li.l“l o COPPE
<
Instituto Alberto Luiz Coimbra de U F RJ
Pés-Graduagao e Pesquisa de Engenharia

APPLICATIONS OF DEEP LEARNING TECHNIQUES ON NILM

Pedro Paulo Marques do Nascimento

Dissertacao de Mestrado apresentada ao
Programa de Pos-graduacao em FEngenharia
Elétrica, COPPE, da Universidade Federal do
Rio de Janeiro, como parte dos requisitos
necessarios a obtencao do titulo de Mestre em

Engenharia Elétrica.

Orientador: Mauricio Aredes

Rio de Janeiro

Abril de 2016

APPLICATIONS OF DEEP LEARNING TECHNIQUES ON NILM

Pedro Paulo Marques do Nascimento

DISSERTACAO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO
ALBERTO LUIZ COIMBRA DE POS-GRADUACAO E PESQUISA DE
ENGENHARIA (COPPE) DA UNIVERSIDADE FEDERAL DO RIO DE
JANEIRO COMO PARTE DOS REQUISITOS NECESSARIOS PARA A
OBTENCAO DO GRAU DE MESTRE EM CIENCIAS EM ENGENHARIA
ELETRICA.

Examinada por:

Prof. Mauricio Aredes, Dr.-Ing.

Prof. Felipe Maia Galvao Franga, Ph.D.

Prof. Luiz Wagner Pereira Biscainho, D.Sc.

RIO DE JANEIRO, RJ — BRASIL
ABRIL DE 2016

Nascimento, Pedro Paulo Marques do

Applications of Deep Learning techniques on
NILM/Pedro Paulo Marques do Nascimento. — Rio
de Janeiro: UFRJ/COPPE, 2016.

XIII, 72 p.: il.; 29, 7cm.

Orientador: Mauricio Aredes

Dissertac¢ao (mestrado) — UFRJ/COPPE/Programa de
Engenharia Elétrica, 2016.

Referéncias Bibliograficas: p. 64 — 72.

1. Deep Learning. 2. Smart Grid. 3.
NILM. 4. Energy Efficiency. [. Aredes, Mauricio.
II. Universidade Federal do Rio de Janeiro, COPPE,
Programa de Engenharia Elétrica. III. Titulo.

1l

v

A quem se considera digno desta

dedicatoria.

Agradecimentos

Em primeiro lugar, aos fatores aleatérios da vida que me fizeram chegar nesse
momento.

Aos meus pais, Paulo e Edna, por me incentivarem nos estudos e todo apoio
dado ao longo dos anos.

A minha irma Isabela, pelas risadas.

Ao professor Mauricio Aredes pela liberdade durante a execugao do projeto.

Aos amigos da faculdade e fora dela, pelos momentos de diversao e estudo, em
especial a Amanda Amaro e ao Rodrigo Paim, pelas revisoes em versoes desse texto.

Ao Nucleo Avangado em Computacao de Alto Desempenho da COPPE/UFRJ
pelo fornecimento de méquinas para rodar simulagoes no final deste projeto.

A todos os outros que nao foram citados, mas contribuiram de alguma forma

para que isso acontecesse.

Resumo da Dissertacdo apresentada & COPPE/UFRJ como parte dos requisitos

necessérios para a obtengao do grau de Mestre em Ciéncias (M.Sc.)

APLICACOES DE TECNICAS DE DEEP LEARNING NA MONITORACAO
NAO INTRUSIVA DE CARGAS

Pedro Paulo Marques do Nascimento

Abril /2016

Orientador: Mauricio Aredes

Programa: Engenharia Elétrica

No mundo de hoje, economizar e utilizar de forma eficiente energia é essencial
para o bem estar da humanidade. Portanto, monitorar e controlar o seu uso tem
papel essencial para atingir esse objetivo [1]. Nesse contexto, a monitora¢do nao
intrusiva de cargas é o problema onde dado o consumo de energia de uma residéncia
(neste trabalho apenas a poténcia ativa) queremos inferir os equipamentos sendo
utilizados e seu consumo individual. Muitas técnicas ja foram tentadas para re-
solver o problema. No entanto, nenhuma foi capaz de resolver o problema como um
todo. Nesse trabalho sao aplicadas técnicas de deep learning para resolver o mesmo,
medindo o desempenho em ambos os problemas. Para validar os modelos, dados

reais sao utilizados.

vi

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Master of Science (M.Sc.)

APPLICATIONS OF DEEP LEARNING TECHNIQUES ON NILM

Pedro Paulo Marques do Nascimento

April /2016

Advisor: Mauricio Aredes

Department: Electrical Engineering

In today’s world saving energy and using it in an efficient way is essential for the
welfare of human being. Therefore, monitoring and controlling energy usage plays a
key role in achieving this objective [1]. In this context, nonintrusive load monitoring
(NILM) is the process in which given some energy consumption data from a house
(in this work only the active power), we want to 1) infer which appliances are being
used and 2) their individual consumption. Many techniques have been used in order
to solve these problems, however none of them has entirely succeeded. This work
applies deep learning techniques to solve them and measures the performance of

different architectures for both. Real data is used to validate the models.

vil

Contents

List of Figures

List of Tables

List of Abbreviations

1

2

3

Introduction

1.1 Nonintrusive Load Monitoring
1.2 About thiswork
1.3 Text Structure.

Nonintrusive Load Monitoring

2.1 Basic Concepts
2.1.1 Event and Non-Event based methods
2.1.2 Intrusive and Nonintrusive Monitoring
2.1.3 Supervised, Unsupervised and Semi-supervised Learning
2.1.4 Low and High Sampling Rate

2.2 Reference Energy Disaggregation Dataset (REDD)

Deep Learning
3.1 Basic Concepts and Brief History
3.2 Recurrent Neural Network,
3.2.1 Simple Recurrent Network (SRN)
3.2.2 Long short-term memory (LSTM)
3.2.3 Gated Recurrent Unit (GRU)
3.3 Convolutional Neural Network
3.4 Recurrent Convolutional Neural Network (RCNN) and Residual
Learning
3.5 Batch Normalization
3.6 Initialization Methods
3.6.1 Gaussian and Uniform initialization

3.6.2 Glorot initialization

xii

xiii

3.6.3 Orthogonal initialization 21

3.7 Optimization Methods 22
3.7.1 Stochastic Gradient Descent (SGD) 22
3.7.2 Nesterov Accelerated Gradient (NAG) 23
3.7.3 ADAM 23
4 Applying deep learning on NILM 25
4.1 Pre-Processing 25
4.2 Individual Appliance Identification 26
4.3 Window Length Selection 30
4.4 Choice of appliances 30
4.5 Synthetic data generation and Curriculum Learning 30
4.6 Space Quantization and Softmax classification 33
4.7 Dynammic Programming L. 35
4.7.1 Dynamic Programming algorithm for 1D clustering 37

4.7.2 A divide and conquer dynamic programming based optimiza-
tion for one dimensional clustering 38
4.8 Test-time Sliding Window Approach 40
4.9 Metrics e 40
5 Simulations and Results 44
5.1 Applying on Real Data 44
5.2 Validating on houses seen during the training 45
5.2.1 Microwaveo 46
5.2.2 Dishwasher oo A7
5.2.3 Refrigerator oo 48
5.3 Testing on houses not seen during the training 49
5.3.1 Microwaveo 50
5.3.2 Dishwasher oo 50
5.3.3 Refrigerator oo 51
5.4 Analysisof theresults, 52
6 Conclusions 61
6.1 General Conclusion 61
6.2 Limitations and Future Work 62
Bibliography 64

1X

List of Figures

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1
4.2
4.3
4.4

5.1
5.2
2.3
5.4
9.9
5.6
5.7
5.8
2.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17

NVIDIA’s roadmap. 11
ImageNet Large Scale Visual Recognition Challenge (ILSVRC). . . . 11
Elman Network. 14
LSTM memory block. 15
GRU memory block. 16
Le Net 5. o 18
Recurrent Convolutional Layer (RCL). 18
Basic block of the residual learning. 19
Sliding Window Approach 26
Flowchart of system operation. 27
Impact of the window length on the disaggregation 31
Recurrence of the dynamic programming algorithm for 1D clustering. 38

Validation in the house 1 — Microwave. 46
Validation in the house 3 — Microwave. 47
Validation in the house 1 — Dishwasher. 47
Validation in the house 3 — Dishwasher. 48
Validation in the house 1 — Refrigerator. 48
Validation in the house 3 — Refrigerator. 49
Test in the house 2 — Microwave. 50
Test in the house 2 — Dishwasher. 50
Test in the house 4 — Dishwasher. 51
Test in the house 2 — Refrigerator. 51
Test in the house 6 — Refrigerator. 52
Disaggregated consumption for a microwave in the house 1 54
Disaggregated consumption for a microwave in the house 2 55
Disaggregated consumption for a dishwasher in the house 1 56
Disaggregated consumption for a dishwasher in the house 2 o7
Disaggregated consumption for a refrigerator in the house 1 58
Disaggregated consumption for a refrigerator in the house 2 59

5.18 Microwave misclassification

x1

List of Tables

2.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1
0.2

REDD - house level description 8
CNN Architecture 28
RCNN Architecture 28
LSTM Architecture 29
GRU Architecture 29
Residual Architecture 29
Window length chosen per appliance 30
Appliances for energy disaggregation 30
Number of bins per appliance 35
Houses selected for training/testing 45
On power threshold per appliance 45

x1i

List of Abbreviations

BPTT

CNN

DP

EMI

FSM

GPU

GRU

HMM

LSTM

MSE

NILM

REDD

RNN

SRN

backpropagation through time, p. 12
Convolutional Neural Network, p. 1, 16
Dynamic Programming, p. 35
Eletromagnetic Interference, p. 7
Finite State Machine, p. 4

Graphical Processing Unit, p. 10
Gated Recurrent Unit, p. 15

Hidden Markov Model, p. 4

Long short-term memory, p. 14

Mean Squared Error, p. 26
Nonintrusive Load Monitoring, p. 1
Reference Energy Disaggregation Dataset, p. 7
Recurrent Neural Network, p. 1

Simple Recurrent Network, p. 13

xiil

Chapter 1
Introduction

“If you can’t solve a problem, then
there is an easier problem you can

solve: find it.”

George Polya

1.1 Nonintrusive Load Monitoring

Nonintrusive load monitoring (NILM) is the process in which given only data
about the whole house consumption of energy (e.g. the voltage and the current)
infers what appliances are being used in the house and each individual appliance
consumption. NILM is preferred over intrusive load monitoring because it is cheaper
and easier to install, since it uses only one or two smart meters instead of one me-
ter per appliance. The main motivations for using NILM are the following: detailed
profile identification of appliances usage, appliance management, energy theft detec-
tion, fault detection, lower price and easy installation in comparison with intrusive

monitoring.

1.2 About this work

The objective of this work is to use deep learning techniques, mainly using Re-
current Neural Networks (RNNs) and Convolutional Neural Networks (CNNs), to
solve the NILM problem. In this work are benchmarked many deep learning archi-
tectures, using for this purpose real data. The main objectives of this work can be

"divided" into two parts:
e Discover the appliances in the house and make statistics of usage;

e Infer the consumption of a given appliance.

For both parts, networks are used to recognize a specific appliance and infer how
much its consumption is in a given instant of time. This approach has the advantage
of using small neural networks and the identification of the specific consumption
behaviour of a same type of appliance with each one of them.

Real data, more precisely the REDD dataset [2]|, was used in order to give ev-
idences towards the potential of the methods being used. The REDD dataset was
designed by MIT! to be a reference on NILM and facilitate the comparison of tech-
niques. It’s public available with data about the consumption of 10 houses in the
region of Massachusetts, USA, where the system is biphasic. It contains data sam-
pled in low frequency (1 Hz) for both the whole house and individual appliances.
Furthermore, it has high frequency (15 kHz) data of the current (one for each phase)
and the voltage (only one phase). So it’s possible to evaluate a good range of tech-
niques and ideas.

The main results of this work are:

e Allow the creation of appliance usage statistics — Identify the appliances
being used in a given moment is very important for the Electric utility to do

statistics of use and recommendations to the user;

e Infer individual appliance consumption — Infer how much the individual
consumption of each appliance is in a given moment is a very valuable infor-
mation for the user, because he can control his own usage and know what are

the appliances responsible for most part of the total consumption;
e Show how deep learning techniques can be extended to this problem:;

e Fast optimal dynamic programming algorithm for one dimensional clustering.

All the networks are trained and then tested on data they have never seen before.
The work is developed mainly in Python, using different libraries, such as Theano? [3]
[4], Lasagne?®, Pandas® and Numpy®, which are important to applying deep learning
techniques, more specifically deep neural networks. Most of the simulations were
done using a computer with a GTX 960 GPU (GPUs are essential when training
deep neural networks), a Intel Core i3 processor, 8 GB of RAM DDR2 and Ubuntu

operational system. In the end two more Quadro 6000 GPUs were also used.

thttp://web.mit.edu/
2https://github.com/Theano/Theano
3https://github.com /Lasagne/Lasagne
4http://pandas.pydata.org/
Shttp://www.numpy.org/

1.3 Text Structure

This work is organized as follows. On chapter 2 is shown the basic concepts
about NILM, a brief overview of the area and some aspects of the REDD.

