingly, by analyzing the CAM for the ground truth label,

we see that the network does identify the correct region as being very “frog-like”; it

just weighs other regions as more strongly discriminant towards other classes. The

fourth example is a picture of a white dog with gray ear looking to the right. This

image is classified as bird by the network, with the correct class receiving about 35%

probability. The CAM for the dog class indicates that the network is in fact able to

localize the dog’s face. The CAM for bird, however, is focused on a slight different

part of the image: it seems that the network interprets the dog’s ear as a gray beak.

Because of the low resolution, the dog’s muzzle is not very clear, and the image is

misinterpreted as a white bird with gray beak looking to the left. One feature that

points to the animal being a dog is the collar: it is much more common for dogs to

wear collars than birds. The network, however, is not able to make such indirect
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Figure 5.3: Examples of weakly supervised localization using thresholded CAMs.
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associations.

5.2 Neural Style Transfer

Consider the task of reproducing an image in the style of another, that is, obtaining

an image p that is a combination of the content of a content image c and the style of

a style image s. Artists have practiced this art form that is known as pastiche. Our

interest is in obtaining an algorithm that is capable of automatically transferring

the style from s while maintaining the perceived content of c.

In other words, the desired image p is the one that minimizes the loss function

l(p, c, s) = λclc(p, c) + λsls(p, s), (5.4)

where ls and ls are a loss functions that represent how much the content of p differs

from the content of c and the style of p differs from the style of s, respectively. The

scalars λc and λs establish a compromise between the fidelity of the content and

how stylized the image is. The quality of the pastiche image depends on how well

these two loss functions capture aspects that represent content and style. Because

of how the loss functions capture how the images are perceptually different in terms

of content and style, or both, they are referred to as perceptual losses. lc and ls are,

therefore, the content and style perceptual losses, respectively. l will be called total

perceptual loss or simply perceptual loss.

5.2.1 Content Representation

The content loss should be low for images that share the same perceptual content.

Pixel-domain losses such as MSE (mean square error) are not adequate because

images rendered in different styles will most likely have very different pixel values

even if they have similar perceptual content. It is necessary to compare images on

more abstract levels.

Convnets trained in large object recognition datasets extract features that are

capable of capturing discriminant aspects of a wide variety of objects. Because of the

variability of poses, lighting, and position of the objects, these features must also be

able to capture information in a form that is resilient to a variety of transformations.

These features can be thought of as alternative representations of the image. Related

work has shown that images can be recovered with varying levels of abstraction by

finding inputs that share similar feature representations to the original image [82, 83].

The level of abstraction of the representations depend on the depth of the layer from

which the features are obtained. For deeper layers, images may be very different in
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Figure 5.4: Examples of classification mistakes. First row contains the input image,
the CAM for the predicted class and the respective heat map, respectively. Second
row contains a bar graph of the predicted class probabilities, the CAM for the ground
truth class and the respective heat map.
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the pixel domain and still have similar feature representations if they share common

elements (borders, objects, etc.).

The content loss function lc is then characterized by the weighted sum of the

MSE between features computed on different layers of a covnet [97]. Consider a

convnet with input x. The output of its n-th layer is a tensor that is a function

of the input f (n)(x) ∈ RH(n)×W (n)×C(n)
. For a chosen set of content layers C, the

content loss function is

lc(p, c) =
∑
n∈C

w
(n)
c

H(n)W (n)C(n)

∑
h,w,c

(
f
(n)
h,w,c(p)− f (n)

h,w,c(c)
)2
, (5.5)

where w
(n)
c is the weight of layer n in the computation of the content loss. f (n)(p)

and f (n)(c) are expected to be similar if p and c are perceptually alike, even if the

pixel values are very different. Because of how the network is used to define the loss

function, it is called the loss network.

The depth of the layers affect the representations that are being compared: shal-

low features are more spatially localized, while deeper features grasp more complex

relationships [39, 80–83]. Shallow output features might be similar if both images

contain similar edges and other important object boundaries. Deeper output fea-

tures might be similar even if spatial arrangements are different so long as both

images represent similar objects.

5.2.2 Style Representation

Much like content, style is a relatively loose term. It is used to describe how objects

are depicted and not what they are. In this sense, content and style are disjunct.

