
A COMPARATIVE ANALYSIS OF DYNAMIC VISION SENSORS USING

180 nm CMOS TECHNOLOGY

Juan Pablo Girón Ruiz

Dissertação de Mestrado apresentada ao

Programa de Pós-graduação em Engenharia

Elétrica, COPPE, da Universidade Federal do

Rio de Janeiro, como parte dos requisitos

necessários à obtenção do t́ıtulo de Mestre em

Engenharia Elétrica.

Orientador: José Gabriel Rodriguez Carneiro

Gomes

Rio de Janeiro

Janeiro de 2017

A COMPARATIVE ANALYSIS OF DYNAMIC VISION SENSORS USING

180 nm CMOS TECHNOLOGY

Juan Pablo Girón Ruiz

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO

ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE

ENGENHARIA (COPPE) DA UNIVERSIDADE FEDERAL DO RIO DE

JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A

OBTENÇÃO DO GRAU DE MESTRE EM CIÊNCIAS EM ENGENHARIA

ELÉTRICA.

Examinada por:

Prof. José Gabriel Rodriguez Carneiro Gomes, Ph.D

Prof. Antonio Petraglia, Ph.D

Prof. Mauricio Pamplona Pires, D.Sc.

RIO DE JANEIRO, RJ – BRASIL

JANEIRO DE 2017

Girón Ruiz, Juan Pablo

A comparative analysis of Dynamic Vision Sensors

Using 180 nm CMOS Technology/Juan Pablo Girón Ruiz.

– Rio de Janeiro: UFRJ/COPPE, 2017.

XVI, 86 p.: il.; 29, 7cm.

Orientador: José Gabriel Rodriguez Carneiro Gomes

Dissertação (mestrado) – UFRJ/COPPE/Programa de

Engenharia Elétrica, 2017.

Referências Bibliográficas: p. 66 – 69.

1. Dynamic vision sensors. 2. Frame-free.

3. Temporal contrast changes. 4. Time-based

pulse width modulation. 5. Asynchronous delta

modulation. 6. Asynchronous logic. 7. Address

event representation. I. Gomes, José Gabriel Rodriguez

Carneiro. II. Universidade Federal do Rio de Janeiro,

COPPE, Programa de Engenharia Elétrica. III. T́ıtulo.

iii

“Não to mandei eu? Esforça-te,

e tem bom ânimo; não te

atemorizes, nem te espantes;

porque o Senhor teu Deus está

contigo, por onde quer que

andares.”

Josué 1:9

iv

Acknowledgment

Em primeiro lugar, quero lhe agradecer a Deus por ter-me abençoado grandemente

nesta experiência na Cidade Maravilhosa. Se falasse todos os milagres que Jesus fez

por mim, não alcançaria esta pagina para escrevê-los. Considero que o maior logro

que consegui no mestrado foi de reencontrar-me com Cristo Jesus. Aos meus pais,

Maŕıa Esther Ruiz e Luis Eduardo Girón, devo-lhes a minha formação e os valores

que hoje levo na minha vida. À minha avó, Fabiola Lopez, por ser a minha segunda

mãe incondicional, que Deus te enche de muitos anos de vida. Ao meu avô, Alcides

Ruiz, que Deus seja abençoando a tua vida espero vê-lo daqui a pouco. Aos meus

irmãos Victor e Andrés, são uns exemplos para mim para ser cada dia melhor pessoa.

Aos meus sogros, seu Enrique e Dona Flor, por ser um exemplo para minha vida pela

sua coragem para afrontar os problemas. A minha noiva, Ana Maŕıa Zúñiga, não

tenho palavras para lhe agradecer por tudo que tem feito por mim, nunca faltaram

palavras de motivação e momentos de muita alegria. Esta experiência não tivesse

sido tão enriquecedora sem a sua presença.

Ao meu orientador, Professor José Gabriel, muito obrigado por permitir-me tra-

balhar com ele e dar-me liberdade para desenvolver esta dissertação de acordo com

minha metodologia de estudo. Apesar de seus inumeráveis compromissos com outros

estudantes e com a Universidade, sempre separou um espaço em sua agenda para

falar sobre este trabalho e fazer que eu pensasse de forma diferente para solucionar

as dificuldades. Sem ele este trabalho não teria sido posśıvel.

Aos meus colegas do laboratório de Processamento Analógico e Digital de Sinais

(PADS), fico grato por ter-me acolhido nestes dois anos, especialmente a: Thiago

Valentin, Fabian Olivera, João, Allan, Fernanda, Pedro e Roberto por dar-me a mão

nos momentos que mais precisei. Ao Pastor Tubino por sempre ter uma palavra de

vida eterna e de conforto espiritual, sua igreja me permitiu chegar mais perto de

Cristo Jesus.

Por último, à CAPES pelo apoio financeiro para a realização de esta dissertação,

igualmente para o pessoal administrativo da PEE/COPPE por estar sempre dispos-

tos a orientar-me nos tramites do mestrado.

v

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos

necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

UMA ANÁLISE COMPARATIVA DE SENSORES DE VISÃO DINÂMICA

USANDO TECNOLOGIA CMOS 180 nm

Juan Pablo Girón Ruiz

Janeiro/2017

Orientador: José Gabriel Rodriguez Carneiro Gomes

Programa: Engenharia Elétrica

O desenvolvimento de sensores de visão dinâmicos (DVS) é considerado um dos

avanços mais relevantes em termos de processamento de dados no plano focal de

câmeras CMOS, por estar fundamentado em processamento neural. O tipo de pixel

usado por um DVS é baseado na funcionalidade de um caminho neural conhecido

como magno-cellular pathway, encontrado na conexão entre a retina biológica e o

sistema nervoso central, e caracterizado por responder de forma asśıncrona às mu-

danças temporárias de intensidade de luz e por codificar a informação de entrada

por meio de pulsos. Neste trabalho, são projetadas e comparadas três arquiteturas

DVS: DVS básico, ATIS (asynchronous time-based image sensor) e ADMDVS (asyn-

chronous delta modulation dynamic vision sensor). Entre estas, somente a arquite-

tura ATIS implementa um sistema de codificação de intensidade da luz, utilizando

modulação por largura de pulso no domı́nio do tempo. No processo de projeto, a

metodologia gm/Id é usada como ferramenta adequada para o dimensionamento dos

transistores que compõem os pixels. Usando diferentes linguagens de programação,

são desenvolvidos vários scripts para automatizar as etapas de simulação. O fun-

cionamento correto de cada arquitetura é verificado através da comparação entre o

resultado obtido por simulação elétrica e o resultado previsto através de simulação

numérica usando um modelo idealizado. Finalmente, conclui-se que a resposta de

cada arquitetura, obtida por simulação elétrica, se aproxima bastante da resposta

prevista através dos modelos idealizados, o que valida os projetos propostos. Com

base nos resultados obtidos, é posśıvel realizar uma comparação entre as diferentes

arquiteturas.

vi

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Master of Science (M.Sc.)

A COMPARATIVE ANALYSIS OF DYNAMIC VISION SENSORS USING

180 nm CMOS TECHNOLOGY

Juan Pablo Girón Ruiz

January/2017

Advisor: José Gabriel Rodriguez Carneiro Gomes

Department: Electrical Engineering

The development of dynamic vision sensors (DVS) is regarded as one of the most

relevant advances in CMOS camera focal-plane signal processing, because it is based

on neural processing. The type of pixel that is used in a DVS mimicks the func-

tionality of a neural pathway known as magno-cellular pathway, which is responsible

for part of the communication between the biological retina and the central nervous

system. The magno-cellular pathway responds in asynchronous fashion to light in-

tensity temporal variations, and it encodes such variations by means of neural spike

sequences. In this work, we designed and compared three DVS architectures: basic

DVS, ATIS (asynchronous time-based image sensor)and ADMDVS (asynchronous

delta modulation dynamic vision sensor). Among these architectures, only ATIS

implements a light intensity encoding system, using time-based pulse-width mod-

ulation. In the design process, gm/ID methodology is used as a suitable tool for

pixel design. Using different programming languages, several scripts are developed

for making the simulation stages automatic. To verify the correct operation of each

architecture, we compare electrical simulation results to numerical simulation pre-

dictions that were previously obtained using ideal pixel models. We finally conclude

that the behavior of each architecture, which was obtained by electrical simulation,

approximates rather well the behavior that was predicted using ideal models, which

validates the proposed pixel design for all three sensor types. Based on these results,

the basic DVS, ATIS, and ADMDVS architectures may be compared.

vii

Contents

List of Figures x

List of Tables xiv

List of Abbreviations xv

1 Introduction 1

1.1 Objectives . 3

1.2 Text Organization . 3

2 Theory 4

2.1 Dynamic Vision Sensor . 4

2.1.1 DVS Pixel Model . 8

2.2 ATIS Pixel . 10

2.2.1 Correlated Double Sampling (CDS) 12

2.2.2 True Correlated Double Sampling 12

2.2.3 ATIS Model . 14

2.2.4 Additional ATIS Sensor Functionality 15

2.3 ADMDVS pixel . 16

2.3.1 ADM in DVS . 18

2.3.2 ADMDVS Model . 20

2.4 Asynchronous Logical Circuit . 20

2.4.1 Delay-Insensitive Designs . 21

2.5 Address-Event Representation . 22

2.6 Integrated Circuit Design based on the gm/ID Method 24

3 Pixel Design 31

3.1 Photoreceptor based on Transimpedance Amplifier 31

3.2 Operational Amplifier . 34

3.3 Voltage Comparator with Hysteresis 38

3.4 AER Circuit . 42

3.5 Exposure Measurement Logic . 44

viii

3.6 Delay Element Circuit . 46

3.7 Summary of Designed Pixels . 47

4 Simulation Results 48

4.1 DVS Pixel Simulation . 49

4.2 ATIS Pixel Simulation . 52

4.3 ADMDVS Pixel Simulation . 53

4.4 DVS 8 × 8 Pixel Array Simulation 56

4.5 ATIS 4 × 4 Pixel Array Simulation 57

4.5.1 Triangular Waveform Input 58

4.5.2 2-D Spiral Input . 60

4.6 ADMDVS 4 × 4 Pixel Array Simulation 61

4.7 DVS, ATIS and ADMDVS Comparison 62

5 Conclusions 64

Bibliography 66

A Pixel Array Simulation 70

B Codes for simulating DVS cameras 74

ix

List of Figures

2.1 Pixel schematic diagram. 5

2.2 DVS pixel instance. (a) DVS pixel as a system building block, and

(b) DVS pixel operation fundamentals, adapted from [15]. 8

2.3 ATIS pixel instance, which is composed by a DVS pixel (left) and an

exposure measurement circuit (right). 11

2.4 CDS schematic diagram. 12

2.5 True CDS operation in time-based vision sensors: (a) single threshold,

and (b) two thresholds [18]. 14

2.6 True CDS implementation. 14

2.7 Logical circuit enabling ATIS photograph capture: (a) schematic di-

agram, and (b) timing diagram. 16

2.8 DVS information encoding methods: (a) feedback and reset and (b)

feedback and subtract [21]. 17

2.9 ADMDVS pixel instance. 17

2.10 ADMDVS basic block diagram [22]. 18

2.11 Asynchronous delta modulation circuit [21]. 19

2.12 Four-phase handshaking protocol timing diagram. 21

2.13 A fork and the isochronic assumption. 22

2.14 AER concept [28]. 23

2.15 Eight-input arbitered AER example. At each level, a winning input is

selected pairwise. Only one index, corresponding to the pixel having a

circuit path connecting it to the winning input at Level 3, is encoded

for transmission through the data bus. 24

2.16 Transistor setup for the extraction of gm/ID versus ID curves: (a)

n-channel transistor, and (b) p-channel transistor. 26

2.17 Simulated gm/ID versus ID curves extracted from an n-channel tran-

sistor model. In each plot, transistor width varies from 2 µm to 22

µm. Transistor length varies as follows: (a) L = 1 µm, (b) L = 4 µm,

(c) L = 7 µm, and (d) L = 10 µm. 27

x

2.18 Simulated gm/ID versus ID curves extracted from a p-channel tran-

sistor model. In each plot, transistor width varies from 2 µm to 22

µm. Transistor length varies as follows: (a) L = 1 µm, (b) L = 4 µm,

(c) L = 7 µm, and (d) L = 10 µm. 28

2.19 Relationship between gm/ID and Vgs extracted from an n-channel

transistor model. In each plot, transistor width varies from 2 µm to

22 µm. Transistor length varies as follows: (a) L = 1 µm, (b) L = 4

µm, (c) L = 7 µm, and (d) L = 10 µm. 29

2.20 Relationship between gm/ID and Vsg extracted from an n-channel

transistor model. The absolute value of Vsg is denoted as Vgs in the

plots. In each plot, transistor width varies from 2 µm to 22 µm.

Transistor length varies as follows: (a) L = 1 µm, (b) L = 4 µm, (c)

L = 7 µm, and (d) L = 10 µm. 30

2.21 Relationship between gm/ID and Vgs in the case of Vds variation: (a)

n-channel transistor and (b) p-channel transistor. 30

3.1 Photoreceptor based on transimpedance amplifier: (a) schematic di-

agram and (b) small-signal model. 32

3.2 Quality factor versus Rτ . 33

3.3 Photoreceptor input current pulse (a), and photoreceptor pulse re-

sponse for three different Ibias values: (b) 50 pA, (c) 300 pA, and (d)

1 nA. 34

3.4 Two-stage operational amplifier. 35

3.5 Two-stage operational amplifier frequency response. 38

3.6 Voltage comparator [18]. 39

3.7 Circuit for verifying the voltage offset based on Monte Carlo simulation. 40

3.8 Voltage comparator offset estimation based on Monte Carlo simulation. 41

3.9 Voltage comparator simulation results: (a) Spectre simulation indi-

cating hysteresis, using Vh = 170 mV; (b) hysteresis voltage Vhyst,

plotted as a function of Vh. 42

3.10 AER system for 4 × 4 pixel array: (a) X-AER system (for enabling

column requests); (b) Y-AER system (for enabling row requests). . . 43

3.11 Circuits that compose parts of the AER systems: (a) mutual exclusion

(ME) circuit, (b) basic arbiter, and (c) X-ARBITER. 44

3.12 Timing diagram for a single off event detected at DVS pixel: (a)

exposure measurement logic in invalid state because of voltage com-

parator delay, and (b) correct response (OutFSM) obtained with the

proposed solution. 45

xi

3.13 Circuit for solving the exposure measurement logic invalid state prob-

lem: (a) finite state machine implementation, and (b) finite state

machine implementation state diagram. 46

3.14 Delay element circuit. 47

4.1 Single DVS pixel transient simulation (250 ms to 600 ms) with a

sinusoidal input Ipd (first plot, at the top). The second plot shows

the voltage comparator output Vcomp. The third plot shows data

bus pixel request (RREQ). The fourth and fifth plots show on and

off events (CRON and CROFF). The sixth and seventh plots show

column and row acknowledgment (CA and RA) signals. 50

4.2 Timing diagram corresponding to a communication cycle that is trig-

gered by a detected off event in Figure 4.1. 50

4.3 Single pixel DVS simulation using a numerical model from Section

2.1.1, and the same sinusoidal input shown in Figure 4.1. The second

plot shows the predicted voltage comparator output, and the third

plot shows predicted events. Communications with row and column

control units are not taken into account. 51

4.4 Single ATIS pixel transient simulation (275 ms to 375 ms) with a

sinusoidal input Ipd equal to the one used in Figure 4.1. Relevant

exposure measurement signals, which are described in the text, are

shown in the third, fourth, fifth, and sixth plots. 53

4.5 Timing diagram corresponding to a communication cycle that is trig-

gered by a detected off event in Figure 4.4. 54

4.6 Single ADMDVS pixel transient simulation (30.5 s to 30.7 s) with a

sinusoidal input Ipd equal to the one used in Figure 4.1. 55

4.7 Timing diagram corresponding to a communication cycle that is trig-

gered by a detected off event in Figure 4.6. Time delays tdly,1 and

tdly,2 allow for capacitor charging Cf and charge redistribution among

the capacitors in the ADMDVS pixel (see Figure 2.11). 55

4.8 Single pixel ADMDVS simulation using a numerical model from Sec-

tion 2.3.2, and the same sinusoidal input shown in Figure 4.1. The

second plot shows the predicted voltage comparator output, and the

third plot shows predicted events. Communication with row and col-

umn control units is not taken into account. 56

xii

4.9 8 × 8 DVS pixel array. Comparison between electrical simulation

results and predictions based on the numerical model in Section 2.1.1:

(a) and (c) on and off events generated by electrical simulation; (b)

and (d) on and off events estimated from a numerical model. Event

timing details are provided for the pixel on row 5 and column 5. . . . 57

4.10 2 × 2 ATIS pixel array. Comparison between electrical simulation

results and predictions based on the numerical model in Section 2.2.3:

(a) and (c) on and off events generated by electrical simulation; (b)

and (d) on and off events estimated from a numerical model. 59

4.11 Brightness encoding results from (a) numerical simulations, and (b)

electrical simulations, using the same photocurrent input with a time-

domain triangular waveform for all pixels. 60

4.12 4 × 4 ATIS pixel array. Comparison between (a) decoded light inten-

sity predictions based on the numerical model in Section 2.2.3, and

(b) decoded light intensity values obtained from an electrical simulation. 61

4.13 4 × 4 ADMDVS pixel array. Comparison between electrical simula-

tion results and predictions based on the numerical model in Section

2.3.2: (a) and (b) on and off events generated by electrical simula-

tion; (c) and (d) on and off events estimated from a numerical model.

Event timing details are provided for the pixel on row 2 and column 2. 62

A.1 Simulation configuration, first step: (a) pixel array type selection, (b)

simulation name assignment, and (c) confirmation. 71

A.2 Simulation configuration, second step: (a) netlist selection, and (b)

input stimuli folder selection. 72

A.3 Simulation configuration, third step: electrical simulation parameters. 72

xiii

List of Tables

2.1 DVS pixel input and output signals. 5

2.2 ATIS pixel input and output signals. 11

3.1 Two-stage operational amplifier transistor sizes. 38

3.2 Active components within each pixel, and estimated area figures. . . . 47

4.1 Quantity of spikes with different setting of comparator threshold per

Channel and period signal . 51

xiv

List of Abbreviations

ADMDVS Asynchronous Delta Modulation DVS

ADM Asynchronous Delta Modulation

AER Address-Event Representation

AMS austriamicrosystems.com

APS Active-Pixel Sensor

ATIS Asynchronous Time-based Image Sensor

CA Column Acknowledgment

CCD Charge-Coupled Device

CDS Correlated Double Sampling

CSV Comma-Separated Value

DC Direct Current

DI Delay-Insensitive

DVS Dynamic Vision Sensor

EKV Enz, Krummenacher, and Vittoz

EM Exposure Measurement

FPN Fixed-Pattern Noise

GBW Unity-Gain Bandwidth

KTC Thermal noise, which is defined by Boltzmann constant k, tem-

perature T , and capacitance C

L Transistor channel length

ME Mutual Exclusion

xv

MOS Metal-Oxide Semiconductor

NDP Non-Dominant Pole

Op Amp Operational Amplifier

PWM Pulse Width Modulation

QDI Quasi-Delay-Insensitive

Q Quality Factor

RA Row Acknowledgment

SF Source Follower

SR Reset Switch

SS Signal Switch

TCS Temporal Contrast Sensitivity

TIA Transimpedance Amplifier

W Transistor channel width

xvi

Chapter 1

Introduction

Nowadays people try to build systems with performance akin to their biological coun-

terparts, but their objectives are in general still far from the reality. Small insects

still outperfom powerful computing machines in executing several tasks involving a

balanced combination of real-time data processing, control systems, sensory systems,

and the optimization of bandwidth and power consumption [1].

Carver Mead, from the California Institute of Technology, introduced in the 80’s

the concept of neuromorphic systems [2], to refer to systems which try to mimic

some of the properties of biological neural architectures. Systems based on the neu-

romorphic approach are, in some aspects, more efficient than conventional designs.

A vision sensor inspired on biological retinas, for example, only generates outputs

when it detects spatial or temporal changes in its inputs, whereas conventional video

sensors are continuously generating output data regardless of changes occurring or

not within their fields of view.

Image sensors have evolved greatly since the 70’s. The first charge-coupled imag-

ing devices (CCDs) were built around 1969 by Willard Boyle and George Smith at

the AT&T Labs [3]. A CCD is composed by an adjacent association of charge-

coupled capacitors which are sensitive to light. The implementation usually adopts

one of three different architectures [4]: full-frame transfer, frame transfer, and inter-

line transfer. From one architecture to another, the shuttering approach changes.

The active-pixel sensor (APS) came out some years later, around the middle 80’s [5],

[6]. The APS is a metal-oxide semiconductor (MOS) image sensor. The APS pixel

typically includes a photodiode, which generates a current proportional to the inci-

dent light intensity, and at least three transistors: i) a reset transistor, which is used

for clearing charge that has been integrated at the photodiode cathode terminal, ii)

an amplifying transistor usually in source follower configuration, and iii) a switch

that either blocks or allows pixel read-out. Contrary to CCD the MOS imagers (i.e.

APS image sensor) do not use charge transfer to convey the data information to

external (off-chip) system. Both the CCD and the APS have been widely used in

1

many applications: scientific surveys, astronomy, satellite imaging, consumer video,

cell phones, webcams, and so forth.

In frame-based image sensors, either CCD or APS, the integration time is set

according to a global shutter . Many vision sensors follow the frame-based approach.

Differently from frame-based vision sensors, the biological retinas do not use the

‘frame’ concept. They generate output data asynchronously and their data output

depends on specific features detected in the sensor field of view. To inform what

type of event is being captured, specific structures, for example parvo-cellular and

magno-cellular pathways, exist in the biological retina [2].

As neuromorphic engineering expands quickly, some properties of biological vi-

sion systems are successfully mimicked today. According to the biological structure

examples mentioned in the previous paragraph, vision sensors inspired on biological

vision systems are roughly divided into two categories: i) Spatial Contrast sensors,

which reduce spatial redundancy by replicating aspects of the parvo-cellular path-

way [7], [8]; and ii) Temporal Contrast sensors, which reduce temporal redundancy

by replicating aspects of the magno-cellular pathway [7], [8].

One of the most important vision sensors in the neuromorphic engineering field

is the Dynamic Vision Sensor (DVS). The DVS arose from the CAVIAR Project1,

where the CAVIAR acronym stands for Convolution Address-Event Representation

(AER) Vision Architecture for Real Time. The DVS was the first event-based com-

mercial vision sensor to respond asynchronously to temporal changes. Its output

information is encoded by short voltage pulses informally denoted as spikes, and the

spikes are conveyed to subsequent systems via AER protocols [9]. Temporal wave-

forms containing spike sequences are informally denoted as spike trains. The DVS

approach mimicks its biological counterpart, and this approach is usually referred

to as the frame-free vision sensor.

The DVS has some advantages with respect to frame-based vision sensors. As

the DVS pixels only respond to temporal changes, asynchronously and through spike

trains, they reduce bandwidth and power consumption, whereas the pixels in frame-

based sensors have their values transmitted even if no change occurs within the field

of view. As the DVS does not have a global shutter, each pixel independently defines

its own operation point. Since the DVS invention, research has focused on including

additional features that are similar to those found in biological retinas. Pixels with

larger temporal contrast sensitivity have been proposed [10], [11]. To efficiently

encode light intensity temporal variations, other designs focus on asynchronous time-

based modulation [12], [13].

1http://www2.imse-cnm.csic.es/caviar/introduction.htm

2

1.1 Objectives

This work aims at studying a few different DVS architectures and comparing them.

In particular, this work focuses on three architectures: basic DVS, asynchronous

time-based image sensor (ATIS), and asynchronous delta modulation DVS (AD-

MDVS). Available architectures are analyzed and comparison methods are proposed.

To accomplish that task, specific goals were defined:

• Studying bibliography references about free-frame vision sensors (Chapter 2);

• Modelling selected architectures at the system level, in a numerical environ-

ment (Chapter 2);

• Studying gm/ID methodology2 [14] for DVS design (Chapter 2);

• Designing and simulating a single instance for each pixel (Chapters 3 and 4);

• Building input stimulus files that are suitable for pixel model validation (Chap-

ter 4);

• Designing and simulating a small pixel array (i.e. an array with a few pixels)

in order to validate pixel operation when two or more pixels simultaneously

detect light intensity temporal change (Chapter 4);

• Using different programming languages, to make the test phase automatic

(appendices)

1.2 Text Organization

In Chapter 2 we will explain basic DVS concepts, including models for each pixel

that is studied in this dissertation. In Chapter 3, pixel design details are presented,

including a suitable application of gm/ID methodology to pixel design. Chapter

3 also contains an innovative delay comparator design, not found in the papers we

studied, that affects the exposure measurement logic in the ATIS architecture. Com-

parisons among pixel models, based on electrical simulation results, are presented

in Chapter 4. The main conclusions and some future research topics are presented

in Chapter 5. Some algorithms required for the simulation of a small ATIS camera

are included in the appendices.

2gm/ID is a design method which is used to design integrated circuit based on the efficiency
of the transistor transconductance (Section 2.6). We use EKV (Enz, Krummenacher, and Vittoz)
model for modelling DVS sensor (Section 2.1.1). The gm/ID ratio can be obtained using transistor
models (i.e. EKV model). The gm/ID method was used for designing the operational amplifier
(Section 3.2) and voltage comparator with hysteresis (Section 3.3).

3

Chapter 2

Theory

In this chapter, we address fundamental concepts about the DVS options studied

in this work. The pixel models are described. An introduction to asynchronous

circuits, delay models, and AER systems is provided. These explanations lead to an

understanding of how a reduced number of bits represents, in the frame-free vision

sensor, light intensity values from all pixels in the array. Additional pixel operation

details are provided in subsequent chapters.

2.1 Dynamic Vision Sensor

The DVS pixel responds to temporal contrast changes, instead of the absolute light

intensity sampled at the pixel location. The DVS pixel behavior is inspired by the

behavior of neurons in the magno-cellular pathway of a biological vision system

[2]. They are primarily sensitive to temporal changes in incoming light intensity

(sampled by photoreceptors at the retina), and they tend to ignore constant light

intensity values. The temporal contrast in DVS sensors is defined by Equation (2.1)

[15]:

TCON =
1

I(t)

dI(t)

dt
=
d(ln(I(t)))

dt
, (2.1)

where I(t) is the photocurrent at the local photodiode. Autonomously, the DVS

pixel transmits temporal change information through two asynchronous communi-

cations channels, also found in the biological vision system, which are denoted as

on and off channels [2]. Figure 2.1 indicates that the DVS pixel uses a logarithmic

photoreceptor, a circuit for the computation of temporal derivatives with gain equal

to C1/C2, two voltage comparators, and a logical circuit for AER communication.

Each block is described next.

The original DVS schematic diagram [4], [15] is simpler than the one shown

in Figure 2.1. In the original schematic diagram, the temporal derivative circuit

4

−

+

Op Amp

C1

C2

V rst

SFTIA

−

+

Vhys,off

RROFF

−

+

Vhys,on

RRON RROFF
RRON

RREQ

RROFF

RA

CROFF RRON

RA

CRON

Global Reset

Vrst
RA
CA

Vd

CPDIpd

photodiode

Vdon

Vdoff

Vref

Vp = nφt ln (Iph
ISPEC

) + VDC

DVS LOGIC

∆Vdiff = −A∆Vp

Figure 2.1: Pixel schematic diagram.

Table 2.1: DVS pixel input and output signals.

