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Este trabalho apresenta uma metodologia para melhorar o desempenho de

algoritmos de desreverberação. A reverberação é um fenômeno que afeta negati-

vamente o desempenho de inúmeras técnicas e sistemas de processamento de sinais

de fala, tais como sistemas de reconhecimento e dispositivos de apoio a deficientes

auditivos. A utilização de algoritmos de desreverberação é portanto necessária

para melhorar a qualidade e inteligibilidade de sinais de fala degradados pela re-

verberação. Para avaliar o desempenho desses algoritmos, diversas métricas de

avaliação objetivas têm sido desenvolvidas nos últimos tempos. A metodologia

proposta neste trabalho será feita através da otimização de várias dessas métricas

simultaneamente, com o objetivo de obter uma nova configuração do algoritmo de

desreverberação que supere, em termos de qualidade e inteligibilidade dos sinais de

fala processados, a sua configuração original.
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This work provides a methodology for improving the performance of dereverber-

ation algorithms. Reverberation is a phenomenon that adversely affects the per-

formance of numerous speech signal processing techniques and systems, such as

speech recognition and hearing aid systems. The use of dereverberation algorithms

is thereby necessary to improve the quality and intelligibility of speech signals de-

graded by reverberation. To evaluate the performance of these algorithms, numerous

assessment objective measures have been developed in recent times. The methodol-

ogy proposed in this work will be carried out by means of the optimization of several

of these measures simultaneously, in order to obtain a new configuration of the dere-

verberation algorithm which outperforms, in terms of quality and intelligibility of

the processed speech signals, its original configuration.
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Chapter 1

Introduction

When a person is speaking in a certain enclosure, the sound waves will be reflected

by several surfaces and objects within the enclosure. In this manner, the receiver or

receivers will not perceive only the direct speech signal, but also multiple delayed

and attenuated signals created by those reflections. This phenomenon is known as

reverberation and it is present in everyday life experience of sound.

Depending on the application context, the effects on speech caused by reverber-

ation may be problematic. For example, in hands-free terminals, human-machine

communication systems, videoconferencing, or hearing aids, reverberation can de-

grade speech intelligibility and perceptual quality. In all these examples, the speaker

is normally at a considerable distance from the microphone, so the observed signal

can be affected by reverberation caused by reflections from walls, floors, ceilings,

furniture and other objects. This situation is worsened in noisy environments.

Nowadays, there is a growing demand for hands-free speech input for various

telecommunication systems, owing to the increasing use of portable devices and a

worldwide expansion of broadband internet access. These factors are also mixed

with and pulled by the development of numerous advanced speech applications,

such as automatic speech-to-text conversion, speaker identification, source local-

ization, voice-controlled device operation, car interior communication systems and

hearing aids. The alteration of the characteristics of the speech signal caused by

reverberation can be problematic for all those signal processing applications. There-

fore, speech enhancement algorithms are commonly used to improve the quality and

intelligibility of reverberant speech signals at the receiving end. These dereverbera-

tion techniques are of great importance, and constitute a topic of study with many

important research questions yet unanswered.
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1.1 Motivation and Work Proposal

Reverberation effects are known to be a major cause of degradation of automatic

speech recognition performance and loss of speech intelligibility. To mitigate these

effects, many dereverberation methods have been proposed and developed in the

last decades. The objective of this work is to present an enhancement procedure

for dereverberation algorithms. The main idea is to fine tune certain parameters of

a given algorithm in order to jointly optimize several perceptual-assessment quality

measures. By doing so, the intelligibility of the processed speech signals can be

improved, thus increasing the algorithm performance at no additional computational

cost.

Several quality and intelligibility measures will be analyzed and combined, and

the proposed methodology will be evaluated with three different dereverberation

algorithms. Since no universally accepted set of measures has been fully established

for evaluating dereverberation algorithms, the results in this work will be also as-

sessed and compared trough the word error rate of a speech recognition system,

which provides a more objective comparison.

1.2 Organization of the Thesis

The remainder of this thesis is organized as follows:

Chapter 2 introduces the fundamentals of reverberation and its effects in com-

munication systems, particularly in automatic speech recognition systems.

Chapter 3 presents subjective and objective measures that are commonly used

to assess the quality and intelligibility of speech signals.

Chapter 4 details the method proposed in this work. A procedure based on

the multi-optimization of the assessment measures is presented with the aim of

improving the performance of dereverberation algorithms.

Chapters 5, 6, and 7 presents three different dereverberation algorithms that are

enhanced using the proposed method.

Finally, Chapter 8 presents the conclusions of the work and possible future steps

to extend the results achieved here.
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Chapter 2

Fundamentals of Reverberation

This chapter provides the fundamentals necessary to understand the effects of rever-

beration and the need for dereverberation algorithms. Basic definitions and concepts

are presented, providing a brief overview of widely used terms in this work. First,

the phenomenon of reverberation and its effects in time and frequency domains are

detailed. Furthermore, a simple experiment showing the negative effect of rever-

beration in automatic speech recognition systems is described. Next, the acoustic

response of reverberation enclosures (rooms particularly) is described. Finally, the

structure of generic dereverberation systems is presented.

2.1 Reverberation and its Effects

When speech signals are obtained in an enclosed space by one or more microphones

positioned at a distance from the talker, the observed signal consists of a superpo-

sition of many delayed and attenuated copies of the speech signal due to multiple

reflections from the surrounding wall and objects, as illustrated in Figure 2.1. This

phenomenon is known as reverberation. When the reflected wave is perceived as a

distinct repetition of the sound, it is then called an echo, a different phenomenon in

which reflections are not perceived as integrated with the original sound as in the

case of reverberation.

The direct path is defined as the acoustic propagation path from the talker to

the microphone without reflections. The reflected sound waves suffer delays since

their propagation paths are longer than the direct-path. Besides, attenuations of

these reflected waves occur due to frequency-dependent absorption phenomenon on

surfaces such as floors, ceilings, furniture and other objects. Thereby the resulting

reverberant signal received at the microphone is composed by the set of the direct-

path and the delayed and attenuated multipath copies.

The effects of reverberation on speech are clearly visible in the waveform repre-

sentation. Figure 2.2 shows an example time waveform of the sentence “A sensibil-
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Microphone

Talker
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Figure 2.1: Schematic illustration of the phenomenon of reverberation. The rever-
berant signal recorded at the microphone is composed by the direct-path and the
attenuated multipath reflections.

idade indicará a escolha. A Amazônia é reserva ecológica do globo”. The speech

signal, sampled at 48 kHz, was taken from the new Brazilian-Portuguese (NBP)

database [1]. The anechoic (non-reverberant) speech signal is depicted above and a

reverberant version is represented below. Due to the smearing of the phonemes in

time caused by reverberation, the silence intervals between words and syllables are

filled up, and subsequent phonemes overlap [2].
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Figure 2.2: Comparison between anhechoic (above) and reverberant (below) speech
signals, ilustrating the time domain effect of reverberation.
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The reverberant speech signal can be understood as the same source signal com-

ing from several different sources positioned at different locations, therefore arriving

with different times and intensities, which adds spaciousness to the sound and gives

the perceptual impression of the talker sounding far away from the microphone [3].

These effects, when moderately applied, can add a pleasant sense of the acoustic

space to common listeners, but it is almost always unhelpful in voice communica-

tion [3]. The alteration of the characteristics of the speech signal caused by rever-

beration is problematic for signal processing applications such as speech recognition,

source localization and hearing aids. The deleterious effects are generally magnified

with increasing distance between the talker and the microphone.

2.1.1 Effects of Reverberation in the Frequency Domain

Speech analysis is commonly done in time domain or in frequency domain. Since

speech signals have temporal and spectral characteristics changing markedly over

time, the discrete Fourier transform (DFT) of an entire speech signal is not ap-

propriate. However, if we consider the analysis of short segments (between 10 and

30 ms) of the speech, the DFT is applicable to speech processing, since the properties

of speech do not change much during those segments [4].

A Fourier representation that reflects the time-varying properties of the speech

waveform is the short-time Fourier transform (STFT), defined as

X(m,ω) =
∞∑

n=−∞
x(n)w(m− n)e−jωn, (2.1)

where x(n) is the input signal and w(n) is the analysis window, which is time-

reversed and shifted by m samples. In speech analysis the Hamming window is

typically used. This window reduces distortions due to its smooth shape [4], and is

defined as

w(n) =

{
0.54− 0.46 cos

(
2πn
L−1

)
0 ≤ n ≤ L− 1

0 otherwise
, (2.2)

where L is the window length.

The STFT is a function of two variables: the discrete-time index, m, and the

frequency variable, ω. A discrete version of the STFT can be obtained by sampling

the frequency variable ω at N uniformly spaced frequencies, that is, at ωk = 2πk/N ,

for k = 0, 1, · · · , N − 1. The resulting discrete STFT is defined as

X(m,ωk) , X(m, k) =
∞∑

n=−∞
x(n)w(m− n)e−j

2π
N
kn. (2.3)
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The spectrogram of a speech signal consists on a two-dimensional display of the

power spectrum of speech as a function of time, defined as

S(m,ω) = |X(m,ω)|2. (2.4)

The spectrogram is a widely used tool for studying the time-varying spectral

and temporal characteristics of speech [4]. It describes the speech signal’s relative

energy concentration in frequency as a function of time, thus reflecting the time-

varying and spectral properties of the speech waveform. Spectrograms are typically

displayed in gray scale, where dark colors indicate large magnitudes in the spectrum

and white colors indicate valleys.

The effects of reverberation on speech are also visible in the spectrogram repre-

sentation. Figure 2.3 shows the same two waveforms of Figure 2.2, corresponding

to a anechoic and a reverberant speech signal, with their respective spectrograms,

in which is also noticeable the smearing caused by reverberation.
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Figure 2.3: Waveforms and spectrograms of (a) and (b) anechoic and (c) and (d)
reverberant speech signals, showing the effect of reverberation in the time-frequency
domain.
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2.1.2 Effects of Reverberation on Automatic Speech Recog-

nition

The performance of automatic speech-recognition (ASR) systems is severely affected

by reverberation, and tends to decrease drastically as the source-microphone dis-

tance increases [2]. Figure 2.4 shows a block diagram of a typical speech recognition

system. First, feature vectors are extracted from the speech signal, as a means to

characterize the essential information present in the speech. Next, based on these

features, the most likely text is found by the decoder by using two types of knowledge

models: an acoustic model, which contains knowledge required to decode the fea-

tures into phonemes; and the linguistic model, employed to decode these phonemes

into text. These models are usually trained before the decoding step. In most cases,

the acoustic model is trained on a set of acoustic features extracted from clean

speech signals. Thus, the distortion caused by reverberation on the input signal of

an ASR system leads to degraded recognition performance.

Acoustic
model

Language
model

Feature
Extractor

Decoder
Speech Signal Text

Figure 2.4: Block diagram of a typical an Automatic Speech Recognition system.

A recognition experiment is described here in order to show the influence of rever-

beration on the performance of a speech recognition system. For this experiment, a

set of 247 speech utterances from the WSJCAM0 corpus [5] was employed. The sim-

ulated reverberant signals were provided in [6]. For this experiment, three scenarios

were devised: the signals without reverberation (i.e., under anechoic conditions); the

signals inside a room of length 6.27 m and width 2.59 m with a source-microphone

distance of 50 cm (moderate reverberation); and with a source-microphone distance

of 200 cm (severe reverberation). The ASR system used here is based on the hidden

Markov model toolkit (HTK) [7]. Figure 2.5 shows the average word error rate of

the recognition system for the three scenarios, where the clean signals are considered

to have zero source-microphone distance. As can be seen, the word error rate in-

creases with increasing source-microphone distance, thus indicating that the effects

of reverberation on the ASR system are rather severe.
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Figure 2.5: Word error rate of a speech recognition system as a function of the
source-microphone distance. The zero distance corresponds to the anechoic speech
signals.

2.2 Acoustic Impulse Responses

The acoustic impulse response (AIR) characterizes the acoustics of a given enclosure.

When the acoustic scenario is limited to be within a room, the impulse response is

referred to as a room impulse response (RIR), whose shape depends on factors such

as the size of the room, the reflectivity of the surfaces in the room and the talker-

to-microphone distance [3]. The enclosure (or room) is considered to be the system

that might be responsible for the incidence of reverberation or ambient noise. The

input to this system is the speech source signal (e.g. talker or speaker) and the

output of this system is the signal received at the microphone. In the absence

of reverberation and additive noise, the captured signal is identical to the signal

produced by the source, except for the delay due to the propagation from the source

to the microphone.

A RIR is generally assumed to consist of three parts: a direct-path response,

early reflections and late reverberation. Figure 2.6 shows an example of a simulated

RIR, where the initial period of zero amplitude is referred to as the direct-path

propagation delay, followed by a peak corresponding to the direct sound. Depend-

ing on the source-microphone distance and the reflectivity of the surfaces in the

room, the amplitude of this peak varies. In the example illustrated in this figure,

the strong direct-path component indicates that the source-microphone distance is

relatively short. Early and late reflections are indicated in the figure as two distinct

8



regions of the RIR. Early reflections often corresponds to the initial portion of the

impulse response and contains most of its energy. They consist of a set of well

defined impulses of large magnitude relative to the smaller magnitude and diffuse

nature of late reflections [3]. Early reflections cause spectral changes and lead to a

perceptual effect referred to as coloration. Late reflections are referred to as the tail

of the impulse response and consist of closely spaced, decaying impulses seemingly

randomly distributed. They are known to be a major cause of ASR performance

degradation, as well as speech fidelity and intelligibility loss [2].
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Figure 2.6: Example of room impulse response in the time domain, showing the
direct sound followed by early and late reflections.