For this reason, the style loss function should not directly capture how the feature

maps differ. Inspired by previous work on texture synthesis [98, 99], the authors

of [97] propose a style representation that essentially captures texture information.

Textures are descriptors that preserve local spatial relationships but discard global

arrangement. In the case of paintings, textures might represent elements of style

such as brush strokes, color arrangements, and common visual motifs.

The textures of an image are represented by correlations between activations

of feature maps. Consider again the output of the n-th layer of the loss network

f (n)(x). The texture information is given by the Gram matrix G(n) ∈ RC(n)×C(n)
,

whose elements are computed as

g
(n)
i,j =

1

H(n)W (n)

∑
h,w

f
(n)
h,w,i(x)f

(n)
h,w,j(x). (5.6)
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Each element g
(n)
i,j represents the correlation between activations of feature maps i

and j, with the expectation taken spatially. If we denote as F (n) ∈ RH(n)W (n)×C(n)

the matrix of vectorized feature maps, the Gram matrix can be efficiently computed

as

G(n) =
1

H(n)W (n)

(
F (n)

)T
F (n). (5.7)

By computing correlations between feature maps for different layers, textures

can be described in multiple scales. The style loss function is then the weighted sum

of the MSE between Gram matrices computed with the feature maps obtained with

both p and s as inputs. G(n) and Ḡ
(n)

denote the Gram matrices computed with

features extracted from f (n)(s) and f (n)(p), respectively. For a set of style layers S,

the style loss is:

ls(p, s) =
∑
n∈S

w
(n)
s

(C(n))
2

∑
i,j

(
g
(n)
i,j − ḡ(n)i,j

)2
, (5.8)

where w
(n)
s is the weight of layer n in the computation of the style loss. Since the

Gram matrices sizes only depend on the number of feature maps of the output layer,

the style loss is well-defined even if the input and style images x and s have different

spatial dimensions.

5.2.3 Total Variation Regularizer

A third term may be added to the total loss function. It is the total variation (TV)

regularization [83] term

ltv(p) =
∑
h,w,c

(
(ph+1,w,c − ph,w,c)2 + (ph,w+1,c − ph,w,c)2

)β
2 . (5.9)

The scalar β is a hyperparameter that is originally set to one. However, in the

presence of pooling layers, β > 1 is recomended [83], so we use β = 2. The TV

regularizer penalizes images that contain high (finite-diference approximations of)

gradients. This leads to smoother images with improved local image coherence.

The total perceptual loss that must be minimized is then

l(p, c, s) = λclc(p, c) + λsls(p, s) + λtvltv(p), (5.10)

where λtv is the weight of the TV regularizer.
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5.3 Iterative Style Transfer

The iterative style transfer algorithm consists of optimizing the image p so as to

minimize loss l. The losses defined in Sections 5.2.1 and 5.2.2 are both differentiable,

so the total loss can be optimized with gradient-based methods. The optimization

process is carried out by initializing p with noise and iteratively modifying it so

as to minimize the loss. The optimization process is carried out as follows: obtain

layer outputs f (n)(p) by computing a forward pass through the network; compute

the gram matrices Ḡ
(n)

; compute the loss functions lc and ls. After the total loss

is computed, one can compute the gradient w.r.t p by backpropagating gradients

up to the input. The gradient w.r.t p may then be used by an optimizer to make

a step that changes the image to minimize the loss. A diagram of the process is

available in Fig. 5.5a. It is expected that the image converges to an image that

simultaneously contains the content of c and the style of s. Since c and s are fixed

during the optimization process, their features can be computed once and reused.

Note that the network weights are not being optimized: the network is only a part

of the loss function used to update p.

5.3.1 Experiments

Several experiments were performed in order to evaluate the quality of the generated

images. Images p were either initialized with Gaussian noise with a small variance

or with the content image itself. Both initialization techniques yield images that

combine content and style, but initializing with the content image usually leads to

images that more closely resemble the content image. For images such as faces, which

humans are very particular about, such content initialized images may appear more

appealing because they retain more strongly the content features. Fig. 5.6 presents

some stylized images.