Chapter 3 shows the basic concepts concerning deep neural networks, some of
the most used concepts in this work and in related works nowadays.

On Chapter 4 is shown the developed theory, the design choices and how the deep
learning techniques are applied on NILM. This chapter shows the implementation
details and how the proposed system works.

Chapter 5 shows the simulated results using the theory developed along the text.

On Chapter 6 is given the conclusions of this work and described some of the

challenges for the future.

Chapter 2

Nonintrusive Load Monitoring

“I didn’t fail the test. I just found
100 ways to do it wrong.”

Benjamin Franklin

2.1 Basic Concepts

Nonintrusive Load Monitoring is the disaggregation of the individual appliance
consumption from the total consumption, using one or two points of measurement.
The first studies on NILM were conducted by HART [5] in the 80’s and 90’s. The
work was focused on residential appliances, which are often modeled as finite state
machines (FSM) and resistive with only two states (ON/OFF) and well defined
consumption in those states (constant consumption). The proposed method uses
the variations on the total power consumption to identify which appliances are being
used.

The NILM gives important information for both the user and the electric utility,
using for this purpose a low quantity of resources. Studies have shown that when
the user has feedback of how much the energy consumption of each appliance is, it
can lead to energy-saving behaviour [6, 7].

In terms of the hardware (data acquisition), a meter with a low sampling rate
(1 Hz) can be used providing a lower cost than a high sampling rate meter (1
kHz). In terms of the software, many techniques have been applied such as: integer
programming |8], Hidden Markov Models (HMM) [9, 10|, neural networks, genetic
algorithms, clustering [5] and many others. The key point is that none of them
is significantly better than all the others and the results are relatively poor when
considering all the aspects that enable the use in large scale of this method, so it’s

still an open theme.

In the context of the NILM some concepts and basic terminologies are often

used. Some of them are shown in the following sections.

2.1.1 Event and Non-Event based methods

Event based methods aim to classify the changes in the consumption when an
appliance changes its state, e.g. a television turning on. To accomplish this objective
the algorithm extracts a set of features from the power signal such as the difference
among consecutive steady state consumptions, the duration of the transient, etc.
Those features are used to identify and classify an event whenever it occurs.

Non-event based methods don’t rely on specific event detection in the signal,
they learn those events automatically without the need of a separate block to detect
an event in the system. In general a temporal graphical model, like HMM, is used
for that purpose. KOLTER and JAAKKOLA [11] used addictive factorial Hidden
Markov models to approach the NILM problem, however the exact inference was
hard and the algorithm gets stuck in a local minimum very easily. They modified
the inference step and constrained the model to consider at most one appliance
changing state at time (which is a very strong assumption, given that appliances
like television and video-game are common to change their state at the same time).
They then developed an efficient inference step which avoids local minima, achieving
good results in practice.

PARSON et al. [12] also used HMMs for NILM developing an approach that
doesn’t need sub-meter individual appliances. They used prior models of general
appliance types that are tuned using only the aggregate consumption signal, achiev-
ing results comparable with systems using sub-metered data.

In this work and in a related one by KELLY and KNOTTENBELT [13]| deep
learning techniques are used, achieving very good results and capability of gen-
eralization, with almost no prior knowledge and yet with much room for future
improvements. KELLY and KNOTTENBELT (13| used the MSE metric in the
training of their network. They also used relatively shallow networks and different
metrics when comparing with the present work. Also, their recurrent models didn’t
obtain good results. In the present work, the use of a improved metric to train the

networks allowed the training of very deep feed-forward and recurrent networks.

2.1.2 Intrusive and Nonintrusive Monitoring

The monitoring is called intrusive when each equipment has its own meter and so
the individual consumption data is extracted directly. The advantage of this method

is the precision and the reliability of the measurement, since it is only subject to

measurement errors. The disadvantages are the difficulty to install a meter in each
appliance and the cost of installation.

The monitoring is called nonintrusive when it is done with a few meters, usually
only one for the whole house or one meter per phase, which measures the aggregate
data of consumption. This method loses reliability, because it depends mostly on
the software used, although it is much cheaper and of simpler installation. Hence it

is very studied nowadays.

2.1.3 Supervised, Unsupervised and Semi-supervised Learn-
ing

Supervised Learning is when the model is trained using not only the aggregate
data, but also the individual appliance consumption. In that case, intrusive mon-
itoring is performed to collect appliance level data, which is then used as training
data for the model.

Unsupervised Learning is when the model is trained using only the aggregate
data. No prior training with labeled data is required. This is a very desirable
method, but it is much harder to obtain results compared with the supervised learn-
ing.

A semi-supervised learning model uses a combination of both labeled and unla-
beled data for training, usually there is a big amount of the latter compared to the
former. In the case of NILM, it is the most suitable method.

Notice that practical (and not only theoretical) NILM problem uses a termi-
nology that can be confusing for those outside the field. Usually in Machine
Learning the data for training/testing comes from the same domain when super-
vised /unsupervised learning is applied. For practical energy disaggregation, super-
vised learning is applied on the training (aggregated and sub-metered data are used)
and unsupervised learning for testing on houses not seen during the training (only
the aggregated data is used). Also, semi-supervised learning assumes that both
labeled and unlabeled data comes from the same domain, but on NILM they rep-
resent different houses (and different domains), in other terms, for training labeled
and unlabeled data can be used, but only unlabeled data is used for testing, coming
in general from a house not present in the training dataset. For those reasons, the

terminology is still open and is topic for further discussion. !

Thttp://blog.oliverparson.co.uk/2015/05 /what-even-is-supervisedunsupervised.html

2.1.4 Low and High Sampling Rate

When the sampling rate’s order of magnitude is around one sample per second
or less, it’s said to be a low sampling rate. Usually the sample is acquired once per
minute or hour. With a sampling rate of this magnitude active and reactive power
are indistinguishable as well as high order harmonics and other features. Smart
meters in general have low sampling rate (even though internally they can have a
high sampling rate), so algorithms capable of dealing with the NILM problem using
data at this rate are very desirable.

High Sampling Rate is characterized by a sampling rate with an order of mag-
nitude of kHz or MHz, sampling for this the current and the voltage in each of
the mains. Therefore it is possible to extract many different features that can be
used on the algorithms of load monitoring, such as the time series, the active and
reactive power, high order harmonics and others. Nonlinear loads create relevant
harmonics that was used to precisely distinguish appliances by BERGES et al. [14].
GUPTA et al. [15] showed a system using high frequency data, the ElectriSense,
which does NILM from a single point of measurement. This system is based on the
principle that most modern electronics and fluorescent lightning apply switch mode
power supplies aiming high efficiency, which continuously generate high frequency
electromagnetic interference (EMI). It was shown that EMI signals are stable and
predictable based on appliance characteristics. EMI also achieves higher accuracy
than transient noise-based solutions since they are able to differentiate between
similar devices. The disadvantage is the price of the meters and the equipments
associated (and also the increase in complexity and size of the system due of the
quantity of data generated), which are more expensive than the corresponding ones
with lower sampling rate, making this approach very impractical to be applied on

large scale nowadays.

2.2 Reference Energy Disaggregation Dataset
(REDD)

The REDD |2] is an open dataset proposed by MIT and designed to be a reference
dataset on NILM. One of its main goals is to be a standard dataset of benchmarking
for algorithms of nonintrusive load monitoring. Before it, many different datasets
had been used (and are still used). Most of them collected by the own author,
therefore it was hard to compare the different techniques applied on NILM, because
each dataset could lead to very different results.

The REDD was thought to be a broad dataset, since its objective is to compare
different algorithms and techniques. This dataset has data of the AC waveform of the

Table 2.1: REDD - house level description

House | Circuits | Samples | Samples | Device Categories
Mains Circuits

oven, refrigerator, dishwasher, kitchen outlets, lighting,

1 20 1561660 745878 washer dryer, microwave, bathroom gfi,

electric heat, stove, lighting

kitchen outlets, lighting, stove, microwave,

washer dryer, refrigerator, dishwasher, disposal

outlets unknown, lighting, electronics, refrigerator,

3 22 1427284 404107 disposal, dishwasher, furnace, washer dryer, lighting,
microwave, smoke alarms, bathroom gfi, kitchen outlets
lighting, furnace, kitchen outlets, outlets unknown,

4 20 1679839 570363 washer dryer, stove, air conditioning, miscellaneous,

smoke alarms, dishwasher, bathroom gfi

microwave, lighting, outlets unknown, furnace, washer dryer,
5 26 302122 80417 subpanel, electric heat, bathroom gfi, refrigerator, dishwasher,
disposal, electronics, kitchen outlets, outdoor outlets

kitchen outlets, washer dryer, stove, electronics, bathroom gfi,
6 17 887457 376968 refrigerator, dishwasher, outlets unknown, electric heat,
kitchen outlets, lighting, air conditioning

2 11 1198534 318759

current and the voltage, with a sampling rate of 15kHz. So it is possible to extract
many features and evaluate different approaches with high and low (downsampling)
sampling rate.

The data was collected from six houses in the region of Massachussetts, in the
USA, where the electrical system is biphasic. One of the problems in the dataset is
that there isn’t data of the individual appliances, only circuits, corresponding to a
set of appliances in general. Therefore it’s only possible to identify appliances that
use the circuit alone. A general description about the dataset structure is given in
the table 2.1.

The dataset is separated in three sets, each one of them contains data from six

houses:

e low freq - The mains phase are sampled with a rate of 1 Hz and the indi-
vidual circuits sampled each 3 or 4 seconds. The file with the data of each
house contains the power (apparent power of the mains and active power of
the circuits) consumed and the corresponding UTC timestamp of when the

sample was collected;

e high freq - Contains the data corresponding to the waveform of the current
of the two phases and the voltage of one of the phases. They are aligned and
sampled at a rate of 15 kHz. However, using the fact that the waveforms
remain almost constant for large periods, the data is compressed and the
waveform is recorded only on the points where there is a relevant change in

the signal;

e high freq raw - Contains the data of the voltage and current like in the

high freq file, but now it is not compressed, the data is in its raw form.

Although the REDD is designed to be a reference dataset, it suffers from a series
of problems as described by BATRA et al. [16]. One of those problems are the
gaps. The measurements made by sensors in a house can have long gaps caused
by malfunctioning of the measurement equipment or simply because the equipment
is turned off for some time. Those gaps are not commonly expected on NILM

algorithms, so they have to be taken into account in the system.

Chapter 3
Deep Learning

Deep learning is an umbrella term for a set of machine learning techniques. In
neural networks it simply denotes networks with many layers (in opposition with
shallow neural networks). The main objective of use this kind of architecture is
to learn a hierarchy of features, in which each layer processes the input and gives
a better representation of the input data to the next layer (indeed, each added
layer can increase exponentially the number of possible state representations of the
network). It was inspired by the nature, the mammal brain is organized in a deep

architecture, more specifically similar to the mammal’s visual system [17].

3.1 Basic Concepts and Brief History

Deep Learning models are very attractive, because they are flexible (that is,
similar models can be used in wide range of different problems). They enable an
end-to-end learning and are able to automatically learn new feature representations
that, in the past, were hand-engineered for each different problem.

Deep Architectures have been tried much time before the recent success, but
they didn’t have succeed in the past. More specifically, in 2006 and 2007 researchers
began to be capable of training deeper networks [18, 19], the exception before it was
the convolutional neural network used by LeCun [20]. The new success only came
with the recent overcome of many problems, that prevented the advance of those
techniques. Some of the main points to the recent success are the creation of new
optimization techniques and architectures, and the large amount of data available in
many areas (images, audios, texts, etc), which are essential to train deep networks
(which have a huge amount of parameters).

Another reason for the large adoption of deep learning was the advancement in
the computational power of the recent GPUs, making analyse large amounts of data
(because of its very large memory bandwidth), do matrix operations very fast and

parallelize the training possible. The figure 3.1 shows the NVIDIA’s roadmap, which

10

will further improve the capability to train large neural networks in a close future.

7 Pascal
Mixed Precision

3D Memory
NVLink

/ Fermi

Figure 3.1: NVIDIA’s roadmap [21].

In 2012, KRIZHEVSKY et al. [22] won the ImageNet Large Scale Visual Recog-
nition Challenge by a huge difference to the second place (16.4% error against 26.1%
classification error), what is very uncommon on those competitions. They used a
deep CNN against the hand-coded feature detectors of the other approaches. An
evolution of ImageNet challenge [23] results are shown in the picture 3.2. Notice the

evolution after 2012, when deep neural networks began to be applied.

0.43

0.4
0.34

Object Classification Object Localization
0.3 03

1.9x l 0:2 = 2.8x l
[]

0
2010 2011 2012 2013 2014 2015 201 2012 2013 2014 2015
ILSVRC year ILSVRC year

Figure 3.2: ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [24].