For a linear, causal and time-invariant RIR, h(n), the reverberant speech signal

recorded at the microphone can be expressed as

z(n) =
∞∑
k=0

h(k)s(n− k), (2.5)

where s(n) is the anechoic speech signal. In the discrete STFT domain the previous

equation can be expressed as

Z(m, k) = H(m, k)S(m, k), (2.6)

where Z(m, k), H(m, k) and S(m, k) are the discrete STFTs of z(n), h(n) and s(n),

respectively.

In practice, however, the acoustic channel cannot be assumed to be time-

invariant, due to changes in source or microphone position, temperature, positioning

of room furnishings and movements inside the room [8].

Three often-used measures associated with the reverberation effect and related

to the RIR are detailed next. These measures are the reverberation time (RT or
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T60), the direct-to-reverberant ratio (DRR), and the room spectral variance (RSV).

2.2.1 Reverberation Time

An often-used quantification of the RIR is the reverberation time, or T60, originally

introduced by Sabine [9]. It is defined as the time taken for the reverberant energy

to decay 60 dB once the sound source has been abruptly shut off. The reverberation

time for a room depends on the room geometry and the reflectivity of all internal

surfaces, and it can be considered approximately constant when measured at any

location in a given room [3]. In practice, higher T60 values indicate more severe

reverberation.

Reverberation time can be measured by exciting a room with a broadband signal

and recording the resulting decay of the squared sound pressure against time, known

as the energy decay curve (EDC), defined as

EDC(t) =

∞∫
t

h2(τ)dτ. (2.7)

Then, the T60 is the required time for the EDC to decrease 60 dB. The reverberation

time in typical office-sized rooms can be expected to vary in the range [0.1,1.0] s [3].

Numerous proposals to estimate the reverberation time can be found in the litera-

ture [9–15].

2.2.2 Direct-to-Reverberant Ratio

The DRR is defined as the ratio between the direct Ed and reverberant Er energy

levels of the RIR, that is,

DRR = 10 log10

(Ed
Er

)
= 10 log10

( nd∑
n=0

h2(n)

∞∑
nd+1

h2(n)

)
[dB], (2.8)

where nd is the discrete-time sample index for the direct-path component of the

RIR. This measure is inversely proportional to the source-microphone distance and

the reverberation time of the room.

In cases where the reverberating system’s impulse response is not easy to esti-

mate, blind estimators for DRR measure have been developed. Some of them can

be found in [16, 17].
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2.2.3 Room Spectral Variance

The RSV is defined as the variance of the energy spectrum of the RIR in dB [18],

and characterizes the reverberation effect in the frequency domain. In that sense, if

H(k), for 0 ≤ k < K, is the kth discrete Fourier transform (DFT) coefficient of the

RIR h(n), the relative acoustic intensity level is defined as

I(k) = 10 log10

(
|H(k)|2

1
K

K−1∑
k′=0

|H(k′)|2

)
[dB], (2.9)

and the RSV is determined by

σ2
r =

1

K

K−1∑
k=0

[
I(k)−

( 1

K

K−1∑
k′=0

I(k′)
)]2

. (2.10)

In [19], one can found a semi-blind algorithm for the RSV estimate, which

requires a previous knowledge of the reverberation time and DRR values.

2.3 Dereverberation Systems

For many speech processing applications, such as hearing aid and speech recogni-

tion systems, a one-microphone approach for dereverberation is highly desirable.

However, the use of microphone arrays is commonly associated to dereverberation

techniques found in the literature [20, 21]. A generic system diagram for dereverber-

ation, which can represent both single and multichannel dereverberation, is shown in

Figure 2.7. For this generic system, one assumes the presence of additive noise, rep-

resented by νi(n), for i = 1 to M , where M is the number of channels. Each observed

signal, yi(n), at microphone i, corresponds to the superposition of the direct-path

signal and a theoretically infinite set of reflections of the talker speech signal s(n)

arriving at the microphone at later time instances with different attenuations and

added noise. Thus, it can be considered that the received signal is convolved with a

different RIR for each channel.

The objective of dereverberation systems is to output a signal x(n) which is

a good estimate of the anechoic signal s(n). There are different criteria for the

definition of ‘good estimate’, from those related to perceptual quality to a direct

minimum mean squared error (MSE). Dereverberation systems from the literature

can be grouped into three different families:

1. Speech enhancement : the received speech signal y(n) is modified in order to

improve some features of the anechoic speech signal s(n) according to a de-
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Figure 2.7: Diagram of a generic multichannel dereverberation system.

fined model of the speech waveform or spectrum. Some speech enhancement

approaches to dereverberation can be found in [8, 22–31].

2. Blind deconvolution: the RIR is identified blindly, that is, using only the

observed signals yi(n). Then, an inverse filter that equalizes the effect of the

RIR is designed. This technique often employs multiple microphones in the

dereverberation process. Blind acoustic system identification algorithms for

dereverberation can be found in [3, 32–38].

3. Beamforming : this technique provides the ability for a sensor array to focus on

a specific source with a particular angular position with respect to the array.

Generally, this method offers better results; however, it is dependent on the

availability of multi-microphone inputs, which is not possible in several real

communication systems. The most used technique is the delay-and-sum beam-

former (DSB), in which the microphone signals are delayed to compensate for

different times of arrival, and then weighted and summed. In this way, the

components due to direct-path are added while the components due to rever-

beration are attenuated. Some beamforming techniques for dereverberation

can be found in [20, 21, 39–41].

In the next chapter, the evaluation of the performance of dereverberation algo-

rithms will be discussed.
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Chapter 3

Evaluating the Performance of

Speech Dereverberation

Algorithms

Many speech enhancement algorithms have been developed to enhance the quality

and intelligibility of distorted speech. Their performance can be assessed using

either subjective listening tests or objective measures. By comparing the speech

quality before and after processing by the algorithm being evaluated, it is possible

to investigate the speech quality improvement.

Objective measures can be classified into two groups: reference and no-reference.

The reference measures compare the distorted signal with the undistorted signal (i.e.,

the reference signal), which needs to be available. The no-reference measures do not

use a reference signal, i.e., the speech quality is determined given only the distorted

speech signal. For the objective measures to be valid, they need to correlate well

with subjective listening tests. Some of the existing objective measures have been

adopted to characterize the perceived effect of reverberation in a speech signal.

In this chapter, subjective and objective measures that can be used to determine

the enhancement of speech quality will be discussed and analyzed, particularly useful

to determine the dereverberation effect. Some knowledge regarding those measures

is necessary to understand the method proposed in this work, which is presented in

the next chapter.

3.1 Quality and Intelligibility of Speech

Speech quality and speech intelligibility are not synonymous terms. Hence, different

assessment methods are used to evaluate the quality and intelligibility of processed

speech. Quality is highly subjective in nature and it is difficult to evaluate reliably.
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On the other hand, intelligibility can be easily measured and quantified by count-

ing the number of words or phonemes that are correctly identified, either by real

listeners or by ASR systems. The relationship between speech quality and speech

intelligibility is not fully understood, and the acoustic link between them has not

been yet identified [4]. Speech can be highly intelligible, yet of poor quality, and vice-

versa. For example, a sine-wave speech [42]1 has bad quality since it is perceived as

being ‘tonal’ and mechanical sounding, yet it can be highly intelligible. Conversely,

speech can also have good quality and yet not be completely intelligible. For ex-

ample, speech signals transmitted over IP networks with severe packet loss may

become barely intelligible since certain words may be missing, even if the perceived

quality of the remaining words is quite high. Even so, in most cases, it is expected

that an improvement in the quality of a speech signal implies an improvement in its

intelligibility.

Depending on the application at hand, it may be more beneficial to aim at

the increase in intelligibility rather than in quality, or conversely. For example,

in automatic speech-to-text conversion applications, it is desirable to attain high

intelligibility of the processed speech, regardless of the speech quality. In hearing-

aid applications, however, it is desirable that the speech enhancement algorithm

preserves or enhances not only speech intelligibility but also speech quality. When

the degradation of speech is caused by reverberation, it is important to note that

speech fidelity and intelligibility are mostly degraded by late reverberation. On the

other hand, the coloration effect caused by the early reflections reinforces the direct

sound, and is therefore considered useful regarding speech intelligibility [3].

3.2 Subjective Measures

Subjective speech quality and intelligibility measures can be obtained using listening

tests with human participants. In the case of speech intelligibility, such tests gen-

erally fall into three main classes: recognition of nonsense syllables, recognition of

single meaningful words, and recognition of meaningful sentences. In most of them,

speech intelligibility is quantified in terms of percentage of words (or syllables) iden-

tified correctly [4]. For the evaluation of speech quality, listeners are presented with

recordings that are enhanced by a certain algorithm, and asked to rate the quality

of each signal on a numerical scale, typically a 5-point scale with one indicating poor

quality and five indicating excellent quality. The measured quality of the test signal

is obtained by averaging the scores obtained from all listeners. This average score is

1Sine-wave speech is an intelligible synthetic acoustic signal composed of three or four time-
varying sinusoids. Together, these few sinusoids replicate the estimated frequency and amplitude
pattern of the resonance peaks of a natural utterance.

14



commonly referred to as the mean opinion score (MOS), and is one of the methods

recommended by the International Telecommunications Union (ITU-T) [43].

To obtain a realistic variability in the listening test, a large number of subjects

is required. Although subjective-listening tests provide perhaps the most reliable

method for assessing speech quality or speech intelligibility, these tests can be time-

consuming and are unsuitable for real-time applications. Hence, it is highly desirable

to devise objective measures of speech quality and intelligibility.

3.3 Objective Measures

Objective quality and intelligibility measures are valuable assessment tools during

the design and validation stages of speech enhancement algorithms, codecs, and

communication systems. Most objective measures are based on psychoacoustics

considerations and trained on subjective databases to represent human perception.

A large number of objective measures has been devised for different types of ap-

plications. Next, a subset of measures that have been found to correlate well with

reverberant environments is described.

3.3.1 Reverberation-Oriented Quality Measures

Some objetive measures have been developed to determine the amount of reverber-

ation present in speech signals. Reliable quantitative measurement of the level of

reverberation in a speech signal is particulary difficult and no universally accepted

set of instrumental measures has yet been fully established for evaluating dereverber-

ation algorithms. Many of the commonly used measures, the so-called channel-based

measures, need information about the channel impulse response. When this infor-

mation is not available, estimates must be used in order to compute the measures.

For example, in the case of reference measures (that is, when the anechoic speech

signal is available), a deconvolution process between the anechoic and reveberant

speech signal can be made in order to estimate the RIR. If a direct RIR estimation

cannot be computed, blind approaches for the parameters required by the measures

must be employed. A set of measures used for the quantitative characterization of

reverberation are summarized below.

3.3.1.1 Allen’s Measure

This measure estimates the subjective preference of reverberant speech and combines

the reverberation time (T60) and the RSV (σ2
r) as follows [44]:

P = Pmax − σ2
rT60, (3.1)
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where P is the subjective preference in some arbitrary units and Pmax is the maxi-

mum possible preference. According to this formula, decreasing either the RSV or

the reverberation time results in an increased subjective preference (quality) of the

speech.

3.3.1.2 QAreverb

The QAreverb measure Q proposed in [1] incorporates the DRR to the Allen’s

measure as given by

Q = − T60σ
2
r

DRRγ , (3.2)

where the exponent γ sets the importance of the DRR with respect to the other two

parameters, and its value is determined empirically in a training stage. In the next

stage, the value of Q is mapped onto the MOS scale, yielding the QMOS measure,

using a third-order polynomial of the form

QMOS = x1Q
3 + x2Q

2 + x3Q+ x4, (3.3)

where the coefficients x1, x2, x3, and x4 are determined during the system training.

This procedure is followed by a linear-scale adjustment of QMOS to the grade scale

of a distinct subjective test, in order to reduce the MSE between subjective and

objective scores:

QMOS = αQMOS + β, (3.4)

with α and β possibly determined from some data subset.

A no-reference version of the QAreverb measure can be obtained using blind

estimators for T60 [14], DRR [17], and RSV [19].

3.3.1.3 Speech to Reverberation Modulation Energy Ratio

The speech-to-reverberation modulation energy ratio (SRMR) [16] is a no-reference

signal-based measure defined as

SRMR =

4∑
k=1

ε̄k

K∗∑
k=5

ε̄k

, (3.5)

where ε̄k is the average energy in the modulation frequency band index k, and the

upper summation bound K∗ in the denominator is adapted to the speech signal

under test. This measure is computed by performing spectral analysis on the mod-
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ulation envelopes of the speech signal and is calculated as the ratio of the average

energy in the low modulation frequencies (4 – 18 Hz) (attributed mostly to spoken

speech components) to the high modulation frequencies (29 – 128 Hz) (which are

mostly attributed to noise and room acoustic effects). Larger values of SRMR are

assumed to indicate better speech quality.

3.3.1.4 Other Reverberation-Oriented Measures

Many other quality measures that concentrate on measuring the dereverberation

effect can be found in the literature. To cite some examples, the signal-to-

reverberation ratio (SRR) [45] and the reverberation decay tail (RDT ) [46] are widely

used measures of reverberant and dereverberated speech.

3.3.2 General Purpose Quality Measures

Most of the objective quality measures of speech quality were developed for the

purpose of evaluating the distortions introduced by speech codecs and/or communi-

cation channels. These overall quality measures were not designed to determine the

quality of reverberant speech, but other distortions that are perceptually important.

Next, a subset of general purpose quality measures that are also suitable for evalu-

ating the quality of speech enhanced by dereverberation algorithms are introduced.

Among these measures, the ITU-T has standardized the perceptual evaluation of

speech quality (PESQ) [47], which is described in detail.

3.3.2.1 Perceptual Evaluation of Speech Quality

PESQ was conceived to predict the listening quality of a speech signal (sampled

at 8 KHz) degraded by codecs, background noise and packet loss. This reference

measure compares an original (clean) signal with a degraded or enhanced version,

and the output is a prediction of the perceived quality it would have been attributed

in a subjective listening test. The main details involved in PESQ computation are

given below.