5.3.2 Hyperparameter Discussion

In our experiments, as in [97], we use VGG-19, which was trained on the Imagenet

dataset [68, 69], as the loss network [70]. This network (with its pretrained weights)

as well as many other popular networks trained on Imagenet are available freely

on the internet3. The content layer set C is composed of only one layer: ‘conv4 -

2’. The style layer set S includes layers ‘conv1 1’, ‘conv2 1’, ‘conv3 1’, ‘conv4 1’,

and ‘conv5 1’. In regard to the optimizer, [97] proposes the use of L-BFGS [100].

3VGG-19 is available in Keras out of the box and its weights are automatically downloaded if
necessary.
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For practical reasons4, our experiments are performed with Adam. Since we use

a first-order method, the learning rate is also a hyperparameter (the other Adam

parameters are kept at standard values). For the sake of simplicity, all style weights

w
(n)
s are the same: this choice removes several hyperparameters and still yields

pleasing results [97].

The hyperparameters used can heavily influence the aspect of the pastiche image.

The style image size and loss term weights are particularly important. The loss term

weights influence the trade-off between content fidelity, stylization, and smoothness.

An image generated with very high content weight will be very similar to the original,

but carry little style. If the image is generated with high style weights, the result will

not resemble the content image. Instead, it will be a textured version of the style

image. The tv regularization term can also influence the image: adding some of it

may help smooth the image and avoid pixelated results. If too much regularization

is added, images get blurred and may have artifacts. Fig. 5.7 shows images obtained

from the same content and style images with varying loss term weights.

It is also very important to choose an appropriate image size for the style image

when computing its Gram matrices: images optimized with target Gram matrices

computed at larger sizes feature larger smoother patterns. If the style image is scaled

to small sizes, the resulting image will have its style represented by small textures. In

order to illustrate this effect, Fig. 5.8 contains images obtained by different scalings

of the style image. The style image was scaled preserving its aspect ratio so that its

maximum size (height or width) was a set value. This maximum size was varied so

that the algorithm could be evaluated with different image scales.

5.4 Fast Style Transfer

The iterative algorithm has some drawbacks. Namely, its optimization procedure

requires several forward and backward passes through a big neural network. This

makes the algorithm quite slow: images take several minutes to be generated. The

time also scales with the input image size: the larger the image, the more time

it takes. This makes the algorithm impractical for large images or in restricted

computation environments.

In place of iteratively refining an initial image, one could train a neural network,

which we call pastiche network, to perform stylization. After the network is trained,

style transfer could be achieved in a single forward pass of the pastiche network. Two

distinct network architectures were proposed [22, 92]. We follow the work of [22].

The pastiche network works as follows: it receives as input a content image c

4Our code is implemented in Keras and Tensorflow, which lack an L-BFGS optimizer imple-
mentation.
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and outputs a pastiche image p = P(c;θ), where P represents the pastiche function

realized by the network with weights θ. The pastiche image p has the content of c

and the style of a style image s.

5.4.1 Training procedure

The learning procedure is performed by minimizing expected perceptual loss over

the pastiche network weights :

min
θ

Ec [l(P(c;θ), c, s)] . (5.11)

Note that, after training, the network does not require the style image to generate

outputs: the style is encoded in the network weights. Conversely, the network learns

to stylize according to the single style image that is used during training.

The perceptual loss used is the same: it is computed by comparing features of a

loss network. The main difference is that this loss is used to minimized the weights,

instead of an input image. The gradients are computed by performing forward

and backward passes on both networks: p is computed with a forward pass on the

pastiche network; c, s, and p are used to compute the loss, which includes a forward

pass on the loss network; finally, the gradients are backpropagated from the loss

through the loss and pastiche networks so as to compute the gradients w.r.t θ.

5.4.2 Pastiche Network Architecture

The pastiche network is a fully convolutional network [19]. It features a bottleneck

structure where the image is initially downsampled, processed by several convolu-

tional layers, and upsampled back to its original size. This bottleneck structure is

interesting because it allows for the use of more filters in the bottleneck layers while

keeping computation cost low. It also allows for the output pixels to have larger

effective input receptive fields, which is interesting because transferring style might

involve coherently changing large patches of the input image [22].