Localization error

Classification error

SILVER et al. [25] applied deep neural networks in an approach mixing super-
vised and reinforcement learning to create a system, named AlphaGo, capable of
playing Go, a classical game with a search space by far bigger than games like chess
and so very difficult for classical Al techniques. AlphaGo won the European Go
champion by 5 games to 0 and also obtained a win rate of 99.8% against others Go
programs, facts never obtained before. To accomplish those results were used two
different kinds of networks, the value network and the policy network, the first is re-

sponsible for evaluating board positions and the second for selecting moves. Those

11

networks were combined with classical Monte Carlo tree search, speeding up and
giving a better branching control to the search. In March of 2016, AlphaGo won
Lee Sedol (a legendary Go player) by a score of 4 matches to 1.

Deep learning models are useful by its automatic feature learning. Even though
deep learning algorithms doesn’t need too much prior knowledge of the appliances
(e.g. the number of states and the consumption of each state in a multi-state
appliance), it still uses a great amount of prior knowledge because of the Bayesian
nature of deep learning. The prior comes from the fact that the models are tuned
with relation to a specific problem, for example, in some problems the use of a
convolutional layer might not be a good choice and on other problems is a good

choice, this prior knowledge is put by the human tuning the network.

3.2 Recurrent Neural Network

Recurrent Neural Network (RNN) is a kind of neural network that the output
at some time instant depends on the network’s past state, hence some connections
form a directed cycle (different from the feedforward neural networks). With this
kind of configuration the network can exhibits a temporal behaviour. The network
also creates an internal memory gaining the ability to process sequences of inputs.

Many researchers, nowadays, are using HMMs to achieve good results on the
NILM. However, in many other problems, RNNs has surpassed HMMs, e.g. hand-
writing recognition |26, 27] and speech recognition [28]. There are many reasons to

use RNNs, some of them are:

o “All Turing machines may be simulated by fully connected recurrent networks

built of neurons with sigmoidal activation functions.” [29];

e RNNs still are a type of model that we know little about how to train and its

architectures, so there is a huge potential for improvements in the next years;

e It allows end-to-end learning, what is very important for the NILM, because
minimizes the quantity of prior information needed to put in the system plays

a key role to adopt it in real scale.

RNNSs are trained in a very similar way to feed-forward neural networks. They
are trained using backpropagation through time (BPTT)[30], which is very similar
to the vanilla backpropagation [31]. The network is unfolded through time and the
weights are averaged in order to preserve the shared ones, that correspond to the
same connections before the unfolding.

Even though it has a huge potential, the biggest problem with RNNs and deep

learning, in general, is to choose the correct architecture and to train it in a way

12

that good results can be achieved. In the past, achieving good results with RNNs
was almost impossible, because the error surface has many local minima, plateaus
and cliffs. Another problem is the vanishing and exploding! gradient in the training,
difficulting the learning of long range dependencies or making the neural network
diverges. However, nowadays, has been possible obtain very good results in many
different problems with the discovery of new architectures, optimization techniques
and the new GPUs [32-35].

3.2.1 Simple Recurrent Network (SRIN)

The simple recurrent network (SRN), as the name suggests is a simple architec-
ture of recurrent neural network, also known as vanilla RNN. The most known type
is the Elman network [36] (figure 5.11), in which the update rule of the parameters
is described by the equation 3.1. There is also the Jordan network [37| which is
very similar to the Elman network, but the recurrent point comes from the output
layer (and not from the hidden layer as in the Elman Network). The SRN strongly
suffers from the vanishing and exploding gradient problem, that is the reason for
using new architectures. Many works try to solve those problems without changing
the architecture. LE et al. [38] initialized the hidden to hidden matrix (W},) with a
scaled version of the identity matrix (which has eigenvalue of one) and used ReLU
[39] instead of the hyperbolic tangent function, achieving results comparable with
LSTMs (section 3.2.2) in both toy and real problems. MARTENS and SUTSKEVER
[40] used Hessian-free optimization (a second order optimization method) to train
vanilla recurrent neural network and were able to solve problems with long range

dependencies.

ht = U(l’th + ht,1Wh + b)

(3.1)
O = O'(htWho + bo>

, where h is the hidden state, o is the output, o is the nonlinearity, W, is the input
matrix, W), is the hidden-to-hidden matrix, W}, is the hidden-to-output matrix and

b is the bias. The index ¢ indicates the time-instant.

!The vanishing gradient problem is when the error being backpropagated during the training
disappears due to the mutiplicative factor when using many layers. The exploding gradient is
the opposite problem, it happens when the error grows during the backpropagation making the
parameters of the network diverge.

13

Figure 3.3: Elman Network.

3.2.2 Long short-term memory (LSTM)

Long short-term memory (LSTM) is a type of recurrent neural network. It
was first published in 1997 by HOCHREITER and SCHMIDHUBER [41]. LSTM
networks have been applied in a wide range of problems with much success, e.g.
Embedded Reber Grammar, handwriting recognition [26, 27|, speech recognition
[28] and many others. This kind of architecture was designed aiming to solve the
vanishing gradient problem, that is common in vanilla RNNs. It uses gates to have
a better control of the gradient flow. However, in the backpropagation, the error
becomes trapped in the memory causing an effect known as "error carousel". This
problem was reduced with the introduction of the peephole connections by GERS
et al. [42], resulting in a gain of precision to the network. GERS et al. [43] also
introduced the forget gates, the addition of this gate substantially improved the
performance in many tasks involving arithmetic operations. This gate permits the
LSTM to learn local self-resets of memory content that is not relevant anymore.
GRAVES [44] did a comprehensive work talking more about the power of LSTM
networks. A diagram of a LSTM is shown in figure 3.4 and the equations describing

the update step are given by 3.2.

14

net-output = h(t)

memory block
output gate

element-wise multiplication (@)-<—
A

squashing function

forget gate T
ft)—(®)
A \j A

element-wise multiplication @
A

input gate

A

squashing function m

net-input = x(t)+h(t-1)
Figure 3.4: LSTM memory block.

iy = 0 (xWai + hi i Whi + wes © ¢i-1 + b;)

fi = op(@Wap + hioa Wiy + wep © ¢i—1 + by)

et = f1 Oci 1+ 110t Wae + by 1 Whe + be) (3.2)
01 = Oo(xWoo + hi_ 1 Who + Weo © ¢y + by)

hy = 0, © op(cy)

, the variables are very similar to the SRN. The ® indicates the element-wise

product. f is the forget gate state. c is the cell state. i is the input gate state.

3.2.3 Gated Recurrent Unit (GRU)

Gated Recurrent Unit (GRU) was first proposed by CHO et al. [45]. GRU is
another kind of gated recurrent network (like LSTM) that was made to capture
adaptively dependencies of different time scales. GRUs were compared with LSTM
network [46] and the results shown that they have similar power on sequence mod-
eling, the superiority of one over another seems to depend on the specific task. A
diagram of a GRU is shown at figure 3.5 and the equations describing the update
step are given by 3.3.

15

net-output = h(t)

memory block T

CP ? h(t-1)

h(t-1) —
reset gate y upda e gate
it —®—

element wise muItllecatlon

xX(t)

net-input = x(t)+h(t-1)
Figure 3.5: GRU memory block.

re = 0 (T War + he— 1 Wiy + by)

U = 0y (T Wy + hy—1 Wy + by)

¢t = 0 (xiWie + 10 © (hi—1Whe) + be)
hi =(1—u) ©hi1+uOc

(3.3)

3.3 Convolutional Neural Network

Convolutional Neural Network (CNN) is a kind of feed-forward neural network
that is inspired by the nature, more specifically on the visual system of the mam-
mals, because of its power to recognize complex patterns with high accuracy [47].
Therefore most of its first applications were in the field of image recognition.

The CNNs are composed of multiple layers of small groups of neurons which look
at small pieces of an image (it is called receptive field), when used in the context of
image recognition.

The CNNs are composed of many layer types. The following ones are some of

the most important nowadays:

e Convolutional Layer — This layer is composed by multiple convolution ker-
nels and each one is shared over the entire image. Their purpose is to extract
features of the images. More complex features can be extracted when us-

ing many layers, in a way similar to how the nature works. It is possible to

16

obtain finer-grained features using for this purpose multiple stages, in which
each stage uses as input the features of the previous stage. Notice that in-
stead of the traditional hand-coded kernels, here they are learned through the
backpropagation algorithm;

e ReLU Layer — ReLU stands for Rectified Linear Units [48]. In this layer is
applied an elementwise activation function f(x) = max(0,z) that has some

advantages over traditional activation functions, such as:

It is fast to compute;

— It reduces the vanishing gradient problem when compared with tanh and

sigmoid functions, because of its constant derivatives;

— It induces sparsity in the representation;

It has a larger range of representation ([0, c0]) than with a sigmoid func-
tion ([0, 1]).

e Pooling Layer — The data is downsampled, in general is computed the max-
imum or the average of a small region of the input data. With this, the
network gains ability to be invariant to translations, because the result will be
the same (or almost the same) for a translated input data. Another advantage
is the speed gain in the network, due to the downsampling between the layers,

reducing the amount of data to be processed;

e Dropout Layer — Due to the large number of parameters in deep neural
networks, they are prone to overfit. Dropout is a method created to reduce
overfitting [49]. The main idea is to randomly drop out (that is the reason of
the name) some units (and their connections) with some probability during
the training. This is empirically chosen, but usually the probability chosen is
around of 50%. The dropout layer works because it is doing a ensemble of
many "destroyed" versions of the original network, so it not only reduces the
overfitting, but also improves the network capabilities reducing the dependence

of specific weights in the layer that the dropout is being applied;

e Dense Layer — Fully connected feed-forward neural network.

One of the first successful CNNs was the LeNet 5, created by LECUN et al. [20].
It was used to recognize handwritten digits (was also used for reading 10% of the
checks in North America) obtaining a test error rate on MNIST of 0.8%, which was
very impressive at that time. The architecture used on LeNet 5 still is the base for
the modern CNNs. The LeNet 5 is shown in figure 3.6.

17

C3: 1. maps 18@10x10
INPUT C1: feature maps 54
232 6258

S2:f maps
B@14x14

|
Ful\conrlection | Gaussian connections
Convolutions Subsampling Corvolutions Subsampling Full connection

Figure 3.6: Le Net 5 [20].

3.4 Recurrent Convolutional Neural Network
(RCNN) and Residual Learning

In order to improve the learning capability of the CNNs and the possibility to
create deeper networks, many new architectures have been tried. Many of them use
skip connections in order to ease the information flow between layers and so improve
the training of deeper networks. LIANG and HU [50] proposed an architecture using
those ideas for object recognition, the Recurrent Convolutional Neural Network
(RCNN). The figure 3.7 shows the Recurrent Convolutional Layer (RCL) proposed
which is the basic block of the RCNN (it is formed basically by stacking RCLs). The
RCL is implemented as in the image 3.7, unfolding it by 3 time steps (or another
quantity) and sharing weights between unfolded layers. It eases the information flow
between layers and also reduces the model’s number of parameters, enabling the use
of deeper networks. Notice how the proposed model differs from the traditional

RNNs, the recurrent connections are in fact unfolded creating forward connections.

Figure 3.7: Recurrent Convolutional Layer (RCL) [51].

HE et al. [52| were capable of training an ultra-deep network of 152 layers, win-
ning the ILSVRC [23] and COCO [53] 2015 by a large margin (more than 10%)

considering how close are those competitions nowadays. The network was named

18

ResNet, because of the residual learning method proposed. The residual connections
improve a lot the training of deeper networks (e.g. more than 30 layers), something
that was impossible. This is due to the difficulty in the optimization of the net-
works, because in theory a deeper network always can show the same results as
its shallower version by only doing identity transformations after some layer. The
basic idea behind the residual learning is shown in figure 3.8. Instead of learning a
transformation #(x), the network needs to learn F(z) = H(x) — z. This way, when
the optimal transformation H(x) is the identity transformation, the weights of the
network must be zero (setting F(x) = 0) what is easy to learn. When the trans-
formation is close to the identity transformation it is also easy to learn a "small"

F(x).

X
A A
weight layer
f-'(x) 1 relu X
weight layer identity

Figure 3.8: Basic block of the residual learning [52].

3.5 Batch Normalization

Batch Normalization is a technique to improve the convergence speed and the
final state reached when training a neural network [54]. It was created because the
distribution of each layer’s inputs change during the training due to the variation
in the layers’ parameters. Therefore, it causes problems to the training requiring
lower learning rates, careful initialization and much more attention to aspects that
can interfere in the network’s convergence. This problem is known as internal co-
variate shift [54]. The problem is minimized normalizing the layer’s inputs and the
normalization is performed in each mini-batch.

In order to reduce the internal covariate shift, each layer’s inputs will be nor-
malized. However, the computational cost to do it is very high. Therefore, the
statistics of the current mini-batch are used to approximate the real parameters.

The normalization is described by the equations in 3.4.

19

1 m
Hie = E;%

1 & 9
O = E;(% — fig)

g = D Hk (3.4)

, where x = {x; : ¢ = 1, ...,n} is the mini-batch, k is the mini-batch index, € is small
constant for numerical stability and m is the mini-batch size.