1. Pre-processing : The clean and degraded signals are first level equalized to

a standard listening level, and filtered by a filter with response similar to a

standard telephone handset.

2. Time alignment : The signals are aligned in time to correct for time delays.

3. Auditory transform: In order to account for the distortions that are actually

perceived by human listeners, the model transforms the two aligned and filtered

signals from the time-amplitude domain into a frequency-loudness domain.
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4. Disturbance processing : By subtracting the two signal representations an es-

timate of the audible differences is derived. The audible differences are accu-

mulated over time while they are weighted differently depending on whether

a distortion was added to the signal or if parts of the signal were missing after

the transmission.

5. Linear-mapping : The final PESQ score is computed as a linear combination

of the disturbances, providing scores in the range -0.5 to 4.5.

A recommendation for wideband extension to PESQ documented in [48], for

speech signals sampled at 16 kHz, included two small changes to the PESQ imple-

mentation. First, the filter used originally for modeling the response of telephone

headsets was removed. Instead, an infinite impulse response (IIR) filter with a flat

response above 100 Hz is used. Second, the PESQ raw output values are mapped

using a logistic-type function to better fit the subjective MOS scores. Another exten-

sion to PESQ, known as EW-PESQ, was devised in [49] for speech signals sampled

at 48 kHz.

An experiment was devised in order to study the relation between PESQ and

some basic parameters of reverberation, namely the reverberation time and the

source-microphone distance. The speech signals used in the experiment were taken

from the NBP database, and were downsampled from 48 kHz to 16 kHz. These sig-

nals were obtained by playing and recording anechoic signals in rooms with different

reverberating characteristics. For this experiment, the wideband PESQ was used.

Figure 3.1 shows the relation between the PESQ score and the source-microphone

distance for two different reverberation times. It can be seen that the PESQ score

is inversely proportional to the reverberation time and decreases for long source-

microphone distances.

3.3.2.2 Other General Purpose Quality Measures

There exist other measures that have been found to be moderately well suited to

the assessment of dereverberation algorithms. Some examples of such measures

are the Bark spectral distortion (BSD) [50], the segmental signal-to-noise ratio

(SNRseg) [51], the frequency-weighted segmental SNR (fwsegSNR) [52], the cep-

strum distance (CD) [53] and the log-likelihood ratio (LLR) [4]. For when the clean

signal is not available, several no-reference measures have also been proposed in the

literature [54–59].
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Figure 3.1: PESQ score versus source-microphone distance for two reverberation
times values.

3.3.3 Speech Intelligibility Measures

Most intelligibility measures are based on the assumption that intelligibility depends

on the audibility of the signal in each frequency band [4]. Audibility is often ex-

pressed in terms of SNR, and bands with positive SNR contribute to intelligibility.

Thus, objective speech intelligibility scores are predicted based on linear combina-

tions of band SNRs appropriately weighted by some functions. The computation

of each band SNR differs across the measure proposed and depends on the back-

ground (reverberation, additive noise, etc.) and type of processing. Depending on

the method used to compute the SNR, different intelligibility measures have been

developed. A powerful and widely accepted family of measures that predict the

effect of room acoustics on speech intelligibility are the speech transmission index

(STI) [60] measures, which quantify the speech intelligibility in terms of the spec-

tral content of the signal envelope. One of these speech-based STI measures is the

normalized-covariance measure (NCM), which has been shown to correlate highly

with the intelligibility of reverberant speech [61].

3.3.3.1 Normalized-Covariance Measure

The NCM [62] uses the Pearson’s correlation coefficient r between the input and

output envelope signals to compute the SNR in each band, using the following

equation:

SNRi = 10 log10

( ri
1− r2

i

)
, (3.6)
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where the subindex i represents the ith band. Following the SNR computation and

limitation to the interval [-15,15], the STI is computed by linearly mapping the SNRi

values between 0 and 1,

STIi =
SNRi + 15

30
. (3.7)

Finally, the NCM score is computed as

NCM =
1∑K

i=1Wi

K∑
i=1

Wi · STIi, (3.8)

where Wi are the band-importance weights applied to each of the K bands (K is

often equal to 20).

3.3.3.2 Word Error Rate

The word error rate (WER) is a commonly used metric to evaluate the performance

of ASR systems. It is a measure of the average number of word errors taking into

account three error types: substitution (the reference word is replaced by another

word), insertion (a word is hypothesized that was not in the reference), and deletion

(a word in the reference transcription is missed). Thus, the WER is defined as

WER =
NS +ND +NI

N
, (3.9)

where NS is the number of substitutions, ND is the number of deletions, NI is the

number of insertions, and N is the number of words in the reference. Given this

definition, the percent word error can be more than 100%. In order to compute this

measure, the transcription of all words must be available.

3.4 Conclusion

In this chapter some frequently used objective speech quality and intelligibility mea-

sures that are useful to determine the dereverberation quality were analyzed and

discussed. Besides, some measures that were not explicitly developed to determine

the speech quality in reverberant environments but are sensitive to other important

distortions were also introduced. Among these measures it was demonstrated that

PESQ is also suitable for the assessment of reverberant signals. The proper com-

bination of the analyzed measures is the key factor of the proposed enhancement

method for dereverberation algorithms that this work proposes, as will be detailed

in the next chapter.
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Chapter 4

Proposed Methodology for

Enhancing Dereverberation

Algorithms

So far, it has been shown how reverberation distorts speech signals, degrades their

quality and adversely affects the performance of ASR systems. To compensate

for such detrimental effects, algorithms that mitigate reverberation have become

necessary for a large number of applications. However, the process of dereverberation

is a difficult and often ill-conditioned problem, and may introduce objectionable

artifacts to the processed speech signals. The use of subjective and/or objective

quality and intelligibility measurement methods is necessary in order to evaluate

the performance of dereverberation algorithms.

In the previous chapter, numerous assessment measures of quality and intelli-

gibility of speech signals were analyzed. This chapter proposes an enhancement

strategy for dereverberation algorithms, based on the simultaneous optimization of

several of those measures. Basic notions of multi-objective optimization are first

introduced. Besides, in order to carry out the work proposal, some practical consid-

erations are also included in this chapter, such as the reverberant-speech database

and the speech recognition system used in this work, and setups of the measures

used in practice.

4.1 Multi-Objective Optimization and Pareto-

Optimal Solutions

Optimization is a procedure of finding and comparing feasible solutions until no

better solution can be found. When an optimization problem involves more than

one objective, the task of finding one or more optimum solutions is known as multi-
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objective optimization. In a trivial case, there exists a solution that simultaneously

optimizes all objectives. However, such a solution is hardly found. Different so-

lutions may produce trade-offs (conflicting scenarios) among different objectives.

Thus, in problems with more than one conflicting objective, there is no single opti-

mum solution, but a number of solutions which are all equally optimal.

Pareto optimality is a concept in multi-objective optimization that allows for

the optimization of multiple criteria, enabling all trade-offs among optimal combi-

nations of multiple criteria to be evaluated. Figure 4.1 illustrates a simple case of

maximizing two objectives simultaneously (O1, O2), with the solid line indicating

the Pareto optimal frontier, whereby any improvement with respect to O1 comes

at the expense of O2. Each point along that frontier represents a unique model

parameterization and/or model structure, so Pareto optimality identifies multiple

Pareto optimal solutions. Through this procedure one is able to investigate dif-

ferences among the multiple optimal solutions that are able to optimize varying

combinations of assessment criteria. It is worth pointing out that there exist mul-

tiple Pareto-optimal solutions in a problem only if the objectives are conflicting to

each other. If the objectives are not conflicting to each other, the cardinality of

the Pareto-optimal set is one, that is, the optimal solution corresponding to any

objective is the same. In the presence of multiple Pareto-optimal solutions, it may

be difficult to prefer one solution over the other without any further information

about the problem. If higher-level information is available, this can be used to make

a biased search. Thus, in a multi-objective optimization, the effort must be made

in finding the set of Pareto-optimal solutions.

O1

O2

Feasible objective space

Figure 4.1: Pareto-optimal set, marked with a solid line, for an scenario with two
objectives (O1, O2) to be maximized.

Most multi-objective optimization methods use the concept of domination in

their search. One solution A is said to dominate other solution B if the next two
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conditions are true:

1. The solution A is no worse than B in all objectives.

2. The solution A is strictly better than B in at least one objective.

If any of the above conditions is violated, the solution A does not dominate

the solution B. Let consider the example ilustrated in Figure 4.2, in which the

objective O1 needs to be maximized while the objective O2 needs to be minimized.

Five solutions {A,B,C,D,E} are shown in this figure. Using the definition of

domination is it possible to decide which solution is better among any two given

solutions in terms of both objectives. For example, comparing solutions A and B

it can be observed that solution A is better than solution B in both objectives.

Thus, the conditions of dominance are satisfied and it can be said that solution A

dominates solution B. If solutions A and E are compared, for instance, it can be

seen that solution E dominates solution A, since solution E is better in the first

objective and no worse than solution A in the second objective. If solutions C and E

are now compared, it can be seen that solution E is better than solution C in the first

objective, but worse in the second objective. Thus, the first condition of dominance

is not satisfied and it cannot be concluded either that solution E dominates solution

C, or vice versa, so both solutions are non-dominated.

A

D

E

O1 (maximize)

O2 (minimize)

B

C

Figure 4.2: Five different solutions shown in the objective space.

Although a two-objective problem is illustrated above, the concept of dominance

can be applied in problems with more than two objectives. For a given finite set of

solutions, all possible pair-wise comparisons can be performed to search if a solution

dominates another and the ones that are non-dominated with respect to each other.

At the end, there can be found the so-called non-dominated set for the given set of

solutions. In the example above, solutions C and E constitutes the non-dominated

set of the given set of five solutions. This non-dominated set is precisely the Pareto-

optimal set. Different procedures for finding a non-dominated set can be found in

[63].
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4.2 Proposed Method

The design of dereverberation algorithms often requires the tuning of certain pa-

rameters, which are usually chosen so that the final result optimizes one or sev-

eral measures. The choice of these measures is not a straightforward task. Some

reverberation-oriented measures can give a global and quantitative indication about

the presence of reverberation, but may not reveal any information about speech

quality and intelligibility. Therefore, it is advisable to combine them with other

quality-oriented measures.

The proposed method is intended to optimize simultaneously several complemen-

tary assessment measures to improve the performance of dereverberation algorithms,

using the concepts of multi-objective optimization introduced in the previous sec-

tion. The core idea is to combine the ability to quantify the reverberation effect

inherent to reverberation-oriented measures, such as QAreverb or SRMR, with the

ability of general purpose measures, like PESQ, to evaluate the overall quality of

speech signals in the presence of other distortions. This combination of measures

leads to a multi-objective optimization problem, which can be solved by searching

for the Pareto-optimal set in a multi-objective (measure) space. Among the Pareto-

optimal solutions, the preferred solution (that is, the new operating point for the

dereverberation algorithm) may depend on the application in hand. If, for exam-

ple, the dereverberation algorithm is intended to improve speech intelligibility, the

preferred solution could correspond to that with lower WER, using an ASR system

to compare the WER for different optimal (non-dominated) solutions. A six-step

procedure for the method proposed in this work is described next:

1. Choose a small but representative training set of reverberant speech signals.

2. Choose a set of relevant parameters of the dereverberation algorithm.

3. Combine the parameters values within a certain range and, for every combi-

nation, process the signals from the training set.

4. For each configuration of the algorithm (set of parameter values), compute

the selected measures (objectives which are to be maximized or minimized) of

the processed signals and average them for the whole training set. This will

produce a feasible objective space of points representing the measures values

for every setup.

5. Find the Pareto-optimal set (non-dominated solutions) within the feasible ob-

jective space.

6. Choose a new operating point for the algorithm from the Pareto-optimal set,

using the WER of an ASR system as higher-level decision.
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Figure 4.3 shows schematically the proposed procedure, considering a two-

objective maximization problem.

Training
set

Algorithm
parameters

Feasible objective space

Find Pareto-optimal set Choose the solution with

step 1

step 2

steps 3 and 4

step 5 step 6

O1

O2

O2

O1 O1

O2

WER

lower WER

Figure 4.3: Illustrative example of proposed optimization using PESQ and SRMR
as quality-assessment measures.

The proposed method can be computationally expensive if the number of param-

eters is high or the training set is large. Let for example assume that the training

set is composed of 15 signals, and 6 parameters of the dereverberation algorithm are

chosen, all with an analysis range of 10 values. To carry out this proposal, it would

be necessary to process and obtain the measures for 106 × 15 = 15000000 signals,

which is highly time-consuming and perhaps unfeasible. Thus, it is important to

limit the size of the training set, the number of parameters and their range of anal-

ysis. Another option is to group the parameters into smaller groups and apply the

procedure for each one. If in the earlier example the parameters are equally divided

into two groups, it would be necessary to process 2×103×15 = 30000 signals, which

is more feasible. In compensation, this approach is likely to be less effective in terms

of optimization, since possible correlations between parameters are disregarded.

Due to computational limitations, the proposed method might not lead to a

global optimization, becoming a sub-optimization problem. Thus, to approximate

the optimal solution, it is important to skilfully select the algorithm parameters,

knowing their possible correlations, and combine their values within a controlled

and appropriate range.