The image is first transformed a regular convolutional layer. Then, it is down-

sampled by two stride-2 convolutions. Afterwards, the downsampled feature maps

are processed by five residual blocks. The image is then upsampled back to its orig-

inal spatial dimensions with two upsampling blocks. A last convolutional layer is

used to map the upsampled feature maps into an RGB image.

The upsampling blocks in [22] were composed of transposed convolutional lay-

ers5 [19]. These layers can cause checkerboard pattern artifacts on the output im-

5This layer is also commonly called deconvolutional layer. We avoid this name because the oper-
ation performed by this layer is not a deconvolution, i.e., the operation that inverts a convolution.
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age [101]. Instead, we follow [102] and use upsampling blocks that are composed of

nearest-neighbor upsampling and a regular stride-1 convolutional layer.

All convolutions are followed by normalization and ReLU nonlinearities, except

for the last convolution (that generates the output). The last convolution of the

network features tanh nonlinearity scaled to the range (−150, 150)6. The architec-

ture from [22] uses batch normalization layers. Later work has shown that instance

normalization layers can be used for improved perfomance [103]. All our networks

are trained with instance normalization layers.

Instance normalization is similar to batch normalization in the sense that samples

are normalized by mean and variance. The difference is that, instead of computing

batch statistics, mean and variance are computed separately per sample. For the

b-th sample x(b) ∈ RH×W×C in a mini-batch, the instance normalized output x̂(b) is

computed according to

µ(b)
c =

1

HW

∑
h,w

x
(b)
h,w,c

v(b)c =
1

HW

∑
h,w

(
x
(b)
h,w,c − µ(b)

c

)2
x̂h,w,c = γc

xh,w,c − µ(b)
c√

v(b) + ε
+ βc.

(5.12)

The scalar ε is a small number that avoids division by zero. Like in batchnorm, γc

and βc are learnable parameters. The per-instance normalization used is equivalent

to contrast normalization.

The number of filters in the convolutional layers is doubled every time a down-

sampling occurs and halved every time an upsampling occurs, keeping computation

costs similar throughout the network. For a concise representation of the network

architecture, see Table 5.1.

5.4.3 Fast Style Transfer Experiments

The experiments were performed as in [22]. The networks were trained on the COCO

(Common Objects in COntext) dataset [104]. The COCO dataset contains around

80000 images on the training set of varied sizes. Images are resized so that their

smallest size is 256 and center cropped so that all images are 256×256. The images

preprocessing is the same as applied to loss network inputs, which is per-channel

mean subtraction. Since the loss network was trained on the ImageNet dataset, the

The forward function it implements is actually the backward function of a convolutional layer (and
vice-versa). This layer is also called backwards convolution, and fractional-stride convolution.

6This range is chosen so that the network outputs have similar scale to the inputs the loss
network was trained on.
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Table 5.1: Architecture and hyperparameters of the pastiche network.

Operation Kernel size Stride Feature maps Nonlinearity Output size
Network - 256× 256× 1 input

Convolution 9× 9 1 16 IN-ReLU 256× 256× 3
Downsampling 32 128× 128× 32
Downsampling 64 64× 64× 64
Residual Block 64 64× 64× 64
Residual Block 64 64× 64× 64
Residual Block 64 64× 64× 64
Residual Block 64 64× 64× 64
Residual Block 64 64× 64× 64

Upsampling 32 128× 128× 32
Upsampling 16 256× 256× 16
Convolution 9× 9 1 3 150(IN-tanh) 256× 256× 3

Downsampling - K
Convolution 3× 3 2 K IN-ReLU

Residual Block - K
Convolution 3× 3 1 K IN-ReLU
Convolution 3× 3 1 K Linear

Shortcut add input to the output
Upsampling - K

Nearest neighbor interpolation upsampling factor of 2
Convolution 3× 3 2 K IN-ReLU

Preprocessing VGG preprocessing
Optimizer Adam (η = 0.001, β1 = 0.9, β2 = 0.999)
Batch size 4

Epochs 2
Weight initialization Gaussian with 0.05 standard deviation

means are as computed on that dataset7. The networks were trained for a total

of 40000 iterations with batch size 4, which corresponds to 2 epochs. The Adam

optimizer is used with learning rate of 0.001. Loss term weights ws, wc, and ws were

determined on a per-style-basis. The loss network in this case is VGG-16 (a smaller

version of VGG-19) [70]. The content layer set is composed of layer conv 2 2. The

style layer set is composed of layers conv 1 2, conv 1 2, conv 3 3, and conv 4 3.