Object Name I/O Object Description
Vref In Starting voltage level (between Vdoff and Vdon) for DVS pixel
Vdoff In Off event minimum absolute voltage threshold
Vdon In On event minimum absolute voltage threshold
Global Reset In Global command (active at low level) for resetting pixel value to Vref
Vhys,off In Voltage reference for hysteresis loop in off comparator
Vhys,on In Voltage reference for hysteresis loop in on comparator
Ipd In Photodiode current that is due to the photoelectric effect
Vd - Photodiode cathode terminal
RREQ Out Data bus pixel request (active at high level)
CRON Out Positive temporal contrast change indication (active at high level)
CROFF Out Negative temporal contrast change indication (active at high level)
RA Out Row AER (Y-AER) acknowledgment, which enables row data

transmission
CA Out Column AER (X-AER) acknowledgment

is implemented by a single common-source amplifier, and the voltage comparators

are implemented by logical inverters with independent inputs. In the present work,

the common-source amplifier was replaced by a conventional two-stage operational

amplifier, and the logical inverters were replaced by two-stage voltage comparators

with hysteresis [16]. We decided to replace those parts of the original circuit by

these more complex ones for two reasons: i) in the common-source configuration,

after an event has occurred, its output is taken to the operation point Vref because

of a short circuit between the gate and drain voltages. The temporal derivative

circuit is thus converted into a diode-connected circuit with an active load1. For

power consumption savings, we would like the analog circuits to operate in the

subthreshold regime, and so the bias voltage at the p-channel transistor gate is at

least 1.5 V (assuming that the supply voltage is 1.8 V and the transistor threshold

voltage is around 0.3 V). To make operation point adjustment easier, we use an

1The common-source amplifier uses one p-channel transistor (input) and one n-channel tran-
sistor (current source). When a reset takes place, the gate and drain terminals of the p-channel
transistor are connected, which turns the p-channel transistor into a diode forward biased by a
current source (which is the n-channel transistor). The common-source amplifier output is taken
to Vref .

5

operational amplifier. The operational amplifier has two inputs, while the common-

source amplifer has only one. The Vref voltage in the common-source amplifier is

defined by the bias current, while in the operational amplifier the Vref voltage is

defined at its non-inverting input, and the bias current does not depend on Vref ; ii)

using logical inverters as voltage comparators leads to large MOS transistors, and

it is not possible to obtain hysteresis with them. To make comparator operation

robust to input noise, using comparators with hysteresis is desirable. To reduce

area and power consumption, we use a classical two-stage voltage comparator with

hysteresis.

The original DVS has several advantages over conventional frame-based cameras.

It only responds to input changes, thus leading to reduced bandwidth data transmis-

sion. Because of AER, a few bits represent any pixel in the sensor array. Although

the data redundancy is reduced, the timing information is accurately preserved. As

the DVS pixel response is independently composed by asynchronous spikes, power

consumption is reduced as well. Depending on temporal contrast, each input event is

simply classified as either an on or an off event. As the pixel reset signal (to establish

the pixel operating point) is self-generated, an external clock is not required.

The DVS pixel (Figure 2.1) is basically composed by five building blocks, which

are described next. For clarity, the symbols representing input and output signals

in Figure 2.1 are described in Table 2.1.

1. Logarithmic Transimpedance Amplifier (TIA): this amplifier logarithmically

converts a photocurrent signal into a voltage-mode signal. The circuit is de-

signed to rapidly respond to temporal changes. As the Vd node is kept at

virtual ground, the transimpedance amplifier bandwidth is increased;

2. Source Follower (SF): this amplifier drives the large capacitive load that is

present at the input of the circuit for temporal derivative computation;

3. Temporal Derivative Circuit: this circuit amplifies, with gain equal to C1/C2,

relative changes in log intensity that take place after the latest reset [15]. The

DC signal component is cancelled. If the pixel detects a temporal contrast

change event, and if this event is acknowledged by an off-chip acknowledgment

system2, then the temporal derivative circuit output is reset to the starting

voltage level (Vref , according to Table 2.1). After that, the temporal contrast

change detection process restarts. The differencing circuit output keeps in-

creasing (negative temporal contrast change) or decreasing (positive temporal

2The AER systems (row and column) generate acknowledgment signals. The simplest imple-
mentation of an acknowledgment system involves delays (logical inverter pairs). The output of
the highest level arbiter generates a delayed version of RREQ, which returns to the ACK input
(Figure 3.10) for self-acknowledgment.

6

contrast change). It returns to Vref after a request (threshold crossing) is

acknowledged.

The DC signal component is cancelled. If the pixel detects a temporal contrast

change event, and if this event is acknowledged by an off-chip acknowledgment

system, then the temporal derivative circuit output is reset to the starting

voltage level (Vref , according to Table 2.1). After that, the temporal contrast

change detection process restarts;

4. Comparators: to decide whether the temporal contrast change was large

enough to generate an event, the DVS pixel uses two voltage comparators.

The arbitrary thresholds that are set by both comparators define the pixel

temporal contrast sensitivity (TCS). Comparator outputs are connected to a

logical interface. The comparators also feature hysteresis, and the hysteresis

voltage range may be defined by means of a control voltage, which is denoted

as Vhyst in Figure 2.1. The RROFF signal indicates that the temporal contrast

change event was negative, and the RRON signal indicates that the temporal

contrast change event was positive;

5. Logical Interface: to establish a handshaking protocol with an AER circuit,

a logical interface generates a reset signal, which is denoted as Vrst in Figure

2.1, after the temporal contrast change event was acknowledged by an external

(off-chip) system.

Figure 2.2a illustrates the DVS pixel as a building block. This building block has

the same input and output signals that were already described in Table 2.1. The

DVS pixel operation is illustrated by the diagram in Figure 2.2b. In Figure 2.2b, the

solid curve at the top refers to the photodiode cathode voltage, after amplification

by the transimpedance amplifier and the source follower blocks, which is denoted

as Vp. The dotted line corresponds to an approximate Vp reconstruction, which is

obtainable from the pulses shown at the bottom plot. This bottom plot of Figure

2.2b shows the pulses generated at the temporal derivative circuit output, which

is denoted as Vdiff . The Vdiff signal is obtained by integrating the ∆Vdiff signal

in Figure 2.1. The comparators continuously verify whether Vdiff exceeds on or

off threshold levels, which are denoted as Vdon and Vdoff in Figure 2.1 and Table

2.1. If the Vdiff absolute value corresponds to sufficiently high temporal contrast

change, then one of the comparator outputs changes into ‘active’ (e.g. high voltage

level), which means that the pixel requests data bus access in order to transmit that

high temporal contrast change event. This activity starts communication with an

external AER circuit. After the pixel request is acknowledged by the AER circuit,

the AER circuit sends a reset signal back to the pixel. This reset signal brings the

7

operation point (i.e. the output Vdiff voltage level) back to Vref , which means that

the pixel is ready to detect new temporal contrast change events.

DVS

Vdoff

Vref

R
A

G
lo

b
a
l

R
st

C
A

RREQ

Vdon

C
R

O
N

V
h
y
s,
o
n

I p
d

V
h
y
s,
o
f
f

C
R

O
F

F

Ipd

(a)

V
p

(V
)

time

V
d
if
f

(V
)

time

reconstruction

Vdon

Vdoff
Vref

(b)

Figure 2.2: DVS pixel instance. (a) DVS pixel as a system building block, and (b)
DVS pixel operation fundamentals, adapted from [15].

Because of transistor mismatch (threshold voltage and geometrical aspect vari-

ation) at the photoreceptor level, the DVS pixel array suffers from a high mismatch

among the pixels. That mismatch is partially compensated by using temporal deriva-

tive circuits with an accurate gain, which is obtained by carefully matching the

capacitors that realize the C1/C2 ratio [4], [10], [15].

2.1.1 DVS Pixel Model

The following analysis is based on [10]. Using the EKV (Enz, Krummenacher,

and Vittoz) model for subthreshold regime operation [17], the Vdiff signal can be

modelled by Equation (2.4). To obtain the Vdiff signal we need to find the source

follower output as next:

Vp = nφt ln

(
Ipd
Is

)
+ VDC (2.2)

where n is the subthreshold slope factor, φt is the thermal voltage, Is = 2nφ2
tKpW/L

is the subthreshold current factor of a MOS transistor, VDC = Vd+VT , W is transistor

channel width and L is transistor channel length. Because of Vp feeds the differencing

circuit then we have that:

8

dVdiff = −AdVp

= −C1

C2

nφtd ln

(
Ipd
Ispec

)
= −C1

C2

nφtd
Ipd
Ipd

(2.3)

Integrating Equation (2.3) we have Vdiff equal to:

Vdiff = −C1

C2

nφt ln (Ipd) (2.4)

To define whether temporal contrast change is positive or negative, the Vdiff

signal is compared to two threshold voltages, which are denoted as Vdiff,on and

Vdiff,off in Equations (2.5) and (2.6). The Vdiff,on threshold voltage is negative,

and the Vdiff,off threshold voltage is positive. To define Vdiff,on, we compute the

difference between Vdon and Vref , taking into account the fact that Vdon sets the

threshold for a minimum voltage (relative to Vref) that is required for firing an on

event. The Vdon − Vref voltage difference is compensated by Vos,comp + Vos,opamp.

The Vos,comp voltage represents the offset voltage at the comparators, and Vos,opamp

represents the offset voltage at the temporal derivative circuit. The definition of

Vdiff,off is similar to the definition of Vdiff,on, but it is based on Vdoff , which sets

the threshold for a maximum voltage (relative to Vref) that is required for firing an

off event.

Vdiff,on =(Vdon − Vref) + (Vos,comp + Vos,opamp) < 0 (2.5)

Vdiff,off =(Vdoff − Vref) + (Vos,comp + Vos,opamp) > 0 (2.6)

To compute the minimum temporal contrast inputs that generate events (either

on or off events), we define θ+ as the minimum temporal contrast that generates

an on event. Similarly, θ− is the minimum temporal constrast that generates an off

event. Integrating Equation (2.3) yields

9

θ+ =

∣∣∣∣ln IbrightIdark

∣∣∣∣ =

∣∣∣∣Vdiff,onC2

C1nφt

∣∣∣∣
=

∣∣∣∣C2((Vdon − Vref) + (Vos,comp + Vos,opamp))

C1nφt

∣∣∣∣ (2.7)

θ− =

∣∣∣∣ln Idark
Ibright

∣∣∣∣ =

∣∣∣∣Vdiff,offC2

C1nφt

∣∣∣∣
=

∣∣∣∣C2((Vdoff − Vref) + (Vos,comp + Vos,opamp))

C1nφt

∣∣∣∣ (2.8)

2.2 ATIS Pixel

Improving the dynamic range of vision cameras is currently an active research topic.

Using time-based encoding in CMOS technology improves pixel performance with

respect to dynamic range [16], [18]. Each pixel may choose its own integration time,

as it responds to input variations in autonomous and asynchronous fashion.

Like the DVS, the ATIS pixel is time-based. It was conceived in an attempt to

mimic the magno-cellular and parvo-cellular pathways of biological vision systems.

Roughly speaking, the magno-cellular pathway uses a spatially coarse representation

system, which allows for quick detection of a new incoming event. The parvo-cellular

pathway focuses on the event detailed description, thus allowing for a definition of

the object that generated the incoming event [2]. As Figure 2.3 shows, the ATIS

pixel is composed by one DVS pixel, which works as a temporal change detector, and

one exposure measurement (EM) circuit, which encodes the light intensity associated

with the event generated by the DVS pixel. The DVS pixel roughly plays the role

of a magno-cellular pathway input, whereas the exposure measurement circuit plays

the role of a parvo-cellular pathway input.

Similarly to its biological counterparts, the ATIS pixel presents voltage spike

trains at its outputs. The spikes are generated in autonomous and asynchronous

fashion by the ATIS pixel, and they simultaneously encode local brightness (lu-

minance) information and temporal contrast change information. The ATIS pixel

implements a particular correlated double sampling (CDS) [18] technique for KTC

noise3 and FPN (fixed pattern noise) removal [19], which is called True CDS. The

True CDS technique is explained in Sections 2.2.1 and 2.2.2. To simultaneously

detect temporal contrast change and measure light intensity, the ATIS pixel uses

two photodiodes separately. As the brightness measurement cycle only starts after

an event was generated, the ATIS temporal contrast sensitivity depends on the DVS

pixel anyway. The ATIS camera thus uses two AER systems. The first one, which

3Thermal noise on circuit capacitors is kT/C, where k is the Boltzmann constant, T is temper-
ature, and C is node capacitance.

10

DVS

Vdoff

Vref

R
A

G
lo

b
a
l

R
st

C
A

RREQ

Vdon

C
R

O
N

V
h
y
s,
o
n

I p
d

V
h
y
s,
o
f
f

C
R

O
F

F

Ipd1

EM

Vreq,Lx

Vreq,Hx

Vlow

Vinit

Vhyst

Vhigh

V
r
st
,r
o
w

V
a
ck
,B
y

V
a
ck
,B
,H
y

V
a
ck
,B
,L
y

G
lo

b
a
l

R
st

Vrst,col

Vreq,By

I p
d

C
A

G
lo

b
a
l

R
st

R
A

Ipd2

Figure 2.3: ATIS pixel instance, which is composed by a DVS pixel (left) and an
exposure measurement circuit (right).

Table 2.2: ATIS pixel input and output signals.

Object Name I/O Object Description
Vhigh In Voltage reference to start the brightness encoding process
Vlow In Voltage reference to complete the brightness encoding process
Vhyst In Voltage reference for hysteresis loop in comparator
Vinit In Global command to bring the logic to valid state, it is used just once

in all operation
Global Reset In Global command (active at low level) for resetting pixel value to Vref
Vrst,row In Row acknowledgment from DVS (Y-AER), which enables row data

transmission
Vrst,col In Column acknowledgment from DVS (X-AER)
Vack,By In Row acknowledgment from ATIS (Y-AER), which enables row data

transmission
Vack,B,Hy In Column acknowledgment from ATIS (X-AER)
Vack,B,Ly In Column acknowledgment from ATIS (X-AER)
Vreq,By Out Data bus pixel request to transmit its pixel encoding status
Vreq,Hx Out Indicates that the pixel started the brightness encoding process
Vreq,Lx Out Indicates that the pixel finished the brightness encoding process

is based on the DVS pixel, encodes temporal contrast change events, and the second

one encodes local brightness (local light intensity).

As it was previously mentioned in Chapter 1, time-based vision sensors such as

DVS, ATIS, and so on, have some advantages over frame-based imagers (e.g. APS

camera): reduced transmission bandwidth, as less data are generated by the pixel

array; lower buffer storage requirements, as information pre-processing leads to less

raw information; and simpler post-processing for image decoding. ATIS presents two

particular advantages in addition to those ones: it encodes light intensity through

pulse-width modulation (PWM), which is a very simple data transmission method,

11

and it improves signal-to-noise ratio, by means of True CDS.

In Sections 2.2.1 and 2.2.2, we will briefly discuss CDS concepts, in order to

explain how CDS leads to better image quality in conventional image sensors. We

will also address True CDS as a technique for enhancing the output signal in time-

based vision sensors.

2.2.1 Correlated Double Sampling (CDS)

To obtain high signal-to-noise ratio, which translates into good image quality, the

pixel readout noise shall be kept low. Pixel readout noise is a generic expression that

includes several types of noise [20]: the intrinsic noise present in pixel devices (dark

signal non-uniformity and pixel response non-uniformity), KTC noise, 1/f (flicker)

noise, and fixed pattern noise.

Correlated double sampling (CDS) is commonly used in CCD and APS cameras,

in order to reduce readout noise. The pixel output is read (i.e. sampled) twice:

one sampling operation captures the absolute signal value that is obtained by pho-

tocurrent integration in CCD and APS cameras, and another sampling operation

captures the reset value. The output signal, which has less noise than the absolute

signal value, is obtained by subtracting both samples, as shown in Figure 2.4. The

reset switch (SR) is opened at the end of the reset phase, and the signal switch (SS)

is opened at the end of the photocurrent integration. As any errors caused by pixel

mismatch or process variations affect the absolute signal value and the reset value

equally, those errors are cancelled at the differential amplifier output. For pixel

read-out, the CDS approach in Figure 2.4 requires global control signals.

SR

C1

SS

C2

Vin

−

+
Signal

Figure 2.4: CDS schematic diagram.

2.2.2 True Correlated Double Sampling

The true CDS technique was designed for time-based vision sensors, which is the

ATIS case. This CDS method is referred to as true CDS because the double sam-

pling is carried out in a single integration cycle, rather that within two subsequent

12

integration cycles, which corresponds to the basic CDS case. Keeping the two sam-

ples within the same integration cycle reduces reset noise (i.e. noise associated with

the pixel reset voltage) by a factor approximately equal to 2 [18].

Figure 2.5 shows two possibilities (single threshold or two thresholds) for true

CDS operation in a time-based vision sensor. In either case, an active (high level)

reset pulse causes the photodiode cathode voltage (Vd, which is denoted by Vint in

this figure) to be raised to the reset level that is denoted by Vrst in this figure. When

the reset pulse is turned off, the photodiode depletion capacitance is discharged

because of the photocurrent integration, which is illustrated by the oblique straight

line segments in the figure. In the true CDS with a single threshold (Figure 2.5a),

a voltage comparator generates an output (Vcomp) step, which is later shaped into

a voltage pulse, when Vint reaches the threshold value Vref . This indicates the end

of the integration interval. The integration interval duration tint is measured by the

time difference between the comparator step rising edge and the reset pulse falling

edge. It is inversely proportional to local light intensity. In the true CDS with two

thresholds (Figure 2.5b), tint does not depend on the photodiode reset level. In

conventional photodiodes, the cathode voltage may fluctuate during the reset pulse,

which is due to charge injection through the reset transistor among other uncertainty

factors. Eliminating tint dependence on the photodiode reset voltage thus improves

signal accuracy by reducing reset noise, as mentioned in the previous paragraph.

The upper threshold Vhigh is chosen according to the maximum expected photodiode

reset error. The lower threshold Vlow is chosen according to the maximum expected

light intensity.

The true CDS implementation using a differential amplifier is shown in Figure

2.6. The exposure measurement logic controls the Vlow and Vhigh threshold switches.

It also requests AER encoding of the pixel event (Vcomp pulse in Figure 2.5). The

integrated light intensity signal is represented by the time difference between the

pulses that are generated by threshold crossings at Vhigh and Vlow. Figure 2.5b shows

that, to obtain the time difference, only one integration cycle (between two reset

pulses) is necessary. Comparator mismatch errors, as well as time delay differences

between the threshold crossing events, tend to cancel out, which further reduces

readout noise. The ratio between the sampling error εtint (readout noise) and the

readout signal tint was evaluated for the single-threshold and two-threshold cases

[18], and it was shown that the ratio is smaller if two thresholds are used. Further-

more, the analysis in [18] indicates that the ratio decreases as the supply voltage

is reduced, which is convenient in modern CMOS technologies such as 180 nm, 110

nm, and so forth.

13

Reset

Vint

Vrst

Vref

Vcomp

tint0 tint1

(a)

Reset

Vint

Vrst

Vlow

Vhigh

V comp

tint0 tint1

(b)

Figure 2.5: True CDS operation in time-based vision sensors: (a) single threshold,
and (b) two thresholds [18].

Vreset

Ipd

Vint

Cpd

−

+

V
h
ig
h

V
lo
w

E
.M

.
L

O
G

IC

Periphery
AER

Figure 2.6: True CDS implementation.

2.2.3 ATIS Model

The ATIS temporal change detector is the DVS pixel itself. The exposure measure-

ment logic is described in this section. When the reset signal is off, the photodiode

cathode voltage is:

Vint(t) =
1

C

∫ t

0

ipd(τ)dτ + Vint(0) , t > 0, (2.9)

where ipd is the photocurrent, C is the photodiode cathode node capacitance, and

Vint(0) is the initial condition. We assume Vint(0) = VDD, which is the imager supply

voltage. At first, Vint(t) is compared with Vrefh. After Vint crossed the Vhigh and an

14

acknowledgement signal was received, Vint(t) is compared with Vlow:

Vout,EM =

Req High, if Vint ≤ Vhigh

Req Low, if Vint ≤ Vlow
(2.10)

The integration interval duration for a pixel is:

tint = t(Req Low)− t(Req High). (2.11)

If the temporal change detector detects another event before the light intensity

measurement is completed, i.e. before Vout,EM = Req Low, then the off-chip AER

system ignores the first request, which had happened when Vint crossed the Vhigh

threshold, and it starts again.

To map tint values into grayscale values, the tint values are measured for different

incoming light intensity values, say 256 different values, and the tint measurements

are stored in a look-up table. Using the look-up table, off-chip intensity value

decoding is performed more accurately than through Equation (2.9).

2.2.4 Additional ATIS Sensor Functionality

Besides reacting to temporal input changes and encoding light intensity values,

the ATIS sensor may capture photographs [16], because the exposure measurement

circuit does not remove the time-domain DC component of the input signal (which

the DVS does remove). A logical circuit that enables asynchronous capture of static

images in the ATIS sensor is proposed in Figure 2.7a. Using this logical circuit,

each pixel decides its own integration time. To use the proposed circuit, minor

modifications in the original ATIS pixel design are required Input and output signals

are shown in Figure 2.7b.

If RA and CA (row and column acknowledgment) signals are received by the

pixel, or if a global reset is active (at low level), then the pixel exposure measurement

circuit and temporal change detector are reset (the Reset ATIS signal goes to the

low level). To take a photo using ATIS, the temporal change detector must be

blocked for time enough for reading out the information from all the pixels. For a

short time, a reset signal is generated at the exposure measurement circuit Global -

Rst input. The Req fr∗ signal is a delayed version of Req fr, where the Req fr

symbol stands for a frame request that is generated when the ATIS camera captures

a photograph. The time delay is long enough for a stable reset voltage to be defined

at the photodiode cathode. When both Req fr and Req fr∗ are high, the exposure

measurement circuit reset signal is turned off, and the integration interval starts.

While Req fr or Req fr∗ are high, the temporal change detector is blocked. Off-chip,

15

a frame-mode function would wait as the values from all pixels are read out. After

light intensity information from all pixels has been received, this off-chip frame-mode

function disables the Req fr signal.

B

Global Rst

RA

CA

Reset ATIS

Delay

Req fr*

Req fr
A

Req fr*

A
B

Reset DVS

(a)

Global Reset

RA

CA

Req fr

Req fr*

Reset ATIS

Reset DVS

(b)

Figure 2.7: Logical circuit enabling ATIS photograph capture: (a) schematic dia-
gram, and (b) timing diagram.

In an ATIS camera that does not take pictures, the Reset DVS in Figure 2.7b

is the same as the Reset ATIS signal. Otherwise, i.e. if the ATIS camera does

take pictures, the Reset DVS signal is obtained from the logical circuit presented in

Figure 2.7a.

2.3 ADMDVS pixel

The ADMDVS pixel is an improved version of the DVS pixel. To reset the output

signal to a starting voltage reference level after a temporal contrast change event, the

ADMDVS pixel uses a modified version of asynchronous delta modulation (ADM)

rather than the reset cycle that was used in the DVS pixel. The ADMDVS also

uses a different information encoding method, which is denoted as feedback and

subtract. The basic DVS encoding method is denoted as feedback and reset. Both

encoding methods are shown in Figure 2.8. The feedback and reset method uses a

reset switch to reset the operation point after a temporal contrast change event. The

feedback and subtract method, instead of using a reset switch to reset the operation

point after a temporal contrast change event, subtracts a fixed δ value from the

Vdiff input. Whereas the feedback and reset method interrupts the input signal

flow during the reset, in the feedback and subtract method the input signal flow is

16

never interrupted.

e(t)

> Voff

< Von

Delay

tH
Reset

V
d
if
f

time

Vdiff

- ON Channel

OFF Channel

(a)

e(t)

> Von

< Voff

Delay

δ

V
d
if
f

time

Vdiff

- OFF Channel

ON Channel

(b)

Figure 2.8: DVS information encoding methods: (a) feedback and reset and (b)
feedback and subtract [21].

Figure 2.9 illustrates the ADMDVS pixel as a building block. It has the same

input and output ports of the DVS pixel that was shown in Figure 2.2. The only

difference at the instance symbol is that CA has been changed in order to be active

at the low level, rather than high. The ADMDVS pixel uses the same AER system

that is used by the DVS pixel.

AMD-DVS

Vdoff

Vref

R
A

G
lo

b
a
l

R
st

C
A

RREQ

Vdon

C
R

O
N

V
h
y
st

O
N

Ip
d

V
h
y
st

O
F

F

C
R

O
F

F

Ipd

Figure 2.9: ADMDVS pixel instance.

The ADMDVS pixel basic block diagram is shown in Figure 2.10. Differently

from the conventional DVS sensor (Figure 2.2), which always produces on events

even if temporal contrast change events do not occur [4], [15], [22], the ADMDVS

pixel do not generate on events in the absence of input temporal change. The unde-

sired on events are regarded as temporal noise, which is due to the reset transistor

17

charging (by means of source-to-bulk leakage current) the operational amplifier in-

verting input up to the supply voltage VDD. The TIA block is the transimpedance

amplifier. It is equal to the TIA in DVS and ATIS pixels. The SF (source follower)

drives the large capacitive load that corresponds to the CC-PGA (capacitively-

coupled programmable gain amplifier) input. The CC-PGA replaces the differencing

circuit in the DVS and ATIS pixels. The CC-PGA does not have a reset transistor,

so that its input signal flow never gets interrupted. The ADM makes it possible to

adjust the output level whenever an event occurs. Finally, logical circuits control

all ADM switches and handle the communication links with AER systems.

TIA SF CC-PGA ADM

L
O

G
IC

REQ

ACK

ON

OFF

AER COMMUNICATION

Ipd

Figure 2.10: ADMDVS basic block diagram [22].

In the original ADMDVS design [22], the authors propose using a programmable

close loop gain, in order to make several TCS levels possible. We designed the

differencing circuit with a fixed closed loop gain. In Section 2.3.1, we describe the

implementation of the feedback and subtract encoding method in ADMDVS.

2.3.1 ADM in DVS

To understand how the ADM technique eliminates the DVS self-timed reset, we

analyze the circuit in Figure 2.11. The operation of the circuit is as follows: initially,

all switches are off. So, after some time we have Vout = VFB = Vref . Let us assume

that, initially, there is a positive gradient (i.e. temporal variation) at the input

Vdiff , so that is starts, for example, to decrease. In that case, Vout would start

to increase. If Vout increases enough, so that is crosses the Vrefh threshold, then

an on event is generated at VON . The on event is transmitted to an AER system

external to the pixel array. The asynchronous logical circuit activates the S3 switch

through φh control signal, so that Vx reaches Vrefh. The S3 switch remains active

until an acknowledgment signal arrives from the AER system. After having received

the acknowledgment signal, the asynchronous logical circuit actives the S1 switch

through φs control signal, which causes the Vout signal to be subtracted by a δ

value after some time. The δ value is defined as |Vrefh − Vref |, which is equal to

|Vrefl − Vref |.

18

−

+

Op Amp

Rfb

C2

C1

Cf

S1

Vref

S3

Vrefh

S2

Vrefl

VFB

Vout

Vx

φs

φl φh

−

+

−

+

A
sy

n
ch

ro
n
o
u
s

L
o
g
ic

VON

VOFF

φs, φl and φh con-

trol signals to

activate S1, S2 and

S3, respectively

RREQ

ACK

Vdiff

Vrefh

Vrefl

Vref

Figure 2.11: Asynchronous delta modulation circuit [21].

Let us define t1 and t2 as the time instants at which S3 and S1 are activated. By

taking into account the conservation of charge stored in C1, C2, and Cf , we have

[21]:

(Vin(t1)− VFB(t1))C1 + (Vout(t1)− VFB(t1))C2 + (Vref (t1)− Vx(t1))Cf =

(Vin(t2)− VFB(t2))C1 + (Vout(t2)− VFB(t2))C2 + (Vref (t2)− Vx(t2))Cf (2.12)

After Vref was defined, it does not change during the entire exposure measurement

interval. It is thus the same at t1 and at t2. The same reasoning applies for VFB.

We also have Vin(t1) ≈ Vin(t2). We expect that at t2 the Vout signal reaches Vref .

Then, Vx(t1) = Vx(t2) + δ. To simplify the analysis, we assume that Cf = C2.

Manipulating Equation (2.12) according to these assumptions yields:

Vout(t2) =

Vout(t1)− δ, for an on event,

Vout(t1) + δ, for an off event.
(2.13)

This result is an approximation, because Vin is never interrupted (i.e. reset), so that

Vout may be changing (i.e. increasing or decreasing) at any given time. The time

delay that is created by the handshaking with the external AER system causes Vout

not to reach Vref exactly. The error in Vout accumulates across all measurement

intervals, so that the number of spikes is somewhat higher (or lower) than the

reference spike number that is obtained with zero time delay.