The choice of quality measures has also a significant role. If, for example,

two highly correlated measures are selected, their joint optimization would be

equivalent to their individual optimizations, which would entail an unnecessary

waste of resources.
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Now we consider a simple and unreal numerical example of the proposed method-

ology. The dereverberation algorithm for this example has two parameters: a and

b, whose original values are a = 1 and b = 1. Following the proposed method, these

parameters are combined within the range {1, 2, 3}, which leads to 9 different al-

gorithm configurations. For each of them, the algorithm processes the signals from

a certain training set, computing and averaging the SRMR and PESQ measures,

which are to be maximized. Figure 4.4 shows their hypothetical objective feasible

set, in which every algorithm configuration {a, b} is marked on the scattered cir-

cles indicating the different solutions. After finding the Pareto-optimal set that lies

in the Pareto frontier (represented by a dashed line), it can be observed that the

original configuration of the algorithm {1, 1} is a dominated solution, so it can be

optimized. The next step would be to process a set of speech signals for the three

optimal configurations and to compute the WER using a certain ASR system. Sup-

pose that the solution {1, 2} gives a WER of 40%, the solution {2, 3} gives a WER

of 20% and the WER of solution {2, 2} is 30%. Thus, with the proposed method, the

new operating point of the algorithm would correspond to the solution with lower

WER (a = 2, b = 3). This new configuration is expected to improve the algorithm

performance in terms of speech intelligibility.

SRMR
{1, 2}

{2, 3}

{2, 1}
{1, 1}

{3, 1}

{1, 3}
{3, 2}

{3, 3}

PESQ

{2, 2}

Figure 4.4: Numerical example of the proposed method. Each circle corresponds to
one combination of the parameters {a, b} of a certain dereverbearation algorithm.
The set of all points forms the feasible objective space, where the objectives to be
maximized are the PESQ and the SRMR.

4.3 Practical Considerations

The optimization strategy proposed above may be applied to any dereverberation

algorithm, with any number of sensors, and with distinct assessment measures. Its

effectiveness, however, is illustrated in this work based on three one-microphone

dereverberation algorithms described in the following chapters and on QAreverb,
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SRMR, PESQ, and NCM, discussed in Chapter 3. The setup of the employed

measures is described in this section. Also, all experimental data employed in the

process is detailed next.

4.3.1 Reverberant Speech Databases

The main database used in this work was provided by the REVERB (REverberant

Voice Enhancement and Recognition Benchmark) Challenge 2014 [6, 64], which

divided the data into the so-called development database and evaluation database.

Each of these databases were further divided into two datasets:

• SimData: contains speech signals from the WSJCAM0 database [5], artificially

convolved with RIRs measured in three different rooms with different volumes

(small, medium and large) and two different source-microphone distances (near

= 50 cm and far = 200 cm). Background noise was added to each signal at

fixed SNR of 20 dB. The reverberation times for the small (Room 1), medium

(Room 2) and large (Room 3) rooms are {250, 680, 730} ms, respectively. The

anechoic signals from this dataset are available.

• RealData: contains a set of real recordings from the MC-WSJ-AV database [65]

made in a reverberant and noisy meeting room (Room 4) with two different

source-microphone distances (near ≈ 100 cm and far ≈ 250 cm). The rever-

beration time for this room is about 700 ms. Since this dataset is composed

of real recordings, the respective anechoic signals are not available.

This setup of real recordings (RealData) and simulated data (SimData) allows

to evaluate the dereverberation algorithms in terms of both practicality and robust-

ness in a broad range of reverberation conditions. All utterances considered were

captured with single-channel microphones at a sampling frequency of 16 kHz. The

total size and number of speakers for the SimData and RealData datasets are sum-

marized in Table 4.1. For SimData, the original development and evaluation sets

of the WSJCAM0 are divided into three subsets, one for each room. The near and

far conditions for each room are based on the same allocated subset. Thus, the

size of SimData is twice that of the original WSJCAM0 dataset. For RealData, the

development and evaluation sets of the original MC-WSJ-AV are divided into near

and far conditions. The total size of the entire database is 4211 reverberant signals.

4.3.1.1 Training Set

A small training set was elaborated in order to substantiate the proposal of this work.

This set is composed by one female and one male utterances, randomly selected
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Table 4.1: Quantity of data for development and evaluation sets of SimData and
RealData.

SimData RealData
Development Evaluation Development Evaluation

Number of sentences 1484 2176 179 372
Number of speakers 10 28 5 10

from each reverberation condition from the SimData development dataset, totaling

12 reverberant signals. Since most of the used measures are intrusive (i.e., they need

access to the anechoic signals), the training set does not contains utterances from

the RealData dataset.

4.3.2 Speech Recognition System

In order to have a common basis for evaluating and comparing different approaches

of dereverberation algorithms, a baseline speech recognition system [7] was used,

which is based on the hidden Markov model toolkit (HTK) [66]. This system fol-

lows the structure depicted in Figure 2.4, using Mel-frequency cepstral coefficients

(MFCCs) [67] as features. The acoustic model considered here is trained using the

clean signals. Table 4.2 summarizes the averaged WER obtained for the clean and

reverberant signals under every condition using the speech recognition system for

both development and evaluation datasets. As expected, the WER gets worse when

reverberation conditions are more severe (i.e., with the increase of reverberation

time and source-microphone distance).

Table 4.2: Average WER in % obtained for the clean and reverberant speech signals
from development and evaluation datasets under every reverberant condition.

SimData RealData
Room 1 Room 2 Room 3 Room 4

Clean
Development 10.50 11.51 10.81 –
Evaluation 12.84 12.49 12.13 –

Near Far Near Far Near Far Near Far

Reverberant
Development 15.29 25.29 43.90 85.80 51.95 88.90 88.71 88.31
Evaluation 18.06 25.38 42.98 88.2 53.54 88.04 89.72 87.34

4.3.3 Objective Assessment Measures

The measures used for the implementation of the proposed method and their con-

figurations are detailed next. All these measures were tested using MATLAB R©.

• QAreverb: To compute the Q measure of Equation 3.2, the value of the
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constant factor γ was set to γ = 0.3, according with [1]. The parameters

σ2
r , T60 and DRR are obtained directly from the RIR, which is estimated

from the deconvolution process between the clean and the reverberant speech

signals. For the case of the RealData dataset, in which the clean signals are not

available, a blind version of QAreverb was used, using blind estimators of the

parameters as detailed in [17]. The coefficients used for mapping theQmeasure

into the QMOS from Equation 3.3 were x1 = 0.0014, x2 = 0.0570, x3 = 0.6985,

and x4 = 4.5390, and the final linear adjustment of Equation 3.4 was made

using α = 1 and β = −1.25× 10−9. The motivation behind the choice of these

values can be found in [1].

• SRMR: The SRMR scores are calculated as per [16].

• PESQ: The PESQ scores are calculated using the wideband implementation

of the PESQ measure provided in [4].

• NCM: For the NCM, the following weighting function was used in Equa-

tion 3.8:

Wj =
(∑

n

x2
j(n)

)p
, (4.1)

where xj(n) denotes de envelope of the target signal in the jth band and p

was set to 1.5. The implementation of the NCM is provided in [4].

4.4 Conclusion

In this chapter, the proposed methodology to enhance dereverberation algorithms

was introduced. The enhancement strategy consists on tuning certain parameters of

a given algorithm so that several objective measures are optimized simultaneously.

After finding the non-dominated solutions that lies in the Pareto frontier, the new

operating point for the algorithm is chosen as the solution with lower WER. This

chapter also presented the reverberant speech database that is used in the imple-

mentation of the method, as well as the setup of the measures that are used. In

the following chapters, the complete procedure will be applied to three different

dereverberation algorithms.
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Chapter 5

Enhancement of Dereverberation

Algorithm A1

In this chapter the proposed method is first evaluated when applied to a one-

microphone dereverberation algorithm, henceforth called A1. The quality and in-

telligibility of the speech signals processed by the original and enhanced algorithms

are evaluated and compared, thus showing the degree of effectiveness of this work’s

proposal for this particular algorithm.

Dereverberation algorithm A1 was devised in [31] as a simplification of the two-

stage dereverberation algorithm introduced by Wu and Wang [28]. The original two-

stage algorithm consists of a first inverse-filter stage designed to reduce the coloration

effect, and a second stage, based on spectral subtraction, designed for suppressing

the long-term reverberation effect. In [31], results indicated an improvement in both

quality and processing time by completely removing the first inverse-filtering stage.

The structure of the algorithm A1 and the methodology followed for its opti-

mization, along with the experimental results obtained, are detailed in the following

sections.

5.1 A1 description

The dereverberation algorithm A1, as depicted in Figure 5.1, aims at the estimation

and subtraction of the long-term reverberation effect, which is caused by the late

reverberation component of the RIR. This algorithm starts with the reverberant

speech signal z(n) and outputs the dereverberated speech x(n), whose phase is

determined directly from z(n).

Let Sz(m, k) = |Sz(m, k)|ejϕz(m,k) be the FFT of the n-th frame of the windowed

version of z(n), where a 32 ms Hamming window with 24 ms overlap between con-

secutive frames is used, and w(m) be an asymmetrical smoothing window based on
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Figure 5.1: Diagram of the algorithm A1.

the Rayleigh distribution, given by

w(m) =

 (
m+a
a2

)
e

(
−(m+a)2

2a2

)
, if m > −a

0, otherwise
, (5.1)

where parameter a controls the overall spread of the function.

The model of the power spectrum of the late reverberation can be described as

|Sl(m, k)|2 = γw(m− ρ) ∗ |Sz(m, k)|2, (5.2)

where “∗” represents the convolution operation along the time domain, k is the

frequency bin, and m refers to the time frame. The parameter γ is a scaling factor

and ρ represents the length of the early reflections.

Considering that the early and late components are mutually uncorrelated [28],

the power spectrum of the early impulse components can be estimated by subtracting

the power spectrum of the late impulse components from the reverberant speech.

The spectrum subtraction scheme performs a weighting in the power spectrum of

z(n), and the block SUBTRACTION is given by

|Ss(m, k)|2 = |Sz(m, k)|2 max

[
1− |Sl(m, k)|2

|Sz(m, k)|2
, ε

]
, (5.3)

where ε is the floor and corresponds to the maximum attenuation. The power
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spectrum of x(n) is given by

|Sx(m, k)|2 =
√
|Sz(m, k)|2 × |Ss(m, k)|2. (5.4)

Finally, in order to calculate the spectrum of x(n), the phase ϕz(m, k) of Sz(m, k)

is combined to the magnitude |Sx(m, k)|, such that

Sx(m, k) = |Sx(m, k)|ejϕz(m,k), (5.5)

which allows one to estimate the clean signal x(n) as desired.

5.2 Enhancement Process

This section describes the whole methodology used for the enhancement process of

algorithm A1. The results and conclusions achieved here will serve as a basis for

the enhancement of the remaining algorithms in this work. The key factor of the

proposed method is focused on two aspects: the choice of the parameters under

analysis and the objective-assessment measures employed. The proper management

of these aspects facilitates the election of a new operating point for the algorithm,

which can improve its performance.

5.2.1 Choice of the Parameters

For algorithm A1, four parameters were chosen to be optimized, as detailed below:

• Scaling factor (γ): Specifies the relative strength of the late-impulse compo-

nents of the reverberant speech signal in Equation 5.2. Although many factors

contribute to this relative strength (for instance, the reverberation time), the

system performance is not very sensitive to specific values of γ [28]. The

original value of the scaling factor in algorithm A1 was γ = 0.35.

• Attenuation limit (ε): Corresponds to the maximum attenuation in Equation

5.3. The original value of this parameter in algorithm A1 was ε = 0.001,

equivalent to an attenuation of 30 dB.

• Early-reflection length (ρ): Indicates the relative delay of the late impulse

components in Equation 5.2. This delay reflects speech properties and is in-

dependent of reverberation characteristics. It is commonly considered to cor-

respond to around 50 ms, which implies ρ = 7 frames. This value of ρ was set

in algorithm A1.
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• Spread control (a): This parameter controls the overall spread of function

w(n) in Equation 5.1. It needs to be less than or equal to ρ to provide a

reasonable match to the equalized impulse-response shape. The original value

of this parameter in algorithm A1 was a = 6.

These four parameters were combined within different ranges in order to proceed

with the optimization strategy. Table 5.1 shows the parameter ranges considered

for the enhancement of algorithm A1, which gives a total of 2475 training setups.

Table 5.1: Range of values of each parameter used in the enhancement process of
algorithm A1.

Parameter Range

γ {0.30, 0.31, 0.32, . . . , 0.40}
ε {10−5, 10−4, 10−3, 10−2, 10−1}
ρ {1, 2, 3, 4, 5, 6, 7, 8, 9}
a {1, 2, 3, 4, 5, 6, 7, 8, 9}, with a ≤ ρ

5.2.2 Choice of Objective-Assessment Measures

The combination of the parameters within their ranges were analyzed considering the

average of different assessment measures, in the framework of the 12-signal training

dataset. For this algorithm, four objective-assessment measures were combined and

analyzed: SRMR, QAreverb, PESQ, and NCM, which were to be maximized. It is

important to recall that both QMOS and PESQ measures are restricted to the 1–5

MOS range, whereas NCM values lies between 0 and 1.

Figures 5.2, 5.3, 5.4 and 5.5 show, respectively, the feasible objective space for

the QMOS×PESQ, SRMR×PESQ, NCM×PESQ, and NCM×QMOS relations, in

which every scattered cross corresponds to one of the 2475 total combinations of

the set {γ, ε, ρ, a}. These figures also show the operating point of the original al-

gorithm A1 [31] (labeled as “Original”), the point of the unprocessed reverberant

signals (labeled as “Unprocessed”), and the operating point of the Wu and Wang

algorithm [28] (labeled as “Wu-Wang”). On these figures, the Pareto-optimal so-

lution is depicted. As can be observed, for all objective measures considered, the

three labeled configurations of algorithm A1 lie in a solution which is dominated.

A new solution among the Pareto-optimal points is expected to assume a better

performance for the algorithm.

5.2.3 Choice of the Optimal Operating Point

Depending on the size and the shape of the objective feasible set, the number of

Pareto-optimal solutions may be high. For example, on Figure 5.3 the cardinality
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Figure 5.2: QMOS×PESQ relation for the training process of algorithm A1. Each
scattered cross corresponds to a different combination of the set {γ, ε, ρ, a}. This fig-
ure also shows the operating points corresponding to the original algorithm (circle),
the unprocessed signals (square) and the Wu-Wang algorithm (diamond).
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Figure 5.3: SRMR×PESQ graph for the training process of algorithm A1. Each
scattered cross corresponds to a different combination of the set {γ, ε, ρ, a}. This
figure also shows the operating points corresponding to the original algorithm (cir-
cle), the unprocessed signals (square) and the Wu-Wang algorithm (diamond).