The proposed scheme has some problems like when the inputs are normalized, it
changes what a layer can represent. In order to solve this, two learnable parameters
v: and [are inserted. The equation describing the batch normalized output is
given by the equation 3.5. Notice that the transformation can represent the identity

transformation, setting v, = o, and [= g it recovers the original input.

Yi = Vi * T + B = BN, 5, (%) (3.5)

LAURENT et al. [55] applied Batch Normalization in recurrent neural networks
obtaining good results in some tasks. It was shown that only the application of
batch normalization in the input-to-hidden connections are important to improve

the training.

3.6 Initialization Methods

The initialization is very important to the neural networks achieve good results.
It accelerates the convergence and helps avoid getting stuck in a poor local minimum.
It is very important to the network’s final result, because it helps to avoid getting
stuck in a poor local minimum and also it is very important to the convergence speed
of the network. Therefore, many researchers have studied initialization techniques
in order to improve the neural networks performance. Here will be shown some of
them.

3.6.1 Gaussian and Uniform initialization

Gaussian initialization is a common initialization used in neural network. It
just samples the weights from a Gaussian distribution with zero mean (to maintain
the symmetry) and small variance (N(0,0?)). The symmetry that it gives to the

network is very important to the convergence. Uniform initialization is used in a way

20

very similar to Gaussian initialization, but the samples are taken from the uniform

distribution with zero mean (U[—a, al).

3.6.2 Glorot initialization

Initialize deep neural networks using an uniform or Gaussian distributions with
random defined variance can difficulty and slow down the training. GLOROT and
BENGIO (33| did a comprehensive work trying to understand how poor initialization
can slow down the network’s training. They analysed some activation functions to
understand its behaviour and found out that a good choice of variance for the case
of a linear neuron is given by equation 3.6. This equation was obtained constraining
the ratio between the input and output variance to be one. They showed good
results using the initialization described by the equation 3.7 in the case of using
an uniform distribution and linear activation function. For the case of a Gaussian

distribution with a linear activation function, a good initialization is given by 3.8

2
W ~U[—a,a]
) ; (3.7)
“= \/fanin + fanout
W ~ N(0,0%)
(3.8)

2
7" \/fanzn + fanout

The initializations must be adjusted for the case of different activation functions
(different of the linear function), the gains are the same given by equation 3.9. This
initialization showed very good results in practice, being capable of training very

deep networks [56].

3.6.3 Orthogonal initialization

SAXE et al. [57] introduced a new kind of initialization known as orthogonal
initialization. It initializes the weights of the neural network with random orthogonal
matrices scaled by a gain g. A random matrix is generated and then the singular
value decomposition (SVD) is calculated (the QR decomposition could also be used)
in order to generate a random orthogonal matrix. The gain ¢ depends on the

activation function used as shown in 3.9.

21

1 if activation is Linear
>1 if activation is Tanh
9= V2 if activation is ReLU

\/Tz if activation is leaky ReLU [58]

(3.9)

SAXE et al. |57] showed that the Gaussian initialization with a small variance
is poor because it starts near of the saddle point where all weight matrices are zero.
The analysis and mathematical theory was developed for the case of deep linear
neural networks, where their methods showed good theoretical results. Then they
performed experiments with general deep neural networks, using the theory that

was initially developed for the linear case.

3.7 Optimization Methods

There are many optimization techniques that have shown good results with deep
neural network and that’s why they are largely used. This section shows some of

them. The simple stochastic gradient descent is the base for all of them.

3.7.1 Stochastic Gradient Descent (SGD)

In the backpropagation algorithm the gradient must be computed many times
in order to adjust the weights of the neural network. When the training set is too
big, in general, computing the gradient for the entire set is very impractical, it is too
slow and big to fit in memory. Thinking about this, the stochastic gradient descent
is used, which is the gradient computed over a few examples (instead of the entire
set). Usually another advantage of using the SGD [59] is the ability to scape of
local minima. Mini-batches are commonly applied because it reduces the learning
variance and so it has a more stable convergence. Another reason is that with the
high computational power of the GPUs, mini-batches can be processed very fast,

since the operation is easily parallelized. The equation 3.10 shows the update step
of the SGD.

i+m
0=0—ax> V(02" y*) (3.10)

k=i
, where 6 is the parameter to be updated, « is the learning rate and m is the

mini-batch size.

22

3.7.2 Nesterov Accelerated Gradient (NAG)

Nesterov Accelerated Gradient (NAG) has been shown to be better than SGD [34]
and is as simple of implementing as the SGD. Momentum methods [60] accumulate
the speed in directions that are good to reduce the cost function using for this
gradient information. The equation 3.11 describes the update rule of the NAG.
The momentum g, and the learning rate €, can be chosen by the user (that is the
most common way to do this) and often a very strict momentum schedule is used

to obtain a fast convergence.

U = 11 — €1V f(O—1 + p—1vi-1)
Qt = 9t71 + Lt (311)

For convex functions with Lipshitz-continuous (the condition for a function be
Lipshitz-continuous is given by the equation 3.12) derivative, the method satisfies
the equation 3.13. This equation shows that the convergence is guaranteed to be in
O(V/N) iterations, where N is the distance traversed [34].

[f(z) = f(y)l = LIz —yl, Y,y (3.12)

AL[|0_, — 6*|
(t+2)2

The NAG is one of the most commonly used methods for optimization in deep

f(0) = f(07) <

(3.13)

neural networks.

3.7.3 ADAM

ADAM is a first-order gradient-based method introduced by KINGMA and BA
[61]. It is inspired by the ideas coming from two optimization methods, the RMSProp
[62] and the AdaGrad [63]. Its update equations are given by 3.14.

23

gt = V@ft<gt—1)
my = Brxmy_1 + (1 — B1) = gt
(o :52*%—14'(1_52)*9752

N my
my = ———
1—pi
~ Vg
Vs =
1— g4

A

my

Vi + €

, where « is the stepsize and f;,2 € [0,1) are exponential decay rates for the

9t=9t,1—a*

(3.14)

moment estimates. The initial conditions are mg = 0 and vy = 0.

It was shown that in many problems it has a superior performance than others
methods like AdaGrad, RMSProp, SGD and NAG [61]. In general ADAM is a good

choice because it is fast and doesn’t need a too strict learning schedule.

24

Chapter 4
Applying deep learning on NILM

“Houston, we have a problem.”

Apollo 13

Deep Learning is a set of techniques that has cracking down many problems that
before were impossible to approach. In this chapter is shown the theoretical basis
to develop the experiments aiming to solve, at least in some sense, the problem.
KELLY and KNOTTENBELT [13] did a very recent work also approaching the
NILM problem using deep learning techniques.

4.1 Pre-Processing

The REDD has some problems as cited in section 2.2. So, some pre-processing is
necessary to adjust the data that will feed the system. The missing points were filled
using forward filling when the “missing interval” is less than 20 seconds (otherwise
a gap is left in the data) and the data was resampled to 4 seconds intervals taking
the average of the points in the interval.

When creating the mini-batches to the neural network, interval with gaps (inter-
vals greater or smaller than 4 seconds) are not considered. In this way the filters in
the convolutional layers are always looking for equally spaced samples, what is very
important, otherwise the filters would learn a different things each time.

All the inputs were shifted to have zero mean. The data was scaled down by a
constant factor of 500 which helped the initialization. Although it is not essential
when using batch normalization, since batch normalization is scale-invariant to the

input (BN (Wu) = BN ((aW)u)).

25

4.2 Individual Appliance Identification

The networks were trained using categorical cross-entropy as loss function. The
networks trained with Mean Squared Error (MSE) are very hard to optimize because
it requires more complicate weights from the network to output the specific real value
making them prone to overfit. Furthermore the MSE is very sensitive to outliers
because the metric square the values, so one big outlier can influence the performance
of whole system. Using the MSE as the loss function to train the networks didn’t
work very well. It harms a lot the generalization capability of the networks, specially
on NILM where the data is noisy, has gaps, spikes and other things to difficult the
training.

One network per appliance is used. This way the network can be trained using
data of one house or a set of houses and after be tested on different houses or unseen
data of the same house used in the training, showing the generalization capability of
the proposed approach. The networks used as input the time series corresponding
to the active power consumption of the whole house and infer the active power
consumption of some appliance.

The signal of consumption is divide in windows and those windows are fed as
input of the network as shown in figure 4.1. The network extracts the individual
consumption using those windows of data and then the disaggregation performed
by each window is combined to show the consumption inferred by the whole system.

More details about how those windows are combined can be seen in section 4.8.

2500

2000

1500
=

Col

1000

R il IM”*—“JL,J‘T

ol L " n .
60500 61000 61500 62000 62500
Samples

stride window length

Figure 4.1: Sliding Window Approach - The window represents an input to some
network, the window at each moment moves stride samples to the right and contin-
ues the disaggregation.

A diagram showing how the whole system works is seen in figure 4.2.

26

windowing of the signal disaggregate windows

- l

J window ensemble - inferred consumption
oW

-

%greggate data

A4

pre-processing

I

I .

Figure 4.2: Flowchart of system operation.

This work evaluates some architectures. Below are shown the architectures that
performed best on the experiments done. In all the convolutional layers batch nor-
malization was applied. A Dropout layer with a dropout rate of 0.5 was applied in
all the last fully connected layers (except to the residual network). All the recurrent
neural networks in this work are bidirectional [64], because it improves a lot the

inference step.

CNN

The architecture of the CNN is shown in table 4.1. The architecture is basically
composed of convolutional layers with a increasingly number of filters. Max Pooling
was applied to give some translation invariance capability to the network while
reduces the number of parameters to be processed. The last layer is a fully connected

layer, with a quantized number of outputs, that are better explained in section 4.6.

RCNN

The architecture of the RCNN is shown in table 4.2. The architecture is basi-
cally composed of recurrent convolutional layers with a constant number of filters.
Max Pooling was applied after each RCL. The RCLs were implemented in a feed-
forward way, just adding the necessary skip connections and tying the weights of

the corresponding layers.

LSTM

The architecture of the LSTM is shown in table 4.3. We tried to batch normalize
the LSTM layers in their input-to-hidden connections, but it didn’t work. The addi-

tion of dropout in the last dense layer was very useful to improve the generalization

27

Table 4.1: CNN Architecture

Layer Type Size

Convolutional 8 filters of size 5
Convolutional 8 filters of size 3
Convolutional 8 filters of size 3
Max Pooling Pool size 4, stride 2
Convolutional 16 filters of size 3
Convolutional 16 filters of size 3
Convolutional 16 filters of size 3
Max Pooling Pool size 4, stride 2
Convolutional 32 filters of size 3
Convolutional 32 filters of size 3
Convolutional 32 filters of size 3
Max Pooling Pool size 4, stride 2
Convolutional 64 filters of size 3
Convolutional 64 filters of size 3
Convolutional 64 filters of size 3
Max Pooling Pool size 4, stride 2
Fully Connected | number of clusters

Table 4.2: RCNN Architecture

Layer Type Size
Convolutional 8 filters of size 5
RCL 32 filters of size 3, 3 iterations

Max Pooling

Pool size 4, stride 2

RCL

32 filters of size 3, 3 iterations

Max Pooling

Pool size 4, stride 2

RCL

32 filters of size 3, 3 iterations

Max Pooling

Pool size 4, stride 2

Fully Connected

number of clusters

28

Table 4.3: LSTM Architecture

Layer Type Size
Convolutional 8 filters of size 5
Bidirectional LSTM | 64 units
Bidirectional LSTM | 128 units

Fully Connected number of clusters

Table 4.4: GRU Architecture

Layer Type Size
Convolutional 8 filters of size 5
Bidirectional GRU | 64 units
Bidirectional GRU | 128 units

Fully Connected number of clusters

error.

GRU

The architecture of the GRU is shown in table 4.4. We also tried to batch

normalize the GRU layers in their input-to-hidden connections, but it didn’t work.

RESIDUAL

The Residual architecture is shown in table 4.5. The number of filters specified
for the residual blocks are the number of filters in each layer inside of the block.
Differently from the other cases, dropout was not used in the last fully connected
layer. The Residual Block is the same as in figure 3.8. The two layers in the residual

block are convolutional layers with batch normalization applied in each one of them.

Table 4.5: Residual Architecture

Layer Type Size

Convolutional 16 filters of size 3
Residual Block | 16 filters of size 3
Residual Block 16 filters of size 3
Residual Block | 32 filters of size 3
Residual Block | 32 filters of size 3
Residual Block | 64 filters of size 3
Residual Block | 64 filters of size 3
Max Pooling Pool size 4, stride 2
Fully Connected | number of clusters

29

Table 4.6: Window length chosen per appliance

Appliance | Window Length
Microwave 191

Dishwasher | 588

Refrigerator | 2401

Table 4.7: Appliances for energy disaggregation

Appliance | Houses Containing
Microwave 1,2,3,5

Dishwasher | 1, 2,3,4,5,6
Refrigerator | 1, 2, 3, 5, 6

4.3 Window Length Selection

The window length is the size of the input that fed the neural network. The
window length here is defined by the number of samples, which are sampled every
four seconds. As described by KELLY and KNOTTENBELT [13], it is a good choice
for the architecture when the size of the input varies with the appliance type. For a
given appliance, a large window length can hurt the disaggregation, but it must get
all the kinds of appliance’s activations!, so they can’t be so small. The logic used
to choose the window length is better explained in figure 4.3. Therefore it must be
greater than the maximum possible appliance activation, without being too large,
because it difficults the learning. The table 4.6 shows the window length chosen per

appliance.