Six networks were trained, each using a different style image. Figs. 5.9 and 5.10

presents the stylization obtained by these networks.

5.5 Multi-style Networks

The fast style transfer algorithm presented in Section 5.4 has several advantages

compared to the original iterative algorithm. After the pastiche network is trained,

it is capable of applying the learned style very fast (even in real time8 [22]). Since

the network is fully convolutional, it is also able to stylize images of any size, even

if it was trained only on 256× 256 images. Overall, it is a very fast approximation

7The R,G, and B means are 123.68, 116.779, 103.939, respectively.
8The authors of [22] provide code that is able to stylize images obtained from a webcam. It is

available at: https://github.com/jcjohnson/fast-neural-style.
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to the optimization method that still yields high quality style transfer. Its major

drawback is that a network is only able to learn a single style: in order to be able

to transfer different styles, several networks must be trained (a process that takes

several hours). This is not an issue in the iterative method. This weakness can be

solved with a simple approach: conditional instance normalization [102].

Conditional instance normalization layers apply the same contrast normalization

technique used in the regular instance normalization layer. Its main feature is the

use of conditioned scaling and bias parameters. Instead of a pair of parameters per

channel of the input, a set of parameters are trained. This set contains one pair of

parameters per class. Consider the b−th sample x(b) ∈ RH×W×C , the conditional

instance normalization layer computes the normalized input x̂(b,s) = CIN(x|s), which

is conditioned on the style s, as follows:

µ(b)
c =

1

HW

∑
h,w

x
(b)
h,w,c

v(b)c =
1

HW

∑
h,w

(
x
(b)
h,w,c − µ(b)

c

)2
x̂
(b,s)
h,w,c = γ(s)c

xh,w,c − µ(b)
c√

v(b) + ε
+ β(s)

c .

(5.13)

In summary, the network learns different styles simply by applying different scaling

factors at each normalization layer. This approach requires a very small number of

extra parameters and does not increase computation requirements.

5.5.1 Multi-style Experiments

Training multi-style pastiche networks with conditional instance normalization is

very similar to training single style networks. In fact, multi-style networks have

convergence properties very similar to those of single-style networks. We trained a

6-style neural network with the same styles as the six single-style networks discussed

in Section 5.4.3. The 6-style network has almost the same architecture, the only

difference being the substitution of instance normalization by its conditioned version.

During training, each sample of a batch is assigned a random style label; the network

then outputs the image stylized with that specific set of parameters; the loss function

is then computed with the corresponding style images. The 6-style network is trained

for the same 40000 iterations and is able to reproduce all styles with comparable

quality to the single-style networks. Fig. 5.11 presents a side-by-side comparison of

images stylized by the 6-style network and each of the single-style networks.

Using a single network for several styles has another advantage: it is possible

to very efficiently stylize the input image with a combination of the learned styles
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using weighted instance normalization [102]. Because of how the different styles are

encoded in the scale and bias parameters of the normalization layers, using a com-

bination of parameters of different styles during inference yields an image that also

combines the stylistic features of the respective styles. Consider a network trained

with S styles. An arbitrary combination of such styles is obtained by performing a

convex combination of the normalization parameters. Denoting the weight of each

style as ρs, and the scale and shift parameters for the l-th layer as γ(s,l) and β(s,l),

the combined parameters are:

γ̄(l)c =

∑S
s ρsγ

(s,l)∑S
s ρs

β̄(l)
c =

∑S
s ρsβ

(s,l)∑S
s ρs

.