34



PESQ
1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6

N
C

M

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.8

0.81

0.82

Setups
Pareto-optimal
Original
Unprocessed
Wu-Wang

Figure 5.4: NCM×PESQ graph for the training process of algorithm A1. Each scat-
tered cross corresponds to a different combination of the set {γ, ε, ρ, a}. This figure
also shows the operating points corresponding to the original algorithm (circle), the
unprocessed signals (square) and the Wu-Wang algorithm (diamond).
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Figure 5.5: NCM×QMOS graph for the training process of algorithm A1. Each scat-
tered cross corresponds to a different combination of the set {γ, ε, ρ, a}. This figure
also shows the operating points corresponding to the original algorithm (circle), the
unprocessed signals (square) and the Wu-Wang algorithm (diamond).
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of the Pareto-optimal set is 42. Analyzing all these solutions on the ASR system

in order to compare the WER would be certainly an expensive task. The scope of

this section is to evaluate the influence of the measures from the point of view of

speech intelligibility, with the objective of reducing the search space for the optimal

solutions. Different experiments are devised in order to establish a general rule to

choose an optimal operating point for this and any other algorithm. In addition, it

is determined which parameters most affect the performance of algorithm A1.

5.2.3.1 Experiment 1

The first experiment consists on determining the extent to which the increase of

PESQ and QMOS measures affects the intelligibility of the speech signals. Figure

5.6 shows some selected operating points (from A to K) employed in this experi-

ment. The average value of the WER was calculated for each one of these points,

using the whole SimData and RealData development dataset. The points labeled

as {A,B,C,D,E, F} allow to evaluate the effect of increasing PESQ for two fixed

values (medium and high) of QMOS. On the other hand, the points labeled as

{G,D,H, I, J,K} enable to evaluate the effect of increasing QMOS for two fixed

values (medium and low) of PESQ. It is important to notice that, for this particular

algorithm, a similar behavior between the two reverberation-based measures SRMR

and QMOS is observed. Thus, the conclusions obtained here for the QMOS can be

extended to the SRMR as well.
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Figure 5.6: Operating points selected to evaluate the influence of PESQ and QMOS

increase on speech intelligibility.
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The analysis of the effect of increasing PESQ for fixed values of QMOS on the

WER is depicted in Figure 5.7. It can be seen that, for medium and high values

of QMOS, the increase of PESQ has a great impact on the reduction of the WER,

thus improving speech intelligibility. On the other hand, Figure 5.8, which shows

the effect of increasing QMOS for fixed values of PESQ, indicates that it is coun-

terproductive to increase reverberant-based measures when PESQ values are low.

This may be because the reduction of reverberation (and consequently the increase

of measures like QMOS and SRMR) using algorithm A1 can introduce artifacts that

affect speech intelligibility. By including a more general purpose quality measure,

such as PESQ, reverberation can be reduced with algorithm A1 more effectively

without introducing these artifacts. Indeed, as shown in Figure 5.8, for medium

values of PESQ, the increase in QMOS reduces the WER. On this curve, it is also

possible to appreciate a saturation profile starting from point J , which means that

there comes a moment in which reducing reverberation with algorithm A1 might

not improve intelligibility.
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Figure 5.7: WER×PESQ relation for different fixed values of QMOS.

To give the reader a better perspective of the results of this experiment, Figure

5.9 shows the average of the WER for each one of the selected operating points

directly in the QMOS×PESQ plot.

On the basis of the results of this experiment, it can be determined that the

preferred solutions among the Pareto-optimal points lies in the region of higher

PESQ values.
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Figure 5.8: WER×QMOS relation for different fixed values of PESQ.
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Figure 5.9: Average of WER for each one of the selected points on the QMOS×PESQ
plot.

38



5.2.3.2 Experiment 2

Having concluded that the joint increase in both QMOS and PESQ improves speech

intelligibility, this experiment aims at choosing the optimal operating point con-

sidering these two measures simultaneously. For this purpose, some non-dominated

points from the Pareto-optimal set in which QMOS and PESQ are jointly maximized

were analyzed, as shown in Figure 5.10. Within this reduced set, five operating

points of the Pareto frontier (from H1 to H5) were chosen in order to compare their

performances with respect to speech intelligibility. It is worth mentioning that an

equivalent frontier would be found by replacing QMOS for SRMR.
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Figure 5.10: Some non-dominated solutions located on the Pareto frontier that
jointly maximizes the PESQ and QMOS measures.

Figure 5.11 shows the average of the WER for points H1 to H5 using the whole

SimData and RealData development dataset. The best result is obtained for the

point H3, which corresponds to the ‘elbow’ of the frontier. This point is considered

the new optimal operating point of the enhanced algorithm A1, corresponding to

the set {γ = 0.39, ε = 0.1, ρ = 9, a = 5}.

5.2.3.3 Experiment 3

For this experiment, the effect of the NCM was analyzed. As stated in Chapter 3,

this measure had been shown to correlate highly with the intelligibility of reverberant

speech in other works [61]. To carry on this experiment, several points located

on the Pareto-frontier that jointly maximize the NCM and PESQ were analyzed,
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Figure 5.11: Average of WER for candidates to optimal operating point considering
the PESQ and QMOS measures.

as shown in Figure 5.12, in which points H1 to H5 are also included. As can

be observed, points H1 to H4 are not Pareto-optimal solutions for this particular

feasible objective space.
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Figure 5.12: Operating points located on the convex hull that jointly maximizes the
NCM and PESQ values.

As shown in Figure 5.13, results show that the WER is not improved by increas-
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ing the NCM.
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Figure 5.13: Average of WER for candidates to optimal operating point considering
the NCM and PESQ values.

5.3 Overall Results

Four of the parameters in algorithm A1 (namely, the scaling factor γ, attenuation

limit ε, length of early reflections ρ, and spread control a) were finely tuned following

the optimization method proposed in this work. The best solution was found by

using the QMOS, the SRMR and the PESQ measures as objectives to be optimized.

Figure 5.14 shows the QMOS×PESQ and SRMR×PESQ relations for the training

database, marking the original and optimized operating points (corresponding to

the sets {γ = 0.35, ε = 0.001, ρ = 7, a = 6} and {γ = 0.39, ε = 0.1, ρ = 9, a = 5}, re-

spectively), as well as the point corresponding to unprocessed reverberant signals.

For both development and evaluation datasets, Tables 5.2 and 5.3 compare,

respectively, the PESQ, QMOS, SRMR, and WER measures of the unprocessed re-

verberant signals (Unprocessed scenario), the signals processed by the unmodified

algorithm A1 [31] (Original scenario), and the signals processed by the optimized

algorithm (Optimized scenario). Regarding quality measures, the results of these ta-

bles fit with the results shown on Figure 5.14, that is, the optimized operating point

has higher PESQ, similar QMOS and lower SRMR in relation to the original point

in almost all rooms and distances for the training and the whole SimData datasets.

This shows that the training signals generalize well for the complete database.
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Figure 5.14: QMOS×PESQ (left) and SRMR×PESQ (right) plots for the training
database, showing the unprocessed, original, and optimized operating points for
algorithm A1.

In relation to the WER values, the optimized scenario presents a better per-

formance for all rooms except for the first one, in which the unprocessed signals

get slightly better results. In comparison to the original algorithm configuration,

the optimized scenario presents an average improvement of 24% for SimData and

10% for RealData, thus veryfying the effectiveness of the proposed method from the

point of view of speech intelligibility.

For the RealData set, due to the lack of the anechoic signals, it is only possible

to use blind metric approaches, such as the SRMR and the blind version of QMOS.

Although these measure values are higher in the case of the original algorithm con-

figuration, WER values are lower for the optimized scenario, thus showing that a

good score in reverberant based metrics does not always imply an improvement in

speech intelligibility.

Table 5.2: Results of algorithm A1 for SimData and RealData development datasets.
Bold numbers indicate the best results.

SimData RealData

Measure Scenario
Room 1 Room 2 Room 3 Avg. Room 4 Avg.

Near Far Near Far Near Far – Near Far –

PESQ
Unprocessed
Original
Optimized

2.09
1.53
2.20

1.35
1.28
1.44

1.39
1.43
1.67

1.16
1.25
1.27

1.36
1.42
1.64

1.16
1.26
1.26

1.42
1.36
1.58

-
-
-

-
-
-

-
-
-

QMOS

Unprocessed
Original
Optimized

4.23
3.86
4.11

3.90
3.95
3.97

3.52
3.77
3.82

2.33
3.07
2.96

3.27
3.63
3.66

2.38
3.19
3.09

3.27
3.58
3.60

2.46
7.92
3.31

2.41
7.15
3.27

2.43
7.54
3.29

SRMR
Unprocessed
Original
Optimized

4.37
5.05
5.10

4.63
5.82
5.72

3.67
4.86
4.76

2.94
4.97
4.70

3.66
4.94
4.81

2.76
4.82
4.54

3.67
5.08
4.94

4.06
7.92
7.27

3.52
7.15
6.55

3.79
7.54
6.91

WER (%)
Unprocessed
Original
Optimized

15.29
53.98
18.71

25.29
64.58
25.84

43.90
51.00
26.82

85.80
66.90
57.48

51.95
59.94
33.09

88.9
69.76
60.56

51.81
61.02
37.06

88.71
73.61
61.63

88.31
74.16
64.59

88.51
73.88
63.10
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Table 5.3: Results of algorithm A1 for SimData and RealData evaluation datasets.
Bold numbers indicate the best results.

SimData RealData

Measure Scenario
Room 1 Room 2 Room 3 Avg. Room 4 Avg.

Near Far Near Far Near Far – Near Far –

PESQ
Unprocessed
Original
Optimized

2.14
1.59
2.25

1.60
1.46
1.72

1.40
1.49
1.75

1.19
1.30
1.32

1.37
1.51
1.68

1.17
1.27
1.28

1.48
1.44
1.67

-
-
-

-
-
-

-
-
-

QMOS

Unprocessed
Original
Optimized

4.24
3.97
4.16

3.96
4.03
4.03

3.61
3.87
3.90

2.38
3.16
3.01

3.20
3.71
3.68

2.40
3.22
3.10

3.30
3.66
3.65

2.51
4.22
3.35

2.57
4.21
3.37

2.54
4.22
3.36

SRMR
Unprocessed
Original
Optimized

4.50
5.25
5.28

4.58
5.75
5.70

3.74
5.13
4.99

2.97
5.03
4.73

3.57
5.11
4.92

2.73
4.82
4.51

3.68
5.18
5.02

3.17
6.20
5.66

3.19
6.37
5.81

3.18
6.28
5.74

WER (%)
Unprocessed
Original
Optimized

18.06
61.28
23.40

25.38
68.50
28.48

42.98
49.22
27.13

82.20
62.12
50.73

53.54
58.76
35.81

88.04
72.27
62.00

51.68
62.02
37.91

89.72
81.48
72.37

87.34
79.64
69.21

88.53
80.56
70.79

Figures 5.15, 5.16, and 5.17 show comparative bar graphs for the WER, QMOS,

SRMR, and PESQ for all databases. The graphs of SRMR, QMOS, and PESQ also

include the confidence intervals. These figures may offer a better perspective of the

results obtained. For example, Figure 5.15 shows how the WER of the optimized

scenario is improved in relation to the original configuration for every room and

source-microphone distance. Figures 5.16 and 5.17 shows how the SRMR and QMOS

measures take similar values in the original and the optimized scenarios, whereas

the optimized configuration has a higher PESQ value for every room and distance.
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Figure 5.15: WER results for the whole database comparing the different configu-
rations of algorithm A1.
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Figure 5.16: QMOS, SRMR and PESQ results for SimData and RealData develop-
ment dataset comparing the different configurations of algorithm A1.
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Figure 5.17: QMOS, SRMR and PESQ results for SimData and RealData evaluation
dataset comparing the different configurations of algorithm A1.
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5.4 Conclusion

Algorithm A1, based on a single-channel blind spectral subtraction, was the first al-

gorithm to be enhanced according to the proposed methodology. Three experiments

were carried out in the process of optimization. The main findings are summarized

below:

• The PESQ measure is highly correlated with speech intelligibility.

• When the PESQ is low, it is counterproductive to increase QMOS (or SRMR)

in terms of intelligibility.

• The best operating point (that is, the point of minimum WER) for the al-

gorithm is found at the ‘elbow’ of the Pareto frontier that jointly maximizes

PESQ and QMOS (or SRMR) measures.

• The NCM does not have a significant correlation with speech intelligibility.

Table 5.4 compares the original [31] and enhanced configuration of algorithm

A1 in terms of parameter values and total average WER achieved by the ASR

system. Results demonstrate the effectiveness of the proposed approach as it led

to an algorithm scenario that outperformed the original configuration in terms of

speech intelligibility, as assessed by the improvement of the WER (by an average of

22%) achieved by the ASR system.

Table 5.4: Comparison of the parameter values and the total average WER between
the original and the enhanced configuration of algorithm A1.

Original
Configuration

Enhanced
Configuration

Parameters

γ = 0.35
ε = 0.001
ρ = 7
a = 6

γ = 0.39
ε = 0.1
ρ = 9
a = 5

WER(%) 63.81 41.59
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Chapter 6

Enhancement of Dereverberation

Algorithm A2

This chapter presents the enhancement process of another single-channel algorithm,

henceforth A2, that is based on a statistical model of reverberation. This algo-

rithm suppresses both noise and late reverberation through the application of gain

coefficients in a time-frequency domain. Algorithm A2 is more complex than the

algorithm A1 (analyzed in the previous chapter), and involves the tuning of a larger

number of parameters. The baseline algorithm, as proposed in [21], uses three differ-

ent configurations that differ in the time-frequency implementation. The enhanced

version of algorithm A2 is compared with these three configurations in terms of

quality measures and WER.