4.4 Choice of appliances

Some appliances types were chosen to test the proposed method. The appliances
were chosen considering the data provided by the REDD. Were chosen appliances
which are commons in many houses in REDD and that have its own circuit (that
is, a circuit used by only one appliance). The table 4.7 shows the chosen appliances

and the houses containing the same.

4.5 Synthetic data generation and Curriculum

Learning

BENGIO et al. [65] showed the importance of curriculum in the training and

how it can significantly improve the neural network’s performance. ZAREMBA and

IThe appliance activation is the consumption of one appliance over a complete cycle

30

1600

1400

1200

1000|

800

Consumption

10 20 30

Samples

40

window length

(a) Large window length: the network is capable of capture the significant state

changes

1600|

1400|

1200]

1000

800

Consumption

Samples

40

window length

(b) Large window length: after move stride samples to the right, the network is

still capable of capture the significant state changes

1600|

1400|

1200

1000|

800

Consumption

400

200

10 20 30

Samples

a

window le

ngth

(¢) Small window length: the network isn’t capable of see any event, so it doesn’t

have a significant clue of the current state

Figure 4.3: Impact of the window length on the disaggregation

31

SUTSKEVER [66] improved the curriculum learning strategy proposed by [65] and
applied it in the evaluation of short computer programs. The kind of learning strat-
egy proposed by ZAREMBA and SUTSKEVER [66] has an inspiration in biology
because humans and animals learn better when the examples are presented in a
specific order (and not in a random order) where they are gradually harder than
the previous ones. Here is described a curriculum learning strategy that seems to
be more appropriated to the NILM.

In this work the networks are trained in a mixing of real data and synthetic data.
The synthetic data is generated by summing some windows and each one represents
an extract of some appliance’s consumption, for example, summing a window of
consumption extracted from a refrigerator, a microwave and a dishwasher create an
artificial house with three appliances. The window size is chosen according to the
appliance that is aimed to be disaggregated. This way, with the amount of circuit
level data given by the REDD an exponentially large number of samples can be
generated, what is very important to improve the generalization capability of the
networks. The window for each appliance is randomly chosen from its corresponding
circuit level data. Notice that when generating data by combining real appliance’s
consumption, information about patterns of energy consumption may be lost. Those
patterns many times are very common, like when someone turn on a video-game he
also turn on the television.

Were tried many different kinds of curriculum learning during this work. Differ-
ently from previous works where the examples were presented in a order from the
easiest examples to the harder ones. In this work, this strategy was found to lead
to poor configurations that at least slow down the learning, but in some cases the
network was also stucked in a very poor configuration. Here the difficulty of those
examples are measured by the number of appliances used when creating the exam-
ple in the synthetic way (that is, using 8 appliances create a harder example than
using only 2 appliances). It is not the best way to measure difficulty, because some
appliances cause more trouble to the disaggregation than others, so 3 appliances can
be more difficulty to disaggregate than 5 appliances, for example. A better way to
measure the real difficulty of examples could improve a lot the training and it is a
work for the future.

In this work, showing to the network only difficult examples turn out to be a
good strategy that accelerated the learning (at least it is not necessary to show
"easy" examples) improving a lot its capacity of generalization. AVRAMOVA [67]
shows that easy examples can be unnecessary in the training and in some cases
presenting the examples in the inverse order of difficulty (from the harder to the
easy ones) can lead to slightly better results. One possible reason, for the use of

easy examples in the training lead to poor configurations, is the fact that choosing

32

a low number of appliances in the generation of synthetic data has a relatively low
number of possible combinations. Therefore, many examples are seen multiple times
while sampling because of the birthday paradox 2, causing problems in the learning.

The synthetic data generated was presented in a random order of difficulty
(among the difficult ones). The examples are randomly generated choosing a set
of appliances. The data used to train the networks was created in a proportion close
of 50% for real data and 50% for the synthetic data. A better description of the
algorithm used to train the neural networks is given by the algorithm 1. The data
for training was generated in real time using for this multiple threads. The data is

prepared on the CPU, while the GPU is training on the previous batches.

Algorithm 1 Neural Network Curriculum

number _scenarios ~ 5
learning rate = 0.1
while number scenarios > 0 do

Randomly select a set of more than 7 appliances, including the target appliance

Generate synthetic data with the chosen appliances

training steps ~ 50000

while training steps = 0 do
Train the network on a mini-batch of 50% of synthetic data and 50% of real
data
training steps = training steps — 1

end while

learning rate
3

number _scenarios = number _scenarios — 1

learning rate =

end while

4.6 Space Quantization and Softmax classification

In order to diminish the problems caused when training the networks on the MSE
metric a quantization of the output was made. Many different ways of quantize the
output were tried such as divide the input range into evenly sized bins, create bins
whose centers are logarithmic spaced and use a clustering algorithm. In the end, the
method that had the better performance was applying a clustering algorithm. In the
NILM literature multi-state appliances are often modeled as a FSMs where each state
has a consumption given by a gaussian distribution. Hence this reduction from a

regression problem to a classification problem is very good for multi-state appliances,

2https://en.wikipedia.org/wiki/Birthday problem

33

given that the clusters (obtained by a clustering algorithm) can represent the real
appliance’s states, easing the inference problem without lose too much precision due
to the quantization.

The main reason to quantize the input is that the MSE metric used on regression
problems is hard to optimize and suffer a lot in the presence of outliers (giving too
much importance for those outliers sometimes). Therefore, to minimize this problem,
the real values can be quantized and with those quantized values it can be reduced
into a softmax (equation 4.1) classification problem which can be minimized using
the categorical cross-entropy loss function (equation 4.23). The association of each
real value to a cluster center was done using a clustering algorithm that is described
in the section 4.7. The association of a point with a class was tried in two different

ways.

eXi
- K o
Zk;:l exr

e hard association - Each point in the original set is associated with the closest

p(x); (4.1)

cluster giving probability of one to the closest cluster and zero for the others,

as shown in equation 4.2.

(4.2)

1 if j = argming|cluster _centery — point;|
bij = . .
0 if otherwise

, where p;; indicates the probability of the point ¢ belongs to the cluster center
J;

e soft association - The inverse distance weighting was used, where each point
is associated with a cluster with value proportional to the inverse of its square

distance from the cluster. The mathematical description of the metric is given

by equation 4.3.

z
Pij = Sk
X
d;; = cluster_center; — point; (4.3)

, where p;; indicates the probability of the point ¢ belongs to the bin j.

When the number of bins used to quantize the space is greater than the real

number of states, the hard association can end up to be a problem due to the fact

34

Table 4.8: Number of bins per appliance

Appliance | Number of bins
Microwave | 3
Dishwasher | 5
Refrigerator | 4

that more than one bin will share the same state. Therefore, it can turn out to be
a problem training the neural network, because some bins will be trained less times
and in an unbalanced way.

The soft association minimizes the problem with hard association, diminishing
the probability in the association of the right bin with the correct state and giving
some probability for incorrect bins. In the end, we used the soft association, because
it gave a better generalization error on the experiments performed, probably due to
the fact that the number of clusters was not chosen in the optimal way. The number
of clusters in this work was empirically obtained, the chosen values can be seen in
the table 4.8. The gap-statistic [68] method was tried to automatically choose the
number of clusters, but in this work was better to use it as a lower-bound, instead
of the exact number.

Notice that even when we have more features in the input data like the active and
reactive power, we can treat each dimension independently, cluster each dimension
and combine them creating a quantization of the 2 dimensional space, e.g. if we
divide the active power in N bins and the reactive power in M bins, we finish
with a grid of N X M bins. However, many of the 2 dimensional bins may not
represent a real cluster (a point never will be associated to that cluster) and then are

unnecessary. This is due to the clustering be done in each dimension independently.

4.7 Dynammic Programming

Dynamic Programming (DP) is a method used to solve problems dividing the
same in smaller sub-problems. The two basic properties of a problem that enable the
use of a dynamic programming algorithm are the overlapping of sub-problems and
the existence of an optimal substructure [69]. Dynamic programming techniques are
often used on optimization problems.

When solving a dynamic programming problem the necessary steps are:

1. Characterize the structure of the optimal solution
2. Recurrently set the optimal solution

3. Set the base case of the recurrence

35

A classical example of a problem that can be solved using DP is the integer
knapsack problem which is stated below:

Given a set of N items, each one with a given value and weight, and a knapsack
with a fixed maximum weight capacity what items must be taken inside of the

knapsack in order to maximize the total value without exceed the knapsack weight

capacity?
Problem:
N
maximize Z V; * T
i=1
N
Subject tosz- *x; < P (4.4)
i=1
e v; is the value of each item,;

p; is the weight of each item:;

ZT; € {07 1}7
e P is maximum weight capacity of the knapsack.

The DP modelling of the problem is given by the following function:

1. Optimal Structure: f[i,capacity] , this function indicates what is maximum
total value that can be taken when is available the items with indexes € [1,4] and
with a knapsack of size capacity.

2. Recurrence:

If p; > capacity, then:

fli, capacity] = f[i — 1, capacity], (4.5)

, because the weight of the current item (the i-th item) exceeds the capacity left
in the knapsack, so the only option is do not put the item in the knapsack.

If p; < capacity, then:
fli, capacity] = max(f[i — 1, capacity], fi — 1, capacity — p;] + v;), (4.6)

, the recurrence analyses the maximum between two possibilities: discard the
current item or put this item in the knapsack, therefore reducing the total capacity
left and adding its value to the result.

3. Base case:

f10, capacity] =0 (4.7)

36

The solution to the problem is found at f[N,total KnapsackCapacity].

4.7.1 Dynamic Programming algorithm for 1D clustering

The algorithm using dynamic programming for one dimensional clustering is of
great importance because of its speed and guarantee of efficiency, it obtains the

optimal clustering in the sense of minimizing the following function:

Jj=1li=1
Zn—l x5+ P
s = 1=)
J Zn
i=1Li,j
P < Py
k
i=1

1. n is the total quantity of points
2. k is the quantity of clusters
3. u; is the center of the cluster

4. P; is the i-th point

(4.9)
0 if Otherwise

B { 1 if P; € clusterj
ij =

, that is known as within-cluster sum of squares (WCSS).

To solve this problem is used the following algorithm based on dynamic pro-
gramming:

1. Optimal Structure:

Fi, k] indicates the minimum that can be obtained in the Eq. (4.8), using points
with indexes greater or equal to ¢ and being necessary to create k clusters.

2. Recurrence:

37

F[i,k] = min{F[j + Lk— 1]+ C[i,j]}i<j<n—k
Cli,] = D (P — w)?

l=1
T; + (’L - 1) * Uj—1
)
P < Py, (4.10)

7

3. Base case:

F[n,0] =0
Fli,0] = o0, ¥i < n, (4.11)

The figure 4.4 illustrates the dynamic programming method applied. It’s neces-

sary to find the value 7 which minimizes the sum of the two given costs.

CIi,jl F[j+1,k-1]

Figure 4.4: Recurrence of the dynamic programming algorithm for 1D clustering.

Cli, 7] is the cluster using points from i to j (including ¢ and j). Calculating
C[i, 7] in the naive way the complexity is O(kn?®), however as indicated in WANG
and SONG [70] using the recurrence 4.12 to the calculation of C|i, 5],

(J = 1) (Tj_iv1 — uj—)?
i+l
Cli,i] = 0, (4.12)

Cli,j] =Cli,j — 1] +

, the total complexity of the algorithm is O(kn?).

4.7.2 A divide and conquer dynamic programming based op-

timization for one dimensional clustering

Depending on the quantity of points and the number of clusters, the basic dy-
namic programming algorithm can turn out to be too slow. This can be a big

problem specially when using a large quantity of points like in deep learning, that

38

is the case of this work. Hence in view of this limitation is analysed some properties
of the recurrence and the problem structure to improve the algorithm complexity.
It is used an optimization based on the divided and conquer technique |71, 72].

Recurrences of the form:

Fli, k] = minigjen—i{Flj + 1.k = 1] + C[2, j]}, (4.13)

, where Ci, j] is some cost function which satisfies the quadrangular inequality

[73]:

Cla,c] + C[b,d] < Cla,d] + C[b,c],a < b< ¢ <d, (4.14)

can be optimized from a complexity of O(kn?) to O(knlog n) what is essential
in many cases.

Defining opt[i, k| like the minimal index j, such as: Fli k] = F[j + 1,k — 1] +
Cli, 7]. Can be proved that: opt[0, k] < opt[1, k] < opt[2,k] < ... < opt[n — 1, k].

Fi, 7] is calculated iteratively and increasing the value of k.

The pseudocode of the optimization is given by the algorithm 2.