19

2.3.2 ADMDVS Model

The ADMDVS pixel model is similar to the DVS pixel. The Vdiff signal is the same,

but the total closed loop gain is A = AdiffAADM , where Adiff is the differencing

circuit closed loop gain, and AADM is the ADM circuit closed loop gain. Each request

type is generated according to Equation (2.14), and the operating point after each

event is computed according to Equation (2.15):

Request Type =


on, Vout > Vrefh,

off, Vout < Vrefl,

no event, otherwise.

(2.14)

The operating point for each event is calculated as:

Operating Point =


Vout − δ, for an on event,

Vout + δ, for an off event,

Vout, otherwise.

(2.15)

2.4 Asynchronous Logical Circuit

According to the existence of a global time reference signal, digital circuits are di-

vided into two large classes [23]. The first digital circuit class, which is denoted

as the class of synchronous circuits, contains circuits whose behavior depends on

a global timing signal. Tasks and communication among different sub-circuits are

synchronized according to the global timing signal. The other digital circuit class,

which is denoted as the class of asynchronous circuits, contains circuits that do

not have a global timing signal. For communication among themselves, different

sub-circuits use handshaking protocols. The asynchronous approach has recently

received considerable attention from researchers in industry and in academia, be-

cause of some advantages that it has with respect to the synchronous approach [23],

[24]:

• Lower power consumption: only required circuit parts respond to a specific

task. Once that task is accomplished, those parts go back into an idle state,

unless they are required for the next task;

• High operating speed: specific sub-circuits or circuit parts are assigned to spe-

cific tasks. Such sub-circuits are faster than their synchronous counterparts;

• No clock distribution or clock skew problems: because the clock signal arrives

at different times in different sub-circuits, the clock period in synchronous sys-

tems must be carefully designed to ensure correct operation. Asynchronous

20

circuit design does not have that problem, simply because asynchronous cir-

cuits do not have a global clock;

• Automatic adaptation to physical properties: because of different causes such

as fabrication process variations, temperature variation, power supply varia-

tion, and so on, digital circuits present different delay types. In synchronous

digital circuit design, the solution topology and complexity vary according

to the delay type. Asynchronous digital circuits usually adapt to delay type

variations [23].

In spite of the asynchronous circuit advantages, we must still take into account

wiring and gate delays, in order to improve system performance and communication

among different sub-circuits. The communication among different sub-circuits is

performed according to a handshaking protocol. Two or more sub-circuits are con-

nected without any clock. In this dissertation, we use the four-phase handshaking

protocol, which is also called return-to-zero protocol. Figure 2.12 shows a typical

return-to-zero protocol timing diagram. The communication between the sender

and the receiver has four phases: i) the sender activates the REQ signal in order to

request data transfer; ii) when the receiver detects the high level at REQ, it activates

(rises) the ACK signal for acknowledgment. At this point, the receiver reads data;

iii) when the sender detects the high level at ACK, it sets the REQ signal to a low

voltage level; iv) the receiver detects the low level at REQ, and then it finishes the

communication by sending a low-voltage ACK signal to the sender.

REQ

ACK

Data DATA DATA DATA

Figure 2.12: Four-phase handshaking protocol timing diagram.

In the communication between the pixel array and AER systems (in the DVS,

ATIS or ADMDVS cases), the transmitted data correspond to the addresses of the

pixels where the events occur. The sender of the four-phase protocol is implemented

inside each pixel of the pixel array. Within each pixel, the address information is

generated by an encoder with a particular time delay. The REQ signal must be

generated with a similar time delay, so that the receiver reads valid information.

2.4.1 Delay-Insensitive Designs

In practical applications of asynchronous digital circuits, the designer must know

the extent to which the signal processing is affected by gate and wire time delays, as

well as by different delays that are caused by fabrication process variations. With

21

respect to robustness to time delays, the most robust asynchronous digital circuits

are achieved by delay-insensitive (DI) designs [23]. In DI designs, the amount of

delay is usually not important. However, DI designs are complex and, usually, not

suitable for large-scale circuit implementation. To reduce complexity, quasi-delay-

insensitive (QDI) designs have been proposed. A QDI circuit is defined, in [25], as a

circuit whose “correct operation is independent of the delays of gates and wires except

for certain wires that form isochronic forks”. Figure 2.13 illustrates the isochronic

fork concept. In a fork, the output of a logical gate is used by more than one logical

gate. The isochronic assumption applies to the logical OR gate in Figure 2.13: the

A signal arrives before the B signal. This means that C is stable after a minimum

delay, which corresponds to the sum of the time delays of the inverters shown in the

figure. Asynchronous digital circuit design becomes more flexible if QDI circuits are

used. We assume that the AER system mentioned in Section 2.5 is a QDI circuit.

To make sure it works properly, controlled delay circuits are inserted throughout

the signal path (in pixel design, in our case).

C

A

B

Input

Figure 2.13: A fork and the isochronic assumption.

2.5 Address-Event Representation

Address-Event Representation (AER) is a time-multiplexing technique. Event tem-

poral order is preserved. As AER development usually takes place in biological con-

texts, the building blocks in charge of generating, transmitting, or receiving spikes

are usually referred to as neurons, with a particular emphasis on the neurons that

generate spikes. In vision sensors, a spike-generating neuron is simply referred to as

a pixel. Among some of the AER main features [26], we point out that: i) communi-

cation is active only if a pixel has at least one spike to be transmitted; ii) every pixel

is represented uniquely by a few bits, and for all pixels those bits are transmitted

through the same data bus; iii) information transmission is asynchronous, which has

a positive impact on bandwidth and power consumption [27].

In figure 2.14 is depicted the concept of AER. On the left side, we have the

sender where is encoding and conveyed each neuron with some event. On the right

side, we have the receiver system, which decoding the information, and updates the

respective neuron with its new value. The sender and receiver are linked by means

of Digital Bus. In AER communication the time represents itself.

22

S
E

N
D

E
R

2

1

0

2,0,2,1,2,0,1

data bus

R
E

C
E

IV
E

R

2

1

0

Figure 2.14: AER concept [28].

At the sender side, the AER system involves an encoder and a decision mech-

anism. The encoder assigns a unique integer number for each pixel, and tries to

transmit this integer number whenever the pixel generates an event. The decision

mechanism organizes pixel access to the digital data bus, so that each pixel is usu-

ally able to transmit its own event to a receiver (which is external to the pixel array,

and often placed off-chip). A collision (i.e. a transmission conflict) occurs when two

or more pixels generate events simultaneously. To decide which of the pixels will be

granted access to the digital data bus, the decision mechanism must apply some cri-

terion. The decision mechanism may be arbitered or unfettered (i.e. unconstrained)

[28]. Ideally, the arbitered decision mechanism ensures that every spike generated by

any pixel will be transmitted. Collisions are solved by queuing requests, which may

lead to timing precision loss. The unfettered decision mechanism allows collisions to

keep unattended to, which prevents timing precision loss, but leads to data loss (i.e.

spikes not registered) on the other hand. For typical AER applications, the use of

an arbitered decision mechanism is recommended [28]. For simplicity, the decision

mechanism may also take decisions at random, to solve ties. Since this dissertation

does not focus on AER system design, we will use the random decision method.

The AER usually has a tree structure such as the one shown in Figure 2.15. The

j-th arbiter at the i-th decision level has label Ai,j. If the number of inputs is N ,

then the number of levels is dlog2Ne. For example let us assume that, at a given

time instant, only In0 and In4 generate simultaneous transmission requests. If all

arbiters at Levels 1 and 2 have the same time delay, then the arbiter at Level 3

(A3,0) must decide the winning input. It takes that decision randomly, let us say, in

favor of In4. To encode the winning pixel index, the path connecting A3,0 to In4 is

used. To implement the encoder, which is located close to the inputs before Level 1,

simple multiplexers are used (Section 3.10). The winning input transmission request

finally generates a transmission request to the receiver. This transmission request is

accompanied, according to Figure 2.15, by the encoded winning pixel address, which

is 4. The AER attends to one input request at a time (In4, in this example). It keeps

the other request, In0 in the example, blocked (i.e. without an acknowledgment)

23

until the In4 request has been acknowledged by an off-chip receiver according to

Figure 2.15.

Encoder

Level 1 Level 2 Level 3

A3,0

A2,0

A1,0

A1,1

A2,1

A1,2

A1,3

Digital

Datan-bits

In0

In1

In2

In3

In4

In5

In6

In7

Figure 2.15: Eight-input arbitered AER example. At each level, a winning input is
selected pairwise. Only one index, corresponding to the pixel having a circuit path
connecting it to the winning input at Level 3, is encoded for transmission through
the data bus.

2.6 Integrated Circuit Design based on the gm/ID

Method

Conventional integrated circuit design methods take into account two transistor

operation regions, namely strong or weak inversion. Such design method do not

consider the moderate region, where most circuits could achieve a low ratio between

power consumption and bandwidth, as well as reasonable transistor size. The key

parameter in conventional integrated circuit design is the overdrive voltage Vov. The

n-channel MOS transistor is in strong inversion if Vov > Vgs − VT and Vgs > VT ,

where Vgs is the voltage difference between the gate and source terminals of the

MOS transistor, and VT is the technology threshold voltage. In the weak inversion

regime, Vov is not important, because Vgs < VT leads to the transistor drain current

ID being entirely generated by charge carrier diffusion [29], which does not depend

on Vov. In low-power circuits, Vov could be lower than the Vov values typically used

in strong inversion, with a minimum value at 3φt, where φt = 26 mV is the thermal

voltage. The gm/ID method, on the other hand, takes into account all operation

regions [30]. It focuses on the ratio between transistor transconductance (gm) and

DC drain current (ID). This ratio is called efficiency of the transconductance. It is

analyzed versus the normalized drain current IDL/W . Using the gm/ID ratio as a

24

key parameter leads to control over transistor W/L ratios throughout the circuit,

and those ratios may subsequently be used for reducing circuit area. It also leads

to control over transistor operation regime, which is useful for a low-power design.

The gm/ID ratio is shown, in Equation (2.16), as a function of IDL/W :

gm
ID

=
1

ID

∂ID
∂VG

=
∂ (log ID)

∂VG
=

∂

{
log

[
ID

(WL)

]}
∂VG

. (2.16)

In Equation 2.17, the gm/ID is shown as a function of the EKV model inversion

coefficient ID/Is:

gm
ID

=
1

nφt

1− exp
(
−
√

ID
Is

)
√

ID
Is

, (2.17)

Replacing the ID/Is term in Equation (2.17) by ID/(2nφ
2
tKpW/L), we have gm/ID

as a function of the normalized drain current IDL/W , as shown in Equation (2.18):

gm
ID

=

√
2nµnCox
n

1− exp

(
−
√
ID/(

W
L
)

φ
√
2nµnCox

)
√
ID/(

W
L

)
. (2.18)

Equation (2.16) relates gm/ID, regardless of transistor size or W/L ratio, to the

derivative of log(ID) with respect to the gate voltage VG. The maximum gm/ID value

is achieved in subthreshold regime, and it decreases as the transistor is taken towards

strong inversion. By exploring many gm/ID versus IDL/W curves, a designer may

reduce circuit area.

In a semi-empirical application of the gm/ID method [31], a gm/ID ratio look-

up table is extracted from simulations of an advanced transistor model. Using

transistor widths large enough to avoid model border effects is recommended. The

gm/ID method is also applied to the design of an intrinsic gain stage. We follow a

similar semi-empirical approach in this dissertation.

Figure 2.16 shows the transistor setup to be used for extraction of gm/ID versus

ID curves. In this figure, we assume generic W and L for both transistors. The

simulation is a DC sweep of Vgs for the n-channel transistor, and of Vsg for the p-

channel transistor, with a carefully chosen (i.e. small enough) step size. To specify

the desired gm/ID curve for the n-channel transistor, we use a specific command line

expression in Spectre : (deriv(i(“TN0:d”?result“DC”))/i(“TN0:d”?result“dc”)). In

the p-channel transistor case, the TN0 object is replaced by TP0.

Figure 2.17 depicts several gm/ID versus ID curves extracted from an advanced

n-channel MOS transistor model [32]. The matching between the simulated curves

and the theoretical curve gets better as the transistor length gets larger. According

25

(a) (b)

Figure 2.16: Transistor setup for the extraction of gm/ID versus ID curves: (a)
n-channel transistor, and (b) p-channel transistor.

to the EKV model, we have (gm/ID)max = 1/(nφt) [31].

In Figure 2.19, similar results are shown (simulated gm/ID versus ID curves) for

the case of a p-channel transistor model. The relationship between gm/ID and Vgs,

for an n-channel transistor, is shown in Figure 2.19. The relationship between gm/ID

and the absolute value of Vsg (which is denoted as VGS in the plots), for a p-channel

transistor, is shown in Figure 2.20. After having set the transistor dimensions to

L = 1 µm and W = 22 µm, we also extracted the relationship between gm/ID and

Vgs for six different Vds values, which is shown in Figure 2.21 for both n-channel and

p-channel transistor models.

To choose transistor width, starting from an arbitrary point of a gm/ID versus

ID curve corresponding to a fixed length (say L = 1 µm), we applied the following

procedure: i) within the desired operation region, pick one gm/ID value and its

corresponding normalized current I∗D, and ii) find the W/L ratio according to W/L =

ID/I
∗
D. Additionally, if the design uses gm as a key parameter, ID may be found

according to ID = gm/(gm/ID)∗ before step (i) is executed.

26

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

0

5

10

15

20

25

30

gm/I
d
 with L =1µm

I
d
/(w/l)

g
m

/I
d

W =2µm

W =6µm

W =10µm

W =14µm

W =18µm

W =22µm

Theoretical Curve

(a)

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

0

5

10

15

20

25

30

gm/I
d
 with L =4µm

I
d
/(w/l)

gm
/I d

W =2µm
W =6µm
W =10µm
W =14µm
W =18µm
W =22µm
Theoretical Curve

(b)

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

0

5

10

15

20

25

30

gm/I
d
 with L =7µm

I
d
/(w/l)

g
m

/I
d

W =2µm

W =6µm

W =10µm

W =14µm

W =18µm

W =22µm

Theoretical Curve

(c)

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

0

5

10

15

20

25

30

gm/I
d
 with L =10µm

I
d
/(w/l)

gm
/I d

W =2µm
W =6µm
W =10µm
W =14µm
W =18µm
W =22µm
Theoretical Curve

(d)

Figure 2.17: Simulated gm/ID versus ID curves extracted from an n-channel tran-
sistor model. In each plot, transistor width varies from 2 µm to 22 µm. Transistor
length varies as follows: (a) L = 1 µm, (b) L = 4 µm, (c) L = 7 µm, and (d) L = 10
µm.

27

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

0

5

10

15

20

25

30

gm/I
d
 with L =1µm

I
d
/(w/l)

gm
/I d

W =2µm
W =6µm
W =10µm
W =14µm
W =18µm
W =22µm
Theoretical Curve

(a)

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

0

5

10

15

20

25

30

gm/I
d
 with L =4µm

I
d
/(w/l)

gm
/I d

W =2µm
W =6µm
W =10µm
W =14µm
W =18µm
W =22µm
Theoretical Curve

(b)

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

0

5

10

15

20

25

30

gm/I
d
 with L =7µm

I
d
/(w/l)

g
m

/I
d

W =2µm

W =6µm

W =10µm

W =14µm

W =18µm

W =22µm

Theoretical Curve

(c)

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

0

5

10

15

20

25

30

gm/I
d
 with L =10µm

I
d
/(w/l)

g
m

/I
d

W =2µm

W =6µm

W =10µm

W =14µm

W =18µm

W =22µm

Theoretical Curve

(d)

Figure 2.18: Simulated gm/ID versus ID curves extracted from a p-channel transistor
model. In each plot, transistor width varies from 2 µm to 22 µm. Transistor length
varies as follows: (a) L = 1 µm, (b) L = 4 µm, (c) L = 7 µm, and (d) L = 10 µm.

28

10
−1

10
0

10
1

0

5

10

15

20

25

30

gm/I
d
 with L =1µm

V
GS

gm
/I d

W =2µm
W =6µm
W =10µm
W =14µm
W =18µm
W =22µm

(a)

10
−1

10
0

10
1

0

5

10

15

20

25

30

gm/I
d
 with L =4µm

V
GS

g
m

/I
d

W =2µm

W =6µm

W =10µm

W =14µm

W =18µm

W =22µm

(b)

10
−1

10
0

10
1

0

5

10

15

20

25

30

gm/I
d
 with L =7µm

V
GS

g
m

/I
d

W =2µm

W =6µm

W =10µm

W =14µm

W =18µm

W =22µm

(c)

10
−1

10
0

10
1

0

5

10

15

20

25

30

gm/I
d
 with L =10µm

V
GS

gm
/I d

W =2µm
W =6µm
W =10µm
W =14µm
W =18µm
W =22µm

(d)

Figure 2.19: Relationship between gm/ID and Vgs extracted from an n-channel tran-
sistor model. In each plot, transistor width varies from 2 µm to 22 µm. Transistor
length varies as follows: (a) L = 1 µm, (b) L = 4 µm, (c) L = 7 µm, and (d) L = 10
µm.

29

10
−1

10
0

10
1

0

5

10

15

20

25

30

gm/I
d
 with L =1µm

V
GS

gm
/I d

W =2µm
W =6µm
W =10µm
W =14µm
W =18µm
W =22µm

(a)

10
−1

10
0

10
1

0

5

10

15

20

25

30

gm/I
d
 with L =4µm

V
GS

g
m

/I
d

W =2µm

W =6µm

W =10µm

W =14µm

W =18µm

W =22µm

(b)

10
−1

10
0

10
1

0

5

10

15

20

25

30

gm/I
d
 with L =7µm

V
GS

gm
/I d

W =2µm
W =6µm
W =10µm
W =14µm
W =18µm
W =22µm

(c)

10
−1

10
0

10
1

0

5

10

15

20

25

30

gm/I
d
 with L =10µm

V
GS

g
m

/I
d

W =2µm

W =6µm

W =10µm

W =14µm

W =18µm

W =22µm

(d)

Figure 2.20: Relationship between gm/ID and Vsg extracted from an n-channel tran-
sistor model. The absolute value of Vsg is denoted as Vgs in the plots. In each plot,
transistor width varies from 2 µm to 22 µm. Transistor length varies as follows: (a)
L = 1 µm, (b) L = 4 µm, (c) L = 7 µm, and (d) L = 10 µm.

10
−1

10
0

10
1

0

5

10

15

20

25

30

gm/I
d
 curve NMOS with W =22µm and L =10µm

V
GS

g
m

/I
d

V

DS
 =0.1V

V
DS

 =0.44V

V
DS

 =0.78V

V
DS

 =1.12V

V
DS

 =1.46V

V
DS

 =1.8V

(a)

10
−1

10
0

10
1

0

5

10

15

20

25

30

gm/I
d
 curve PMOS with W =22µm and L =10µm

V
GS

g
m

/I
d

V

DS
 =0.1V

V
DS

 =0.44V

V
DS

 =0.78V

V
DS

 =1.12V

V
DS

 =1.46V

V
DS

 =1.8V

(b)

Figure 2.21: Relationship between gm/ID and Vgs in the case of Vds variation: (a)
n-channel transistor and (b) p-channel transistor.

30

Chapter 3

Pixel Design

In this chapter, we present the design of each pixel that is studied in this work

(DVS, ATIS, and ADMDVS) using AMS (austriamicrosystems.com) CMOS 180

nm fabrication technology. The gm/ID methodology was only used for operational

amplifier and voltage comparator design. The electrical simulation results were

obtained from Cadence Spectre.

3.1 Photoreceptor based on Transimpedance Am-

plifier

The photosensitive cell, which is based on the logarithmic transimpedance amplifier,

is the same for all pixels that are studied in this work. It is shown in Figure 3.1. It

corresponds to a well-known cascode amplifier with a source-follower amplifier (i.e.

the M3 transistor, which is operated in common-drain configuration) in the feed-

back loop [33]. The photoreceptor based on transimpedance amplifier is suitable for

sensing temporal contrast change rather than absolute light intensity values. The

M2 cascode transistor cancels the Miller effect that would otherwise amplify the

Cgd1 capacitance, which exists between the gate and drain terminals of M1, and it

also doubles the amplifier gain if gds2 = gds4 (M1 and M4 have the same transcon-

ductance) and if (W/L)1 = (W/L)2. The amplifier gain is Aamp = −gm1/gds4.

In Figure 3.1a, the transistor sizes are as follows: L = W = 1 µm for M1;

L = 180 nm and W = 220 nm for M2; L = 200 nm and W = 300 nm for M3; and

L = 1 µm and W = 220 nm for M4 and M5. The M3 transistor (feedback amplifier)

works in the subthreshold regime, because it is biased by the photodiode reverse

current Ipd, which is very small (typically below 1 nA):

Vp = nφt log

(
Ipd
Is

)
+ VT + Vd (3.1)

31

(a)

IpdCin

+

−
Vin

Vings3 Voutgm3

Cgs3

gdsout

Vingm1 Cout

+

−
Vout

(b)

Figure 3.1: Photoreceptor based on transimpedance amplifier: (a) schematic dia-
gram and (b) small-signal model.

Ipd depends on the pixel input light intensity. The M3 gate voltage is thus a

logarithmic function of Ipd. The amplifier bias current, Ibias, allows modification of

the photosensitive cell cutoff frequency and gain. The gain depends on M1 transcon-

ductance, which is gm1 = Ibias(gm/ID)1.

If the photocurrent Ipd increases slightly, such that small-signal behavior applies,

then the M3 source voltage decreases slightly (actually Vp at the M3 gate remains

approximately constant, because of negative feedback, so that vd tends to decrease,

but it remains approximately constant). If the M3 source voltage decreases, then

the cascode amplifier increases the M3 gate voltage, which implements a negative

feedback effect on the M3 source voltage. The Vd potential remains approximately

fixed, as if this node was connected to a virtual ground, which increases the amplifier

bandwidth [15]. The current flowing through the M3 source is sensitive to absolute

light intensity values, as well as to temporal contrast change.

To compute the photoreceptor transimpedance gain, we solve for the M3

gate voltage (Vp = Vout) in the equation that describes the exponential rela-

tionship between Ipd and Vp (or Vout), and then linearize the Vp (or Vout) ex-

pression around the bias point that is defined by Ipd0. Assuming a small Ipd

input signal, which as denoted as ∆I, we have Vout/∆I = φt/(κIpd0), where

Ipd0 = Is exp (VG3 − nVS3 − VT)/(nφT) is a DC current corresponding to an Ipd op-

erating point, and κ = 1/n = 0.75 is the slope factor.

Using a small-signal model, we can obtain the photoreceptor transfer function.

By applying Kirchoff current law to both nodes in Figure 3.1b, we have:

32

(sCin + gs3 + sCgs3)Vin − (gm3 + sCgs3)Vout = −ipd
(sCgs3 + sCout + gdsout)Vout + (gm1 − sCgs3)Vin = 0

(3.2)

We define the same constants as in [34], which are listed here for convenience:

A =
gm1

gdsout

, τin=
Cin

gs3

, τout =
Cout

gm1

, α=
Cgs3

Cin

, β =
Cgs3

Cout

,Rτ=
τin
τout

= κ
Cin

Cout

Ibias
Ipd

.

By solving for Vout/Vin in (3.2), we obtain:

Vout
Vin

=
Vout
i/gs3

=
ADC(1− s

ωz
)

s2

ω2
n

+ s
ωnQ

+ 1

=
γ · (1− sβτout)

s2γ(1 + α + β)τinτout + sγ[τin(α(1 + 1
A

) + 1
A

) + τout(β(1− k) + 1)] + 1
,

(3.3)

where ωn is the linear system natural frequency in a canonical representation, ωz is

the frequency of a transfer function zero, ADC is the DC voltage gain, Q is the filter

(i.e. linear system) quality facotr, γ = A/(1 + κA), and A is the cascode amplifier

voltage gain. Assuming A >> 1 yields ADC = 1/κ. By equating the second-order

expression in the second line of Equation (3.3) to the canonical second-order form

in the first line of Equation (3.3), we obtain:

ωn =

√
κ

(1 + α + β)τinτout
Q =

√
κ(1 + α + β)Rτ

αRτ + 1 + β(1− κ)
(3.4)

For example, if typical constant values such as α = 0.05, β = 0.25, and κ = 0.75

are chosen, then Q can be considered as a function of Rτ , as shown in Figure 3.2,

which is useful for design purposes.

α = 0.05 κ = 0.75 β = 0.252.2
2

1.8
1.6
1.4
1.2

1
0.8
0.6

Q

Rτ

0 50 100 150 200

Figure 3.2: Quality factor versus Rτ .

The photoreceptor response to a input current pulse is shown in Figure 3.3, for

33

107.5

97.5

100.0

110.0

105.0

102.5

112.5

I
(p

A
)

2.0
time (ms)

0.0 0.5 1.0 1.5

(a)

227.0

229.0

V
p

(m
V

)

231.0

230.0

228.0

226.0
2.0

time (ms)
0.0 0.5 1.0 1.5

tr=120µs

(b)

320

324

322

323

321

319

325

2.0
time (ms)

0.0 0.5 1.0 1.5

tr = 20µs

V
p

(m
V

)

(c)

392

384

390

V
p

(m
V

)
386

388

2.0
time (ms)

0.0 0.5 1.0 1.5

tr=10µs

(d)

Figure 3.3: Photoreceptor input current pulse (a), and photoreceptor pulse response
for three different Ibias values: (b) 50 pA, (c) 300 pA, and (d) 1 nA.

three different Ibias values: 50 pA, 300 pA, and 1 nA. As Ibias gets larger, the rise

time (tr) gets shorter, and Q gets larger.

3.2 Operational Amplifier

Whenever an operational amplifier is required in this work (in DVS, ATIS or AD-

MDVS designs), the circuit shown in Figure 3.4 is used. It is a two-stage operational

amplifier, and the transistor sizes as follows: L = 1 µm and W = 1.71 µm for M1a

and M1b; L = 1 µm and W = 3.55 µm for M2; L = 1.34 µm and W = 0.5 µm for

M3a and M3b; L = 1 µm and W = 16.35 µm for M4; and L = 1 µm and W = 3.43

µm for M5. The Cm capacitance value is 55.3 fF. The transistor sizes are obtained

from Table 3.1, and the design procedure is explained next. A complete analysis

of this circuit may be found elsewhere [35], but for convenience some details are

presented here.

The transfer function of the two-stage operational amplifier in Figure 3.4 is shown

in Equation (3.5):

34

M1a M1b

M3a M3b

M5
M4

Cm

M2

Vbias

V(−) V(+)

Cout
+

−
Vout

Cp1

Figure 3.4: Two-stage operational amplifier.

Vo(s)

Vin(s)
=

gm1gm2

GIGII
(1− sCm/gm2)

s2
[
Cp1Cout+CmCp1+CmCout

GIGII

]
+ s

[
Cp1+Cm

GI
+ CII+Cm

GII
+ gm6Cm

GIGII

]
+ 1

, (3.5)

where GI is the first-stage output conductance and GII is the second-stage output

conductance. The first and second-stage output transconductances are gm1 and gm2.