The structure of algorithm A2 and the methodology followed for its optimization,

along with the experimental results obtained, are detailed in the following sections.

6.1 A2 Description

This single-microphone spectral enhancement algorithm, proposed in [21], is able to

suppress both late reverberation and background noise using statistical models for

the reverberation process. Its structure, as depicted in Figure 6.1, revolves around

the minimum mean-square error log-spectral amplitude (MMSE-LSA) enhancement

stage, which is detailed next. Regarding the time-frequency analysis, the authors

proposed two different transforms: the traditional STFT and the short-time fan-

chirp transform (STFChT), which allows one to use longer analysis windows [68].

Due to the complexity of algorithm A2, the steps of this complete algorithm are

summarized at the end of this section.
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Figure 6.1: Diagram of algorithm A2.

6.1.1 Minimum Mean Square Error Log Spectral Amplitude

estimator

This speech enhancement method was originally proposed in [69] and later improved

in [70]. Originally, this method was focused on noise reduction. Later, Habets [3]

proposed some modifications to suppress both noise and late reverberation. With

these modifications the RIR is considered to be partitioned into two components

(early and late), such that

h(n) =


0, n < 0

he(n), 0 ≤ n < ne

hl(n), n > ne

, (6.1)

where ne is the number of samples that constitute the direct-path and a few early

reflections of the RIR, as shown in Figure 6.2.

he(n) hl(n)h(n)

n
ne0

Figure 6.2: Schematic representation of the RIR division into early and late com-
ponents.
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The received signal, y(n), at the microphone in a noisy and reverberant environ-

ment can be then modeled as

y(n) = ze(n) + zl(n)︸ ︷︷ ︸
z(n)

+ν(n), (6.2)

where ze(n) and zl(n) correspond to the early (including the direct-path) and late

reverberant speech signals, respectively. Term ν(n) corresponds to the additive

noise. At the same time, term z(n) can be expressed as

z(n) = zd(n) + zr(n), (6.3)

where subscripts d and r stand for the direct and reverberant components of the

speech, respectively.

The objective of this algorithm is to jointly suppress the terms zl(n) and ν(n)

from Equation 6.2 in order to reduce the effective noise level as well as to increase

speech fidelity and intelligibility, while maintaining the colorations caused by early

reflections. Thus, the MMSE-LSA estimator yields an estimate of ze(n) in the

time-frequency domain, Ẑe(m, k), without using detailed knowledge of the RIR, by

applying a frequency-dependent gain GMMSE−LSA(n, k) to the noisy and reverberant

spectral coefficient Y (m, k):

Ẑe(m, k) = GMMSE−LSA(m, k)Y (m, k). (6.4)

The MMSE-LSA gain function is computed as

GMMSE−LSA(m, k) = GLSA(m, k)p(m,k)Gmin(m, k)1−p(m,k), (6.5)

where p(m, k) is the probability that the desired speech component ze(n) is present,

and GLSA(m, k) and Gmin(m, k) are given by

GLSA(m, k) =
ξ(m, k)

1 + ξ(m, k)
exp

(
1

2

∫ ∞
ς(m,k)

e−t

t
dt

)
(6.6)

Gmin(m, k) =
Gmin,zlλ̂zl(m, k) +Gmin,νλ̂v(m, k)

λ̂zl(m, k) + λ̂ν(m, k)
. (6.7)

All terms involved in Equations 6.6 and 6.7 are described below:

• ξ(m, k) denotes the a priori signal-to-interference ratio (SIR), computed as

ξ(m, k) =
λze(m, k)

λzl(m, k) + λzν (m, k)
, (6.8)
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where terms λze(m, k), λzl(m, k) and λzν (m, k) are the spectral variances1 of

the early speech component, late reverberation, and ambient noise, respec-

tively.

• ς(m, k) = ξ(m,k)
1+ξ(m,k)

γ(m, k), where γ(m, k) denote the a posteriori SIR, given

by

γ(m, k) =
|Y (m, k)|2

λzl(m, k) + λν(m, k)
. (6.9)

• λ̂zl(m, k) and λ̂ν(m, k) are the estimated late reverberant spectral variance

and the estimated ambient noise spectral variance, respectively.

• Gmin,zl and Gmin,ν are used to control the maximum suppression of late rever-

beration and ambient noise, respectively. When Gmin,zl = 0, the late reverber-

ation is suppressed down to the residual level of ambient noise.

Therefore, in order to compute the MMSE-LSA estimator, it is necessary to

estimate the a priori SIR, the late reverberant spectral variance λ̂zl(m, k), and the

ambient noise spectral variance λ̂ν(m, k). All these estimators are detailed next.

6.1.1.1 A priori SIR Estimator

First define the a priori SIR of each interference (noise and reverberation) separately,

that is, ξzl(m, k) = λze (m,k)
λzl (m,k)

and ξν(m, k) = λze (m,k)
λν(m,k)

. The a priori SIR estimation

can be calculated as follows [3]:

ξ(m, k) =

 ξv(m, k) 10 log10

(
λν(m,k)
λzl (m,k)

)
> βdB

ξzl (m,k)ξν(m,k)

ξzl (m,k)+ξν(m,k)
otherwise

, (6.10)

where the threshold βdB specifies the level difference between λν(m, k) and λzl(m, k)

in dB. To estimate ξϑ(m, k), where ϑ ∈ {zl, ν}, the following expression is used [69]:

ξ̂ϑ(m, k) = max
{
ηϑ
G2
LSA(n− 1, k)|Y (n− 1, k)|2

λϑ(n− 1, k)
+(1−ηϑ)Ψϑ(m, k), ξmin,ϑ

}
, (6.11)

where

Ψϑ(m, k) =
λzl(m, k) + λν(m, k)

λϑ(m, k)
[γ(m, k)− 1], (6.12)

and ξmin,ϑ is a lower bound.

1The spectral variance of a variable x is computed as λx(m, k) = E{|X(m, k)|2}
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6.1.1.2 Estimator for the Ambient Noise Spectral Variance

A statistical-model-based voice activity detector (VAD) is used to update the noise

spectral variance during speech-absent periods. This method, proposed in [4], com-

pares the following quantity to a threshold ηthresh:

η(n) =
∑
k

ln γ(m, k)
ξ(m, k)

1 + ξ(m, k)
− ln(1 + ξ(m, k)). (6.13)

If η(n) < ηthresh, the frame is considered to be only noise and the noise variance

is updated as follows:

λv(m, k) = µνλν(n− 1, k) + (1− µν)|Y (m, k)|2 (6.14)

6.1.1.3 Estimator for the Late Reverberant Spectral Variance

The spectral variance of the late reverberant component can be expressed as [3]:

λzl(m, k) = eζ̄(k)(ne−R)λzr(n−
ne
R

+ 1, k), (6.15)

where:

• ζ̄(k) is related to the reverberation time by

ζ̄(k) =
3 ln(10)

T60(k)fs
, (6.16)

where fs denotes the sampling frequency;

• R is the number of samples separating two successive analysis frames;

• λzr(m, k) is the spectral variance of the reverberant component of the speech

signal (that is, disregarding the direct path), computed as

λzr(m, k) = e−2ζ̄(k)R(1− κ(k))λzr(n− 1, k) + κ(k)e−2ζ̄(k)Rλz(n− 1, k), (6.17)

where parameter κ is related to the inverse of the DRR, κ ∝ Er
Ed

Therefore, the variance of the late-reverberant component can be computed from

the variance of the total reverberant component. It is important to notice that for

this calculation a blind estimation of the DRR and T60 values is also required. For

T60 estimation, algorithm A2 uses the method proposed by Löllmann et al. [15].

For the DRR estimation, it is used an online adaptive procedure [3], since the DRR

depends on the microphone-source distance.
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Algorithm A2 Summary of the single-microphone spectral enhancement algorithm
A2, that suppresses late reverberation and ambient noise.

1: Pre-enhancement: First, a noise reduction algorithm based on LSA [69] is
performed.

2: T60 estimation: Using the blind algorithm proposed in [15].
3: STFT or STFChT: Calculate the STFT or STFChT of the signal.
4: MMSE-LSA: Compute the MMSE-LSA estimator as follows:

i Estimate model parameters: ζ̄(k) using (6.16) and κ according to [3].

ii Estimate ambient noise: Assuming that the first 6 frames are noise, the
spectral variance of the noise is actualized online as in Section 6.1.1.2.

iii Estimate late reverberant energy λ̂zl(m, k) using (6.15).

iv Calculate the a posteriori SIR using (6.9), the individual a priori SIR using
(6.11), and the total a priori SIR using (6.10).

v Estimate the speech presence probability p(m, k) using the method de-
scribed in [71].

vi Calculate the gain function GMMSE−LSA(m, k) using (6.6), (6.7), and (6.5).

vii Calculate Ẑe(m, k) using (6.4).

5: Inverse STFT or STFChT: Calculate the output x(n) = ẑe(n) by applying
the inverse STFT or STFChT, as appropriate, to Ẑe(m, k).

6.2 Enhancement Process

Three configurations of algorithm A2 (named here as A2.1, A2.2 and A2.3) were

proposed in [21], as detailed below. All these versions employ a Hamming analysis

window and a frame hop of 128 samples. For the enhancement process, the STFT

was chosen for time-frequency analysis.

• A2.1: Uses the STFT with a short window (512-sample long) and an FFT

length of 512.

• A2.2: Uses the STFT with a long window (2048-sample long) and an FFT of

3262.

• A2.3: Uses the STFChT with a long window and an FFT length of 3262.

The complete procedure for the optimization of this algorithm is described next.

6.2.1 Choice of the parameters

Among the parameters in algorithm A2, twelve of them were selected for the en-

hancement process. Since the original configurations of this algorithm employ dif-

ferent FFT and analysis window lengths, these parameters are also included in the
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Table 6.1: Parameters chosen for the enhancement process of algorithm A2, includ-
ing a brief description, the equation in which they are involved, their original values,
and the range of analysis.

Param. Description Eq.
Original

value
Range

NFFT Length of the FFT in samples. – – {512, 1024, 2048}

Nwin

Length of the analysis Hamming win-
dow in samples. It has to be less than
or equal to the length of the FFT.

– – {512, 1024, 2048}

ne
Number of samples that constitute the
direct-path and a few early reflections.

(6.15)
768

(∼50 ms)
{640, 768, 896, 1024}

Gmin,zl

Controls the maximum suppression of
late reverberation.

(6.7) 0 dB {−5, 0, 5}

Gmin,ν
Controls the maximum suppression of
ambient noise.

(6.7) -12 dB {−15,−10,−5, 0}

βdB
Threshold that specifies the level differ-
ence between λν(m, k) and λzl(m, k).

(6.10) 3 dB {2, 3, 4}

ηzl

Weighting factor that controls the
tradeoff between the amount of noise
reduction and distortion on the a priori
SIR of the late reverberant interference.

(6.11) 0.95 {0.85, 0.86, 0.87, . . . , 0.95}

ην

Weighting factor that controls the
tradeoff between the amount of noise
reduction and distortion on the a priori
SIR of the noise interference.

(6.11) 0.95 {0.85, 0.86, 0.87, . . . , 0.95}

ξmin,zl
Lower bound on the a priori SIR of the
late reverberant interference.

(6.11) -25 dB {−30,−25,−20,−15}

ξmin,ν
Lower bound on the a priori SIR of the
noise interference.

(6.11) -25 dB {−30,−25,−20,−15}

ηthresh

Threshold used in the voice activity de-
tector for the update of the noise vari-
ance.

(6.13) 0.3 {0.1, 0.2, 0.3, 0.4}

µν
Weighting factor for the update of the
noise variance.

(6.14) 0.98 {0.85, 0.86, 0.87, . . . , 0.99}

optimization process. Table 6.1 summarizes the selected parameters, including their

related equation, original values, and range of analysis for the optimization process.

For computational reasons, it was not possible to combine every parameter value

with each other for this particular algorithm. Thus, the parameters were divided into

three groups, as shown in Table 6.2, which also shows the number of combinations

of parameter values for each group. First, the best combination of the FFT and

window analysis lengths was evaluated. The rest of the considered parameters was

divided between the second and third groups. In total, 8665 different configurations

of algorithm A2 were evaluated.

In order to proceed with the optimization methodology, the optimal parameters

selected for the first group are fixed in the optimization process of the second group,

and so on. Figure 6.3 shows the QMOS×PESQ and the SRMR×PESQ plots for each

group. The red circle in the Group 1 and Group 2 represents the point chosen as
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Table 6.2: Grouping of the parameters and number of combinations for the enhance-
ment process of algorithm A2.

Group Parameters Number of combinations

1 NFFT , Nwin 6
2 ne, Gmin,zl , Gmin,ν , ηzl , ην 5808
3 βdB, ξmin,zl , ξmin,ν , ηthresh, µν 2880

preferred for these two groups. The combination of the three groups (entire feasible

space for this algorithm) is depicted in Figure 6.4, in which the Pareto-optimal

solutions are also shown.
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Figure 6.3: QMOS×PESQ and SRMR×PESQ for each group of parameters for the
optimization process of algorithm A2. The red circle represents the preferred solu-
tion for groups 1 and 2.