(5.14)

In short, interpolating between the normalization parameters results in an interpo-

lation between the respective styles. Note that the network is never trained on any

combination of styles: it is naturally able to combine them at test time without any

such consideration. This suggests that these networks obtain a representation for

style that consists of relatively generic elements of style (encoded in the shared fea-

tures) that are combined differently (through the conditional parameters) for each

specific style. Examples of combined styles are shown in Fig. 5.12.
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(a) Iterative style transfer.

ls,1 ls,2 ls,3 ls,4

MSE MSE MSE MSE

ltv

Pastiche
Image

VGG-16

Content
Image

Style
Image

Gram Gram Gram Gram

TV
Loss

MSE

lc

Pastiche Network

θ

(b) Fast style transfer.

Figure 5.5: Diagrams of style transfer algorithms. Blue, green and gray lines repre-
sent the forward propagation for the content, style and pastiche images, respectively.
Red lines represent gradient flow. Solid red lines indicate that the gradients are used
in the update steps.
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(a) Random initialization.

(b) Random initialization.

(c) Content initialization.

Figure 5.6: Style transfer examples. Columns contain style, content, and resulting
images, respectively.
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(a) Content image. (b) Style image.

(c) Small style loss weight. (d) Large style loss weight.

(e) Small regularization weight. (f) Large regularization weight.

Figure 5.7: Style representation changes with different loss term weights.
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(a) Content image. (b) Style image.

(c) Largest size of 180 pixels. (d) Largest size of 256 pixels.

(e) Largest size 384 pixels. (f) Largest size 512 pixels.

Figure 5.8: Style representation changes with different style image sizes.
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Figure 5.9: Stylization performed by pastiche networks. Each network is trained on
a different style image. Images were generated with largest size of 1024px and are
rescaled (part 1).
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Figure 5.10: Stylization performed by pastiche networks. Each network is trained
on a different style image. Images were generated with largest size of 1024px and
are rescaled (part 2).
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Figure 5.11: Visual comparison of style transfer quality between multi (left) and
single (right) style networks.
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Figure 5.12: Examples of combined styles via weighted instance normalization. Odd
rows present images rendered with interpolations of two styles. Even rows present
the style images on their respective sides and the image with same weight for both
styles in more detail.
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Chapter 6

Conclusions

We have presented a study of deep learning techniques applied to computer vision.

The reader was introduced to neural networks and their main components. Then, a

basic framework of how to fit the network parameters in order to obtain an approx-

imation of the desired function was established. Convolutional neural networks, the

motivation behind their design, and their core components were also discussed. Sev-

eral aspects of how to train and evaluate neural networks were explored, along with

techniques that enhance the optimization process and performance by improving

generalization.

All these ideas were put to the test through case studies of successful convnet

architectures for image classification. Several aspects of such architectures were

discussed: the main concepts behind their design, their performance on benchmark

datasets, and their training process. All architectures featured detailed explanations

about their structure as well as their hyperparameters. This, together with the

companion code that is available online should enable readers to easily replicate

results and work with these deep learning techniques themselves.

Finally, the use of convnets for other applications is discussed. Most notably, con-

volutional neural networks are very powerful feature extractors that can be trained

to achieve state-of-the-art results in several different domains. Besides, the filters

that are learned also generalize well to datasets and tasks other than the ones they

were trained on. Through the use of class activation maps, the filters of convnets

are applied to weakly supervised localization. CAMs are also useful for explaining

predictions by revealing the most discriminant parts of the image. We also study

the task of style transfer. This task is interesting not only for its visual appeal, but

because of how neural networks are creatively incorporated as a means of capturing

perceptual differences in content and style of images. It is also an example of transfer

learning, where a neural network trained for classification is able to extract features

that can be used to describe images in disentangled representations of content and

style. Last but not least, it is also an example of image transformation tasks, for
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which we discuss a fully convolutional architecture that is able to transform input

images in their stylized version through a single forward pass.

6.1 Future Directions

A natural expansion of the study performed in image classification is large scale

object recognition: large convolutional networks are able to detect, classify and

localize objects in images with state-of-the-art performance. Several ideas studied

here for small image classification can be (and have been) applied to large networks.

There are, however, other aspects of designing and training large scale networks that

are not covered in this text and could be the subject of future study.