The two poles and the zero of the transfer function shown in Equation (3.5) are:

P1 =
−GIGII

gm2Cm
(3.6)

P2 =
−gm2Cm

Cp1Cout + CoutCm + Cp1Cm
(3.7)

z =
gm2

Cm
(3.8)

We next compute three figures of interest [14], which are namely: unity-gain band-

width (GBW), non-dominant pole (NDP) and z/GBW ratio (Z):

35

GBW =
gm1

Cm
(3.9)

NDP =
P2

GBW
=
gm2

gm1

C2
m

Cp1Cout + Cm(Cp1 + Cout)
(3.10)

Z =
z

GBW
=
gm2

gm1

(3.11)

Cm = 0.5
NDP

Z

[
Cp1 + Cout +

√
(Cp1 + Cout)2 + 4Cp1Cout

Z

NDP

]
(3.12)

Note, from Equation (3.9), that the operational amplifier speed (GBW) depends

linearly on M1 transconductance, which is gm1 = ID1(gm/ID)1. In subthreshold

operation, gm/ID may be expressed as a constant value. Combining Equations (3.9)

to (3.11) yields Equation (3.12):

Using the analysis expressions in Equations (3.9) to (3.12), we can apply the

gm/ID method to design the two-stage operational amplifier. For each transistor,

we might get one particular coordinate pair (gm/ID; IDL/W) from the gm/ID ver-

sus IDL/W curves, taking into account a particular operation region (for example,

inversion coefficient equal to 0.1), as it was explained in Chapter 2. An alternative

gm/ID approach consists in using offset voltage specifications. It is possible to know

in advance (i.e. before the design) the inversion level at which each transistor reaches

such specifications. We assumed that only one inversion level will be applied for the

entire design. To yield an operational amplifier with enough phase margin, the Z

and NDP values must be chosen carefully. Choosing NDP ≥ 2.2 and Z ≥ 10 leads

to phase margin between 60o and 70o. After the coordinate pairs (gm/ID; IDL/W)

are selected for each transistor, we design the operational amplifier in five steps [31]:

1. Initial Conditions: choose an arbitrary value for Cm. For example, Cm = 50

fF.

2. M1 and M2 Sizing: Calculate gm1 = GBW × Cm and gm2 = Zgm1. To find

the W/L ratio for M1, compute ID1 = gm1/(gm/ID)1, and then use ID1 in

(W/L)1 = ID1/I
∗
D1. Similarly, for M2, compute ID2 = gm2/(gm/ID)2, and then

use ID2 in (W/L)2 = ID2/I
∗
D2.

3. M3, M4, and M5 Sizing: To avoid systematic offset, we assume that

(gm/ID)3 = (gm/ID)2. The W/L ratio for M3 is then found according to

(W/L)3 = ID1/I
∗
D2. To find the W/L ratio for M5, we consider the maximum

tail current of the differential amplifier, then choose a normalized current I∗D5

within the adequate inversion level, and then solve (W/L)5 = 2ID1/I
∗
D5. Fi-

nally, we find M4 size minimizing systematic offset according to (W/L)4 =

36

1/2(ID2/ID1)(W/L)5.

4. Re-calculating Cm: the Cp1 and Cout values are computed according to the

following expressions:

Cp1 = Cdiff1 + Cdiff3 + Cg2 (3.13)

Cout = Cp2 + CL = Cdiff2 + Cdiff4 + CL (3.14)

where Cp1 is the first-stage output capacitance, Cout is the second-stage out-

put capacitance, Cdiff is the diffusion capacitances, LDS is the source-drain

metal width, Cjw is the junction capacitance, Cjsw is the junction sidewall

capacitance and Cov is the overlap capacitance. By plugging the AMS 180

nm technology parameters into the expressions above, we find Cjn = 1.12 fF,

Cjwn = 0.155 fF, Cjp = 1.15 fF, Cjwp = 0.09 fF, Covn = 0.33 fF, and LDS

= 0.26. The other parameters such as: Cdiff and Cg2 depend on the transistor

width (W) and are defined next:

Cdiff1 = CjpW1bLDS + Cjwp(2W1b + 2LDS) (3.15)

Cdiff2 = CjnW2LDS + Cjwn(2W2 + 2LDS) (3.16)

Cdiff3 = CjnW3bLDS + Cjwn(2W3b + 2LDS) (3.17)

Cdiff4 = CjpW4LDS + Cjwp(2W4 + 2LDS) (3.18)

Cg2 = Cgs2 + Cgb2 + CovnW2 (3.19)

The Cgs and Cgb capacitances were extracted for different (W/L) values (differ-

ent transistors) versus if (inversion coefficient), so that the simulation results

get closer to the real circuit behavior.

5. Back to Step 1: recompute Cm according to Equation (3.12). Iterate over

these five steps until the Cm value converges.

We designed the operational amplifier to work up to 1 MHz with a maximum

200 fF capacitive load. The Cm capacitance value is 55.3 fF, and transistor dimen-

sions are presented in Table 3.1. Simulation results (two-stage operational amplifier

frequency response) are shown in Figure 3.5, for different bias current values (Ibias).

Operational amplifier GBW varies from 200,0 kHz to 1 MHz, and the phase margin

remains constant at 60o, as the bias current varies from 5 nA to 30 nA. Constant

37

phase margin and GBW variation from 200,0 kHz to 1 MHz are useful features, be-

cause they allow image sensor power consumption selection according to the speed

required for sensing specific temporal contrast change events.

Table 3.1: Two-stage operational amplifier transistor sizes.

Transistor W (µm) L (µm)
M1a,M1b 1.76 1

M2 3.64 1
M3a,M3b 0.5 1.3

M4 16.8 1
M5 3.52 1

M74: 831.69kHz, 60.22783deg

-100

P
H

A
S
E

(D
e
g
)

-300

-200

0

200

100

-100

-50

0

50

100

L
O

O
P

G
A

IN
(d

B
)

100 101 102 106 107105103 104

freq (Hz)

A BCDE

405.611.25
5 181.6 60.6

PhaseGB KhzIbias(nA)

62117.5
23.75
30 1031.1 60.24

60.22
60.30
60.37

831.7
E
D
C
B
A

A BCDE

Figure 3.5: Two-stage operational amplifier frequency response.

3.3 Voltage Comparator with Hysteresis

We implemented the same voltage comparator with hysteresis that was described in

[16]. It is shown in Figure 3.6. The transistor sizes are as follows: for M1a and M1b,

38

L = 1 µm and W = 270 nm; for M2, L = 1 µm and W = 10.5 µm; for M3a and

M3b, L = 1 µm and W = 1.77 µm; for M4, L = 1 µm and W = 3 µm; for Mhyst,

L = W = 1 µm; for Ms1 and Ms2, L = 180 nm and W = 220 nm. This design

assumes that the offset voltage is within a desired range. In our case, the maximum

offset voltage is expected to be around 20 mV. Voltage hysteresis is implemented

by means of the Mhyst transistor. The Ms1 transistor acts as a switch, which helps

power consumption to be reduced when the non-inverting input voltage is below the

inverting input voltage. The Ms2 transistor, which also acts as a switch, enables

hysteresis only when the non-inverting input voltage is greater than the inverting

input voltage.

M1a M1b

M3a M3b

M5

M2

Ms1

M4

Ms2

Mhyst

I1a I1b

I4
Ihyst

I5

Vout

I3a I3b

V(−)

−+VTRP

V(+)

Vbias
Vh

Vo1

Figure 3.6: Voltage comparator [18].

The voltage comparator input voltage offset is due to random mismatch between

M1a and M1b. Mismatch is a time-independent difference (error) that exists between

the designed circuit and the fabricated circuit [29], which, among many other things,

causes M1a and M1b not to be identical. Systematic mismatch is created during

fabrication, because of limited accuracy in lithographic and chemical processes. By

using appropriate layout techniques, we can reduce systematic mismatch effects.

Random mismatch originates in local variations that occur in the fabrication process,

and its effects dominate over the systematic mismatch effects for small distances

between devices such as M1a and M1b. Random mismatch may be modelled using

a particular error model that is known as the Pelgrom model [36]. The random

offset voltage between the differential pair (M1a and M1b) inputs may be estimated

according to Equation (3.20):

Voffset,total =
√
V 2
offset,pair + V 2

offset,mirror (3.20)

39

where

Voffset,pair =

√
A2
V TO

WL
+

(
ID
gm

)2

pair

A2
β

WL
(3.21a)

Voffset,mirror =

√
A2
β

WL
+

(
gm
ID

)2

mirror

A2
V TO

WL
, (3.21b)

The parameters Aβ and AV TO depend on the fabrication process, and W and L

are the transistor width and length. According to Equations (3.21a) and (3.21b),

the offset voltage may be adjusted by a careful selection of W and L.

We used the gm/ID methodology to design the voltage comparator so that its

offset voltage is within the desired range (below 20 mV). Figure 3.7 shows the circuit

used for verifying whether the voltage comparator offset was within the desired

range or not. The voltage comparator offset estimation, based on a Monte Carlo

simulation1, is shown in Figure 3.8.

M1a M1b

M3a M3b

Ibias

I1a I1b

V(−)

−+VTRP

V(+)

−

+

Figure 3.7: Circuit for verifying the voltage offset based on Monte Carlo simulation.

We next describe how Ms2 and Mhyst implement the hysteresis voltage We first

define the hysteresis upper limit V +
TRP , which is relevant when V(+) < V(−). In this

case, we have I1a > I1b, I1a < I5, and I1b > 0, so that Ms2 is off and Ihyst = 0.

When voltage Vo1 reaches the minimum value for which M1b and M3b remain in

the saturation region (|Vds| > 3φt for M1b and M3b), I1a starts to decrease, and

it decreases until I1a = I1b = I3a = I3b. We state that I1a = I1b corresponds to

V +
TRP = 0, an so V +

TRP is defined as V +
TRP = Vgs1a − Vgs1b. After that, we define the

1This Monte Carlo simulation was accomplished with the objective of validating the voltage
offset specification on the voltage comparator design. This result indicates that the voltage offset
stays within the desired range (below 20 mV)

40

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

Voltage Offset (mV)

-30.0 -20.0 -10.0 0.0 10.0 20.0 30.0

σ = 10.4262 mV
µ = 674.56 µV

Figure 3.8: Voltage comparator offset estimation based on Monte Carlo simulation.

hysteresis lower limit V −TRP , which is relevant when V(+) > V(−). In this case, we

have I1a < I1b, I1b < I5, Vout = VDD, and Ihyst > 0. Applying Kirchoff current law

to the Vo1 node, we have I3b = I1b − Ihyst. If Vo1 is low enough for M1b and M3b to

operate in the saturation region, then:

I5 = I1a + I1b → I5 = 2I1a − Ihyst → I1b =
I5 + Ihyst

2
, (3.22)

I1a = I3a = I3b → I1a =
I5 + Ihyst

2
− Ihyst → I1a =

I5 − Ihyst
2

. (3.23)

Using the EKV model in the subthreshold regime and defining V −TRP = Vgs1a −
Vgs1b, where Vgs1a and Vgs1a are defined by the two equations provided below, we

have V −TRP = nφt log (I5 − Ihyst)/(I5 + Ihyst).

Vgs1a = nφt log
I1a
I5

+ Vtn = nφt log
I5 − Ihyst

2I5
+ Vtn, (3.24)

Vgs1b = nφt log
I1b
I5

+ Vtn = nφt log
I5 + Ihyst

2I5
+ Vtn. (3.25)

Finally, the comparator hysteresis voltage is found according to Vhyst = V +
TRP −

V −TRP . Expressing the currents according to the EKV model in weak inversion yields

Equation (3.26). According to Equation (3.26), Vhyst does not depend on the tran-

sistor threshold voltage . The comparator design, with an emphasis on hysteresis

verification, was validated by electrical simulations, as shown in Figure 3.9.

Vhyst = nφt log

[
exp Vbias−Vh

nφt
+ 1

exp Vbias−Vh
nφt

− 1

]
(3.26)

41

-.5

0.5

2.0

V
o
u
t

(V
)

1.5

0.0

1.0

899897
Vhyst (mV)

901896 900898

2mV

(a)

100 150 200 250 300
Vh (mV)

10−4

10−3

10−2

10−1

100

V
h
y
s
t

(m
V

)

(170 mV,2.19 mV)

(b)

Figure 3.9: Voltage comparator simulation results: (a) Spectre simulation indicating
hysteresis, using Vh = 170 mV; (b) hysteresis voltage Vhyst, plotted as a function of
Vh.

3.4 AER Circuit

As mentioned in Sec. 2.5, AER allows off-chip transmission of spikes generated

within the pixel array. For that purpose, pixel requests must be multiplexed some-

how. The AER system presented in this work uses time-domain multiplexing. Figure

3.10 shows an AER system that was designed for a 4 × 4 pixel array. The Y-AER

system, which is shown in Figure 3.10b, enables row requests (RREQ) one at a

time. Pixels in the acknowledged row request access to the communications channel

(which would be a serial bus, in the context of our work) via X-AER, which is shown

in Figure 3.10a. All such pixels will have their events (spikes) transmitted through

the communications channel, and their row will only be released after all events

were successfully transmitted. Ultimately, the communication between pixels and

an off-chip system is thus managed by the X-AER system. The X-AER system has

an additional arbiter that is referred to as X-ARBITER. By generating a PARITY

signal, the X-ARBITER whether the event that was detected by the pixel is an

on event or an off event. In the DVS and ADMDVS pixels, PARITY is at a high

voltage level to indicate an on event, and it is at a low voltage level otherwise. In

the ATIS pixel, PARITY indicates which threshold has been crossed by the curve

corresponding to integrated charge: PARITY at a high voltage level indicates that

Vreq,Hx has been crossed, and PARITY at a low voltage level indicates that Vreq,Lx

has been crossed. The X-ARBITER is only used at the second level of the arbiter

tree.

The encoders are implemented using logical multiplexers. The fact that the data

are valid (i.e. ready for transmission) in indicated by the En Read Pixel signal,

which is sent, after some time delay, by the X-AER system to an off-chip receiver.

The time delay must be adjusted to ensure that the data are valid. Recall that in

42

ARBITER

ACK0
IN0
ACK1
IN1

RREQ
ACK
WIN

ARBITER

ACK0
IN0
ACK1
IN1

RREQ
ACK
WIN

ARBITER

ACK0
IN0
ACK1
IN1

RREQ
ACK
WIN

ARBITER

ACK0
IN0
ACK1
IN1

RREQ
ACK
WIN

X-ARBITER

IN0

ACK0

bit0

IN1

ACK1

bit1

data

PARITY

ACK

RREQ

X-ARBITER

IN0

ACK0

bit0

IN1

ACK1

bit1

RREQ

ACK

PARITY

data

ARBITER

ACK0
IN0
IN1
ACK1

RREQ
ACK
WIN

CA ON<0>
CR ON<0>
CA ON<1>
CR ON<1>

CA OFF<0>
CR OFF<0>
CA OFF<1>
CR OFF<1>

CA ON<2>
CR ON<2>
CA ON<3>
CR ON<3>

CA OFF<2>
CR OFF<2>
CA OFF<3>
CR OFF<3>

d2.0

P2.0

P2.1

d2.1

DELAY

En Read Pixel
ACKoff−chip

data<1>

FIRST LEVEL SECOND LEVEL THIRD LEVEL

0

1

out

S
e
l

0

1

out

S
e
l

d2.0

d2.1

data<0>

d
a
ta
<

1
>

P2.0

P2.1

data<4>

d
a
ta
<

1
>

ENCODER

CA ON<0>

CA OFF<0>
CA<0>

CA ON<1>

CA OFF<1>
CA<1>

CA ON<2>

CA OFF<2>
CA<2>

CA ON<3>

CA OFF<3>
CA<3>

IN TO ARRAY

(a)

ARBITER

ACK0
IN0
ACK1
IN1

RREQ
ACK
WIN

ARBITER

ACK0
IN0
ACK1
IN1

RREQ
ACK
WIN

ARBITER

IN0
ACK0
IN1
ACK1

RREQ
ACK
WIN

d2.0

d2.1

DELAY

data<3>

0

1

out

S
e
l

data<3>

d2.0

d2.1
data<2>

RA<0>
RR<0>
RA<1>
RR<1>

RA<2>
RR<2>
RA<3>
RR<3>

(b)

Figure 3.10: AER system for 4 × 4 pixel array: (a) X-AER system (for enabling
column requests); (b) Y-AER system (for enabling row requests).

the quasi-delay-insensitive approach we have no control over the time delay of each

logical element, so we must assume arbitrary delays in gates and wires. By using

the quasi-delay-insensitive approach, we obtain low-complexity asynchronous logic

designs, at the expense of an increase in power consumption and circuit area.

Figure 3.11 shows the circuits that compose each part of the X-AER and Y-AER

systems. The arbiters are equal to the ones described in [24]. Each arbiter consists

of a mutual exclusion circuit, AND gates, and two Muller C-elements. The mutual

exclusion element can be implemented using a pair of cross-coupled NAND gates and

a metastability filter, as shown in Figure 3.11a. The metastability filter is needed for

solving potential conflicts between the IN0 and IN1 inputs, so that one of the input

signals gets selected as a winner. Conflicting inputs lead the NAND gate outputs

to a metastable state, in which one of the output voltage signals is halfway between

ground and VDD. The mutual exclusion element thus ensures that only one of the

inputs will be attended to. Because of the AND gates and the Muller C-elements,

the handshaking is mutually exclusive. When attention is being paid to one of the

input signals, the other signal is blocked until the processing of the winning signal

43

M1 M2

M3 M4

Filter

IN0

IN1

G1

G0

(a)

ME
IN1

IN0 G0

G1IN1

IN0

C

CACK1

ACK0

y1

y2

RREQ

ACK

y1
WINy2

(b)

ME
IN1

IN0 G0

G1IN1

IN0

C

CACK1

ACK0

y1

y2

RREQ

ACK

0

1

out

S
e
l

bit0

bit1

PARITY

data
y1

PARITYy2

(c)

Figure 3.11: Circuits that compose parts of the AER systems: (a) mutual exclusion
(ME) circuit, (b) basic arbiter, and (c) X-ARBITER.

is complete.

3.5 Exposure Measurement Logic

We use the same exposure measurement logic that was proposed in [16]. By acti-

vating each switch in Figure 2.6 depending on the integration cycle, explained in

subsection 2.2.2, the exposure measurement logic enables True CDS. In the initial

integration cycle, the logical state is ‘0’, which sets the comparator reference voltage

to Vhigh. When the integrated photocurrent crosses the Vhigh threshold, the exposure

measurement logic communicates with both the X and Y-AER systems. It lets the

Y-AER system know that one pixel has started its brightness measurement cycle.

Immediately after the Y-AER system acknowledges the exposure measurement logic

request, the exposure measurement logic request access to the data bus through X-

AER. At that point, the exposure measurement logic state changes to ‘1’, which

means that the exposure measurement logic is handling the main charge integration

phase (i.e. the brightness measurement cycle). The comparator reference voltage

is changed to Vlow. The exposure measurement logic state defines which switch is

activated. State ‘0’ means reference voltage equal to Vhigh, and state ‘1’ means ref-

erence voltage equal to Vlow. Whenever the temporal change detector generates an

event, the exposure measurement logic must return to state ‘0’, not caring whether

the brightness measurement cycle has already started or not.

During the design, we observed an exposure measurement logic circuit problem,

caused by the comparator time delay, which was not analyzed in [16]. Long simu-

44

lations showed that the exposure measurement logic would not return to state ‘0’

immediately after the temporal change detector had generated an event. If the pixel

is in its brightness measurement cycle (state ‘1’), and the temporal change detector

generates an event, then the exposure measurement logic state must immediately

return to ‘0’. However, we observed that the reset pulse width is typically not large

enough to wait until the voltage comparator output goes to the low voltage level,

which is shown in Figure 3.12a. In the original exposure measurement circuit design,

both the reset signal and voltage comparator output signal must be low, for the state

to return to ‘0’. Possible solutions would be: i) increasing voltage comparator speed

by increasing its bias current, and ii) adjusting, with an off-chip control signal, the

reset signal pulse width. The first solution is not recommended in vision sensors,

because it increases power consumption. The second solution requires an external

control signal.

We propose a simple on-chip solution that uses a few additional devices, as shown

in Figure 3.13. The circuit shown in Figure 3.13a works according to the finite state

machine that is shown in Figure 3.13b. The main idea is that, for the purpose of

changing the exposure measurement logic state to ‘0’, the reset signal must dom-

inate over the voltage comparator output. After the reset signal was generated,

the exposure measurement logic state returns to ‘0’ through the Out signal. The

exposure measurement logic state behavior based on the proposed solution is shown

in Figure 3.12b. It is clear that the invalid state condition is suppressed. Besides,

this solution does not require larger comparator bias currents or an off-chip control

signal.

C
A

1.8

0

0

1.8

R
A

0O
u
t c

o
m
p

1.8

V
rs
t 1.8

0

1.0

0.5V
c
o
m
p

298.032

time (ms)

298.02 298.037 298.042

The FSM must re-

turn to state ‘0’

Tdelay ≈ 6µs INVALID

STATE

(a)

O
u
t c

o
m
p

0

R
A

1.8

C
A

O
u
t F

S
M

V
c
o
m
p

1.0

0.5

time (ms)

289.86 289.88289.84

1.8

0
1.8

0
1.8

0

Cross Vhigh threshold

B

A

EM returns to initial

state ‘0’

(b)

Figure 3.12: Timing diagram for a single off event detected at DVS pixel: (a)
exposure measurement logic in invalid state because of voltage comparator delay,
and (b) correct response (OutFSM) obtained with the proposed solution.

45

M1

M2

M3

Vrst

m
e
m

1

m
e
m

1

Out

Outcomp

(a)

S0

S1

S2

S3

Outcomp,Vrst

|Out

Outcomp,Vrst

|Out
Outcomp,Vrst

|Out

Outcomp,Vrst

|Out

(b)

Figure 3.13: Circuit for solving the exposure measurement logic invalid state prob-
lem: (a) finite state machine implementation, and (b) finite state machine imple-
mentation state diagram.

3.6 Delay Element Circuit

We designed a CMOS delay element for the ADMDVS pixel, according to the topol-

ogy presented in [37]. The circuit is shown in Figure 3.14. Transistor sizes are as

follows: for M1a and M1b, L = 180 nm and W = 220 nm; for M2a and M2b, L = 2

µm and W = 1 µm, for M3a and M3b, L = 300 nm and W = 500 nm; for M4a and

M4b, L = 2 µm and W = 500 nm; for M5a and M5b, L = 2 µm and W = 1 µm; and

for Mb1 and Mb2, L = W = 1 µm. The delay is adjusted through the bias current

Ibias, and this delay element is recommended for low-power systems. We tried to use

the delay element provided in the CORELIB from AMS. Unfortunately, the total

delay was too short. Also, the pixel was larger and power consumption was higher

than desirable. The delay is given by Equation (3.27) [38], where Vtp and Vtn are

p-channel and n-channel transistor threshold voltages, C1 is the node capacitance

at M4a gate, C2 is the node capacitance at the output, κ is 1/n (n is the slope

factor) and δt is the time for the regeneration at the CMOS thyristor. According

to Equation (3.27), time delay td is inversely proportional to the bias current Ibias,

as long as δt is relatively small. We used repeated simulations to manually find

adequate transistor sizes.

td =
C1Vtp
Ibias

+ 3

√
6C2C2

1

κI2bias
Vtn + δt (3.27)

46

M1a M2a
M3a M3b M2b M1b

M4a M4b

M5a M5bMb1 Mb2

VDD

Ibias Ibias

Vbias Vbias

Input

C2

C1

Output Output

Figure 3.14: Delay element circuit.

3.7 Summary of Designed Pixels

Transistor count for each pixel is summarized in Table 3.2. The area figures corre-

spond to active elements only. The area is estimated by adding transistor channel

areas WL, not taking into account the rules for minimum spacing between active

elements. The area required by capacitors and wiring was not taken into account.

Table 3.2: Active components within each pixel, and estimated area figures.

Pixel Type Part # Transistors Area (µm)

DVS
Analog 35 73.3
Digital 36 4.9

ATIS
Analog 38 73.5
Digital 144 44.2

ADMDVS
Analog 68 128.1
Digital 105 16.3

47

Chapter 4

Simulation Results

This chapter presents results obtained from Spectre electrical simulations of the

pixels that were studied in this work (basic DVS, ATIS, and ADMDVS). The goal

was to verify the correct behavior of each pixel. Scripts that were used for automatic

control of the simulations are presented in Appendix A. Scripts for DVS, ATIS

and ADMDVS simulations themselves, as well as algorithms for reading simulation

output data and making plots, are presented in Appendix B.

As DVS pixels respond to temporal contrast change, they must be simulated

with transient photocurrents. Sinusoidal current sources were used in this work, in

order to provide photocurrent stimulus for a pixel. So, to verify a single instance

of each pixel, we modelled the photodiode using a sinusoidal current source Ipd =

50×10−12 sin(2π×10t)+100×10−12 ampères. The Vdiff and global reset pulse width

parameters were set to 150 mV and 1 ms. The global reset signal aims at taking the

DVS pixel back to its operation starting point at any given time instant. The global

reset pulse width was different from 1 ms only for ADMDVS pixel simulations: in

that case, it was larger than 1 ms. The ADMDVS pixel does not have any reset

switch, so the operational amplifiers output must reach the voltage reference, which

may take a long time (e.g. 30 seconds).

After having verified a single instance of each pixel, we investigated the behavior

of a set of pixels composing a small sensor array, such as an 8 × 8 or a 4 × 4

pixel array. We considered three different cameras: DVS 8 × 8, ATIS 4 × 4, and

ADMDVS 4 × 4. To verify the designs, we used arbitrary space-domain spiral-

shaped signals (Figures 4.9, 4.12, and 4.13). In each case, the electrical simulation

results obtained from Spectre were compared to numerical predictions that were

obtained from each pixel model presented in Chapter 2.

We want to emphasize that the responses of the different types of pixels that

have been studied in this work are not related in number of frames, however they

are related in number of events. For example, in [22] for a specific input signal, the

DVS camera detected up to 650,000 events per second. This is not equal to the

48

amount of frames because this type of sensors are frame-free and they only respond

to temporal contrast changes in its field of view.

4.1 DVS Pixel Simulation

Figure 4.1 shows a transient (i.e. time-domain) simulation for a single DVS pixel

instance. The Ipd input (photodiode current) is shown in the plot at the top. The

temporal contrast change that is detected from the photodiode generates on or off

events. In the fifth and fourth plots (counting from top to bottom), we can see

that: i) off events (CROFF) were generated, for example, between 250 ms and 275

ms, because then the photodiode current derivative is sufficiently negative, and ii)

similarly, on events (CRON) were generated between 275 ms and 325 ms, because the

photodiode current derivative is sufficiently positive along that time interval. The

Vin,comp signal, in the second plot, is the input for the voltage comparators. For a

single pixel instance simulation, the AER systems were not taken into account. They

were replaced by simple inverters, that act as logical buffers with a low capacitive

input load. The row and column acknowlegment signals, which are shown in the

last two plots (RA and CA), are the same for on and off events. They are also equal

to the row requests (RREQ) that are shown in the third plot. In the general pixel

array case, which involves more than a single pixel, a RA signal is shared by all

pixels in that row, and a CA signal is shared by all pixels in that column.

Figure 4.2 presents some details of an off event that occured around 263 ms in

Figure 4.1. In a DVS pixel, an off event is generated when Vin,comp is higher than

the Vdoff threshold. In that case, the DVS pixel generates a row request (RREQ)

through its logical circuit. A row control unit, which is just an inverter pair in this

single-pixel case, receives the RREQ signal and acknowledges the receipt by sending

an RA signal back to the pixel, after some delay that corresponds to the row control

unit signal processing. When the pixel receives the RA signal, it generates a CROFF

signal. The column control unit, which is also just an inverter pair in this single-

pixel case, receives the CROFF signal and acknowledges the receipt by sending a

CA signal back to the pixel, which also happens after some delay corresponding

to the column control unit signal processing. Immediately after the RA and CA

signals were received by the pixel, it is reset. The reset takes the pixel to its initial

operation point, at Vref = 0.9 V. According to the simulation, the initial operating

point is at 940 mV, which is close to expected.

We also simulated the DVS pixel response numerically (in a numerical compu-

tation environment), using the DVS model described in Section 2.1.1, and using the

same sinusoidal input Ipd that was shown in Figure 4.1. In the numerical simula-

tion, the Vdoff and Vdon parameters were set to 1.05 V and 750 mV, respectively.

49

time (ms)

150

100

50

1.0
0.9
0.8

1.8

0

1.8

0

1.8

0

1.8

0

1.8

0

250 300 350 400 450 500 550 600

I p
d

(p
A

)
V
in
,c
o
m
p

R
R

E
Q

C
R

O
N

C
R

O
F

F
C

A
R

A

Figure 4.1: Single DVS pixel transient simulation (250 ms to 600 ms) with a sinu-
soidal input Ipd (first plot, at the top). The second plot shows the voltage comparator
output Vcomp. The third plot shows data bus pixel request (RREQ). The fourth and
fifth plots show on and off events (CRON and CROFF). The sixth and seventh plots
show column and row acknowledgment (CA and RA) signals.