Algorithm 2 1D clustering algorithm
Calculate(k, L, R, optL, optR) =
Especial case: L>R: end.
Setting M = (L+R) / 2.
Solve F|M k| and opt|M,k]|, constraining the loop to use in the maximum (optR-~

optL+1) operations.
Calculate(k, L, M-1, optL, opt|M,k|)
Calculate(k, M+1, R, opt|M k|, optR)

The code above has complexity O(nlog n), using the same for each value of
cluster, the complexity is O(knlog n). It basically calculates all the values of F'[, k]
for L < ¢+ < R. To accomplish this, the problem is divided in two cases, the
calculation of Fli,k] to L < ¢ < M — 1 and F[i,k] to M + 1 < i < R, where
M = @ and using the fact that opt[i, k] is monotonically increasing for increasing
values of j, it can be proved that in each step the main loop executes O(n) steps
and the tree has maximum height of O(log n), turning the complexity O(nlog n) for
each cluster. To finish, C[i, j] has to be calculated in O(1) precomputing in O(n),

what is necessary to maintain the overall complexity of the algorithm in O(knlog n).

39

4.8 Test-time Sliding Window Approach

As the neural network does inference in a small window of the data, it is necessary
to join those windows to reconstruct the total disaggregated signal. When the
windows don’t have overlapping pieces (notice that the windows must cover the
entire input signal, even if they don’t have overlapping parts), it is not necessary
to do anything, the answer of each window is the answer of the whole system,
because each time instant is inferred by only one window. When the windows
have overlapping areas (which is always the case in this work), it is necessary to
combine the multiple inferences done for a given time instant. To accomplish this,
the average of the inferred consumption is taken in the overlapping time instants.
This approach improved a lot the performance of the system, because huge errors
done by one window are diminished by the use of many correct windows. That is
the basic principle of ensemble methods [74|. The windows are separated by a stride
of one which maximize the quantity of overlapping windows on a given time instant,

improving the reliability of the system.

4.9 Metrics

Many distinct metrics are used to evaluate the NILM methods and that jeopar-
dizes the comparison between different methods and algorithms of load monitoring.
In the beginning, when the algorithms were projected thinking about two states
appliances (On/Off), the metric used was the percentage of correct classifications of
the load associated with a significant change in the total power consumed. Nowadays
many metrics are used.

Before the introduction of the metrics some variables are defined:

e T'P — total number of true positives — Occurs when the appliance is inferred

as On and the ground truth is On;

e ['P — total number of false positives — Occurs when the appliance is inferred
as On and the ground truth is Off;

e T'N — total number of true negatives — Occurs when the appliance is inferred
as Off and the ground truth is Off;

e ['N — total number of false negatives — Occurs when the appliance is inferred
as Off and the ground truth is On;

P — total number of positives in ground truth;

N — total number of negatives in ground truth.

40

Those variables are defined considering as positive when the appliance’s con-
sumption is greater than some threshold and as negative when the consumption is
less or equal the same threshold (y(t) < v where y(t) is the appliance’s consumption
in some time instant and ~ is the threshold). The threshold is chosen manually per
appliance type. It indicates when the appliance is turned on, without considering
standby consumption (v is above the standby consumption).

Each metric measures some abilities of the algorithms, but it doesn’t measure
all the aspects that makes an algorithm "perfect". Therefore, it is always a good
idea use more than one metric to measure the capacity of the algorithm. It will be

shown here some of the most used metrics.

Proportion of total energy classified correctly (P. T. E. C. C.)

This metric has a broad range of applications, because it can be used by many
types of monitoring methods. It gives much weight for appliances with high con-
sumption, what is desired in general, since it is important to accurate classify (and
have control) over the total consumption. However, sometimes the appliances the
user has control are appliances of low consumption and so even with a wrong clas-
sification of those, the metric will indicate a good overall performance.

The metric of proportion of total energy classified correctly is mathematically
described by equation 4.15, when we are considering all the appliances in the house

at same time.

S 1 =y
Ace = 1 — &it=1 th_ t |
221::1 Yt

For the case when we are considering only one appliance, we define it as in

(4.15)

equation 4.16.

T ~
Ace =1 — 2=t lBe =yl (4.16)

2 Z?:l Y

, Where yﬁi) e Qt(z) indicate respectively the real consumption and the inferred
consumption of the i-th appliance in the ¢-th time instant and 7, = > 7", yy) is the
total consumption in the ¢-th time instant.

Notice that the metric is different from the way used by KELLY and KNOTTEN-
BELT [13]. There the author uses in the denominator the total energy consumed
over all the appliances in the house and in the numerator the sum of only one appli-
ance. In this work, because we are evaluating each appliance separately, we divide
by the real consumed energy of the own appliance and not of all the appliances,
what gives a more significant score although it looks poor when compared with the

first one.

41

Mean normalised error (M. N. E.)

It measures the relative error in the energy assigned to each appliance over time.

T A2 T 7
oo = 128 =S u)
Zle y§z)

This metric is also different from the one used by [13].

, (4.17)

Recall

In the context of energy disaggregation, it measures the portion of the energy is

correctly classified.

TP
= —— 4.1
recall TP FN (4.18)

Precision

In the context of energy disaggregation, it measures how much of the total energy

assigned to an appliance truly belongs to that appliance.

TP
| SION = ————— 4.19
precision = o (4.19)
Accuracy
The proportion of true results among all the cases.
TP+TN
- 4.20
accuracy PN (4.20)
F1 score
It is the harmonic mean of precision and recall.
vecall — 2« precision * recall (4.21)

precision + recall

Mean squared error (MSE)
One of the most used metrics in machine learning, minimize it gives many good

statistical properties.

MSE = —+ Y (Y; = Y;)? (4.22)
i=1

SRS

Because of MSE many times give large numbers, sometimes people prefer to use
the root mean squared error (RMSE) that is defined as RMSE = vV MSE.

42

Categorical cross-entropy

Li = _Zti’j log(pi,j) (423)
J

, where 7 is the time instant, j is the state of the appliance, ¢;; is the target
probability of the appliance being in state j in the time instant ¢ and p; ; is the
estimated probability of the appliance being in state j in the time instant i.

In this work the categorical cross-entropy was used as the metric to train the

networks.

43

Chapter 5
Simulations and Results

“I found freedom. Losing all hope

was freedom.”

Chuck Palahniuk, Fight Club

5.1 Applying on Real Data

On this chapter are shown the main practical results of this work. In order to
obtain the results on this chapter a large number of experiments were performed.

Deep neural networks are very powerful models, so they tend to overfit on the
training set. In order to minimize this problem, several experiments were done using
many types of regularizations techniques such as generation of synthetic data, batch
normalization, dropout and 12 regularization.

Dropout when applied using the MSE metric ended up for slow the training a lot
and cause problems in the convergence of the networks. However, when applied after
the space quantization and using the categorical cross-entropy as loss function, it
acted as a strong regularizer working very well for the problem. The 12 regularization
also worked very well, improving the capability of the models and stabilizing the
training. Batch normalization accelerated a lot the training phase, maybe because
the initialization scheme wasn’t the most appropriated for this problem. The batch
normalization was essential in the training of the deep CNNs (the CNN, RCNN and
Residual in this work), without it the training diverged very fast. The synthetic
generated data was also essential to regularize the models, improving a lot the
validation error of the models. We also tried, greedy layer-wise training [19] but it
didn’t improve the results, so we ended up not using it.

The simulations were done using two scenarios like in KOLTER and JOHNSON
[2]. In the first scenario the system does the disaggregation in houses seen during the

training, but with data not seen, the last 20% of the data of a house is separated for

44

Table 5.1: Houses selected for training/testing

Appliance | Training | Testing
Microwave 1,3 2
Dishwasher | 1, 3 2,4
Refrigerator | 1, 3 2,6

Table 5.2: On power threshold per appliance

Appliance | Threshold (W)
Microwave | 200

Dishwasher | 10

Refrigerator | 80

the validation. In the second scenario the system does the disaggregation in houses
not seem during the training, trained in a set of houses and test in other. This is
very similar to validation versus testing error commonly used in machine learning.
The table 5.1 shows the houses used for "training" and "testing". Notice that those
experiments are good to show the ability of generalization of the systems, that is
the main objective of a machine learning model.

Many initialization schemes were tried, in the end it was used the orthogonal
initialization although the results were almost the same for all the initializations.
For training the RNNs (GRU and LSTM) the ADAM was used, because the ease
and the stability in the training. The RNNs are more unstable than the CNNs in
the training. The learning rate was initially setted to 10~% and after some time
reduced to 107°. The CNNs (CNN, RCNN and Residual architectures in this work)
were trained using NAG, with a initial learning rate of 0.1 and after some time it
was reduce to 0.01.

Notice that the house 5 was not considered in this work because of the small
amount of data collected and the low number of events is this data, therefore the
data doesn’t contain relevant aspects to evaluate the models. The dishwasher in
the house 6 also doesn’t contain any relevant event, so it was not included in the
training/testing.

In order to calculate metrics like precision and recall, the v representing the on
power threshold for each appliance must be determined. It was chosen manually.

The values chosen are in table 5.2.

5.2 Validating on houses seen during the training

In this section is performed the evaluation of the algorithm proposed on the
houses that were separated for training. For each appliance and house, 80% of the

data collected of a house is used in the training of the networks. The last 20% of the

45

data is used for validation. The results are shown in the following figures. In this
scenario the disaggregation is performed in the same houses used for the training,

so good results can be expected.

5.2.1 Microwave

House 1

Microwave House 1

77.52

P.T.E.C.C.

10 100 99.74 99.17 99.72
ui o
w
@©
Z 05 Q2 = 5
= 57.01 58.48 | 3
- = |
= <
0.12 0.09
.04 0.05 04 0.
I 004, s | .
0 1 2 3 4 5 5
100
g . 2 5
o 4 —
[% [T
0

Figure 5.1: Validation in the house 1 — Microwave.

46

House 3

Microwave House 3

o
o 62.57
Ll.i 50
[
o

0

0 2

o ‘ ‘ ‘ ‘ 100,99.66 99.83 99.40 99.63 99.78
ui o

w
. 0 c
Z 05 q 50 1
s 0.34 E §
0.13 0.15 <
. 0.01 . o :

Recall
F1 score

Precision

Figure 5.2: Validation in the house 3 — Microwave.

5.2.2 Dishwasher

House 1

Dishwasher House 1

P.T.E.C.C.

N
RMSE
Accuracy

0.08 0.09
0.03 _0.06 i 0.05

Precision
F1 score

Figure 5.3: Validation in the house 1 — Dishwasher.

47

House 3

Dishwasher House 3

‘ 89.17
J
J
Ll.i 50
[
a
0
o 2
10 ‘ : : : 15 : ‘ ‘ ‘ 100.99.28 99.54 98.93 99.76 99.51
ui 3
w
s ©
2 05 1 ‘é é
= o2 “20.33 22.61 1<
0.07 13.26 2% 832 826
0.05 0.02 0.03
000 1 2 3 4 5 00 1 2 3 4 5

Recall
F1 score

Precision

Figure 5.4: Validation in the house 3 — Dishwasher.

5.2.3 Refrigerator

House 1

Refrigerator House 1

82.06

P.T.E.C.C.

N
RMSE
Accuracy

57.64
50140.11 39.15 38.96 38.83 1

Recall
F1 score

Precision

Figure 5.5: Validation in the house 1 — Refrigerator.

48

House 3

Refrigerator House 3

76.21

100

.N.
RMSE
Accuracy

0.03 0.00 000 , 000 _003

Precision
F1 score

Figure 5.6: Validation in the house 3 — Refrigerator.

5.3 Testing on houses not seen during the training

In this section is performed the evaluation of the algorithm proposed on the
houses that were not seen during the training. The models are trained using 80%
of the data from a set of houses (as shown in table 5.1) and the disaggregation is
performed using data from different houses. The results of this scenario are shown

in the following figures.

49

5.3.1 Microwave

House 2

Microwave House 2

P.T.E.C.C.

61.47

Recall

RMSE

Precision

10099.89 99.96 99.32 99.80 99.92

Accuracy
"
2

F1 score

Figure 5.7: Test in the house 2 — Microwave.

5.3.2 Dishwasher

House 2

Dishwasher House 2

79.99

Recall

RMSE

1009882 98.91 98.84 99.48 99.19

Accuracy
wn
2

Precision

F1 score

Figure 5.8: Test in the house 2 — Dishwasher.

20

House 4

Dishwasher House 4

34.01
21.01

P.T.E.C.C.

12.64

Accuracy
@
2

Recall
Precision
F1 score

g

28.75 26.28

18.08 18.53

Figure 5.9: Test in the house 4 — Dishwasher.

5.3.3 Refrigerator

House 2

Refrigerator House 2

: 84.46
o
J
Lu' 50
[
a
0
0 2
1 T T T T 15
ul >
w
©
= o3 = 5 1
- = .l45.13 52.78 ¥
s s0l45. 41.36 40.13 43.37 g
006 500 ;2% 002 _0.05
o 0 1 2 3 4 5 5
100
= 5 o
© s o
S 13 { &= 1
o o —
o w

Figure 5.10: Test in the house 2 — Refrigerator.