6.2.2 Choice of the Optimal Operating Point

Figure 6.5 shows the operating points of the three original configurations of algo-

rithm A2 in the same plot as the feasible objective space. As can be seen, the

configuration that uses the STFT with a short window (A2.1) is already a Pareto-

optimal solution. Unlike algorithm A1, it can be observed that the QMOS and

SRMR measures are not equivalent in this case. Besides, it can be seen that the

use of the STFChT (A2.3 scenario) improves the PESQ but reduces the QMOS and

SRMR measures in comparison to the short-window STFT. The long-window STFT

presents a little increase on the PESQ than the short-window, but this configura-

tion also decrements the reverberant-based measures. This fact was already study
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Figure 6.4: Feasible objective spaces of the optimization process of algorithm A2,
using QMOS×PESQ and SRMR×PESQ measures.

in [21], where it was determined that processing in the STFChT domain results in

less dereverberation at the output, but the enhanced speech does not suffer from

addition of artifacts, as occurs when using the STFT domain. In either case, a new

operating point for the algorithm among the Pareto-optimal solutions that lies in

the region of high PESQ values can be chosen. Figure 6.6 zooms this region in

the QMOS×PESQ and SRMR×PESQ plots. Points C1, C2, C3, C4, and C5 were

chosen as candidates for optimal operating points of the algorithm.
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Figure 6.5: Original configurations of algorithm A2 represented in the QMOS×PESQ
and SRMR×PESQ plots.

In order to determine the optimal operating point of algorithm A2, the WER of

the configurations corresponding to points C1, C2, C3, C4, and C5 was calculated,
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Figure 6.6: Candidates for optimal operating points of algorithm A2.

using the whole development dataset. Table 6.3 shows the average WER for these

five candidates. Based on the results, point C2 is chosen as the optimal operating

point for the algorithm, since it presents the lowest WER. A comparison between

parameter values for the original and the optimal configurations of algorithm A2

is shown in Table 6.4. As can be observed, among all parameters, only seven of

them change its value from the original to the optimized value, which means that

the original algorithm was fairly well set.

Table 6.3: WER average in % corresponding to the operating points C1, C2, C3,
C4, and C5 using the development dataset.

Operating Point WER (%)

C1 47.65
C2 47.54
C3 47.94
C4 48.00
C5 47.71

6.3 Overall Results

The spectral subtraction based algorithm A2 was enhanced following the proposal

of this work. Twelve parameters of this algorithm were finely tuned in order to op-

timize the QMOS, PESQ and SRMR measures simultaneously. Figure 6.7 shows the
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Table 6.4: Comparison between the parameter values for the original and the optimal
configurations for algorithm A2.

Parameter
Original

value
Optimal

value

NFFT – 1024
Nwin – 1024
ne 768 768

Gmin,zl 0 0
Gmin,ν -12 -5
βdB 3 4
ηzl 0.95 0.95
ην 0.95 0.95

ξmin,zl -25 -20
ξmin,ν -25 -15
ηthresh 0.3 0.4
µν 0.98 0.89

QMOS×PESQ and SRMR×PESQ relations for the training set, marking the points

of the original configurations (A2.1, A2.2 and A2.3), as well as the unprocessed and

optimized points.
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Figure 6.7: QMOS×PESQ (left) and SRMR×PESQ (right) plots for the training
database, showing the unprocessed, original, and optimized operating points of al-
gorithm A2.

For both development and evaluation datasets, Tables 6.5 and 6.6 compare,

respectively, the PESQ, QMOS, SRMR, and WER measures of the unprocessed
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reverberant signals (Unprocessed scenario), the signals processed by the original

configurations of algorithm A2 [21] (A2.1, A2.2 and A2.3 scenarios), and the signals

processed by the enhanced algorithm (Optimized scenario). It can be appreciated

that the training set generalizes well for the entire database. As can be seen from

both tables, the optimized scenario presents the best WER in almost all reverbera-

tion conditions. In average, comparing with the original configurations A2.1, A2.2

and A2.3, the improvement in WER is about 10%, 3% and 8%, respectively. The

fact that only half of the parameters changed their values from the original to the

optimized configuration may explain why the improvement of WER is not very high.

It is important to notice that the optimized configuration rarely presents the

best scores of SRMR, PESQ and QMOS values individually. The secret of the im-

provement in WER lies precisely in the joint optimization of these measures. For

example, the STChT scenario presents the best PESQ scores in average; however,

due to to the low value of QMOS that this configuration presents, the WER is not

improved. Compared to algorithm A1, all measure values are lower for algorithm

A2, which explains why the WER is higher when using this algorithm.

Table 6.5: Results of algorithm A2 for SimData and RealData development datasets.
Bold numbers indicate the best results.

SimData RealData

Measure Scenario
Room 1 Room 2 Room 3 Avg. Room 4 Avg.

Near Far Near Far Near Far – Near Far –

PESQ

Unprocessed
A2.1
A2.2
A2.3

Optimized

2.09
2.14
2.22
2.43
2.34

1.35
1.35
1.43
1.47
1.44

1.39
1.49
1.53
1.65
1.62

1.16
1.22
1.22
1.23
1.23

1.36
1.49
1.50
1.60
1.57

1.16
1.21
1.22
1.22
1.22

1.42
1.48
1.52
1.60
1.57

-
-
-
-
-

-
-
-
-
-

-
-
-
-
-

QMOS

Unprocessed
A2.1
A2.2
A2.3

Optimized

4.23
4.28
4.25
3.95
4.27

3.90
4.00
3.97
3.64
4.02

3.52
3.85
3.70
3.12
3.77

2.33
2.61
2.66
2.12
2.62

3.27
3.53
3.44
2.82
3.48

2.38
2.65
2.75
2.10
2.69

3.27
3.49
3.46
2.96
3.47

2.46
3.77
2.95
3.56
3.36

2.41
3.71
2.89
3.50
3.31

2.43
3.74
2.92
3.53
3.34

SRMR

Unprocessed
A2.1
A2.2
A2.3

Optimized

4.37
4.98
4.67
4.99
4.85

4.63
5.66
5.09
5.36
5.40

3.67
4.72
4.18
4.51
4.45

2.94
4.48
3.79
3.86
4.19

3.66
4.78
4.22
4.54
4.52

2.76
4.39
3.68
3.68
4.09

3.67
4.83
4.27
4.49
4.58

4.06
7.76
5.42
6.36
6.70

3.52
6.85
4.72
5.65
5.95

3.79
7.30
5.07
6.00
6.32

WER (%)

Unprocessed
A2.1
A2.2
A2.3

Optimized

15.29
26.35
15.56
18.02
18.12

25.29
40.41
22.94
27.24
25.54

43.90
40.52
33.15
35.99
27.75

85.80
71.26
73.8
79.69
66.33

51.95
48.05
40.18
41.57
34.94

88.9
75.74
75.27
83.18
68.60

51.81
50.36
43.45
47.58
40.18

88.71
78.98
76.48
80.85
69.49

88.31
77.38
75.73
80.79
69.79

88.51
78.18
76.10
80.82
69.63

Figures 6.8, 6.9, and 6.10 show comparative bar graphs for WER, QMOS, SRMR,

and PESQ for all databases. The graphs of SRMR, QMOS, and PESQ also include

the confidence intervals. These figures may offer a better perspective of the results

obtained. For example, Figure 6.8 shows how the WER of the optimized scenario

is improved in relation to the original configurations in all rooms except for Room

1. Figures 5.16 and 5.17 shows that all configurations of algorithm A2 have similar
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Table 6.6: Results of algorithm A2 for SimData and RealData development datasets.
Bold numbers indicate the best results.

SimData RealData

Measure Scenario
Room 1 Room 2 Room 3 Avg. Room 4 Avg.

Near Far Near Far Near Far – Near Far –

PESQ

Unprocessed
A2.1
A2.2
A2.3

Optimized

2.14
2.23
2.25
2.50
2.40

1.60
1.65
1.70
1.81
1.75

1.40
1.55
1.57
1.70
1.67

1.19
1.27
1.26
1.28
1.28

1.37
1.53
1.52
1.60
1.58

1.17
1.23
1.23
1.24
1.24

1.48
1.57
1.59
1.69
1.65

-
-
-
-
-

-
-
-
-
-

-
-
-
-
-

QMOS

Unprocessed
A2.1
A2.2
A2.3

Optimized

4.24
4.27
4.27
3.98
4.29

3.96
4.05
4.04
3.69
4.06

3.61
3.90
3.81
3.23
3.86

2.38
2.66
2.71
2.20
2.69

3.20
3.46
3.42
2.71
3.41

2.40
2.65
2.77
2.10
2.71

3.30
3.50
3.50
2.98
3.50

2.51
3.74
2.99
3.48
3.40

2.57
3.76
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scores in the considered measures. The optimized configuration does not outstand

in any particular measure, but presents the best compromise between them.
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Figure 6.8: Word error rate (WER) results for the whole database comparing the
different configurations of algorithm A2.

60



Room 1 Near Room 1 Far Room 2 Near Room 2 Far Room 3 Near Room 3 Far

P
E

S
Q

0

0.5

1

1.5

2

2.5

3

Room 1 Near Room 1 Far Room 2 Near Room 2 Far Room 3 Near Room 3 Far

Q
M

O
S

0

1

2

3

4

5

Development SimData

Room 1 Near Room 1 Far Room 2 Near Room 2 Far Room 3 Near Room 3 Far

S
R

M
R

0

2

4

6

8

Room 1 Near Room 1 Far

Q
M

O
S

0

1

2

3

4

5

Development RealData

Room 1 Near Room 1 Far

S
R

M
R

0

3

6

9

12

Unprocessed 
A2.1        
A2.2          
A2.3 
Optimized

Figure 6.9: QMOS, SRMR and PESQ results for SimData and RealData development
dataset comparing the different configurations of algorithm A2.
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Figure 6.10: QMOS, SRMR and PESQ results for SimData and RealData develop-
ment dataset comparing the different configurations of algorithm A2.
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6.4 Conclusion

The dereverberation and noise reduction algorithm A2 was enhanced in this chapter

following the proposed methodology. This enhancement was implemented by com-

bining theQMOS, SRMR and PESQ measures as objectives to be maximized. Twelve

of the algorithm parameters were optimized and the enhanced setup was compared

with the three original configurations of the algorithm. Table 6.7 compares the

original and enhanced configurations of this algorithm in terms of parameter values

and total average WER achieved by the ASR system. Results demonstrate effec-

tiveness as the optimized scenario outperformed the other configurations in terms

of speech intelligibility, as assessed by the lower WER achieved by the ASR sys-

tem. The difference of WER between the original setups of the algorithm and the

enhanced scenario is not very high, since the original setup of the parameters was

well established.

Table 6.7: Comparison of the parameter values and the total average WER between
the original and the enhanced configurations of algorithm A2.

Original
Configuration

Enhanced
Configuration

Parameters

NFFT = {512, 3262}
Nwin = {512, 2048}

ne = 768
Gmin,zl = 0
Gmin,ν = −12
βdB = 3
ηzl = 0.95
ην = 0.95

ξmin,zl = −25
ξmin,ν = −25
ηthresh = 0.3
µν = 0.98

NFFT = 1024
Nwin = 1024
ne = 768
Gmin,zl = 0
Gmin,ν = −5
βdB = 4
ηzl = 0.95
ην = 0.95

ξmin,zl = −20
ξmin,ν = −15
ηthresh = 0.4
µν = 0.89

WER(%)
A2.1: 55.06
A2.2: 47.40
A2.3: 51.80

44.50
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Chapter 7

Enhancement of Dereverberation

Algorithm A3

In this chapter the third and last dereverberation algorithm is enhanced following

the proposed method. This algorithm, which will be denoted as algorithm A3,

was introduced in [72] and proposes a single-channel speech enhancement method

using zero phase transformation, which is defined as the inverse DFT of a spectral

amplitude. This chapter follows the same structure as the two previous chapters,

that is, algorithm A3 is presented first, introducing the parameters involved in the

optimization process, which is detailed next. Finally, comparative results between

the original and enhanced configuration are shown.

7.1 A3 Description

Algorithm A3 aims at the reduction of noise and reverberation using the zero phase

transform. The zero phase version yzp(n) of a speech signal y(n) is computed as

yzp(n) = IDFT(|Y (ejω)|β), (7.1)

where |Y (ejω)| is the magnitude of the Fourier transform of y(n), β is an integer, and

IDFT stands for the inverse DFT. Since the spectral amplitude of a reverberant and

noisy sequence is approximately flat, its zero phase signal takes nonzero values only

around the origin. This behavior allows to detect the reverberation location and

remove it. Thus, algorithm A3 computes the zero phase version of the reverberant

and noisy signal and then replaces the reverberant samples.

A diagram of algorithm A3 is depicted in Figure 7.1. First, the reverberant

and noisy speech signal is filtered with a pre-emphasis filter, and then transformed

into the STFT domain using a Hamming window of 32 ms with an overlap of 10

ms. The zero phase version yzp(n) is computed with β = 1. The revereberant
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samples substitution is then computed for each frame of the yzp(n) sequence, using

the knowledge that the reverberation is located in the first period of the zero phase

sequence. Thus the second period is used for replacing the corrupted part of the

sequence. A peak selection algorithm is used here for obtaining the period of the

voiced speech. The amount of reverberant samples to be replaced is determined

empirically as L = 10 samples. The speech sequence is reconstructed using the new

magnitude with the original phase, and a overlap-add algorithm is finally performed

in order to convert the separated frames into a temporal sequence again.

y(n)

STFT

MAGNITUDE

PHASE

IFFT

Reverberant

substitution

sample

yzp(n)

FFT

MAGNITUDE

PHASE

IFFT

Overlap and

reconstruction

Processed
speech

x(n)

Pre-emphasis

H(z) = 1 − αz−1

Reverberant
noisy speech

Figure 7.1: Diagram of algorithm A3.

7.2 Enhancement Process

As in the two previous chapters, this section describes the methodology used for

the enhancement process of algorithm A3. First, the selected parameters and their

range of analysis are described. Then, a new operating point for the algorithm is

chosen so that the set of selected measures are optimized.

7.2.1 Choice of the Parameters

For algorithm A3, five parameters were chosen for the optimization process. These

parameters, along with their description, original values and range of analysis are

detailed in Table 7.1. The combination of these parameters within their range gives

a total of 9240 different setups for algorithm A3.
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Table 7.1: Parameters chosen for the optimization process of algorithm A3, including
a brief description, their original values, and the range of analysis.