R
A

C
A

C
R

O
F

F
R

R
E

Q

0.0

1.8

V
in
,c
o
m
p

0.6

0.8

1.0

1.2

0.0

1.8

0.0

1.8

0.0

1.8

940mV

263.004 263.005
time (ms)

PERIOD
RESET

Vin,comp > Vdoff

PERIOD
RESET

Figure 4.2: Timing diagram corresponding to a communication cycle that is trig-
gered by a detected off event in Figure 4.1.

50

The numerical model does not take into account the delay that is due to the logical

circuits (either in the pixel or in the row/column control units). The result is shown

in Figure 4.3. A comparison between the Vin,comp plots in Figures 4.1 and 4.3 in-

dicates that, in electrical simulations, the DVS pixel behavior corresponds to what

was expected from the numerical simulations.

50

100

150

I p
d

10−12

0.8
0.9
1.0

V
in
,c
o
m
p

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
time (s)

0
0.5

1
1.5

2

e
v
e
n
t on

off

Figure 4.3: Single pixel DVS simulation using a numerical model from Section 2.1.1,
and the same sinusoidal input shown in Figure 4.1. The second plot shows the
predicted voltage comparator output, and the third plot shows predicted events.
Communications with row and column control units are not taken into account.

Table 4.1 presents the number of spikes observed, in each period of the input sig-

nal, for three different voltage comparator threshold values Vdiff . The spike numbers

observed in the electrical simulation correspond reasonably well to the numerically

predicted spike numbers. The numerical DVS pixel model does not take into account

AER circuitry and its delay. In a real camera experimental characterization stage,

if Vdiff is adjusted to the lowest possible value (in order to yield high sensitivity),

the pixel generates many more events, but a large part of those events corresponds

to temporal noise [15], [10]. On the other hand, where there is no temporal contrast

change, the Vin,comp signal will decrease slowly, which eventually generates back-

ground on events, as mentioned in Section 2.3. In electrical simulations, the Spectre

parameter gmin was adjusted to 1 aS (i.e. 10−18 siemens), taking into account the

low bias currents of the analog circuits, in order to avoid background on events.

Table 4.1: Quantity of spikes with different setting of comparator threshold per
Channel and period signal

Vdiff Model Simulation

on events # off events # on events # off events
100 mV 7 6 7 4
150 mV 4 4 3 3
200 mV 3 3 2 2

51

4.2 ATIS Pixel Simulation

Figure 4.4 shows transient simulation results for a single ATIS pixel instance. For

visualization simplicity, we show only one period of the input signal. The input

signal, which appears at the top plot, is the same that was used in Section 4.1.tem-

poral change detector signals such as RREQ, CRON and CROFF are not shown

in Figure 4.4, because their behavior is equal to what was presented in Figure 4.1.

Figure 4.5 presents details of the communication cycle that is triggered by an off

event that occurs around 349 ms in Figure 4.4. When the temporal change detec-

tor (equal to the DVS pixel) detects an event, the exposure measurement circuit

starts the brightness measurement cycle, what is to say, it starts the photodiode

current integration cycle. Initially, the photodiode cathode voltage is set to VDD

by the reset transistor, and the voltage comparator reference input is connected to

Vhigh (sixth plot in Figure 4.5). As the photodiode current is progressively inte-

grated, Vint decreases. When Vint becomes less than Vhigh, the voltage comparator

output changes to logical ‘1’. When the comparator output is high, the exposure

measurement logic is activated, which means that the exposure measurement logic

starts a communication cycle with the row control unit. To start the communica-

tion cycle, the exposure measurement logic sends a Vreq,By signal to the row control

unit. The row control unit acknowledges this request with a Vack,By signal. Imme-

diately after receiving the Vack,By signal, the exposure measurement logic generates

a Vreq,Hx request signal, which indicates that the pixel has started the brightness

encoding cycle. Because the first threshold to be crossed is always Vhigh, the pixel

always generates the Vreq,Hx signal before the Vreq,Lx signal. Immediately after the

pixel receives the Vack,By signal, (see Vack,x in Figure 4.4), in response to Vreq,Hx,

the voltage comparator reference input changes to Vlow. When Vint crosses the Vlow

threshold, as similar signaling sequence (Vreq,By, then Vack,By) leads to the Vreq,Lx

signal, which indicates that the brightness encoding process is finished. The time

difference (or, equivalently, the pulse width) between Vreq,Hx and Vreq,Lx defines the

brightness measured by the ATIS pixel.

52

V
r
e
q
,B
y

1.8

0

V
a
c
k
,B
y

I p
d

(p
A

)

50

100

150

V
r
e
q
,x

V
in
,c
o
m
p

0.7

0.9

1.1

V
a
c
k
,x

350.0
time (ms)

275.0 325.0300.0 375.0

0

1.8

0

1.8

0

1.8

Vreq,Hx
Vreq,Lx

Vack,B,Hy

Vack,B,Ly

Figure 4.4: Single ATIS pixel transient simulation (275 ms to 375 ms) with a sinu-
soidal input Ipd equal to the one used in Figure 4.1. Relevant exposure measurement
signals, which are described in the text, are shown in the third, fourth, fifth, and
sixth plots.

4.3 ADMDVS Pixel Simulation

Figure 4.6 shows transient simulation results for a single ADMDVS pixel instance.

The signals in Figure 4.6 are similar to those in Figure 4.1 (basic DVS pixel). The

only exception is the column acknowledgment signal CA, which is now valid at the

low voltage level. Every time an on event or an off event occurs, the Vcomp signal

decreases or increases by a δ value, respectively, according to Section 2.3.1. The δ

value is the same to Vdiff value mentioned above. Figure 4.7 presents details of the

communication cycle that is triggered by an off event that occurs around 30.63 s in

Figure 4.6. When an off event occurs, the VOFF signal at the respective voltage

comparator output (see Figure 2.11) goes high. The VOFFo in the last plot of Figure

4.7 is a latched version of VOFF. Both VOFF and VOFFo are reset when the φs

signal in the seventh plot goes high. The VOFFo signal activates the φl signal that

is shown in the sixth plot. The pulse width of φl is defined by the time delay tdly,1,

which is shown in the second plot of Figure 4.7. Immediately after tdly,1, when the

φl signal goes down, the pixel generates the communication access request RREQ,

which goes to the row control unit. The row control unit receives the RREQ signal,

and it sends back an acknowledgment signal RA to the pixel. The φl signal causes

the Cf capacitance to be charged to Vlow. Immediately after receiving the RA signal,

53

V
c
o
m
p

.85

1.1

V
a
c
k
,B
y

V
r
e
q
,x

O
u
t c
o
m
p

V
in
t

V
a
c
k
,x

V
r
e
q
,B
y

0

1.8

349.4349.3 349.5
time (ms)

348.8 348.9 349.2349.0 349.1

1.8

0

0

1.8

1.8

0
1.8

0
1.8

0

Vhigh

Vlow

Vack,B,Hy
Vack,B,Ly

Vreq,Hx
Vreq,Lx

PWM

Figure 4.5: Timing diagram corresponding to a communication cycle that is trig-
gered by a detected off event in Figure 4.4.

the pixel generates the CROFF signal. The column control unit receives the CROFF

signal, and it sends back an acknowledgment signal CA (active at the low voltage

level) to the pixel. Immediately after the pixel received the CA signal, the φl signal

goes down, which enables the φs signal to rise after some time (tdly,2 in the seventh

plot of Figure 4.7. While φs is high, the ADM output is increased by Vdiff . When

φs goes down, the communication cycle is finished, and the pixel is ready to detect

new events.

We also simulated the ADMDVS pixel response numerically, using the ADMDVS

model described in Section 2.3.2, and using the same sinusoidal input Ipd that was

shown in Figure 4.1. In the numerical simulation, the time delay was set to 2

µs. The numerical simulation result is shown in Figure 4.8. A visual comparison

between Figures 4.6 and 4.8 indicates that the spike count in ADMDVS electrical

simulation (see RREQ signal in Figure 4.6) is similar to the spike count that was

predicted by ADMDVS numerical simulation (see Event signal in Figure 4.8). So, the

ADMDVS behavior corresponds to what was expected from numerical simulations.

Slight differences between the spike sequences are due to the fact that the CMOS

circuit, which was used in Spectre electrical simulations, is more complex than the

ADMDVS numerical model.

54

I p
d

200p

100p

0
1.1

0.9

0.7V
in
,c
om

p

1.8

0

1.8

0

1.8

0

R
R

E
Q

C
R

O
F

F
C

R
O

N
C
A

1.8

0

1.8

0

R
A

30.5 30.52 30.54 30.56 30.58 30.6 30.62 30.64 30.66 30.68

time (s)

Figure 4.6: Single ADMDVS pixel transient simulation (30.5 s to 30.7 s) with a
sinusoidal input Ipd equal to the one used in Figure 4.1.

30.63671 30.63673 30.63675 30.63677 30.63679

1.8

0

1.8

0

1.8

0

1.8

0

1.8

0

1.8

0

1.8

0

φ
s

C
A

C
R

O
F

F
R

A
R

R
E

Q
V

O
F

F
φ
l

V
O

F
F
o 1.8

0

tdly,1

tdly,2

Charging Top

Plate Capacitor

Charge Redistribution

Phase

time(s)

Figure 4.7: Timing diagram corresponding to a communication cycle that is trig-
gered by a detected off event in Figure 4.6. Time delays tdly,1 and tdly,2 allow for
capacitor charging Cf and charge redistribution among the capacitors in the AD-
MDVS pixel (see Figure 2.11).

55

50

100

150

I p
d

×10−12

0.7

0.9

1.1

V
in
,c
o
m
p

0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4

time (s)

0

1

2

E
v
e
n
t on

off

Figure 4.8: Single pixel ADMDVS simulation using a numerical model from Section
2.3.2, and the same sinusoidal input shown in Figure 4.1. The second plot shows
the predicted voltage comparator output, and the third plot shows predicted events.
Communication with row and column control units is not taken into account.

4.4 DVS 8 × 8 Pixel Array Simulation

We performed Spectre electrical simulations of an 8 × 8 DVS pixel array using, as

an input signal, a 2-D spiral with angular frequency corresponding to 300 Hz. These

simulations are also useful for tuning the pixel array to the AER circuits located at

its periphery. Different algorithms, which are shown in Appendix B, are used for

processing Spectre simulation results in order to measure performance figures, and

in order to make plots.

Figure 4.9 compares the DVS electrical simulation results to the numerical pre-

dictions that were obtained with the DVS model that was described in Section 2.1.1.

The gray scale in the figures indicates the time instant at which an event occurred.

From black to white, early to late events are progressively represented. For visualiza-

tion simplicity, we separate the pixel array response into its on and off components.

A visual comparison shows that the electrical simulation results are very similar to

the numerical predictions. To clarify further, we zoomed in at the pixel number 45,

which is located on row 5, column 5. The events that occurred in this pixel are

shown in greater detail in the plots of Figure 4.9. The number of events, both on

and off, predicted by numerical model is greater than the number of events obtained

in the electrical simulations, and the event timing is not exactly the same. Simul-

taneous events did not occur in this test. Collisions are not being treated by AER

56

systems that are specific for that purpose. So, should simultaneous events occur,

they would all be treated at the same time. As the timing differences are not large,

and considering that the circuit used for Spectre simulations is much more complex

than its numerical model, we conclude that the pixel design is validated. Using a

2-D spiral as an input signal is useful for avoiding request collisions.

(a) (b)

0
0

1

1

2

T
im

e(
m

s)

2 7

3

3 6

4

ROW

4 5

COLUMN

45 36 27 10

COLUMN

3.1
3.11

T
im

e
 m

s

ROW

5

3.12

5

(c) (d)

Figure 4.9: 8 × 8 DVS pixel array. Comparison between electrical simulation results
and predictions based on the numerical model in Section 2.1.1: (a) and (c) on and
off events generated by electrical simulation; (b) and (d) on and off events estimated
from a numerical model. Event timing details are provided for the pixel on row 5
and column 5.

4.5 ATIS 4 × 4 Pixel Array Simulation

To validate the ATIS pixel array, we performed simulations with two different in-

puts: a) time-domain triangular waveform input, and b) 2-D spiral input. These

simulations are described next.

57

4.5.1 Triangular Waveform Input

In this simulation, an input corresponding to a 200 Hz triangular waveform in the

time domain was applied to all pixels in a 2 × 2 pixel array. The small array size was

due to constraints in elapsed simulation time. Unfortunately, under similar condi-

tions (200 Hz time-domain triangular waveform), the Spectre simulation generated

too much output data for 8 × 8 or 4 × 4 pixel arrays, and it was not able to finish

the simulation in a reasonable execution time, which would be around one week.

Figure 4.10 shows the response of the temporal change detector stage, which is

itself a DVS block, in the ATIS pixels. The response was decomposed into its on

and off components. In this figure, we can visually compare the ATIS electrical

simulation results with the ATIS numerical simulation using the model that was

presented in Section 2.2.3. In terms of TCS, the electrical simulation of the temporal

change detector indicated slightly lower contrast sensitivity than what would be

expected from the numerical simulation. Also, in either case (electrical or numerical

simulation), applying the same input to all pixels led to request collisions. Although

the designed AER responded to all requests, exact timing information was lost

whenever a collision happened. The brightness measurement cycle starts with an

event being generated by the temporal change detector. If the time interval between

events in the same pixel is not long enough, then the brightness encoding process

is not completed. According to Figure 4.10, at the initial electrical simulation time

instants, as the photocurrent rises according to a triangular waveform, the logarithm

of Ipd varies quickly, which leads to many on events. However, as the photocurrent at

the initial time instants is not very high, the corresponding brightness measurement

cycles are not completed. Taking into account the size of the figure and the point

of view in Figure 4.10, visualization is not very clear. However, by looking at the

top four events in Figure 4.10a, we can notice a slight variation on event timing

produced by the requested collision as mentioned before.

The brightness encoding results from electrical and numerical simulations are

shown in Figure 4.11. Remember that, in the ATIS context, the word ‘frame’ is not

used in the same sense that it is used in the context of conventional frame-based

vision sensors. We define an ATIS frame as all brightness values encoded by the

entire pixel array within a particular time range. For visualization simplicity, the

same light intensity values are shown for all pixels in one ATIS frame. In Figure 4.11,

each subfigure represents one decoded ATIS frame that is valid within a particular

time range. The time range, which is shown at the top part of each subfigure,

indicates the time interval during which an off-chip receiver acquired the brightness

information from all pixels. The gray-level color bar indicates the gray-level intensity

that was assigned to the acquired brightness information. Although the exact pixel

58

timing information is lost, these results suggest that the exposure measurement

circuit behavior corresponded to what was expected from the numerical simulations.

In Figure 4.11a, we have eight ATIS frames (estimated by numerical simulation),

corresponding to the six ATIS frames obtained by electrical simulation, which are

shown in Figure 4.11b. The electrical simulation results were as expected: the gray-

level encoding (color bar close to the frames) shows that the photocurrent increased

and decreased according to the input triangular waveform input. The gray-level

values obtained from the electrical simulations were similar to those obtained from

the numerical model, but not equal, because the ATIS circuits used for Spectre

electrical simulations are much more complex an non-ideal effects causes the elec-

trical simulation results to deviate from those obtained with the numerical model.

We varied the Vhigh and Vlow thresholds, and observed that the ATIS pixel array

response remains similar to the response presented in Figure 4.11. Both thresholds

might be adjusted in order to achieve different brightness encoding results aiming

at particular specifications.

0
0

0.5

1

ti
m

e
(m

s)

1.5

ROW 1

COLUMN

2

1
0

(a)

COLUMN

0

0

1ti
m

e
(m

s)

2

ROW

1

3

1
0

(b)

4

0

4.5ti
m

e
(m

s)

5

ROW 1

COLUMN

5.5

1
0

(c)

3.5

0

4

4.5

ti
m

e
(m

s)

5

ROW
1

COLUMN

5.5

1
0

(d)

Figure 4.10: 2 × 2 ATIS pixel array. Comparison between electrical simulation
results and predictions based on the numerical model in Section 2.2.3: (a) and (c)
on and off events generated by electrical simulation; (b) and (d) on and off events
estimated from a numerical model.

59

Time = 0.96937ms

0 1

0

1
96

Time = 1.1483ms

0 1

0

1

114

Time = 1.402ms

0 1

0

1

137

Time = 1.7515ms

0 1

0

1

197

Time = 2.2306ms

0 1

0

1

241

Time = 3.8274ms

0 1

0

1

191

Time = 4.2483ms

0 1

Column

0

1

R
ow 119

Time = 4.5815 ms

0 1

0

1
96

COLOR

COLOR COLOR

COLOR COLOR

COLOR

COLORCOLOR

(a)

[0.90392 -0.9151] ms

0 1

0

1 67

[1.1087 -1.1264] ms

0 1

0

1
99

[1.4479 -1.4776] ms

0 1

0

1

130

[1.9816 -2.0277] ms

0 1
Column

0

1

R
ow

s

202

[4.2255 -4.259] ms

0 1

0

1

117

[4.793 -4.8201] ms

0 1

0

1 58

COLOR

COLOR

COLOR

COLOR

COLOR

COLOR

(b)

Figure 4.11: Brightness encoding results from (a) numerical simulations, and (b)
electrical simulations, using the same photocurrent input with a time-domain trian-
gular waveform for all pixels.

4.5.2 2-D Spiral Input

The second simulation was similar to the one presented for a DVS pixel array in

Section 4.4. A 2-D spiral with angular frequency corresponding to 200 Hz, and

decreasing light intensity, was used as the array input signal. It is slightly different

from the 2-D spiral signal from Section 4.4, because elapsed simulation time con-

60

straints limited the array size to 4 × 4 pixels in the present section. The Vhigh and

Vlow signals were adjusted to 1.7 V and 200 mV, respectively.

Numerical simulation results are shown in Figure 4.12a and electrical simulation

results are shown in Figure 4.12b. The 2-D spiral input that was used in the DVS

pixel array in Section 4.4 had a constant photocurrent input for each pixel, and a

gray-level code was used to denote time in the plots. In the present section, the 2-D

spiral input that was applied to the ATIS pixel array has photocurrent that decreases

linearly with time. As the light intensity is inversely proportional to time, 3-D plots

are not required in Figure 4.12. As the temporal change detector response was

similar to the temporal change detector responses that were previously described,

it is not shown in this section. Figure 4.12 indicates that the brightness encoding

obtained from the electrical simulation was similar to the brightness encoding that

was predicted by the numerical ATIS model. Because the input signal is a 2-D

spiral, request collisions did not occur, and so the event count was similar in both

cases (electrical and numerical simulations). These results validate the proposed

ATIS pixel design.

Time = [0.54859 -7.7841] ms

0 1 2 3

Column

0

1

2

3

R
ow

4

25

48

93
107

138

165

212

232

255
COLOR

(a)

Time = [0.54871 -8.7224] ms

0 1 2 3

Column

0

1

2

3

R
ow

3

23

58

98
112

135

189

205

232

253
COLOR

(b)

Figure 4.12: 4 × 4 ATIS pixel array. Comparison between (a) decoded light intensity
predictions based on the numerical model in Section 2.2.3, and (b) decoded light
intensity values obtained from an electrical simulation.

4.6 ADMDVS 4 × 4 Pixel Array Simulation

To validate the ADMDVS pixel array design, we used a 2-D spiral input similar to the

one used for the DVS pixel array in Section 4.4. The differences are that the spiral

angular frequency was reduced to 10 Hz and the spiral resolution was reduced to 4 ×
4 pixels. By using a lower frequency, we aimed at testing pseudo-resistors that were

designed for the ADMDVS pixel. To allow all operational amplifiers to reach the

correct reference voltage, we activated the global reset signal for 30 seconds. The

61

comparison between electrical simulation results and numerical predictions based

on the model from Section 2.3.2 is presented in Figure 4.13. To make the visual

comparison easier, we zoomed in at pixel number 10, which is located on row 2,

column 2 of the pixel array. Figure 4.13 indicates that the electrical simulation

results are close to the numerical predictions. Also, the ADMDVS output is similar

to the output obtained by the basic DVS in Section 4.4, but the ADMDVS array is

much more sensitive to temporal contrast change. In spite of the lower frequency,

the ADMDVS generated more output events. To process the simulation data for

display purposes, we used the same algorithms that were used for the basic DVS

pixel array (Appendix B).

30.5

0

30.52

30.54

1

ti
m

e
(s

)

30.56

3

ROW

30.58

2

COLUMN

30.6

2

3
1

0

30.588
2

30.59

2

(a)

30.5

30.52

0

30.54

30.56

ti
m

e
(s

)

1

30.58

30.6

30.62

0
1

2
3

ROW

2

COLUMN3

2

30.592

30.594

2

(b)

30.5
0

30.52

30.54

1

ti
m

e
(s

)

30.56

30.58

3

ROWS

2

30.6

COLUMNS

2

3
1

0

30.588

2

30.59

2

(c)

ROWS COLUMNS

0

30.52

30.54

30.56

ti
m

e
(s

)

1

30.58

3

30.6

2 2
3 1

0

30.593

2

30.595

2

(d)

Figure 4.13: 4 × 4 ADMDVS pixel array. Comparison between electrical simulation
results and predictions based on the numerical model in Section 2.3.2: (a) and (b)
on and off events generated by electrical simulation; (c) and (d) on and off events
estimated from a numerical model. Event timing details are provided for the pixel
on row 2 and column 2.

4.7 DVS, ATIS and ADMDVS Comparison

Comparative remarks regarding DVS, ATIS and ADMDVS pixels and pixel arrays

are provided next.

62

• The DVS pixel and the ADMDVS pixel do not have a brightness measure-

ment cycle, and so they do not determine the absolute light intensity that is

associated with a detected event. The decoded pixel value assumes only two

possible values, say black or white. A pixel that detects positive light intensity

variation is decoded as a white pixel. Otherwise, if temporal contrast change

is negative, then the pixel is decoded as a black pixel. The background color

is gray, which indicates the absence of events;

• The ADMDVS pixel array simulation yields more spikes than the DVS pixel

array simulation. We concluded that the ADMDVS pixel TCS is larger than

the DVS pixel TCS. The TCS improvement is expected, because the ADMDVS

pixel uses two operational amplifiers, and the overall gain is the product of

the closed-loop gains of both operational amplifiers. In the DVS pixel, on the

other hand, the overall gain corresponds to a single differencing circuit;

• The ADMDVS pixel encoding mechanism never interrupts the differencing

circuit. As a consequence, if no request collision occurs, then no input infor-

mation ever gets lost. The DVS pixel, on the other hand, stops evaluating

temporal contrast until a previously generated event has been acknowledged

and treated. If the waiting time is too long, then input information may be

lost;

• All three pixel types (DVS, ATIS and ADMDVS) use the same AER systems.

The ATIS pixel uses an additional AER system for managing the brightness

encoding process.

Unfortunately, for different reasons, we were not able to numerically estimate

TCS from the simulation data. In the literature, the reported TCS figures were

experimentally obtained from real pixel arrays that are much larger than 8 × 8

pixels [10],[15], [22]. In Spectre simulations, we were not able to make one pixel

significantly different from the other, which would be useful for assessing the effects

of mismatch errors. To force the Spectre simulator to consider different pixels in

the array, we tried to generate a Spectre netlist (text representation of a pixel array

schematic diagram) using a Monte Carlo simulation with a single run. The Monte

Carlo single run netlist was used in an electrical simulation with the same input that

was used in [10] for TCS characterization. However, the electrical simulation was

too slow and required around 20 GB, which is too much memory. Still, we processed

the available simulation data aiming at TCS computation, but we observed that all

pixels had the same spike count, which was not useful for estimating the TCS of

each pixel in the array.

63

Chapter 5

Conclusions

In this work, we modelled and simulated three different DVS pixels: the basic DVS

pixel itself, ATIS, and ADMDVS. Some conclusions are presented next:

• The DVS pixel is the simplest one. It features the lowest complexity in all

analog and digital parts. To reach this conclusion, we compared the pixel

transistor counts in Table 3.2;

• The ATIS pixel, which includes the DVS pixel within itself as a temporal

change detector, is obviously more complex than the DVS pixel. It has the

same basic functionality of the DVS pixel, but it also encodes brightness into

grayscale and detects temporal changes;

• The ADMDVS pixel is more complex than the DVS pixel. It also has the

same basic functionality of the DVS pixel, but it achieves higher TCS than

the original DVS pixel design. Besides that, the ADMDVS pixel uses a novel

approach for establishing the pixel operating point after an event occurrence,

which eliminates information loss as the input signal is never interrupted. In

the basic DVS pixel encoding mechanism, the input signal is blocked while a

pixel request is being handled, which leads to possible information loss;

• Using the ADMDVS pixel as a temporal change detector for ATIS pixels is

possible, and it would lead to better grayscale encoding of incoming light

intensity, at the expense of an increase in pixel complexity and size;

• Smart and efficient imaging systems may be designed with the contribution of

biological neural signal processing fundamentals. For instance, the DVS, ATIS,

and ADMDVS pixels asynchronously encode incoming visual information into

spike trains, thus saving bandwidth and power consumption. The biological

counterparts efficiency with respect to bandwidth and power are well-known

[39];

64

• The ADMDVS and ATIS pixels implement data encoding techniques that are

more advanced that the technique used in basic DVS. The ADMDVS and

ATIS designs show that the use of asynchronous logic leads to an improve in

efficiency;

• The EKV model in subthreshold regime allowed us to obtain a numerical

model for three different DVS pixels. The numerical model response is very

similar to that obtained by the electrical simulation, as shown in Chapter 4,

even though the numerical method uses a simpler transistor model than the

one generally utilized in electrical simulations;

• The gm/ID methodology is useful for low-power vision sensor design. In this

work, it led to operational amplifier and voltage comparator designs with low

area and good performance.

In a future investigation, pixel layout should be addressed. A comparison among

several pixel layout options would allow ranking the DVS, ATIS, and ADMDVS

pixels with respect to their physical size. A layout option with a good trade-off

between functionality and pixel area might then be used for a pixel array fabrica-

tion. Whether or not an exposure measurement function should be adapted for the

ADMDVS pixel is also an interesting question. The AER systems also require addi-

tional investigation, which would lead to more efficient AER implementations. An

analysis using the events generated by each pixel to reconstruct the input signal may

lead to a more specialized comparison among the pixel designs than the comparison

presented in this work.

65

Bibliography

[1] SCHMUKER, M., SCHNEIDER, G. “Processing and classification of chemi-

cal data inspired by insect olfaction”. In: Axel, R. (Ed.), The National

Academy of Sciences of the USA, v. 104, New York, NY, jun 2007.

[2] POSCH, C., SERRANO-GOTARREDONA, T., LINARES-BARRANCO, B.,

et al. “Retinomorphic Event-Based Vision Sensors: Bioinspired Cameras

With Spiking Output”. In: Proceedings of the IEEE, v. 102, pp. 1470–

1484, Oct 2014.

[3] MCLEAN, I. S. “Charge-coupled devices”. In: Electronic Imaging in Astronomy:

Detectors and Instrumentation, 2 ed., cap. 7, Heidelberg, Springer-Verlag

Berlin Heidelberg, 2008.

[4] LICHTSTEINER, P. An AER temporal contrast vision sensor. Phd thesis, ETH

Zurich, ETH Zürich, 2006.

[5] ATMARAM, P. CMOS Active pixel sensors for digital cameras: current state-

of-the-art. Msc dissertation, University of North Texas, Denton, Texas,

USA, 2007.

[6] BIGAS, M., CABRUJA, E., FOREST, J., et al. “Review of CMOS image sen-

sors”, Microelectronics Journal, v. 37, n. 5, pp. 433 – 451, May 2006.

[7] LIU, S.-C., DELBRUCK, T., INDIVERI, G., et al. Event-based neuromorphic

systems. Wiley, 2014.