A particularly interesting topic that has not been covered in this work is that

of generative models. Several algorithms are capable of learning input distribu-

tions and then generating samples from it. Variational autoencoders are one of such

models that are capable of learning complicated distributions [105–107]. Generative

Adversarial Networks (GANs) [108–111] are another approach to generative mod-

eling that has become extremely popular: it incorporates a novel training method

called adversarial training that is based on game theory and proposes a game where

two networks work against each other. As they compete, one to generate samples

and the other ones to discriminate between real data and generated data, the gener-

ator learns to output data that follows the desired distribution. GANs can generate

samples from very complex distributions with high fidelity.

Deep neural networks are also useful in reinforcement learning [112]. Recent work

has trained algorithms that are able to play games and beat the very best human

players [113]. It has also been used to teach machines how to play video games with

only pixel input information [114]. Reinforcement learning has also been applied in

robotics [115].

Deep learning is a technique that has recently been applied with great success in

many different domains, and the exploration of its applications and state-of-the-art

methods is sure to be of much use.

99



Bibliography

[1] GOODFELLOW, I., BENGIO, Y., COURVILLE, A. Deep Learning. Adaptive

Computation and Machine Learning series. Cambridge, MIT Press, 2016.

[2] HINTON, G. E., OSINDERO, S., TEH, Y.-W. “A fast learning algorithm for

deep belief nets”, Neural Computation, v. 18, n. 7, pp. 1527–1554, July

2006.

[3] BENGIO, Y., LAMBLIN, P., POPOVICI, D., et al. “Greedy Layer-Wise Train-

ing of Deep Networks”. In: Advances in Neural Information Processing

Systems (NIPS), pp. 153–160, Vancouver, British Columbia, Canada, De-

cember 2006.

[4] HINTON, G. E. “To recognize shapes, first learn to generate images”. In:

Paul Cisek, T. D., Kalaska, J. F. (Eds.), Computational Neuroscience:

Theoretical Insights into Brain Function, v. 165, Progress in Brain Re-

search, Elsevier, pp. 535–547, 2007.

[5] HINTON, G. E., SEJNOWSKI, T. J. “Learning and relearning in Boltzmann

machines”. In: Rumelhart, D., McClelland, J. L. (Eds.), Parallel dis-

tributed processing: explorations in the microstructure of cognition, Adap-

tive Computation and Machine Learning series, MIT Press, cap. 7, pp.

283–317, Cambridge, 1986.

[6] HINTON, G. E. “Products of Experts”. In: The 9th International Conference on

Artificial Neural Networks (ICANN), pp. 1–6, Edinburgh, United King-

dom, September 1999.

[7] HINTON, G. E. “Training Products of Experts by Minimizing Contrastive Di-

vergence”, Neural Computation, v. 14, n. 8, pp. 1771–1800, 2002.

[8] BENGIO, Y. Learning Deep Architectures for AI. Foundations and Trends(r)

in Machine Learning. Now Publishers, 2009.

100



[9] LECUN, Y., BOTTOU, L., BENGIO, Y., et al. “Gradient-based Learning Ap-

plied to Document Recognition”, Proceedings of the IEEE, v. 86, n. 11,

pp. 2278–2324, 1998.

[10] KRIZHEVSKY, A., SUTSKEVER, I., HINTON, G. E. “Imagenet Classifica-

tion with Deep Convolutional Neural Networks”. In: Advances in Neu-

ral Information Processing Systems, pp. 1097–1105, Lake Tahoe, Nevada,

USA, December 2012.

[11] NAIR, V., HINTON, G. E. “Rectified Linear Units Improve Restricted Boltz-

mann Machines”. In: Proceedings of the 27th International Conference on

Machine Learning (ICML), pp. 807–814, Haifa,Israel, June 2010.

[12] SRIVASTAVA, N., HINTON, G. E., KRIZHEVSKY, A., et al. “Dropout: A

Simple Way to Prevent Neural Networks from Overfitting”, Journal of

Machine Learning Research (JMLR), v. 15, pp. 1929–1958, 2014.

[13] GIRSHICK, R., DONAHUE, J., DARRELL, T., et al. “Rich Feature Hierar-

chies for Accurate Object Detection and Semantic Segmentation”. In: The

IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

pp. 580–587, Columbus, Ohio, USA, Jun 2014.