Parameter Description
Original

value
Range

α
Position of the zero of the pre-
emphasis filter.

0.7 {0, 0.1, 0.2, 0.3, . . . , 0.9, 0.9375}

β
Integer used to compute the zero
phase sequence.

1 {1, 2}

L
Amount of reverberant samples
to be replaced.

10 {5, 6, 7, 8, 9, 10, . . . , 25}

tL
Start of the interval for the pitch
detection in ms.

2 {1, 2, 3, 4}

tH
End of the interval for the pitch
detection in ms.

8 {6, 7, 8, 9, 10}

7.2.2 Choice of the Optimal Operating Point

Figure 7.2 shows the feasible objective spaces on the QMOS×PESQ and the

SRMR×PESQ plots. Based on this figure, one notices that algorithm A3 may not

be able to improve the quality and intelligibility of the considered speech signals,

since the PESQ values for all setups is considerably worse than the PESQ value

of the unprocessed signals. As seen in Chapter 5, an improvement on reverberant-

based measures is only significant when the values of PESQ are also improved. It

seems clear that algorithm A3 introduces artifacts that degrades the speech signals.

This fact can be also appreciated on the QMOS×PESQ plot, in which the values of

QMOS for the processed are far away from the 1− 5 MOS scale. This is because the

version of the QAreverb measure used here was adapted to deal with non-distorted

dereverberated signals. Figure 7.3 shows the function employed for mapping the

measure Q into the QMOS, as described in Equation 3.3. As can be seen, the range

of Q that correctly maps this measure into the MOS scale is -26.5 to 0.6. Outside

this range, the values of QMOS can be too distant from the MOS scale. Therefore,

the use of the QMOS measure will be unconsidered for algorithm A3.

Five candidates for the new operating point of algorithm A3 were chosen among

the Pareto-optimal solutions in the SRMR×PESQ feasible objective region. Figure

7.4 show these points, labeled as {D1, D2, D3, D4, D5}.
In order to determine the optimal operating point of algorithm A3, the WER of

the configurations corresponding to points D1, D2, D3, D4, and D5 was calculated,

using the whole development dataset. Table 7.2 shows the average WER for these

five candidates. Based on the results, point D2 is chosen as the optimal operating

point for the algorithm, since it presents the lowest WER. A comparison between

the parameter values for the original and the optimal configurations for algorithm

A3 is shown in Table 7.3.
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Figure 7.2: QMOS×PESQ and SRMR×PESQ for the optimization process of algo-
rithm A3.
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Figure 7.3: Function that maps the Q measure into the QMOS.

7.3 Overall Results

The dereverberation algorithm A3 was enhanced following the proposal of this work.

Five parameters of this algorithm were finely tuned in order to optimize the PESQ

and SRMR measures simultaneously. Figure 7.5 shows the SRMR×PESQ relations

for the training set, marking the points of the original configuration, as well as the

unprocessed and optimized points. As can be seen, although the SRMR value for
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Table 7.2: WER average in % corresponding to operating points D1, D2, D3, D4,
and D5 using the development dataset.

Operating Point WER (%)

D1 92.57
D2 81.05
D3 81.21
D4 81.15
D5 91.75

Table 7.3: Comparison between the parameter values for the original and the optimal
configurations of algorithm A3.

Parameter
Original

value
Optimal

value

α 0.7 0
β 1 1
L 10 25
tL 2 1
tH 8 10

the optimized configuration is higher than the SRMR value of the original and un-

processed scenarios, the PESQ value decreases when compared with the unprocessed

scenario. Thereby it is not expected an improvement in the intelligibility of speech

signals processed by algorithm A3. This fact is confirmed after calculating the WER

through the ASR system. These WER results, together with the PESQ and SRMR

values for the development and evaluation datasets, are shown in Tables 7.4 and 7.5.
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As can be observed from these tables, the WER achieved by the optimized config-

uration, although it improves in average the original configuration of algorithm A3,

is worse than the unprocessed signals for every reverberant condition.
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Figure 7.5: SRMR×PESQ plot for the training database, showing the unprocessed,
original, and optimized operating points of algorithm A3.

Table 7.4: Results for SimData and RealData development datasets of algorithm
A3. Bold numbers indicate the best results.

SimData RealData

Measure Scenario
Room 1 Room 2 Room 3 Avg. Room 1 Avg.

Near Far Near Far Near Far – Near Far –

PESQ
Unproc.
Original
Opt.

2.09
1.17
1.28

1.35
1.12
1.16

1.39
1.13
1.20

1.16
1.09
1.13

1.36
1.13
1.20

1.16
1.08
1.12

1.42
1.12
1.18

-
-
-

-
-
-

-
-
-

SRMR
Unproc.
Original
Opt.

4.37
3.44
6.85

4.63
3.67
7.34

3.67
2.99
6.23

2.94
2.59
4.79

3.66
3.14
5.90

2.76
2.51
4.57

3.67
3.06
5.94

4.06
4.63
6.42

3.52
4.22
5.51

3.79
4.42
5.96

WER (%)
Unproc.
Original
Opt.

15.29
63.91
52.78

25.29
74.63
69.40

43.90
79.12
72.00

85.80
92.43
92.80

51.95
80.07
78.24

88.9
92.98
94.04

51.81
80.50
76.52

88.71
94.01
94.95

88.31
93.37
94.33

88.51
93.69
94.64

Figure 7.6 shows the same results as the above tables with bar graphs. As can be

seen, the unprocessed scenario has the lowest WER in every reverberant condition.

For the SimData set, the optimized configuration outperforms the original setup,

presenting an average improvement of 4% for the development dataset and 6% for

the evaluation dataset. For the RealData set, however, the original configuration

presents a slightly better WER than the optimized configuration. It is important to

notice that all the optimization process is carried out with the SimData set, which
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Table 7.5: Results of algorithm A3 for SimData and RealData evaluation datasets.
Bold numbers indicate the best results.

SimData RealData

Measure Scenario
Room 1 Room 2 Room 3 Avg. Room 1 Avg.

Near Far Near Far Near Far – Near Far –

PESQ
Unproc.
Original
Opt.

2.14
1.17
1.30

1.60
1.16
1.26

1.40
1.13
1.21

1.19
1.09
1.14

1.37
1.13
1.21

1.17
1.09
1.13

1.48
1.13
1.21

-
-
-

-
-
-

-
-
-

SRMR
Unproc.
Original
Opt.

4.50
3.49
7.11

4.58
3.80
6.86

3.74
3.08
6.47

2.97
2.68
4.84

3.57
3.12
5.85

2.73
2.65
4.44

3.68
3.13
5.93

3.17
3.71
5.36

3.19
3.86
5.17

3.18
3.78
5.26

WER (%)
Unproc.
Original
Opt.

18.06
64.77
52.46

25.38
70.96
61.20

42.98
77.78
68.19

82.80
91.94
90.66

53.54
82.46
80.29

88.04
94.11
93.76

51.68
80.32
74.41

89.72
93.42
95.15

87.34
92.81
95.04

88.53
93.11
95.09

can explain this fact. Figures 7.7 and 7.8 show the comparative bar graphs for the

SRMR and PESQ for the development and evaluation datasets, respectively. As

can be seen, the SRMR values of the optimized configuration are higher than the

SRMR values of the original configuration and the unprocessed scenario in every

reverberant condition. The PESQ values of the optimized configuration are also

higher than the ones for the original configuration, however they are lower than for

the unprocessed scenario, which explain why the WER could not be improved for

this particular algorithm.
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Figure 7.6: Word error rate (WER) results for the whole database comparing the
different configurations of algorithm A3.
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Figure 7.7: SRMR and PESQ results for SimData and RealData development
dataset comparing the different configurations of algorithm A3.
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Figure 7.8: SRMR and PESQ results for SimData and RealData development
dataset comparing the different configurations of algorithm A3.
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7.4 Conclusion

In this chapter algorithm A3, which intends to reduce noise and reverberation

through the zero transform, was enhanced following this work proposal. Table 7.6

compares the original and enhanced configuration of this algorithm in terms of pa-

rameter values and total average WER achieved by the ASR system. Although the

WER achieved by the enhanced version of the algorithm outperformed the original

configuration, this algorithm does not seem to be valid for dereverberation issues,

since it introduces artifacts that degrade the processed speech signals. This fact

could be observed even before computing the WER of the ASR system. By ob-

serving the feasible region in the multi-objective plot, it is possible to know the

effectiveness of the algorithm. In this case, the lower PESQ achieved by the sig-

nals processed by algorithm A3 reveled the limited capacity of this algorithm to

desreverberate speech signals.

Table 7.6: Comparison of the parameter values and the total average WER between
the original and the enhanced configuration of algorithm A3.

Original
Configuration

Enhanced
Configuration

Parameters

α = 0.7
β = 1
L = 10
tL = 2
tH = 8

α = 0
β = 1
L = 25
tL = 1
tH = 10

WER(%) 82.08 77.84
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Chapter 8

Conclusions and Future Work

This work presented an enhancement procedure for dereverberation algorithms

based on the simultaneous optimization of several assessment measures. The pro-

posed method was applied to three different dereverberation algorithms, which had

been proposed in the REVERB challenge [6]. The results achieved were promising

and satisfactory, since the WER of every enhanced version of the three algorithms

outperformed the original configurations. The proposed technique worked fine when

using the SRMR or QMOS reverberant-measures combined with the PESQ (overall

quality measure). Figure 8.1 shows different regions in the QMOS×PESQ objec-

tive space in which the WER of some points were calculated. As can be seen, the

region with lower WER corresponds to higher values of PESQ and QMOS simulta-

neously. A similar plot would be obtained by changing the QMOS measure for the

SRMR. This figure also shows that, for lower values of PESQ, the increment of the

reverberant-based measures worsens the WER drastically.

Although any other measures can be used with the proposed methodology, the

three measures mentioned above have proved to be effective in practice. Table 8.1

compares the WER of the original configuration of the three algorithms with the

WER of the enhanced algorithms. This WER was obtained as the average of the

entire database. Algorithm A1 was significantly enhanced, with a 22% reduction

in the WER. Algorithm A2 presented an improvement of 10.56%, 2.9% and 7.3%

in relation over its three original configurations. Lastly, algorithm A3 presented a

WER reduction of 4.24%. Based on these results it can be also concluded that the

more effective dereverberation algorithm is algorithmA1.

It is important to mention that the main purpose of this work was to study

and show a methodology to enhance dereverberation algorithms, not the enhance-

ment itself. More effort could be made in order to further improve these algorithms,

such as expanding the range of analysis of the parameters, or increasing the num-

ber of parameters. This could be suggested as future work and may require more

computational power.

75



3.2
3.3

3.4

Q
MOS

3.5
3.61.5

PESQ

1.4

1.3

55

60

65

70

75

50

45

W
E

R

Q
M

O
S

3.2

3.25

3.3

3.35

3.4

3.45

3.5

3.55

3.6

3.65

PESQ
1.3 1.35 1.4 1.45 1.5 1.55

45

50

55

60

65

70

75

Figure 8.1: WER for the different regions of QMOS and PESQ.

Table 8.1: Comparison of the WER achieved by the original and enhanced versions
of the algorithms A1, A2, and A3.

Algorithm
WER

(Original)
WER

(Enhanced)

A1 63.81% 41.59%
A2.1
A2.2
A2.3

55.06%
47.40%
51.80%

44.50%

A3 82.08% 77.84%

The proposed method can be also useful to compare the performance of different

dereverberation algorithms. The location of the operating point of the algorithm

in the objective feasible space gives an accurate knowledge about the algorithm’s

competency, and the extent to which it can be improved. By way of example,

Figure 8.2 shows the optimal operating points of the algorithms A1, A2 and A3

in the SRMR×PESQ plot. The total average WER for each of these algorithms is

also depicted in this figure. Besides, another point, labeled as A4, corresponding to

a non-existent algorithm is shown. This representation allows one to compare and

evaluate the performance of any dereverberation algorithm even without knowing

the WER of processed signals. In this way, algorithm A4 is expected to outperform

all other algorithms in terms of speech intelligibility.

Furthermore, many other measures can be employed in the optimization process.

Figure 8.3 shows an example of a three-dimensional plot considering the SRMR,
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Figure 8.2: Comparison of the operating points of algorithms A1, A2 and A3 in the
SRMR×PESQ plot.

QMOS and PESQ as objectives, using the feasible space of algorithmA1. It is impor-

tant to notice that the more the number of measures used, the more the cardinality

of the non-dominated solutions is. If the number of measures is greater than three, it

will be more difficult to reduce the Pareto-optimal set in the absence of a graphical

representation. However, it is worth a deeper study on the combination of different

metrics.

Another possibility is to form a composite objective O as the weighted sum of

different measures, that is,

O = w1O1 + w2O2 + · · ·wMOM , (8.1)

where the weights wi, for i = 1, · · · ,M , are proportional to a preference factor

assigned to each measure Oi. This method converts the multi-objective optimization

problem into a single-objective optimization problem. It would be interesting as

future work to find the measures and the preference vector w = [w1w2 · · ·wM ] that

better solve the problem treated here. Other techniques for searching particular

solutions from the set of non-dominated solutions can be found in [63].

Another suggestion for future work is to apply the methodology presented here

to other dereverberation algorithms. In this work, the three considered algorithms

belong to the speech enhancement family of dereverberation algorithms (see Section
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Figure 8.3: Example of feasible objective space using the PESQ, SRMR and QMOS

measures.

2.3) and employ a single microphone. It would be interesting to apply the enhance-

ment technique to different algorithms, such as those based on blind deconvolutions

or beamforming, and with higher number of sensors.

Finally, it is also worth studying the problem of desreverberation and the solu-

tions obtained here in the context of high-quality speech signals.
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