[8] DONG-IL, C., TAE-JAE, L. “A Review of Bioinspired Vision Sensors and Their

Applications”, Sensors and Materials, v. 27, n. 6, pp. 447–463, Nov 2015.

[9] DELBRUCK, T. “Frame-free dynamic digital vision”. In: Proceedings of Intl.

Symp. on Secure-Life Electronics, Advanced Electronics for Quality Life

and Society, pp. 21–26, Tokyo, Mar 2008.

[10] LEÑERO BARDALLO, J., SERRANO-GOTARREDONA, T., LINARES-

BARRANCO, B. “A 3.6 µs Latency Asynchronous Frame-Free Event-

66

Driven Dynamic-Vision Sensor”, IEEE Journal of Solid-State Circuits,

v. 46, n. 6, pp. 1443–1455, June 2011.

[11] SERRANO-GOTARREDONA, T., LINARES-BARRANCO, B. “A 128 × 128

1.5% Contrast Sensitivity 0.9% FPN 3 µs Latency 4 mW Asynchronous

Frame-Free Dynamic Vision Sensor Using Transimpedance Preamplifiers”,

IEEE Journal of Solid-State Circuits, v. 48, n. 3, pp. 827–838, March 2013.

[12] POSCH, C., MATOLIN, D., WOHLGENANNT, R. “A two-stage capacitive-

feedback differencing amplifier for temporal contrast IR sensors”, Analog

Integrated Circuits and Signal Processing, v. 64, n. 1, pp. 45–54, Jul 2010.

[13] CHEN, D. G., MATOLIN, D., BERMAK, A., et al. “Pulse-Modulation

Imaging-Review and Performance Analysis”, IEEE Transactions on

Biomedical Circuits and Systems, v. 5, n. 1, pp. 64–82, Feb 2011.

[14] PABLO, A. Automatic Reusable Design for Analog Micropower Integrated Cir-

cuits. Master thesis, Instituto de Ingenieŕıa Eléctrica, Facultad de Inge-

nieŕıa, Universidad de la República, Uruguay, 2004.

[15] LICHTSTEINER, P., POSCH, C., DELBRUCK, T. “A 128 x 128 120 dB

15µs Latency Asynchronous Temporal Contrast Vision Sensor”, Solid-

State Circuits, IEEE Journal of, v. 43, n. 2, pp. 566–576, Feb 2008.

[16] POSCH, C., MATOLIN, D., WOHLGENANNT, R. “A QVGA 143dB dynamic

range asynchronous address-event PWM dynamic image sensor with loss-

less pixel-level video compression”. In: 2010 IEEE International Solid-

State Circuits Conference - (ISSCC), pp. 400–401, Feb 2010.

[17] ENZ, C. C., KRUMMENACHER, F., VITTOZ, E. A. “An analytical MOS

transistor model valid in all regions of operation and dedicated to low-

voltage and low-current applications”, Analog Integrated Circuits and Sig-

nal Processing, v. 8, n. 1, pp. 83–114, 1995.

[18] MATOLIN, D., POSCH, C., WOHLGENANNT, R. “True correlated double

sampling and comparator design for time-based image sensors”. In: 2009

IEEE International Symposium on Circuits and Systems, pp. 1269–1272,

May 2009.

[19] KURODA, T. “Major Types of Noise in Image Sensors”. In: Essential Princi-

ples of Image Sensors, 1 ed., cap. 3, Boca Raton, FL, CRC Press, 2014.

67

[20] JIN, X. “Principle of simple correlated double sampling and its reduced-area

low-noise low-power circuit realization”, Analog Integrated Circuits and

Signal Processing, v. 65, n. 2, pp. 209–215, Jun 2010.

[21] YANG, M., LIU, S. C., DELBRUCK, T. “Comparison of spike encoding

schemes in asynchronous vision sensors: Modeling and design”. In: 2014

IEEE International Symposium on Circuits and Systems (ISCAS), pp.

2632–2635, June 2014.

[22] YANG, M., LIU, S. C., DELBRUCK, T. “A Dynamic Vision Sensor With 1%

Temporal Contrast Sensitivity and In-Pixel Asynchronous Delta Modu-

lator for Event Encoding”, IEEE Journal of Solid-State Circuits, v. 50,

n. 9, pp. 2149–2160, Sept 2015.

[23] BEEREL, P. A. A Designer’s guide to Asynchronous VLSI. 1 ed. Cambridge,

Cambridge University Press, 2010.

[24] SPARSØ, J., FURBER, S. Principles of Asynchronous Circuit Design: A

Systems Perspective. Springer, 2001.

[25] MANOHAR, R., MARTIN, A. J. Quasi-Delay-Insensitive Circuits Are Turing-

Complete. Technical report, California Institute of Technology, Pasadena,

CA, USA, 1995.

[26] MAHOWALD, M. VLSI analogs of neuronal visual processing: a synthesis

of form and function. Phd thesis, California Institute of Technology,

Pasadena, CA, USA, 1992.

[27] LANDE, T. S. “Introduction to Neuromorphic Communication”. In: Lande,

T. S. (Ed.), Neuromorphic Systems Engineering: Neural Networks in Sil-

icon, Kluwer Academic Publishers, cap. 8, pp. 193–200, Norwell, MA,

USA, 1998.

[28] BOAHEN, K. A. “Point-to-point connectivity between neuromorphic chips

using address events”, IEEE Transactions on Circuits and Systems II:

Analog and Digital Signal Processing, v. 47, n. 5, pp. 416–434, May 2000.

[29] SCHNEIDER, M. C., GALUP-MONTORO, C. CMOS Analog Design Using

All-Region MOSFET Modeling. 1 ed. New York, Cambridge University

Press, 2010.

[30] SILVEIRA, F., FLANDRE, D., JESPERS, P. G. A. “A gm/ID based method-

ology for the design of CMOS analog circuits and its application to the

68

synthesis of a silicon-on-insulator micropower OTA”, IEEE Journal of

Solid-State Circuits, v. 31, n. 9, pp. 1314–1319, Sep 1996.

[31] JESPERS, P. The gm/ID Methodology, a Sizing Tool for Low-voltage Analog

CMOS Circuits: The Semi-empirical and Compact Model Approaches.

Springer US, 2009.

[32] LI, X., WU, W., GILDENBLAT, G., et al. “PSP 102.3”. Retrieved

from : <http://www.nxp.com/wcm_documents/models/mos-models/

model-psp/psp102p3_summary.pdf>. Accessed: 1 December 2016.

[33] DELBRUCK, T., MEAD, C. A. “Adaptive photoreceptor with wide dynamic

range”. In: Proceedings of IEEE International Symposium on Circuits and

Systems - ISCAS ’94, v. 4, pp. 339–342, May 1994.

[34] YANG, M. Silicon Retina and Cochlea with Asynchronous Delta Modulator for

Spike Encoding. Phd thesis, ETH Zurich, ETH Zürich, 2015.

[35] ALLEN, P., HOLBERG, D. CMOS Analog Circuit Design. OUP USA, 2012.

[36] PELGROM, M. J. M., DUINMAIJER, A. C. J., WELBERS, A. P. G. “Match-

ing properties of MOS transistors”, IEEE Journal of Solid-State Circuits,

v. 24, n. 5, pp. 1433–1439, Oct 1989.

[37] KIM, G., KIM, M.-K., CHANG, B.-S., et al. “A low-voltage, low-power CMOS

delay element”, IEEE Journal of Solid-State Circuits, v. 31, n. 7, pp. 966–

971, Jul 1996.

[38] ZHANG, J., COOPER, S. R., LAPIETRA, A. R., et al. “A low power thyristor-

based CMOS programmable delay element”. In: Circuits and Systems,

2004. ISCAS ’04. Proceedings of the 2004 International Symposium on,

v. 1, pp. I–769–72, May 2004.

[39] INDIVERI, G., HORIUCHI, T. “Frontiers in Neuromorphic Engineering”,

Frontiers in Neuroscience, v. 5, n. 118, pp. 1–2, Oct 2011.

69

http://www.nxp.com/wcm_documents/models/mos-models/model-psp/psp102p3_summary.pdf
http://www.nxp.com/wcm_documents/models/mos-models/model-psp/psp102p3_summary.pdf

Appendix A

Pixel Array Simulation

To make the simulation stage described in Chapter 4 automatic, we used three

programming languages: Bash, MATLAB, and Python. To design low-complexity

algorithms for processing simulation data, aiming at displaying results that are useful

for validating pixel design, we took advantage of each programming language. For

all pixel array simulations, we used a directory structure such as the following one:

Cadence Analysis

Inputs/

Spiral4x4 ATIS/

Netlist spectre/

ATIS4x4.scs

Scripts/

matlab/

exe sim DVSs.sh (Bash)

plot2dATIS.m (Matlab)

plot3dDVS.m (Matlab)

plotTran ATIS.m (Matlab)

python/

setting input netlist ATIS.py

sort data ATIS pixel.py

Cameras simulation

Sim ATIS/

images/

Spectredata.raw/

output2matlab/

netlist.scs

env var.sh

Readme.txt

The directory structure presented above corresponds to an ATIS pixel array

70

simulation, because ATIS pixels have, inside them, a DVS pixel working as a TCD.

The scripts that were designed for this pixel array are similar to the scripts that

are used for the other pixel arrays. The directory structure is composed mainly by

four folders: Inputs, Netlist spectre, Scripts, and Cameras simulation. The Inputs

folder contains input stimuli used for DVS simulations. The Netlist spectre contains

netlist descriptions of all DVS pixel array circuits that were designed. The Scripts

folder contains two folders, in which algorithms are separated according to the pro-

gramming language (MATLAB or Python). The single Bash script that we used is

located in the matlab folder. The Cameras simulation folder contains successfully

accomplished DVS simulations. For each simulation, a folder is created. For ex-

ample, we can see a Sim ATIS folder containing valid simulation data within the

presented directory structure. The output2matlab folder contains the same simula-

tion output data, but in this folder the output data are save in a ‘comma-separated

value’ (CSV) file that can be easily imported by MATLAB.

Simulation parameters are defined by the user through a sequence of interactive

prompts. The exe sim DVSs script implements graphical interaction with the user.

In Figures A.1, A.2, and A.3, we show the steps that are necessary for an ATIS pixel

array simulation configuration. For a basic DVS sensor, the simulation configuration

is very similar, but the user receives fewer messages. Initially, the user chooses the

pixel array type (Figure A.1(a)). After that, the user is asked for a simulation name

(e.g. Sim ATIS) (Figure A.1(b)). The script itself creates the required files in the

Cameras simulation folder. Next, the user must select a circuit netlist representation

within the available ones (Figures A.1(c) and A.2(a)).

(a) (b) (c)

Figure A.1: Simulation configuration, first step: (a) pixel array type selection, (b)
simulation name assignment, and (c) confirmation.

After the netlist selection, the user must specify a folder containing input stimuli

(Figure A.2(b)). The script looks, inside the stimuli folder, for a README.txt file

containing input signal features such as:

N 4

M 4

T 1e-01

freq 10 (Hz)

Tdelay 5e-01

71

(a) (b)

Figure A.2: Simulation configuration, second step: (a) netlist selection, and (b)
input stimuli folder selection.

where ‘N’ and ‘M’ are the numbers of columns and rows of the pixel array. The

README.txt file contents should be independent of the pixel array type, although

they do depend on the array dimensions. The input signal period is ‘T’. The in-

put signal frequency is ‘freq’. The time instant at which the global reset signal

is activated is ‘Tdelay’. Other electrical simulation parameters are defined in the

same way as in Figures A.1 and A.2. The parameters that are required to start the

simulation are shown in Figure A.3 (number of bits in the data bus, Vref , Vd,on, and

so forth). By hitting the ‘Cancel’ button, the user aborts the configuration process

and the simulation is not launched.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.3: Simulation configuration, third step: electrical simulation parameters.

After all questions were answered, the exe sim DVSs script executes the following

scripts sequentially:

1. setting input netlist ATIS: this script modifies the original netlist, which had

been created by the Spectre simulator, and it generates a new netlist with the

specified features: electrical parameters and input stimulus;

2. sort data ATIS pixel: at this point, the simulation output data was generated

by Spectre. This script reads simulation output data, and it creates a new

72

file containing the same information in CSV format for MATLAB. In fact,

the script creates four files: i) the CSV data file, which contains all time-

domain (transient) simulation results; ii) a text file that indicates which data

file columns must be read for executing the DVS analysis; iii) a text file that

indicates which data file columns must be read for executing the ATIS analysis;

and iv) a text file containing data file signal labels, which is useful for plotting

the signals;

3. em ATIS Model: this script computes the ATIS expected response based on

the numerical model that was presented in Section 2.2.3. It uses the same

input signals that were used for the corresponding electrical simulations.

The scripts designed for DVS simulations are similar to the ones that were pre-

sented, above, for ATIS simulations. For example, the setting input netlist DVS

script replaces the setting input netlist ATIS script. The major difference, in this

case, is that DVS and ADMDVS pixels use a single photodiode, so the script mod-

ifies the input stimulus for the TCD (i.e. basic DVS) inside the ATIS pixels. In

Appendix B, we show the complete codes the implement the functions that were

mentioned in the present appendix.

73

Appendix B

Codes for simulating DVS cameras

In this appendix, we show the complete codes the implement the functions that were

mentioned in Appendix A. The ATIS Model is omitted, because it implements the

simple model that was presented earlier, in Section 2.2.3.

Listing B.1: Main program for executing DVSs camera simulations
1 #!/ b in / sh

2 #−−−−− Cr ea t i n g the f o l d e r to the s imu l a t i o n −−−−−−
3 PATH scr iptMat lab=$PWD/

4 cd $PATH scr iptMat lab

5 cd . .

6 PATH scr ipt=$PWD/

7 PATH scr iptPython=$PATH scr ipt ” python ”/

8 cd . .

9 cho ice TypeS im=$ (k d i a l o g −−menu ” Ava i b l e A r c h i t e c t u r e s : ” \
10 1 ”DVS or ADMDVS” 2 ”ATIS” \
11 −−t i t l e ”Which camera do you want to s imu l a t e ?”)

12 echo $cho ice TypeS im

13 #−−−−−−−−− Cr ea t i n g the common f o l d e r s −−−−−−−−−−−−−−
14 n am e f o l d e r n e t l i s t S p e c t r e=” N e t l i s t S p e c t r e ”

15 mkdir $ n am e f o l d e r n e t l i s t S p e c t r e

16 PATH ne t l i s t s p e c t r e=$PWD/ $ n am e f o l d e r n e t l i s t S p e c t r e /

17 n ame f o l d e r s imu l a t i o n=” Came ra s s imu l a t i on ”

18 mkdir $ n ame f o l d e r s imu l a t i o n

19 PATH simulat ion=$PWD/ $name f o l d e r s imu l a t i o n /

20 n ame f o l d e r i n p u t s=” I n pu t s ”

21 mkdir $ n ame f o l d e r i n p u t s

22 PATH namefo lder Input=$PWD/ $name f o l d e r i n p u t s /

23 cd $PATH simulat ion

24 #−−−−−−−−−−−− Reading u s e r i n pu t −−−−−−−−−−−−−−−−−−−
25 name s imu l a t i on=$ (k d i a l o g \
26 −−i npu tbox ”Write the name o f the s imu l a t i o n ”) ;

27 i f [”$?” −ne 0] ; then

28 k d i a l o g −−e r r o r ” S imu l a t i o n Aborted ”

29 cd $PATH scr iptMat lab

30 r e t u r n

31 f i ;

32 mkdir $name s imu l a t i on

33 # Guarantee tha t the s imu l a t i o n has a un ique name

34 wh i l e [$? −ne 0]

35 do

36 k d i a l o g −−yesno \
37 ”The d i r e c t o r y e x i s t Do you want re−w r i t e i t ?” ;

38 i f [”$?” = 0]

39 then

40 rm −fR $name s imu l a t i on

41 mkdir $name s imu l a t i on

42 e l i f [”$?” = 1] ; then

43 name s imu l a t i on=$ (k d i a l o g −−i npu tbox \
44 ”Wri te a d i f f e r e n t name f o r the s imu l a t i o n ”) ;

45 i f [”$?” = 0]

46 then

47 mkdir $name s imu l a t i on

48 e l s e

49 r e t u r n

50 f i ;

51 e l s e

52 k d i a l o g −−e r r o r ” S imu l a t i o n Aborted ” ;

53 cd $PATH scr iptMat lab

54 r e t u r n

74

55 f i ;

56 done

57 cd $PATH ne t l i s t s p e c t r e

58 # Here i s chosen the n e t l i s t to s imu l a t e

59 k d i a l o g −−msgbox ” S e l e c t the n e t l i s t t ha t you want s imu l a t e ”

60 PATH nameNet l i s t spec t r e=$ (k d i a l o g −−ge t op en f i l e n ame . ”∗ . s c s ”) ;

61 i f [”$?” −ne 0] ; then

62 k d i a l o g −−e r r o r ” S imu l a t i o n Aborted ”

63 cd $PATH scr iptMat lab

64 r e t u r n

65 f i ;

66 # ex t r a c t the name o f the n e t l i s t

67 n ameNe t l i s t s p e c t r e=$ (echo ” $PATH nameNet l i s t spec t re ” | sed ” s /.∗\///”)
68 n ameNe t l i s t s p e c t r e O r i g=$n ameNe t l i s t s p e c t r e

69 ## Se l e c t i n g the f o l d e r i n pu t

70 cd $PATH namefo lder Input

71 count=1

72 a=””

73 d i r e c =()

74 f o r i i n $ (l s −d ∗/) ;
75 do

76 a=a (echo ” $count ${ i%%//} ”)

77 d i r e c [$ ((count−1))]=${ i%%//}
78 count=$ ((count+1))

79 done

80 echo $a

81 # Se l e c t i n g the f o l d e r t ha t c on t a i n the i n pu t s i g n a l

82 c ho i c e=$ (k d i a l o g −−menu ”CHOOSE ONE: ” $a \
83 −−t i t l e ” S e l e c t the f o l d e r t ha t c o n t a i n s the i n pu t s i g n a l d e s i r e d ”)

84 echo $cho i c e

85 echo ${ d i r e c [$ ((cho i ce−1))]}
86 name S i gna l s i n pu t=${ d i r e c [$ ((cho i ce−1))]}
87 name S i gna l s i n pu t=$ (echo ${name S i gna l s i n pu t ///})
88 i f [”$?” = 0] ; then

89 PATH inputs=$PATH namefo lde r Input$name S igna l s i nput

90 e l s e

91 k d i a l o g −−e r r o r ” S imu l a t i o n Aborted ”

92 cd $PATH scr iptMat lab

93 r e t u r n

94 f i ;

95 cd $PATH scr iptMat lab

96 # Se t t i n g o f the s imu l a t i o n

97 numbe r b i t s=$ (k d i a l o g −−i npu tbox ”How many b i t s have the data bus ?”) ;

98 i f [”$?” −ne 0] ; then

99 k d i a l o g −−e r r o r ” S imu l a t i o n Aborted ”

100 cd $PATH scr iptMat lab

101 r e t u r n

102 f i ;

103 N=$ (k d i a l o g −−i npu tbox ”How many columns have your camera ?”) ;

104 i f [”$?” −ne 0] ; then

105 k d i a l o g −−e r r o r ” S imu l a t i o n Aborted ”

106 cd $PATH scr iptMat lab

107 r e t u r n

108 f i ;

109 M=$(k d i a l o g −−i npu tbox ”How many rows have your camera ?”) ;

110 i f [”$?” −ne 0] ; then

111 k d i a l o g −−e r r o r ” S imu l a t i o n Aborted ”

112 cd $PATH scr iptMat lab

113 r e t u r n

114 f i ;

115 Vre f=$ (k d i a l o g −−i npu tbox ”Wri te the Vre f i n l ong format ”) ;

116 i f [”$?” −ne 0] ; then

117 k d i a l o g −−e r r o r ” S imu l a t i o n Aborted ”

118 cd $PATH scr iptMat lab

119 r e t u r n

120 f i ;

121 Vdof f=$ (k d i a l o g −−i npu tbox ”Write the Vdof f i n l ong format ”) ;

122 i f [”$?” −ne 0] ; then

123 k d i a l o g −−e r r o r ” S imu l a t i o n Aborted ”

124 cd $PATH scr iptMat lab

125 r e t u r n

126 f i ;

127 Vdon=$ (k d i a l o g −−i npu tbox ”Wri te the Vdon i n l ong format ”) ;

128 i f [”$?” −ne 0] ; then

129 k d i a l o g −−e r r o r ” S imu l a t i o n Aborted ”

130 cd $PATH scr iptMat lab

131 r e t u r n

132 f i ;

133 # For ATIS

134 i f [” $cho ice TypeS im ” = 2]

135 then

136 Vhigh=$ (k d i a l o g −−i npu tbox ”Write the Vhigh i n l ong format ”) ;

137 i f [”$?” −ne 0] ; then

138 k d i a l o g −−e r r o r ” S imu l a t i o n Aborted ”

139 cd $PATH scr iptMat lab

140 r e t u r n

141 f i ;

142 Vlow=$ (k d i a l o g −−i npu tbox ”Write the Vlow i n l ong format ”) ;

143 i f [”$?” −ne 0] ; then

75

144 k d i a l o g −−e r r o r ” S imu l a t i o n Aborted ”

145 cd $PATH scr iptMat lab

146 r e t u r n

147 f i ;

148 f i

149 comment s imu la t ion=$ (k d i a l o g −−i npu tbox \
150 ”Wri te some comments o f your S imu l a t i o n ”)

151 i f [”$?” −ne 0] ; then

152 comment s imu la t ion=”No comments ! ”

153 f i ;

154 #−−−−−−− CREATING DIRECTORIES −−−−−−−−−−−−
155 PATH fo l d e r s imu l a t i on=$PATH s imu la t ion$name s imu la t ion /

156 # Copy the o r i g i n a l n e t l i s t to the f o l d e r S imu l a t i o n

157 cp −f $PATH nameNet l i s t spec t re $PATH fo l d e r s imu l a t i on

158 cd $PATH fo l d e r s imu l a t i on

159 cp −f $ n ameNe t l i s t s p e c t r e ” n e t l i s t ” $name s imu l a t i on ” . s c s ”

160 # Write the comment s imu l a t i o n i n t o the README SIM . t x t

161 echo ” O r i g i n a l N e t l i s t $ n ameNe t l i s t s p e c t r e ” >> README SIM . t x t

162 echo ”===========COMMENT ==========” >> README SIM . t x t

163 echo $comment s imu la t ion >> README SIM . t x t

164 n ameNe t l i s t s p e c t r e=” n e t l i s t ” $name s imu l a t i on ” . s c s ”

165 name f o l d e r ma t l a b ou t pu t=” output mat l ab ”

166 name mat lab output=” ou tpu t ma t l ab ” $name s imu l a t i on ” . c sv ”

167 name images=” images ”

168 mkdir $name f o l d e r ma t l a b ou tpu t

169 mkdir $name images

170 PATH sim output matlab=$PATH fo l d e r s imu l a t i o n$name f o l d e r ma t l a b ou t pu t /

171 PATH fo lde r i nput=$PATH inputs/

172 PATH fo lder images=$PATH fo lde r s imu la t i on$name images /

173 n ame f o l d e r o u t p u t Sp e c t r e=” n e t l i s t ” $name s imu l a t i on ” . raw”

174 cd $PATH fo l d e r s imu l a t i on

175 #−−−−−−−−−−−−− SAVE VARIABLES −−−−−−−−−−−−−− #

176 a r r a y v a r s =(PATH nameNet l i s t spec t r e PATH scr iptMat lab \
177 PATH scr ipt PATH scr iptPython \
178 PATH ne t l i s t s p e c t r e PATH simulat ion PATH fo l d e r s imu l a t i on \
179 PATH sim output matlab PATH fo lde r i nput PATH fo lder images \
180 name s imu l a t i on name S i gna l s i n pu t name f o l d e r ma t l a b ou t pu t \
181 name mat lab output name images n ame f o l d e r o u t p u t Sp e c t r e \
182 numbe r b i t s M N Vre f Vdof f Vdon Vhigh Vlow \
183 n ameNe t l i s t s p e c t r e O r i g n ameNe t l i s t s p e c t r e)

184 # Export env i ronment v a r i a b l e s

185 f o r i t em i n ${ a r r a y v a r s [∗]}
186 do

187 e xpo r t $i tem

188 done

189 # . . . Wr i te the f i l e . . .