[14] GIRSHICK, R. “Fast R-CNN”. In: The IEEE International Conference on

Computer Vision (ICCV), pp. 1440–1448, Santiago, Chile, December

2015.

[15] REN, S., HE, K., GIRSHICK, R., et al. “Faster R-CNN: Towards Real-

Time Object Detection with Region Proposal Networks”. In: Advances

in Neural Information Processing Systems 28 (NIPS), pp. 91–99, Mon-

treal, Canada, May 2015.

[16] DAI, J., LI, Y., HE, K., et al. “R-FCN: Object Detection via Region-based Fully

Convolutional Networks”. In: Advances in Neural Information Processing

Systems (NIPS), pp. 379–387, Barcelona, Spain, December 2016.

[17] HE, K., ZHANG, X., REN, S., et al. “Spatial Pyramid Pooling in Deep Convo-

lutional Networks for Visual Recognition”, IEEE Transactions on Pattern

Analysis and Machine Intelligence, v. 37, n. 9, pp. 1904–1916, 2015.

[18] REDMON, J., DIVVALA, S., GIRSHICK, R., et al. “You Only Look Once:

Unified, Real-Time Object Detection”. In: Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR), pp. 779–

788, Las Vegas, Nevada, USA, June 2016.

101



[19] LONG, J., SHELHAMER, E., DARRELL, T. “Fully convolutional networks for

semantic segmentation”. In: The IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pp. 3431–3440, Boston, Massachusetts,

USA, June 2015.

[20] YU, F., KOLTUN, V. “Multi-Scale Context Aggregation by Dilated Convolu-

tions”. In: International Conference on Learning Representations (ICLR),

San Juan, Puerto Rico, May 2016.

[21] DONG, C., LOY, C. C., HE, K., et al. “Learning a Deep Convolutional Network

for Image Super-Resolution”. In: European Conference on Computer Vi-

sion (ECCV), pp. 184–199, Zurich, Germany, September 2014. Springer.

[22] JOHNSON, J., ALAHI, A., FEI-FEI, L. “Perceptual Losses for Real-Time Style

Transfer and Super-Resolution”. In: European Conference on Computer

Vision (ECCV), pp. 694–711, Amsterdam, Netherlands, October 2016.

Springer.

[23] HINTON, GEOFFREY, DENG, LI, YU, DONG, et al. “Deep Neural Networks

for Acoustic Modeling in Speech Recognition: The Shared Views of Four

Research Groups”, IEEE Signal Processing Magazine, v. 29, n. 6, pp. 82–

97, November 2012.

[24] XIONG, W., DROPPO, J., HUANG, X., et al. “Achieving Human Parity in

Conversational Speech Recognition”, CoRR, v. abs/1610.05256, 2016.

[25] VAN DEN OORD, A., DIELEMAN, S., ZEN, H., et al. “WaveNet: A Gener-

ative Model for Raw Audio”, CoRR, v. abs/1609.03499, 2016.

[26] HADJERES, G., PACHET, F. “DeepBach: a Steerable Model for Bach chorales

generation”, CoRR, v. abs/1612.01010, 2016.

[27] WU, Y., SCHUSTER, M., CHEN, Z., et al. “Google’s Neural Machine Trans-

lation System: Bridging the Gap between Human and Machine Transla-

tion”, CoRR, v. abs/1609.08144, 2016.

[28] BAHDANAU, D., CHO, K., BENGIO, Y. “Neural Machine Translation by

Jointly Learning to Align and Translate”. In: International Conference

on Learning Representations (ICLR), San Diego, California, USA, May

2015.

[29] SOCHER, R., PERELYGIN, A., WU, J. Y., et al. “Recursive Deep Models

for Semantic Compositionality Over a Sentiment Treebank”. In: Confer-

102



ence on Empirical Methods in Natural Language Processing (EMNLP),

pp. 1631–1642, Seatle, Washington, USA, October 2013.

[30] CHOLLET, F. “Keras”. https://github.com/fchollet/keras, 2015.

[31] ABADI, M., AGARWAL, A., BARHAM, P., et al. “TensorFlow: Large-Scale

Machine Learning on Heterogeneous Systems”. 2015. Dispońıvel em:
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