51

House 6

Refrigerator House 6

77.57

RMSE
Accuracy

61.78 5g g3

Precision
F1 score

Figure 5.11: Test in the house 6 — Refrigerator.

5.4 Analysis of the results

The results on previous section show the power of the deep neural networks on
the NILM. All the models shown is this work were capable of obtain good results
even when disaggregating houses never seen before.

The GRU was the architecture with the best overall performance and the LSTM
network was the one with the worst performance. It shows how the specific archi-
tecture is very important for the performance, even for neural networks of the same
kind. In the case of the microwave none of networks have a significantly superior
performance. In the case of the dishwasher and refrigerator the GRU performed
best, they seem to capture the complex temporal consumption behaviour of those
appliances. Although the RNNs are good capturing temporal patterns, the large
window length used in the disaggregation of the refrigerator seems to threaten the
optimization. So, ways to improve its capacity can lead to even better performance
in the future.

The Residual architecture didn’t performed very well probably due to the low
number of layers used. They are specially good when optimizing very deep networks.

The results in the house 2 are better than in other houses. This is due to the low
number of circuits in this house compared to the others used for testing (11 circuits

in house 2 against around 20 in the others).

52

Another noticed fact is that training only with data of the house 1 was enough
to obtain models capable of generalize to unseen houses very well, although this is
not shown in this work.

In order to obtain a better understanding of the results on previous section, the
following figures present the estimated and the real consumption for the 3 appliances
in this work in the 2 scenarios created, the scenario used for validating and the one

used for testing.

Microwave

The figure 5.12 shows the disaggregated consumption of a microwave obtained
using the RCNN in the house 1, that is a house seen during the training.
The figure 5.13 shows the disaggregated consumption of a microwave obtained

using the RCNN in the house 2 (not seen during the training).

Dishwasher

The figure 5.14 shows the disaggregated consumption of a dishwasher obtained
using the RCNN in the house 1.

The figure 5.15 shows the disaggregated consumption of a dishwasher obtained
using the RCNN in the house 2.

Refrigerator

The figure 5.16 shows the disaggregated consumption of a refrigerator obtained
using the RCNN in the house 1.

The figure 5.17 shows the disaggregated consumption of a refrigerator obtained
using the RCNN in the house 2.

Those pictures show the power of the deep neural networks to recognize complex
patterns. Most of the errors committed are due to the low sampling frequency and
the use of only one feature, the active power. The figure 5.18 shows the difficulty
to differentiate the circuit labeled as “bathroom gfi” when the model is recogniz-
ing a microwave. The waveform is very similar when using only the active power,
threatening the disaggregation. The use of more features in the future is necessary

to improve the system.

93

1800 T T

— estimated consumption

— real consumption
1600

1400 4

1200 q

1000 4

Consumption (W)
®
3
S

600 4

200 q

i M |
0 20000 40000 60000 80000 100000 120000 140000 160000
Samples

(a) Microwave — Whole disaggregated consumption

— estimated consumption
F — real consumption
14001 1

1200+ 4

1000- 4

Consumption (W)
®
]
S

@
S
3

400 4

87800 87850 87900 87950 88000 88050
Samples

(b) Microwave — Extract of the disaggregated consumption

— estimated consumption
— real consumption
14001 1

1200+ 4

1000+ 4

800 4

Consumption (W)

600 q

0
94500 94600 94700 94800 94900
Samples

(¢) Microwave — Extract of the disaggregated consumption

Figure 5.12: Disaggregated consumption for a microwave in the house 1

o4

2000

‘ ‘ ‘ ‘ — estir‘nated consumption
— real consumption
15001]
g
s
‘g 10001 1
8
500 1
1 N A Ly [ilip |] “ i
0 50000 100000 150000 200000 250000 300000
Samples
(a) Microwave — Whole disaggregated consumption
‘ ‘ ‘ ‘ — estimated co‘nsumption
— real consumption
15001]
g
é 10001 1
£
8
500]
P 0
100 200 300 400 500
Samples +2.076e5
(b) Microwave — Extract of the disaggregated consumption
— estimated consumption
— real consumption
1500F) 4
g
g 1000 1
£
8
500]
50 100 150 200 250 300 350
Samples +2.46e5

(¢) Microwave — Extract of the disaggregated consumption

Figure 5.13: Disaggregated consumption for a microwave in the house 2

95

1400

— estimated consumption
— real consumption
12001
1000-
S oo}
c
2
s
£
5
2
S 600}
o
400
200
ol b n " 1 n n
0 20000 40000 60000 80000 100000 120000 140000 160000

Samples

(a) Dishwasher — Whole disaggregated consumption

1200[‘—»LLQ‘M ‘ L\A\«“ — estin‘1ated consumption ||
— real consumption
1000 ﬁﬂ
800
g
g 600-
8
400
|
200
014500 15000 15500 16000
Samples
(b) Dishwasher — Extract of the disaggregated consumption
— estimated consumption
12001 L — real consumption
- L‘NN ﬁ
1000+
__ 80op
B
s
£
> 600F
S
400}
200+
116000 116500 117000 117500

Samples
(c) Dishwasher — Extract of the disaggregated consumption

Figure 5.14: Disaggregated consumption for a dishwasher in the house 1
56

1600 T T

— estimated consumption
— real consumption
1400F]

12001 q

1000+ q

Consumption (W)
©
2
S

600

| { I\ . |\ Ll “\ . \|‘J L.

L | IE—— A
0 50000 100000 150000 200000 250000 300000
Samples

(a) Dishwasher — Whole disaggregated consumption

— estimated consumption
— real consumption
1200F L»NNW g
1000 (NW 1

@
S
s}

Consumption (W)
P
2
S

400+

8200 8400 8600 8800 9000 9200
Samples

(b) Dishwasher — Extract of the disaggregated consumption

L\P»M — estimated consumption
1200f L""\’WW — real consumption |

1000+

Consumption (W)

A n n
199200 199400 199600 199800 200000 200200
Samples

(c) Dishwasher — Extract of the disaggregated consumption

Figure 5.15: Disaggregated consumption for a dishwasher in the house 2
57

2500

‘ — estimate(‘i consumption
— real consumption
2000
s 1500
§
H
£
8 1000
500
% 20000 40000 60000 80000 100000 120000 140000 160000
Samples
(a) Refrigerator — Whole disaggregated consumption
T =
— estimated consumption
— real consumption
800
600}
g
5
g L
£ 400
o
200+
34000 36000 38000 40000 42000 44000 46000 48000
Samples
(b) Refrigerator — Extract of the disaggregated consumption
— estimated consumption
350} — real consumption
300+
2501

Consumption (w)
2:'
7

4
——
v
>
7z
~—
Pa
-
Y g

——
——

150}

100}

50+

98000 100000 102000 104000
Samples

(c) Refrigerator — Extract of the disaggregated consumption

Figure 5.16: Disaggregated consumption for a refrigerator in the house 1
58

2500

— estir‘nated consumption
— real consumption
2000
s 15001
s
H
£
8 1000}
500}
i I
o h L n i LTI L il UL
0 50000 100000 150000 200000 250000 300000
Samples
(a) Refrigerator — Whole disaggregated consumption
T ‘ — estimated‘ consumption |
— real consumption
200+]
B 150+ \ 1
§
H
£
S 100}
50F
r\L _ :" - -T-w[l :L = £ ‘g — | :F)] p— :‘l = ‘=m Flﬁ |
14000 16000 18000 20000 22000 24000 26000
Samples
(b) Refrigerator — Extract of the disaggregated consumption
— estimated consumption
s00l — real consumption
400
g
§ 3001
c
§
200+
100+
0 204000 206000 208000 210000 212000 214000 216000
Samples

(c) Refrigerator — Extract of the disaggregated consumption

Figure 5.17: Disaggregated consumption for a refrigerator in the house 2
59

Consumption (W)

Consumption (W)

35001

30001

2500

2000

1500+

1000+

—fm—’-*\w

— estimated consumption
— real consumption
— total consumption

43800 43900 44000

Samples

44100

44200 44300

(a) The misclassification over the total consumption

1600+

1400+

1200+

1000+

®
S
3

400+

200+

—

— estimated consumption microwave |]
— real consumption bathroom gfi

43900 43950
Ssamples

44000

44050

(b) The model misclassifying a “bathroom gfi” as a microwave

Figure 5.18: Microwave misclassification

60

Chapter 6
Conclusions

“Elementary, my dear Watson.”

Sherlock Holmes

6.1 General Conclusion

This work showed how deep neural networks can be a suitable choice for NILM.
The final simulations lasted for 10 days on 3 GPUs. As the main contributions of

this work can be cited:

e Study of how deep learning can be applied on NILM and its potential to solve
the problem;

e Development of techniques to control overfitting and also show how with a
relatively small amount of real data, the deep learning techniques can also be

applied.

The results are very impressive when taking in account that was used only the
active power sampled at each 4 seconds. Comparing with other large scale problems
approached with deep learning nowadays, a hardware of low cost was used. The
results obtained in this work very probably can be largely improved by simply scaling
the system using better hardware, larger networks, more data and features for the
training. Features like the time and day of the week when training could also be
useful to identify common patterns of appliance’s usage, but they were not used
is this work. Although the potential to the future is huge, many issues must be

overcomed, some of those are discussed on the next section.

61

6.2 Limitations and Future Work

“I’ll be back.”

The Terminator

The solution presented in this work still has much room for improvement. Many
things can be tried to improve the system. Train on large models and different
architectures using regularization methods can lead to a lower generalization error.
Also, large models suffer less from problems like poor local minima, even though the
error surface can present many plateaus in practice it is often a good choice [75].

Attentions models also seems to be a good option because they can focus in the
important parts of the signal, hence improving the capabilities of the whole system.
On NILM they could look exactly where there are some event happening on the
signal. In this context, Spatial Transformer Network |76] is a kind of neural network
that provides spatial transformation capabilities to the architecture. The Spatial
Transformer module is capable of look at the most important parts of the input, in
a way very similar of how the humans understand the data, improving the accuracy
of some systems [76] and also allowing the possibility of downsample the input data
without reduce the power of the system.

Another clustering algorithms might be more appropriated to NILM, hence test-
ing other methods like GMMSs or others statistical based approaches can be a good
choice. Use a method to automatically estimate the number of clusters can also be
beneficial, like the gap statistic [68], although we tried it in this work in conjunction
with the optimal dynamic programming clustering and it did not worked very well.

Create hybrid models are a good choice in many problems (e.g. speech recogni-
tion and Go), so they can turn out to be a good option also on NILM.

PAPERNOT et al. |77] showed how adversarial examples can be used to fool the
neural networks in a bad way, in the case of NILM they can be used to manipulate
the inferred consumption in the way that is harmful for both the user and the electric
utility. In the future, it is important to study better adversarial examples in the
NILM and also create neural networks robust to this kinds of examples.

Pseudo-labelling [78] maybe also be used to fine-tuning networks in houses with-
out or with a small quantity of circuit level data. It can be a very good option to
NILM due to the fact that on NILM that quantity of unlabelled data is by far larger
than the labeled data.

In this work due to the lack of appliances using only one circuit, the quantity of
different appliance types tested was small. In order to validate better the techniques
presented in this work, more data from different appliances types must be tested to

see how the deep learning algorithms proposed behave. Beyond of that, the use of

62

more data is essential to improve the capacity of generalization of the networks, a
big quantity of different data describing a same appliance type must feed the neural
networks to obtain networks which generalize better to new houses and work well in
large scale. Also in this work all the houses used in the training and testing contained
only one appliance with the same type of the target appliance. It is important in
the future to train and test on houses with multiple appliances of the same type.
Notice that the results shown here could be also improved using an ensemble of
models. Since the objective of this work is show the potential of using deep neural

networks on NILM and not obtain the best fine-tuned results, it was not done.

63

Bibliography

[1] CARRIE ARMEL, K., GUPTA, A., SHRIMALI, G., et al. “Is disaggregation
the holy grail of energy efficiency? The case of electricity”, Energy Policy,
v. 52, n. C, pp. 213-234, 2013. Disponivel em: <http://EconPapers.
repec.org/RePEc:eee:enepol:v:52:y:2013:1i:c:p:213-234>.

[2] KOLTER, J. Z., JOHNSON, M. J. “REDD: A Public Data Set for Energy
Disaggregation Research”. In: SustKDD Workshop on Data Mining Ap-
plications in Sustainability, 2011.

[3] BERGSTRA, J., BREULEUX, O., BASTIEN, F., et al. “Theano: a CPU and
GPU Math Expression Compiler”. In: Proceedings of the Python for Sci-
entific Computing Conference (SciPy), jun. 2010. Oral Presentation.

[4] BASTIEN, F., LAMBLIN, P., PASCANU, R., et al. “Theano: new features
and speed improvements”, CoRR, v. abs/1211.5590, 2012. Disponivel em:
<http://arxiv.org/abs/1211.5590>.

[5] HART, G. “Nonintrusive appliance load monitoring”, Proceedings of the IEEE,
v. 80, n. 12, pp. 1870-1891, Dec 1992. ISSN: 0018-9219. doi: 10.1109/5.
192069.