190 echo −n ”” > en v v a r . sh #Cl e a r the f i l e

191 echo ”#!/ b in / bash ” >> en v v a r . sh

192 f o r i t em i n ${ a r r a y v a r s [∗]}
193 do

194 p r i n t f ”%s\n” $i tem=${! i tem} >> en v v a r . sh

195 done

196 f o r i t em i n ${ a r r a y v a r s [∗]}
197 do

198 p r i n t f ” expo r t %s\n” $i tem >> en v v a r . sh

199 done

200 #−−#
201 # Execu t i ng Spec t r e and S c r i p t to p r o c e s s i n g the s imu l a t i o n r e s pon s e

202

203 case ” $cho ice TypeS im ” i n

204 1) #DVS

205 c l e a r

206 echo ” S imu l a t i n g a DVS camera . I t cou ld take some \
207 minutes , hour s or even days p l e a s e wa i t ”

208 # Execu t i on o f DVS commands

209 cd $PATH scr iptPython

210 python s e t t i n g i n p u t n e t l i s t UN IX DVS2 . py

211 cd $PATH fo l d e r s imu l a t i on

212 s p e c t r e +mt ++aps −fo rmat p s f a s c i i $ n ameNe t l i s t s p e c t r e

213 i f [”$?” = 0]

214 then

215 s l e e p 50

216 cd $PATH scr iptPython

217 python so r t da t a DVS p i x e l UN IX . py

218 i f [”$?” = 0]

219 then

220 cd $PATH scr iptMat lab

221 matlab −nodesktop −no sp l a s h −r Model CamDVS

222 matlab −nodesktop −no sp l a s h −r plotTran DVS

223 e l s e

224 k d i a l o g −−e r r o r ” E r r o r s found i n the Python s c r i p t . P l e a s e v e r i f y i t ”

225 f i

226 e l s e

227 k d i a l o g −−e r r o r \
228 ” P l e a s e v e r i f y i f the Spec t r e env i ronment v a r i a b l e s a r e p r o p e r l y c o n f i g u r e d ”

229 cd $PATH scr iptMat lab

230 r e t u r n

231 f i

232 ; ;

76

233 2) #ATIS

234 c l e a r

235 echo ” S imu l a t i n g an ATIS camera wa i t i t cou ld take some minutes , hour s o r days ”

236 cd $PATH scr iptPython

237 python s e t t i n g i n p u t n e t l i s t UN IX AT I S . py

238 cd $PATH fo l d e r s imu l a t i on

239 s p e c t r e +mt ++aps −fo rmat p s f a s c i i $ n ameNe t l i s t s p e c t r e

240 # Ana l y s i s f o r ATIS P i x e l

241 i f [”$?” = 0]

242 then

243 s l e e p 50

244 cd $PATH scr iptPython

245 python s o r t d a t a AT IS p i x e l UN IX . py

246 i f [”$?” = 0]

247 then

248 cd $PATH scr iptMat lab

249 matlab −nodesktop −no sp l a s h −r ATIS Model

250 matlab −nodesktop −no sp l a s h −r p lotTran ATIS

251 e l s e

252 k d i a l o g −−e r r o r ” E r r o r s found i n the Python s c r i p t . P l e a s e v e r i f y i t ”

253 f i

254 e l s e

255 k d i a l o g −−e r r o r \
256 ” P l e a s e v e r i f y i f the Spec t r e env i ronment v a r i a b l e s a r e p r o p e r l y c o n f i g u r e d ”

257 cd $PATH scr iptMat lab

258 r e t u r n

259 f i

260 esac

261 cd $PATH scr iptMat lab

Listing B.2: Modifying the ATIS netlist
1 impor t os

2 impor t s y s

3 impor t r e

4 # ========= De c l a r a t i o n s ========= #

5 PATH nameNet l i s t spec t r e = os . e n v i r o n [’ PATH nameNet l i s t spec t r e ’]

6 PATH fo l d e r s imu l a t i on = os . e n v i r o n [’ PATH fo l d e r s imu l a t i on ’]

7 n ameNe t l i s t s p e c t r e O r i g = os . e n v i r o n [’ n ameNe t l i s t s p e c t r e O r i g ’]

8 n ameNe t l i s t s p e c t r e = os . e n v i r o n [’ n ameNe t l i s t s p e c t r e ’] # n e t l i s t f i n a l

9 PATH fo lde r i nput = os . e n v i r o n [’ PATH fo lde r i nput ’]

10 name S i gna l s i n pu t = os . e n v i r o n [’ n ame S i gna l s i n pu t ’]

11 Vdof f = f l o a t (os . e n v i r o n [’ Vdof f ’])

12 Vdon = f l o a t (os . e n v i r o n [’Vdon ’])

13 Vhigh = f l o a t (os . e n v i r o n [’ Vhigh ’])

14 Vlow = f l o a t (os . e n v i r o n [’ Vlow ’])

15 Vre f = f l o a t (os . e n v i r o n [’ V re f ’])

16 e x t i n p u t = ’ . c s v ’

17 N = i n t (os . e n v i r o n [’N ’])

18 M = i n t (os . e n v i r o n [’M’])

19 q u a n t p i x e l s = N∗M
20 T Rst=1e−3;

21 os . c h d i r (PATH fo l d e r s imu l a t i on)

22 name n VoltageDVS = ’V pdD ’

23 name n VoltageATIS = ’V pdA ’

24 name n CurrentDVS = ’ I pdD ’

25 name n CurrentATIS = ’ I pdA ’

26 # ========= Va r i a b l e s ========= #

27 l nodevo l t ageNames = [] # Save the name o f the node v o l t a g e DVS

28 l nodecu r r en tNames = [] # Save the name o f the nodes c u r r e n t name DVS

29 l nodevo l tageNames A = [] # Save the name o f the node v o l t a g e ATIS

30 l nodecu r r en tNames A = [] # Save the name o f the nodes c u r r e n t name ATIS

31 # ========= Open and Write F i l e s ========= #

32 f = open (n ameNe t l i s t s p e c t r e O r i g , ’ r ’)

33 f r eadme=open (PATH fo lde r i nput+’README. t x t ’ , ’ r ’) # Read the f e a t u r e s o f the i n pu t s i g n a l

34 f n e t l i s t = open (n ameNe t l i s t s p e c t r e , ’w ’)

35 l r e adme= l i s t (f r eadme . r e a d l i n e s ())

36 l r e adme=[w. r e p l a c e (’\n ’ , ’ ’) f o r w i n l r e adme]

37 l n e t l i s t = l i s t (f . r e a d l i n e s ())

38 l n e t l i s t = [w. r e p l a c e (’\n ’ , ’ ’) f o r w i n l n e t l i s t] # Sto r e s the N e t l i s t i n a l i s t

39 l e n n e t l i s t = l e n (l n e t l i s t)

40 f . c l o s e ()

41 f r eadme . c l o s e ()

42 # ========= Ex t r a c t i n g the Pe r i od S i g n a l ======== #

43 r e g ex=re . comp i l e (” .∗ (T) ”)

44 s u b l i s t = f i l t e r (r eg ex . match , l r e adme)

45 s u b l i s t = s u b l i s t [0] . s p l i t (’ ’)

46 T=s u b l i s t [2]

47 # ========= Open and Write F i l e s ========= #

48 l nodevo l t ageNames=[name n VoltageDVS+s t r (i) f o r i i n range (0 , q u a n t p i x e l s)]

49 l nodecu r r en tNames=[name n CurrentDVS+s t r (i) f o r i i n range (0 , q u a n t p i x e l s)]

50 l nodevo l tageNames A=[name n VoltageATIS+s t r (i) f o r i i n range (0 , q u a n t p i x e l s)]

51 l nodecu r r en tNames A=[name n CurrentATIS+s t r (i) f o r i i n range (0 , q u a n t p i x e l s)]

52 # ========= Open and Write F i l e s ========= #

53 f n e t l i s t . s e ek (0 , 0)

54 # Modify the pa ramete r s

55 r e g ex=re . comp i l e (” (pa ramete r s) ”)

77

56 s u b l i s t = f i l t e r (r eg ex . match , l n e t l i s t) ; i= l n e t l i s t . i nd e x (s u b l i s t [0])

57 n ew l i n e = (’ pa ramete r s Vdon=%1.3 f ’%Vdon+’ Vdof f=%1.3 f ’%Vdof f+’ T=%1.10 f ’%f l o a t (T)+

58 ’ T Rst=%1.10 f ’%T Rst+’ Vhigh=%1.3 f ’%f l o a t (Vhigh)+ ’ Vlow=%1.3 f ’%f l o a t (Vlow)+

59 ’ V r e f=%1.3 f ’%Vre f)

60 l n e t l i s t [i]= n ew l i n e

61 # Modify the t o t a l t ime s imu l a t i o n

62 r e g ex=re . comp i l e (” (t r an t r an) ”)

63 s u b l i s t = f i l t e r (r eg ex . match , l n e t l i s t) ; i= l n e t l i s t . i nd e x (s u b l i s t [0])

64 s u b l i s t = s u b l i s t [0] . s p l i t (’ ’)

65 r e g ex=re . comp i l e (” (s top) ”)

66 s t r i n g = f i l t e r (r eg ex . match , s u b l i s t) ; j = s u b l i s t . i n d e x (s t r i n g [0])

67 n ew l i n e = ’ s top=%1.10 f ’%(T Rst+ f l o a t (T))

68 s u b l i s t [j]= n ew l i n e

69 l n e t l i s t [i]= ’ ’ . j o i n (s u b l i s t)

70 # Se t t i n g up the i npu t s i g n a l and change the

71 # a l l s o u r c e s by i n t u i t i v e s names

72 f o r i i n range (0 , q u a n t p i x e l s) :

73 # DVS

74 r e g ex=re . comp i l e (” .∗ (pdD”+s t r (i)+” 0) ”)

75 s u b l i s t = f i l t e r (r eg ex . match , l n e t l i s t)

76 p o s i n i = l n e t l i s t . i n d e x (s u b l i s t [0])

77 j = p o s i n i + 1

78 wh i l e j < l e n n e t l i s t :

79 s t r i n g= l n e t l i s t [j]

80 l s t tmp=s t r i n g . s p l i t (’ ’)

81 i f l s t tmp [0] != ’ ’ :

82 n x t i n s=j

83 j= l e n n e t l i s t

84 e l s e :

85 j=j+1

86 d e l l n e t l i s t [p o s i n i : n x t i n s]

87 l i n e 1 = l nodecu r r en tNames [i]+ ’ (’+l nodevo l t ageNames [i]+ ’ 0) i s o u r c e \\ ’
88 l i n e 2 = ’ f i l e=’+’ ” ’+ PATH fo lde r i nput+name S i gna l s i n pu t+’ ’+s t r (i)+e x t i n p u t+’ ” ’+’ \\ ’
89 l i n e 3 = ’ type=pwl d e l a y=T Rst edgetype=h a l f s i n e s c a l e=1 s t r e t c h=1 pw lp e r i o d=T ’

90 l n e t l i s t . i n s e r t (p o s i n i , l i n e 1)

91 l n e t l i s t . i n s e r t (p o s i n i +1, l i n e 2)

92 l n e t l i s t . i n s e r t (p o s i n i +2, l i n e 3)

93 # ATIS

94 r e g ex=re . comp i l e (” .∗ (pdA”+s t r (i)+” 0) ”)

95 s u b l i s t = f i l t e r (r eg ex . match , l n e t l i s t)

96 p o s i n i = l n e t l i s t . i n d e x (s u b l i s t [0])

97 j = p o s i n i + 1

98 wh i l e j < l e n n e t l i s t :

99 s t r i n g= l n e t l i s t [j]

100 l s t tmp=s t r i n g . s p l i t (’ ’)

101 i f l s t tmp [0] != ’ ’ :

102 n x t i n s=j

103 j= l e n n e t l i s t

104 e l s e :

105 j=j+1

106 d e l l n e t l i s t [p o s i n i : n x t i n s]

107 l i n e 1 = l nodecu r r en tNames A [i]+ ’ (’+l nodevo l tageNames A [i]+ ’ 0) i s o u r c e \\ ’
108 l i n e 2 = ’ f i l e=’+’ ” ’+ PATH fo lde r i nput+name S i gna l s i n pu t+’ ’+s t r (i)+e x t i n p u t+’ ” ’+’ \\ ’
109 l i n e 3 = ’ type=pwl d e l a y=T Rst edgetype=h a l f s i n e s c a l e=1 s t r e t c h=1 pw lp e r i o d=T ’

110 l n e t l i s t . i n s e r t (p o s i n i , l i n e 1)

111 l n e t l i s t . i n s e r t (p o s i n i +1, l i n e 2)

112 l n e t l i s t . i n s e r t (p o s i n i +2, l i n e 3)

113 # ========= Write n e t l i s t ========= #

114 x = 0

115 l e n n e t l i s t = l e n (l n e t l i s t) # c a l c u l a t e s the l e n g t h o f the l i s t ’ l n e t l i s t ’

116 wh i l e x < l e n n e t l i s t :

117 f n e t l i s t . w r i t e (l n e t l i s t [x])

118 f n e t l i s t . w r i t e (’\n ’)

119 x = x + 1

120 f n e t l i s t . c l o s e ()

Listing B.3: Reading the data simulation from Spectre simulator
1 from g e t I n d e x d e s i r e d S i g n a l s impor t g e t I n d e x d e s i r e d S i g n a l s

2 impor t os

3 # ========= Globa l v a r i a b l e s ========= #

4 PATH sim output matlab = os . e n v i r o n [’ PATH sim output matlab ’]

5 PATH fo l d e r s imu l a t i on = os . e n v i r o n [’ PATH fo l d e r s imu l a t i on ’]

6 name s imu l a t i on = os . e n v i r o n [’ name s imu l a t i on ’]

7 n ame f o l d e r o u t p u t Sp e c t r e = os . e n v i r o n [’ n ame f o l d e r o u t p u t Sp e c t r e ’]

8 numbe r b i t s = i n t (os . e n v i r o n [’ numbe r b i t s ’])

9 name tran = ’ t r an . t r a n ’

10 l s i g n a l s = [’ t ime ’] #by d e f a u l t i f the s imu l a t i o n was t r a n s i e n t

11 s t r i n g s t a r t = ’VALUE ’ #de f a u l t

12 s t r i n g s t o p = ’END ’ #de f a u l t

13 s t r i n g i n d e x f i l e = ’ i n d e x d a t a ’ #DVS

14 s t r i n g i n d e x f i l e A = ’ i nd e x da t a A ’ #ATIS

15 s t r i n g d a t a = ’ da ta ’+name s imu l a t i on

16 # ========= De f i n i n g d e s i r e d s i g n a l s ========= #

17 # DVS

18 l s t d e s i r e d s i g n a l s = [’ data ’ , ’ En Read Row ’ , ’ En Read p i x e l ’ , ’ G l o b a l r s t ’]

19 l s t b u s d a t a = [’ data ’]

78

20 # ATIS

21 l s t d e s i r e d s i g n a l s A = [’ data A ’ , ’ En Read Row A ’ , ’ En Read p i x e l A ’ , ’ G l o b a l r s t ’ , ’ R eq f r ’]

22 l s t b u s d a t a A = [’ data A ’]

23 # ========= So r t i n g output s imu l a t i o n f i l e ========= #

24 F i l e = open (PATH fo l d e r s imu l a t i on+name f o l d e r o u t p u t Sp e c t r e+’ / ’+name tran , ’ r ’)

25 f i l e d a t a = open (PATH sim output matlab+s t r i n g d a t a+’ . c sv ’ , ’w ’) #Output r e a d ab l e f o r Matlab

26 p a t h f i l e i n d e x = PATH sim output matlab+s t r i n g i n d e x f i l e+’ . c s v ’ #Index d e s i r e d DVS s i g n a l

27 p a t h f i l e i n d e x A = PATH sim output matlab+s t r i n g i n d e x f i l e A+’ . c sv ’ #Index d e s i r e d ATIS s i g n a l

28 f i l e h e a d e r = open (PATH sim output matlab+’ heade r . t x t ’ , ’w ’) #f i l e d a t a heade r s

29 l o u t p u t = l i s t (F i l e . r e a d l i n e s ())

30 l o u t p u t = [w. r e p l a c e (’\n ’ , ’ ’) f o r w i n l o u t p u t] # removes the ’\n ’ s t r i n g

31 l e n o u t p u t = l e n (l o u t p u t) # count s the t o t a l e l ement s i n l o u t p u t

32 l ine TRACE = l o u t p u t . i nd e x (’TRACE ’) # s i n c e the keyword TRACE s t a r t s the s i g n a l s

ob t a i n ed from sim .

33 l ine VALUE = l o u t p u t . i nd e x (’VALUE ’) # Un t i l the keyword VALUE ends the s i g n a l s

ob t a i n ed from sim .

34 x = line TRACE+1

35 # === ob t a i n i n g the s i g n a l s names from s imu l a t i o n ==== #

36 wh i l e x < l ine VALUE :

37 v a l u e = l o u t p u t [x] . s p l i t ()

38 i f (l e n (v a l u e) == 1) :

39 # I t i s not a v a l i d s i g n a l

40 x = x + 1

41 e l s e :

42 s t r i n g = va l u e [1]

43 i f (s t r i n g == ’ ”A” ’) :

44 # I t i s not a v a l i d s i g n a l

45 x = x + 1

46 e l s e :

47 # I t i s a v a l i d s i g n a l

48 s t r i n g = va l u e [0]

49 s t r i n g = s t r i n g . r e p l a c e (’ ” ’ , ’ ’)

50 l s i g n a l s . append (s t r i n g)

51 x = x + 1

52 # === Ca l l i n g e x t e r n a l f u n c t i o n to c r e a t e the i n d e x e s === #

53 #DVS

54 g e t I n d e x d e s i r e d S i g n a l s (l s i g n a l s , l s t d e s i r e d s i g n a l s ,

55 l s t b u s d a t a , number b i t s , p a t h f i l e i n d e x)

56 #ATIS

57 g e t I n d e x d e s i r e d S i g n a l s (l s i g n a l s , l s t d e s i r e d s i g n a l s A ,

58 l s t b u s d a t a A , number b i t s , p a t h f i l e i n d e x A)

59 # ========== Wr i t i ng the output f i l e s =========== #

60 l e n s i g n a l s = l e n (l s i g n a l s) # count s the e l ement s i n l s i g n a l s

61 i s t a r t = line VALUE + 1 # s e t s up the i ndex where the fo r−l oop needs to s t a r t .

62 x = i s t a r t

63 f i l e d a t a . s e ek (0 , 0)

64 s t r i n g h e a d e r = ’ , ’ . j o i n (l s i g n a l s)

65 f i l e h e a d e r . w r i t e (s t r i n g h e a d e r) # wr i t e s the heade r s

66 f i l e h e a d e r . c l o s e ()

67 wh i l e x < l e n o u t p u t :

68 i f (l o u t p u t [x] == s t r i n g s t o p) :

69 break

70 e l s e :

71 f o r i i n range (0 , l e n s i g n a l s) :

72 v a l u e = l o u t p u t [x+i] . s p l i t ()

73 v a l u e = va l u e [1]

74 f i l e d a t a . w r i t e (v a l u e)

75 i f (i == l e n s i g n a l s −1) :

76 f i l e d a t a . w r i t e (’\n ’)

77 e l s e :

78 f i l e d a t a . w r i t e (’ , ’)

79 x = x + l e n s i g n a l s

80 f i l e d a t a . c l o s e ()

Listing B.4: Processing the ATIS data
1 % Este s c r i p t p l o t e a l a s a l i d a de una camara DVS

2 c l e a r a l l ; c l c ; c l o s e a l l ;

3 pwd cu r r en t = pwd ;

4 t i c ; % I t i s f o r measur ing the e l a p s e d t ime

5 %% =========== Gets g l o b a l v a r i a b l e s ============ %%

6 PATH sim output matlab = getenv (’ PATH sim output matlab ’) ;

7 name s imu l a t i on = getenv (’ name s imu l a t i on ’) ;

8 PATH fo lder images = getenv (’ PATH fo lder images ’) ;

9 numbe r b i t s = str2num (getenv (’ numbe r b i t s ’)) ;

10 N = str2num (getenv (’N ’)) ;

11 M = str2num (getenv (’M’)) ;

12 Vhigh = str2num (getenv (’ Vhigh ’)) ;

13 Vlow = str2num (getenv (’ Vlow ’)) ;

14 PATH input = getenv (’ PATH fo lde r i nput ’) ;

15 name s i gna l = getenv (’ n ame S i gna l s i n pu t ’) ;

16 T Rst = 1e−3;

17 cd (PATH sim output matlab)

18 %% =========== Reading the data f i l e s =========== %%

19 s t r i n g d a t a = s t r c a t (’ da t a ’ , name s imu la t i on , ’ . c s v ’) ;% Name s imu l a t i o n f i l e

20 s t r i n g i n d e x f i l e = ’ i n d e x d a t a . c sv ’ ; % Name i n d e x e s DVS s i g n a l s

21 s t r i n g i n d e x f i l e A = ’ i nd e x da t a A . c sv ’ ; % Name i n d e x e s ATIS s i g n a l s

79

22 data S im = impor tda ta (s t r i n g d a t a) ; % Saves s imu l a t i o n i n data S im

23 midd l e p o i n t = 0 . 9 ; % I t d e f i n e s from which v a l u e i s h i gh or low

24 %% =========== Pro c e s s i n g o f DVS data =========== %%

25 % St r u c t = { ’ t ime ’ ’ data<0:up (l og2 (N∗M)+1)> ’ , ’ En Read Row ’ , ’ En Read p i x e l ’ , ’ G l o b a l r s t ’}
26 i n d e x d e s i r e d = impor tda ta (s t r i n g i n d e x f i l e) ;

27 l e n i n d e x = l e n g t h (i n d e x d e s i r e d) ;

28 l e n r ow da t a S im = l e n g t h (data S im) ;

29 d i g i t a l S i g n a l = z e r o s (l en row da ta S im , l e n i n d e x) ;

30 v e c p i x e l s = z e r o s (l en row da ta S im , 1) ;

31 t ime = data S im (: , 1) ;

32 % ADC con v e r t i n g p r o c e s s

33 f o r i =1: l e n i n d e x

34 s i g n a lX= data S im (: , i n d e x d e s i r e d (i)+1) ; % Plus 1 to i n c l u d e the t ime s i g n a l

35 index ONE= f i n d (s i g n a lX >= midd l e p o i n t) ;

36 index ZERO= f i n d (s i g n a lX <midd l e p o i n t) ;

37 s i g n a lX (index ONE) = 1 ;

38 s i g n a lX (index ZERO) = 0 ;

39 i f (i <= number b i t s−1)

40 s i g n a lX = (2ˆ(i−1))∗ s i g n a lX ;

41 v e c p i x e l s = v e c p i x e l s + s i g n a lX ;

42 end

43 d i g i t a l S i g n a l (: , i)=s i g n a lX ;

44 end

45 % De f i n i n g s i g n a l s o f i n t e r e s e t

46 i n d e x Th r e s h o l d = numbe r b i t s ;

47 index En ReadRow = numbe r b i t s +1;

48 i n d e x En ReadP i x e l = numbe r b i t s +2;

49 i n d e x G l o b a l r s t = numbe r b i t s + 3 ;

50 k indEvent = d i g i t a l S i g n a l (: , i n d e x Th r e s h o l d) ; % Kind even t Thre sho ld ON / OFF

51 EnReadRow = d i g i t a l S i g n a l (: , index En ReadRow) ; %en read row

52 EnReadPix = d i g i t a l S i g n a l (: , i n d e x En ReadP i x e l) ; %en read p i x e l

53 G loba lR s t = d i g i t a l S i g n a l (: , i n d e x G l o b a l r s t) ; %g l o b a l r e s e t

54 % De f i n i n g when an even t o c cu r r e d . I t can be ob ta i n ed s e e i n g the EnReadPix

55 % s i g n a l when i t s v a l u e be equa l to one we have a v a l i d data .

56 s t a t e = 0 ;

57 ON events = { []} ;
58 OFF events = { []} ;
59 ind ON=1;

60 ind OFF = 1 ;

61 i = f i n d (t ime > T Rst , 1) ; % Set s up the i ndex i a f t e r the t ime r e s e t d e f i n e d

62 wh i l e (i<=len r ow da t a S im)

63 i f (s t a t e == 0)

64 % Finds when EnReadPix s i g n a l r i s e s

65 i nd En RdPix = f i n d (EnReadPix (i : l e n r ow da t a S im) == 1 ,1) + i − 1 ;

66 i f i s empty (ind En RdPix)

67 % Ex i t l oop

68 i = l e n r ow da t a S im + 1 ;

69 e l s e

70 % V e r i f i e s which k ind o f even t o c cu r r e d

71 i f k indEvent (ind En RdPix) == 0

72 % ON EVENT

73 t = t ime (ind En RdPix) ;

74 p i x e l = v e c p i x e l s (ind En RdPix) ;

75 v e c t im e p i x = [t p i x e l] ;

76 ON events{ ind ON} = ve c t im e p i x ;

77 ind ON = ind ON + 1 ;

78 s t a t e = 1 ;

79 e l s e

80 % OFF Event

81 t = t ime (ind En RdPix) ;

82 p i x e l = v e c p i x e l s (ind En RdPix) ;

83 v e c t im e p i x = [t p i x e l] ;

84 OFF events{ ind OFF} = ve c t im e p i x ;

85 ind OFF = ind OFF + 1 ;

86 s t a t e =1;

87 end

88 end

89 e l s e

90 i nd En RdPix=f i n d (EnReadPix (ind En RdPix : l e n r ow da t a S im)==0,1)+ind En RdPix − 1 ;

91 i = ind En RdPix ;

92 s t a t e = 0 ;

93 end

94 end

95 cd (pwd cu r r en t)

96 % P l o t t i n g DVS r e s pon s e

97 plot3dDVS fn (ON events , OFF events , ’SIMULATED ’)

98 %% ======================= Pro c e s s i n g ATIS data ======================= %%

99 cd (PATH sim output matlab)

100 % St r u c t={’ t ime ’ , ’ data A ’ , ’ En Read Row A ’ , ’ En Read p i xe l A ’ , ’ G l o b a l r s t ’ , ’ Req f r ’}
101 i n d e x d e s i r e d A = impor tda ta (s t r i n g i n d e x f i l e A) ;

102 l e n i n d e x A = l e n g t h (i n d e x d e s i r e d A) ;

103 d i g i t a l S i g n a l A = z e r o s (l en row da ta S im , l e n i n d e x A) ;

104 v e c p i x e l s = z e r o s (l en row da ta S im , 1) ;

105 t ime = data S im (: , 1) ;

106 r e s o l = 256 ;

107 Clim = [0 2 5 5] ;

108 cd (pwd cu r r en t)

109 % Cod ingGraySca l e i s a f u n c t i o n tha t r e t u r n a v e c t o r w i th s i z e equa l to r e s o l

110 % with t h i s i n f o rma t i o n we can de t e rm ine to c l a s s i f y the b r i g h t n e s s i n t o

80

111 % g r a y s c a l e .

112 [v e c c o l o r , vec COD TIME] = Cod ingGraySca l e (Vhigh , Vlow , r e s o l , Cl im) ;

113 % ADC con v e r t i n g p r o c e s s

114 f o r i =1: l e n i n d e x A

115 s i g n a lX = data S im (: , i n d e x d e s i r e d A (i)+1) ; % Se suma 1 para con t a r e l v e c t o r t iempo

116 index ONE = f i n d (s i g n a lX >= midd l e p o i n t) ;

117 index ZERO = f i n d (s i g n a lX <midd l e p o i n t) ;

118 s i g n a lX (index ONE) = 1 ;

119 s i g n a lX (index ZERO) = 0 ;

120 i f (i <= number b i t s−1)

121 s i g n a lX = (2ˆ(i−1))∗ s i g n a lX ;

122 v e c p i x e l s = v e c p i x e l s + s i g n a lX ;

123 end

124 d i g i t a l S i g n a l A (: , i)=s i g n a lX ;

125 end

126 % De f i n i n g s i g n a l s o f i n t e r e s e t

127 i n d e x Th r e s h o l d = numbe r b i t s ;

128 index En ReadRow = numbe r b i t s +1;

129 i n d e x En ReadP i x e l = numbe r b i t s +2;

130 i n d e x G l o b a l r s t = numbe r b i t s + 3 ;

131 i n d e x R e q f r = numbe r b i t s + 4 ;

132 t ime ;

133 v e c p i x e l s ;

134 k indEvent = d i g i t a l S i g n a l A (: , i n d e x Th r e s h o l d) ; % Kind even t Vhigh or Vlow

135 EnReadRow = d i g i t a l S i g n a l A (: , index En ReadRow) ; %en read row

136 EnReadPix = d i g i t a l S i g n a l A (: , i n d e x En ReadP i x e l) ; %en read p i x e l

137 G loba lR s t = d i g i t a l S i g n a l A (: , i n d e x G l o b a l r s t) ; %g l o b a l r e s e t

138 Req f r = d i g i t a l S i g n a l A (: , i n d e x R e q f r) ; % Req f r

139 % F i n i t e s t a t e machine to b r i g t h n e s s encod ing s i n c e s imu l a t i o n r e s pon s e

140 s t a t e = 0 ;

141 Ma t r i x t im e p i x c o l o u r = z e r o s (1 , 3) ;

142 Mat r i x t im e h i g h l ow = z e r o s (N∗M,2) ;

143 c r o s s H i g h = z e r o s (N∗M,2) ;

144 c r o s s H i g h (: , 1) = [0 :N∗M−1] ’ ;

145 Mat r i x t im e h i g h l ow (: , 1) = [0 :N∗M−1] ’ ;

146 ind TPC=1;

147 i = f i n d (t ime > T Rst , 1) ;

148 wh i l e (i<=len r ow da t a S im)

149 i f (s t a t e == 0)

150 % Ve r i f y i n g i f EnReadPix s i g n a l r i s e s

151 i nd En RdPix = f i n d (EnReadPix (i : l e n r ow da t a S im) == 1 ,1) + i − 1 ;

152 i f i s empty (ind En RdPix)

153 i = l e n r ow da t a S im + 1 ;

154 e l s e

155 p i x e l = v e c p i x e l s (ind En RdPix) ;

156 % Dete rmin ing the type o f c r o s s i n g

157 i f k indEvent (ind En RdPix) == 0

158 % Cro s s i n g by Vhigh

159 t h i g h = t ime (ind En RdPix) ;

160 Mat r i x t im e h i g h l ow (p i x e l +1 ,1) = t h i g h ;

161 s t a t e = 1 ;

162 c r o s s H i g h (p i x e l +1) = 1 ;

163 e l s e

164 %Cro s s i n g by Vlow

165 i f c r o s s H i g h (p i x e l +1) == 1

166 t l ow = time (ind En RdPix) ;

167 Mat r i x t im e h i g h l ow (p i x e l +1 ,2) = t l ow ;

168 t h i g h = Ma t r i x t im e h i g h l ow (p i x e l +1 ,1) ;

169 T in t = t l ow − t h i g h ;

170 i n d t a b l e = f i n d (vec COD TIME <= T in t , 1) ;

171 Co lo r = v e c c o l o r (i n d t a b l e) ;

172 Ma t r i x t im e p i x c o l o u r (ind TPC , 1) = t l ow ;

173 Ma t r i x t im e p i x c o l o u r (ind TPC , 2) = p i x e l ;

174 Ma t r i x t im e p i x c o l o u r (ind TPC , 3) = Co lo r ;

175 ind TPC = ind TPC + 1 ;

176 s t a t e = 1 ;

177 i = ind En RdPix ;

178 c r o s s H i g h (p i x e l +1) = 0 ;

179 end

180 end

181 end

182 e l s e

183 % Find i ng the next r i s i n g edge o f En Read P i x e l

184 i nd En RdPix = f i n d (EnReadPix (ind En RdPix : l e n r ow da t a S im) == 0 ,1) + ind En RdPix − 1 ;

185 i = ind En RdPix ;

186 s t a t e = 0 ;

187 end

188 end

189 cd (pwd cu r r en t)

190 % P l o t t i n g the ATIS r e s pon s e i n a b i d im e n s i o n a l mat r i x

191 plot2dATIS (Ma t r i x t im e p i x c o l o u r , ’SIMULATED ’)

192 cd (pwd cu r r en t)

193 toc

Listing B.5: Plot DVS response in 3D
1 f u n c t i o n [] = plot3dDVS fn (ON events , OFF events , s t r i n g)

81

2 % ============= Globa l v a r i a b l e s ============= %

3 N = str2num (getenv (’N ’)) ;

4 M = str2num (getenv (’M’)) ;

5 PATH fo lder images = getenv (’ PATH fo lder images ’) ;

6 cd (PATH fo lder images)

7 X = 0:2∗N−1;

8 Y = 0:2∗M−1;

9 t imeSca l e=1e3 ;

10 s t r u c t l i m sX = { []} ;
11 s t r u c t l i m sY = { []} ;
12 % ======= Crea t i n g the l a b e l s to p l o t s ======= %

13 f o r x=1:2∗N
14 i f rem (x , 2) == 1

15 s t r u c t l i m sX{x} = ’ ’ ;

16 e l s e

17 s t r u c t l i m sX{x} = num2str (x/2 − 1) ;

18 end

19 end

20 f o r x=1:2∗M
21 i f rem (x , 2) == 1

22 s t r u c t l i m sY{x} = ’ ’ ;

23 e l s e

24 s t r u c t l i m sY{x} = num2str (x/2 − 1) ;

25 end

26 end

27 % P l o t t i n g the ON channe l

28 z = z e r o s (2∗M,2∗N) ;

29 l e n ON even t s = l e n g t h (ON events) ;

30 i = 0 ;

31 i f (l en ON even t s > 1)

32 f ig ON = f i g u r e (’ V i s i b l e ’ , ’ o f f ’ , ’ u n i t s ’ , ’ n o rma l i z ed ’) ;

33 co lormap (f ig ON , ’ g ray ’)

34 wh i l e i < l e n ON even t s

35 v e c t im e p i x = ON events{ i +1};
36 t = v e c t im e p i x (1) ;

37 p i x e l = v e c t im e p i x (2) ;

38 row = f i x (p i x e l /N) ;

39 c o l = rem (p i x e l ,N) ;

40 y1 = row+1;

41 y2 = y1+1;

42 x1 = co l +1;

43 x2 = x1+1;

44 z (: , :) = NaN ; % Avoids t ha t Matlab c r e a t e l i n e s no d e s i r e d

45 z ([y1 y2] , [x1 x2]) = t imeSca l e∗ t ;
46 s u r f (X,Y, z)

47 ho ld on

48 g r i d on

49 i = i +1;

50 end

51 % ad j u s t i n g apperance

52 s e t (gca , ’ x t i c k ’ ,X) ;

53 s e t (gca , ’ y t i c k ’ ,Y) ;

54 s e t (gca , ’ Yd i r ’ , ’ r e v e r s e ’)

55 x l im ([0 N])

56 y l im ([0 M])

57 x l a b e l (’COLUMNS ’)

58 y l a b e l (’ROWS’)

59 z l a b e l (’ Time ms ’)

60 n ame t i t l e = [’DVS ON EVENTS ’ , s t r i n g] ;

61 t i t l e (n ame t i t l e)

62 s e t (f ig ON , ’ PaperPos i t ionMode ’ , ’ auto ’)

63 p r i n t (’−depsc2 ’ , [’DVS ON ’ , s t r i n g , ’ . eps ’])

64 p r i n t (’−dpng ’ , [’DVS ON ’ , s t r i n g , ’ . png ’])

65 s a v ea s (gcf , [’DVS ON ’ , s t r i n g] , ’ f i g ’) ;

66 s a v ea s (gcf , [’DVS ON ’ , s t r i n g] , ’ svg ’) ;

67 end

68 % P l o t t i n g the OFF channe l

69 l e n OFF even t s = l e n g t h (OFF events) ;

70 z = z e r o s (2∗M,2∗N) ;

71 i = 0 ;

72 i f (l en OFF even t s >1)

73 f ig OFF = f i g u r e (’ V i s i b l e ’ , ’ o f f ’) ;

74 co lormap (f ig OFF , ’ g ray ’)

75 wh i l e i < l e n OFF even t s

76 v e c t im e p i x = OFF events{ i +1};
77 t = v e c t im e p i x (1) ;

78 p i x e l = v e c t im e p i x (2) ;

79 row = f i x (p i x e l /N) ;

80 c o l = rem (p i x e l ,N) ;

81 y1 = row+1;

82 y2 = y1+1;

83 x1 = co l +1;

84 x2 = x1+1;

85 z (: , :) = NaN ; % Avoids t ha t Matlab c r e a t e s l i n e s no d e s i r e d

86 z ([y1 y2] , [x1 x2]) = t imeSca l e∗ t ;
87 s u r f (X,Y, z)

88 ho ld on

89 g r i d on

90 i = i +1;

82

91 end

92 % Ad ju s t i n g apperance and p r i n t i n g to f i l e the p l o t s

93 s e t (gca , ’ Yd i r ’ , ’ r e v e r s e ’)

94 s e t (gca , ’ x t i c k ’ ,X) ;

95 s e t (gca , ’ y t i c k ’ ,Y) ;

96 x l im ([0 N])

97 y l im ([0 M])

98 x l a b e l (’COLUMNS ’)

99 y l a b e l (’ROWS’)

100 z l a b e l (’ Time ms ’)

101 n ame t i t l e = [’DVS OFF EVENTS ’ , s t r i n g] ;

102 t i t l e (n ame t i t l e)

103 s e t (f ig OFF , ’ PaperPos i t ionMode ’ , ’ auto ’)

104 p r i n t (’−depsc2 ’ , [’DVS OFF ’ , s t r i n g , ’ . eps ’])

105 p r i n t (’−dpng ’ , [’DVS OFF ’ , s t r i n g , ’ . png ’])

106 s a v ea s (gcf , [’DVS OFF ’ , s t r i n g] , ’ f i g ’) ;

107 s a v ea s (gcf , [’DVS OFF ’ , s t r i n g] , ’ svg ’) ;

108 end

Listing B.6: Plot ATIS response in 2D
1 f u n c t i o n [] = plot2dATIS (Ma t r i x t im e p i x c o l o u r , s t r i n g)

2 % =================== Globa l v a r i a b l e s =========================== %

3 N = str2num (getenv (’N ’)) ;

4 M = str2num (getenv (’M’)) ;

5 PATH fo lder images = getenv (’ PATH fo lder images ’) ;

6 Mat r i x 2 p r i n t = so r t r ow s (Ma t r i x t im e p i x c o l o u r , 1) ;

7 [r c] = s i z e (Ma t r i x 2 p r i n t) ;

8 l e n Ma t r i x 2 p r i n t = r ;

9 St ruc t F rames = { []} ;
10 v e c t im e p i x c o l o u r tmp = N∗M∗ones (1 , 3) ;

11 i n d s t r u c t = 1 ;

12 i nd Mat r i x tmp = 1 ;

13 s t r u c t l i m s = { []} ;
14 % ======== Crea t i n g the l a b e l s o f each s u b f i g u r e or f rame ======== %

15 f o r x=0:N−1
16 s t r u c t l i m s {x+1} = num2str (x) ;

17 end

18 % ==================== Bu i l d i n g the f rames ======================= %

19 f o r i =1: l e n Ma t r i x 2 p r i n t

20 t ime = Ma t r i x 2 p r i n t (i , 1) ;

21 p i x e l = Ma t r i x 2 p r i n t (i , 2) ;

22 c o l o u r = Ma t r i x 2 p r i n t (i , 3) ;

23 i f i s empty (f i n d (v e c t im e p i x c o l o u r tmp (: , 2) == p i x e l , 1))

24 v e c t im e p i x c o l o u r tmp (ind Mat r i x tmp , 1) = t ime ;

25 v e c t im e p i x c o l o u r tmp (ind Mat r i x tmp , 2) = p i x e l ;

26 v e c t im e p i x c o l o u r tmp (ind Mat r i x tmp , 3) = co l o u r ;

27 i nd Mat r i x tmp = ind Mat r i x tmp + 1 ;

28 e l s e

29 St ruc t F rames{ i n d s t r u c t} = ve c t im e p i x c o l o u r tmp ;

30 v e c t im e p i x c o l o u r tmp = N∗M∗ones (1 , 3) ;

31 i nd Mat r i x tmp = 1 ;

32 v e c t im e p i x c o l o u r tmp (ind Mat r i x tmp , 1) = t ime ;

33 v e c t im e p i x c o l o u r tmp (ind Mat r i x tmp , 2) = p i x e l ;

34 v e c t im e p i x c o l o u r tmp (ind Mat r i x tmp , 3) = co l o u r ;

35 i n d s t r u c t = i n d s t r u c t + 1 ;

36 i nd Mat r i x tmp = ind Mat r i x tmp + 1 ;

37 end

38 i f i == l e n Ma t r i x 2 p r i n t

39 St ruc t F rames{ i n d s t r u c t} = ve c t im e p i x c o l o u r tmp ;

40 end

41 end

42 max sub f i g = 16 ; % De f i n e s the maximum number o f f rames pe r p l o t

43 i n d s u b f i g = 1 ;

44 i nd nameFig = 1 ;

45 % De f i n i n g the count s s u b f i g u r e number to improve the v i s u a l

46 f r ames max sub f i g = c e i l (l e n g t h (S t ruc t F rames) /max sub f i g) ;

47 e l em e n t s f i g = c e i l (l e n g t h (S t ruc t F rames) / f r ames max sub f i g) ;

48 max co l = c e i l (s q r t (e l em e n t s f i g)) ;

49 max rows = max co l ;

50 % P l o t t i n g each frame

51 h= f i g u r e (’ V i s i b l e ’ , ’ o f f ’ , ’ u n i t s ’ , ’ n o rma l i z ed ’ , ’ o u t e r p o s i t i o n ’ , [0 0 1 1]) ;

52 f o r i =1: l e n g t h (S t ruc t F rames)

53 v e c t im e p i x c o l o u r tmp = St ruc t F rames{ i } ;
54 l e n v e c = l e n g t h (v e c t im e p i x c o l o u r tmp (: , 1)) ;

55 Mat r i x p a i n t = z e r o s (M,N) ;

56 Mat r i x p a i n t (: , :) = NaN ;

57 f o r j =1: l e n v e c

58 p i x e l = v e c t im e p i x c o l o u r tmp (j , 2) ;

59 c o l o u r = v e c t im e p i x c o l o u r tmp (j , 3) ;

60 i ndx = f i x ((p i x e l) /M)+1; i ndy = rem (p i x e l ,N)+1;

61 Mat r i x p a i n t (indx , i ndy) = co l o u r ;

62 end

63 c min = u i n t 8 (min (v e c t im e p i x c o l o u r tmp (: , 3))) ;

64 c max = u i n t 8 (max (v e c t im e p i x c o l o u r tmp (: , 3))) ;

65 CMAP = u i n t 8 (un ique (v e c t im e p i x c o l o u r tmp (: , 3))) ;

66 s u bp l o t (max rows , max col , i n d s u b f i g)

83

67 imagesc (u i n t 8 (Ma t r i x p a i n t) , [0 255])

68 co lormap (g ray)

69 i f c min ˜= c max

70 i f l e n g t h (CMAP) >10

71 ind CMAP = f l o o r (l i n s p a c e (1 , l e n g t h (CMAP) ,10)) ;

72 c o l o r b a r (’ Yl im ’ , [c min c max] , ’ YTick ’ ,CMAP(ind CMAP)) ;

73 e l s e

74 c o l o r b a r (’ Yl im ’ , [c min c max] , ’ YTick ’ ,CMAP) ;

75 end

76 e l s e

77 c o l o r b a r (’ YTick ’ ,CMAP) ;

78 end

79 % Find i ng the NaN va l u e to Mark i t . the NE l a b e l i n d i c a t e s which p i x e l s

80 % had not even t

81 [rows columns] = f i n d (i s n a n (Ma t r i x p a i n t)) ;

82 t e x t (columns , rows , ’\ c o l o r{wh i t e}NE ’ , ’ Ho r i z on t a lA l i g nmen t ’ , ’ c e n t e r ’ , . . .

83 ’ Fon tS i z e ’ , 10)

84 % Crea t i n g the t i t l e

85 t i t l e (s t r c a t (’ Time = [’ , num2str (min (v e c t im e p i x c o l o u r tmp (: , 1))∗1e3) , . . .

86 ’ − ’ , num2str (max (v e c t im e p i x c o l o u r tmp (: , 1))∗1e3) , ’] ms ’))

87 % Crea t i n g l i n e s f o r improv ing the v i s u a l

88 v c l i n eX = l i n s p a c e (0 ,N+1 ,200) ;

89 v c l i n eY = ones (1 , l e n g t h (v c l i n eX)) /2 ;

90 f o r x=1:N

91 f o r y=1:M

92 ho ld on ;

93 p l o t (v c l i n eX , v c l i n eY+y , ’−− ’ , ’ Co l o r ’ , [0 . 7 0 . 7 0 . 7]) ;

94 end

95 ho ld on

96 l i n e ([x+0.5 x +0 . 5] , [0 M+1] , ’ L i n e S t y l e ’ , ’−− ’ , ’ Co l o r ’ , [0 . 7 0 . 7 0 . 7])

97 end

98 % Changing the l a b e l s a x i s

99 x l a b e l ([’ Columns ’ , ’ ’ , ’ (’ , cha r (i +96) , ’) ’])

100 y l a b e l (’Rows ’)

101 s e t (gca , ’ XTick ’ , [1 :N])

102 s e t (gca , ’ YTick ’ , [1 :M])

103 s e t (gca , ’ XTickLabe l ’ , s t r u c t l i m s)

104 s e t (gca , ’ YTickLabe l ’ , s t r u c t l i m s)

105 i f (i n d s u b f i g == e l em e n t s f i g)

106 i n d s u b f i g = 1 ;

107 cd (PATH fo lder images)

108 % Pr i n t i n g to f i l e the ATIS r e s pon s e

109 s e t (gcf , ’ PaperPos i t ionMode ’ , ’ auto ’)

110 p r i n t (’−depsc2 ’ , [’ Output ’ , s t r i n g , ’ ATIS ’ , num2str (ind nameFig) , ’ . eps ’])

111 p r i n t (’−dpng ’ , [’ Output ’ , s t r i n g , ’ ATIS ’ , num2str (ind nameFig) , ’ . png ’])

112 s a v ea s (gcf , [’ Output ’ , s t r i n g , ’ ATIS ’ , num2str (ind nameFig)] , ’ f i g ’) ;

113 s a v ea s (gcf , [’ Output ’ , s t r i n g , ’ ATIS ’ , num2str (ind nameFig)] , ’ svg ’) ;

114 c l o s e a l l ;

115 i f i ˜= l e n g t h (S t ruc t F rames)

116 %Avo ids c r e a t i n g a f i g u r e w i thout data

117 h= f i g u r e (’ V i s i b l e ’ , ’ o f f ’ , ’ u n i t s ’ , ’ n o rma l i z ed ’ , ’ o u t e r p o s i t i o n ’ , [0 0 1 1]) ;

118 i nd nameFig = ind nameFig + 1 ;

119 c o n t p l o t = 1 ; %Flag to i n d i c a t e s i f i s n e c e s s a r y p l o t the l a s t f i g .

120 e l s e

121 c o n t p l o t = 0 ;

122 end

123 e l s e

124 i n d s u b f i g = i n d s u b f i g + 1 ;

125 end

126 end

127 i f c o n t p l o t

128 % Pr i n t to f i l e the l a s f i g

129 cd (PATH fo lder images)

130 s e t (gcf , ’ PaperPos i t ionMode ’ , ’ auto ’)

131 p r i n t (’−depsc2 ’ , [’ Output ’ , s t r i n g , ’ ATIS ’ , num2str (ind nameFig) , ’ . eps ’])

132 p r i n t (’−dpng ’ , [’ Output ’ , s t r i n g , ’ ATIS ’ , num2str (ind nameFig) , ’ . png ’])

133 s a v ea s (gcf , [’ Output ’ , s t r i n g , ’ ATIS ’ , num2str (ind nameFig)] , ’ f i g ’) ;

134 s a v ea s (gcf , [’ Output ’ , s t r i n g , ’ ATIS ’ , num2str (ind nameFig)] , ’ svg ’) ;

135 end

Listing B.7: ATIS Model
1 c l o s e a l l ; c l c ; c l e a r a l l ;

2 cur r pwd = pwd ;

3 t i c ;

4 % Get the env i roment v a r i a b l e s o f s imu l a t i o n

5 PATH input = getenv (’ PATH fo lde r i nput ’) ;

6 PATH fo lder images = getenv (’ PATH fo lder images ’) ;

7 name s i gna l = getenv (’ n ame S i gna l s i n pu t ’) ;

8 N = str2num (getenv (’N ’)) ;

9 M = str2num (getenv (’M’)) ;

10 V p = str2num (getenv (’Vdon ’)) ;

11 V n = str2num (getenv (’ Vdof f ’)) ;

12 Vhigh = str2num (getenv (’ Vhigh ’)) ;

13 Vlow = str2num (getenv (’ Vlow ’)) ;

14 Vre f = str2num (getenv (’ V re f ’)) ;

15 %% Tran s i s t o r ’ s pa ramete r s

84

16 nn = 1 . 3 3 4 ;

17 np = 1 . 3 6 9 ;

18 Vtn = 359 .2 e−3;

19 Vtp = 387e−3;

20 Kn = 227 .1 e−6;

21 Kp = 48 .1 e−6;

22 f i = 25 .8 e−3;

23 Vos comp = 12e−3; % Vol tage o f f s e t comparador .

24 Vos opamp = 10e−3; % Vol tage o f f s e t op−amp .

25 A = 20 ; % Gain c l o s e d l oop from d i f f e r e n c i n g c i r c u i t .

26 VdiffON = V p − Vre f + (Vos comp+Vos opamp) ;

27 VdiffOFF= V n − Vre f + (Vos comp+Vos opamp) ;

28 %% ====================== TCD =========================== %%

29 name input = s t r c a t (PATH input , name s igna l , ’ 0 . c s v ’) ;

30 i n p u t s i g n a l = impor tda ta (name input) ;

31 t = i n p u t s i g n a l (: , 1) ;

32 l e n t = l e n g t h (t) ;

33 q u a n t p i x e l = N∗M;

34 Vd i f f=z e r o s (l e n t , q u a n t p i x e l) ;

35 Vd i f f i n d = z e r o s (l e n t , 1) ; %TMP ve c t o r to save Vd i f f s i g n a l o f each p i x e l .

36 % Data S t r u c t u r e s to save on and o f f Events

37 ON events = { []} ; ON events2TC = z e r o s (1 , 2) ;

38 OFF events = { []} ; OFF events2TC = z e r o s (1 , 2) ;

39 Events = { []} ;
40 ind ON = 1 ; ind OFF = 1 ;

41 cd (PATH input) % Goes to f o l d e r i n pu t s i g n a l .

42 f o r i =0: q u a n t p i x e l−1
43 % Step 1 . F i nd i ng Vd i f f s i g n a l a t TCD.

44 name input = s t r c a t (name s igna l , ’ ’ , num2str (i) , ’ . c s v ’) ;

45 i n p u t s i g n a l = impor tda ta (name input) ;

46 I ph = i n p u t s i g n a l (: , 2) ;

47 l o g I p h = l o g (Iph) ;

48 Vd i f f (: , i +1) = −nn∗ f i ∗A∗ l o g I p h ;

49 Vd i f f i n d = Vd i f f (: , i +1) ;

50 Vd i f f max = max (V d i f f i n d) ; %used to no rma l i z ed the l e v e l s i g n a l

51 Vd i f f i n d = Vd i f f i n d − Vd i f f max ; %used to no rma l i z ed the l e v e l s i g n a l

52 % Step 3 . F i nd i ng the e v en t s produced by the p i x e l s .

53 i n d e v e n t = 1 ;

54 Even t p i x = s t r u c t ;

55 f o r j =1: l e n t

56 v a l u e = V d i f f i n d (j) ;

57 i f (v a l u e <= VdiffON)

58 Vd i f f i n d (j : l e n t) = V d i f f i n d (j : l e n t) + abs (v a l u e) ; %I t s e t s the d i f f e r e n c i n g c i r c u i t

output up to Vre f .

59 v e c t im e p i x = [t (j)+T Rst i] ;

60 ON events{ ind ON} = ve c t im e p i x ; % I t i s used to p l o t the TCD re spon s e

61 Even t p i x . v a l u e (i n d e v e n t) = t (j)+T Rst ; % I t s a v e s the i n s t a n t o f t ime when oc cu r r ed a

even t at p i x e l i−th .

62 ind ON = ind ON + 1 ;

63 i n d e v e n t=i n d e v e n t +1;

64 e l s e

65 i f (v a l u e >= VdiffOFF)

66 Vd i f f i n d (j : l e n t) = V d i f f i n d (j : l e n t)−abs (v a l u e) ; %I t s e t s the d i f f e r e n c i n g c i r c u i t

output up to Vre f .

67 v e c t im e p i x = [t (j)+T Rst i] ;

68 OFF events{ ind OFF} = ve c t im e p i x ; % I t i s used to p l o t the TCD re spon s e

69 Even t p i x . v a l u e (i n d e v e n t) = t (j)+T Rst ; % I t s a v e s the i n s t a n t o f t ime when oc cu r r ed

a even t at p i x e l i−th .

70 ind OFF = ind OFF + 1 ;

71 i n d e v e n t=i n d e v e n t +1;

72 e l s e

73 con t i nu e

74 end

75 end

76 end

77 Vd i f f (: , i +1) = Vd i f f i n d ;

78 Events{ i +1} = Even t p i x ; % I t s a v e s

79 end

80 % Step 3 . P l o t t i n g i n 3D graph the TCD re spon s e .

81 plot3dDVS fn (ON events , OFF events , ’MODEL ’)

82

83 %% =============== Exposure Measurement ==================== %%

84 Vint = z e r o s (l e n t , q u a n t p i x e l) ; %

85 C = 30e−15;

86 r e s o l = 255 ; % I t d e f i n e s the g r a y s c a l e r e s o l u t i o n i . e . 255 c o l o r s .

87 Clim = [0 2 5 5] ; % I t d e f i n e s the range c o l o r .

88 Mat r i x Co l o r = { []} ;
89 Ma t r i x t im e p i x c o l o u r = z e r o s (1 , 3) ;

90 i = 0 ;

91 ack Rs t = 0 ;

92 ack Vh igh = 0 ;

93 v e c T im e s e v e n t s p i x e l s = z e r o s (1 , q u a n t p i x e l) ;

94 cd (cur r pwd)

95 % Ca l l the f u n c t i o n Cod ingGraySca l e to ob t a i n the look−up t a b l e based on

96 % Vhigh and Vlow t h r e s h o l d s .

97 [v e c c o l o r , vec COD TIME] = Cod ingGraySca l e (Vhigh , Vlow , r e s o l , Cl im) ;

98 cd (PATH input)

99 Even t p i x = s t r u c t ;

100 ind TPC = 1 ;

85

101 % Step 4 . B r i g h t n e s s encod ing c y c l e .

102 f o r i =0: q u a n t p i x e l−1
103 name input = s t r c a t (name s igna l , ’ ’ , num2str (i) , ’ . c s v ’) ;

104 i n p u t s i g n a l = impor tda ta (name input) ;

105 t = i n p u t s i g n a l (: , 1) + T Rst ; % I t i s a d j u s t e d the t ime d e l a y s e c i f i e d at e l e c t r i c a l s imu l a t i o n

106 I ph = i n p u t s i g n a l (: , 2) ;

107 Vo = 0 ; % I n i t i a l c o n d i t i o n o f pho t o cu r r e n t i n t e g r a t i o n

108 Even t p i x = Events{ i +1};
109 t im e e v e n t s = Even t p i x . v a l u e ;

110 i n d e v e n t s = 1 ;

111 Vint (1 , i +1) = Vo ;

112 Co l o r p i x = s t r u c t ;

113 ack Rs t = 0 ;

114 ack Vh igh = 0 ;

115 f o r j =1: l e n t−1
116 i f ˜(i s empty (f i n d (t ime e v e n t s == t (j) , 1)))

117 Vo = 1 . 8 ;

118 Vint (j +1, i +1) = Vo ;

119 ack Rs t = 1 ;

120 e l s e

121 % EM model .

122 Vint (j +1, i +1) = −1/C∗ I ph (j)∗(t (j +1)−t (j)) + Vint (j , i +1) ;

123 i f Vint (j +1, i +1) < 0

124

125 Vint (j +1, i +1) = 0 ;

126 end

127 V = Vint (j +1, i +1) ;

128 i f V <= Vhigh && ack Rs t

129 t h i g h = t (j +1) ;

130 ack Vh igh = 1 ;

131 ack Rs t = 0 ;

132 e l s e i f V <= Vlow && ack Vh igh

133 t l ow = t (j +1) ;

134 T in t = t l ow − t h i g h ;

135 i n d t a b l e = f i n d (vec COD TIME <= T in t , 1) ;

136 i f i s empty (i n d t a b l e)

137 % time i n t e g r a t i o n was l e s s than the minimum time at look−up t a b l e .

138 i n d t a b l e = r e s o l ;

139 end

140 % Ass i gn the p i x e l c o l o r based on look−up t a b l e b u i l t from Spec t r e s imu l a t i o n .

141 Co lo r = v e c c o l o r (i n d t a b l e) ;

142 Co l o r p i x . v e c c o l o r (i n d e v e n t s) = Co lo r ;

143 Co l o r p i x . v e c t ime (i n d e v e n t s , :) = t l ow ;

144 Ma t r i x t im e p i x c o l o u r (ind TPC , 1) = t l ow ;

145 Ma t r i x t im e p i x c o l o u r (ind TPC , 2) = i ;

146 Ma t r i x t im e p i x c o l o u r (ind TPC , 3) = Co lo r ;

147 i n d e v e n t s = i n d e v e n t s + 1 ;

148 ind TPC = ind TPC + 1 ;

149 ack Vh igh = 0 ;

150 ack Rs t = 0 ;

151 end

152 end

153 end

154 Mat r i x Co l o r{ i +1} = Co l o r p i x ;

155 end

156 c l o s e a l l ;

157 cd (cur r pwd)

158 % Step 5 . P l o t t i n g the 2−D graphs to v e r i f y the ATIS op e r a t i o n .

159 plot2dATIS (Ma t r i x t im e p i x c o l o u r , ’MODEL ’)

160 toc % Returns the t o t a l e l a p s e d t ime

161 cd (cur r pwd)

86

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Objectives
	Text Organization

	Theory
	Dynamic Vision Sensor
	DVS Pixel Model

	ATIS Pixel
	Correlated Double Sampling (CDS)
	True Correlated Double Sampling
	ATIS Model
	Additional ATIS Sensor Functionality

	ADMDVS pixel
	ADM in DVS
	ADMDVS Model

	Asynchronous Logical Circuit
	Delay-Insensitive Designs

	Address-Event Representation
	Integrated Circuit Design based on the gm/ID Method

	Pixel Design
	Photoreceptor based on Transimpedance Amplifier
	Operational Amplifier
	Voltage Comparator with Hysteresis
	AER Circuit
	Exposure Measurement Logic
	Delay Element Circuit
	Summary of Designed Pixels

	Simulation Results
	DVS Pixel Simulation
	ATIS Pixel Simulation
	ADMDVS Pixel Simulation
	DVS 8 8 Pixel Array Simulation
	ATIS 4 4 Pixel Array Simulation
	Triangular Waveform Input
	2-D Spiral Input

	ADMDVS 4 4 Pixel Array Simulation
	DVS, ATIS and ADMDVS Comparison

	Conclusions
	Bibliography
	Pixel Array Simulation
	Codes for simulating DVS cameras