[6] DARBY, S. The effectiveness of feedback on energy consumption: a review for
DEFRA of the literature on metering, billing and direct displays. Re-
latério técnico, Environmental Change Institute, University of Oxford,
2006. Disponivel em: <http://www.eci.ox.ac.uk/research/energy/
electric-metering.php>.

[7] NEENAN, B., ROBINSON, J. Residential FElectricity Use Feedback: A
Research Synthesis and FEconomic Framework. Relatorio técnico,
2009. Disponivel em: <http://www.epri.com/abstracts/Pages/
ProductAbstract.aspx?ProductId=000000000001016844>.

[8] SUZUKI, K., INAGAKI, S., SUZUKI, T., et al. “Nonintrusive appliance load
monitoring based on integer programming”. In: SICE Annual Conference,

2008, pp. 2742-2747, Aug 2008. doi: 10.1109/SICE.2008.4655131.

64

http://EconPapers.repec.org/RePEc:eee:enepol:v:52:y:2013:i:c:p:213-234
http://EconPapers.repec.org/RePEc:eee:enepol:v:52:y:2013:i:c:p:213-234
http://arxiv.org/abs/1211.5590
http://www.eci.ox.ac.uk/research/energy/electric-metering.php
http://www.eci.ox.ac.uk/research/energy/electric-metering.php
http://www.epri.com/abstracts/Pages/ProductAbstract.aspx?ProductId=000000000001016844
http://www.epri.com/abstracts/Pages/ProductAbstract.aspx?ProductId=000000000001016844

[9) GHAHRAMANTI, Z., JORDAN, M. I. “Factorial Hidden Markov Models”, Mach.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Learn., v. 29, n. 2-3, pp. 245-273, nov. 1997. ISSN: 0885-6125. doi: 10.
1023/A:1007425814087. Disponivel em: <http://dx.doi.org/10.1023/
A:1007425814087>.

PARSON, O. “Unsupervised Training Methods for Non-intrusive Appliance
Load Monitoring from Smart Meter Data”, April 2014. Disponivel em:
<http://eprints.soton.ac.uk/364263/>.

KOLTER, J. Z., JAAKKOLA, T. “Approximate Inference in Additive Facto-
rial HMMs with Application to Energy Disaggregation”. In: Lawrence,
N. D., Girolami, M. A. (Eds.), Proceedings of the Fifteenth International
Conference on Artificial Intelligence and Statistics (AISTATS-12), v. 22,
pp. 1472-1482, 2012. Disponivel em: <http://jmlr.csail.mit.edu/
proceedings/papers/v22/zicol2/zicol2.pdf>.

PARSON, O., GHOSH, S., WEAL, M., et al. “Non-intrusive load monitoring us-
ing prior models of general appliance types”. In: Proceedings of the Twenty-
Sizth Conference on Artificial Intelligence (AAAI-12), pp. 356-362, July
2012. Disponivel em: <http://eprints.soton.ac.uk/336812/>.

KELLY, J., KNOTTENBELT, W. J. “Neural NILM: Deep Neural Networks
Applied to Energy Disaggregation”, CoRR, v. abs/1507.06594, 2015.
Disponivel em: <http://arxiv.org/abs/1507.06594>.

BERGES, M., GOLDMAN, E., MATTHEWS, H. S., et al. “Enhancing Elec-
tricity Audits in Residential Buildings with Nonintrusive Load Moni-
toring”, Journal of Industrial Ecology, v. 14, n. 5, pp. 844-858, out.
2010. ISSN: 10881980. doi: 10.1111/j.1530-9290.2010.00280.x. Disponivel
em: <http://onlinelibrary.wiley.com/doi/10.1111/3.1530-9290.
2010.00280.x/pdf >.

GUPTA, S., REYNOLDS, M. S., PATEL, S. N. “ElectriSense: Single-Point
Sensing Using EMI for Electrical Event Detection and Classification in
the Home”. In: In Proceedings of the 12th ACM International Conference
on Ubiquitous Computing, pp. 139-148, 2010.

BATRA, N., KELLY, J., PARSON, O., et al. “NILMTK: An Open Source

Toolkit for Non-intrusive Load Monitoring”. In: International Conference
on Future Energy Systems (ACM e-Energy), 2014. Disponivel em: <http:
//www.orchid.ac.uk/eprints/223/1/NILMTK. pdf >.

65

http://dx.doi.org/10.1023/A:1007425814087
http://dx.doi.org/10.1023/A:1007425814087
http://eprints.soton.ac.uk/364263/
http://jmlr.csail.mit.edu/proceedings/papers/v22/zico12/zico12.pdf
http://jmlr.csail.mit.edu/proceedings/papers/v22/zico12/zico12.pdf
http://eprints.soton.ac.uk/336812/
http://arxiv.org/abs/1507.06594
http://onlinelibrary.wiley.com/doi/10.1111/j.1530-9290.2010.00280.x/pdf
http://onlinelibrary.wiley.com/doi/10.1111/j.1530-9290.2010.00280.x/pdf
http://www.orchid.ac.uk/eprints/223/1/NILMTK.pdf
http://www.orchid.ac.uk/eprints/223/1/NILMTK.pdf

[17] SERRE, T., KREIMAN, G., KOUH, M., et al. “A quantitative theory of im-
mediate visual recognition”, PROG BRAIN RES, pp. 33-56, 2007.

[18] HINTON, G. E., OSINDERO, S., TEH, Y.-W. “A Fast Learning Algorithm
for Deep Belief Nets”, Neu ral Comput., v. 18, n. 7, pp. 1527-1554, jul.
2006. ISSN: 0899-7667. doi: 10.1162/neco0.2006.18.7.1527. Disponivel em:
<http://dx.doi.org/10.1162/neco.2006.18.7.1527>.

[19] BENGIO, Y., LAMBLIN, P., POPOVICI, D., et al. “Greedy layer-wise training
of deep networks”. In: In NIPS. MIT Press, 2007.

[20] LECUN, Y., BOTTOU, L., BENGIO, Y., et al. “Gradient-based learning ap-
plied to document recognition”. In: Proceedings of the IEEE, pp. 2278~
2324, 1998.

[21] “NVIDIA’s roadmap”. http://videocardz.com/55218/nvidia-unveils-
roadmap-for-2015-2018, 2015. [Online; accessed 30-January-2016].

[22] KRIZHEVSKY, A., SUTSKEVER, 1., HINTON, G. E. “ImageNet Classifica-
tion with Deep Convolutional Neural Networks”. In: Pereira, F., Burges,
C. J. C., Bottou, L., et al. (Eds.), Advances in Neural Information
Processing Systems 25, Curran Associates, Inc., pp. 1097-1105, 2012.
Disponivel em: <http://papers.nips.cc/paper/4824-imagenet-

classification-with-deep-convolutional-neural-networks.pdf>.

[23] RUSSAKOVSKY, O., DENG, J., SU, H., et al. “ImageNet Large Scale Vi-
sual Recognition Challenge”, International Journal of Computer Vision
(IJCV), v. 115, n. 3, pp. 211-252, 2015. doi: 10.1007/s11263-015-0816-y.

[24] « ImageNet Large Scale Visual Recognition Challenge (ILSVRC)”.
http://blog.clip.mn/2016/01/06/the-relevance-of-artificial-
intelligence-to-digital-video-creation-consumption-and-

monetization/, 2016. [Online; accessed 30-January-2016].

[25] SILVER, D., HUANG, A., MADDISON, C. J., et al. “Mastering the game of
Go with deep neural networks and tree search”, Nature, v. 529, n. 7587,

pp. 484-489, jan. 2016. ISSN: 0028-0836. doi: 10.1038/naturel6961.
Disponivel em: <http://dx.doi.org/10.1038/naturel16961 >.

[26] GRAVES, A., SCHMIDHUBER, J. “Offline Handwriting Recognition with

Multidimensional Recurrent Neural Networks”. .

66

http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://videocardz.com/55218/nvidia-unveils-roadmap-for-2015-2018
http://videocardz.com/55218/nvidia-unveils-roadmap-for-2015-2018
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://blog.clip.mn/2016/01/06/the-relevance-of-artificial-intelligence-to-digital-video- creation-consumption-and-monetization/
http://blog.clip.mn/2016/01/06/the-relevance-of-artificial-intelligence-to-digital-video- creation-consumption-and-monetization/
http://blog.clip.mn/2016/01/06/the-relevance-of-artificial-intelligence-to-digital-video- creation-consumption-and-monetization/
http://dx.doi.org/10.1038/nature16961

27]

28]

[29]

[30]

[31]

[32]

33

[34]

GRAVES, A., LIWICKI, M., FERNANDEZ, S., et al. “A Novel Connectionist
System for Unconstrained Handwriting Recognition”, IEEE Trans. Pat-
tern Anal. Mach. Intell., v. 31, n. 5, pp. 855-868, maio 2009. ISSN:
0162-8828. doi: 10.1109/TPAMI.2008.137. Disponivel em: <http:
//dx.doi.org/10.1109/TPAMI.2008.137>.

GRAVES, A., MOHAMED, A., HINTON, G. E. “Speech Recognition with Deep
Recurrent Neural Networks”, CoRR, v. abs/1303.5778, 2013. Disponivel
em: <http://arxiv.org/abs/1303.5778>.

SIEGELMANN, H. T., SONTAG, E. D. “Turing Computability With Neural
Nets”, Applied Mathematics Letters, v. 4, pp. 77-80, 1991.

WERBOS, P. “Backpropagation through time: what does it do and how to do
it”. In: Proceedings of IEEFE, v. 78, pp. 1550-1560, 1990.

RUMELHART, D. E., HINTON, G. E., WILLIAMS, R. J. “Neurocomput-
ing: Foundations of Research”. MIT Press, cap. Learning Representations
by Back-propagating Errors, pp. 696-699, Cambridge, MA, USA, 1988.
ISBN: 0-262-01097-6. Disponivel em: <http://dl.acm.org/citation.
cfm?i1d=65669.104451>.

HERMANS, M., SCHRAUWEN, B. “Training and Analysing Deep Re-
current Neural Networks” In: Burges, C., Bottou, L., Welling, M.,
et al. (Eds.), Advances in Neural Information Processing Systems
26, Curran Associates, Inc., pp. 190-198, 2013. Disponivel em:
<http://papers.nips.cc/paper/5166-training-and-analysing-

deep-recurrent-neural-networks.pdf>.

GLOROT, X., BENGIO, Y. “Understanding the difficulty of training deep
feedforward neural networks.” In: Teh, Y. W. Titterington, D. M.
(Eds.), AISTATS, v. 9, JMLR Proceedings, pp. 249-256. JMLR.org,
2010. Disponivel em: <http://dblp.uni-trier.de/db/journals/
jmlr/jmlrp9.html#GlorotB10>.

SUTSKEVER, I., MARTENS, J., DAHL, G. E., et al. “On the importance
of initialization and momentum in deep learning”. In: Dasgupta, S.,
Mcallester, D. (Eds.), Proceedings of the 30th International Conference
on Machine Learning (ICML-13), v. 28, pp. 1139-1147. JMLR Work-
shop and Conference Proceedings, maio 2013. Disponivel em: <http:

//jmlr.org/proceedings/papers/v28/sutskeverl3.pdf >.

67

http://dx.doi.org/10.1109/TPAMI.2008.137
http://dx.doi.org/10.1109/TPAMI.2008.137
http://arxiv.org/abs/1303.5778
http://dl.acm.org/citation.cfm?id=65669.104451
http://dl.acm.org/citation.cfm?id=65669.104451
http://papers.nips.cc/paper/5166-training-and-analysing-deep-recurrent-neural-networks.pdf
http://papers.nips.cc/paper/5166-training-and-analysing-deep-recurrent-neural-networks.pdf
http://dblp.uni-trier.de/db/journals/jmlr/jmlrp9.html#GlorotB10
http://dblp.uni-trier.de/db/journals/jmlr/jmlrp9.html#GlorotB10
http://jmlr.org/proceedings/papers/v28/sutskever13.pdf
http://jmlr.org/proceedings/papers/v28/sutskever13.pdf

[35]

[36]

37|

[38]

[39]

[40]

[41]

[42]

[43]

[44]

GERS, F. A., SCHRAUDOLPH, N. N., SCHMIDHUBER, J. “Learning
Precise Timing with Lstm Recurrent Networks”, J. Mach. Learn. Res.,
v. 3, pp. 115-143, mar. 2003. ISSN: 1532-4435. doi: 10.1162/
153244303768966139. Disponivel em: <http://dx.doi.org/10.1162/
153244303768966139>.

ELMAN, J. L. “Finding structure in time”, COGNITIVE SCIENCE, v. 14,
n. 2, pp. 179-211, 1990.

JORDAN, M. 1. Serial Order: A Parallel, Distributed Processing Approach.
Relatorio Técnico 8604, Institute for Cognitive Science, University of Cal-

ifornia, San Diego, 1986.

LE, Q. V., JAITLY, N., HINTON, G. E. “A Simple Way to Initialize Recur-
rent Networks of Rectified Linear Units”, CoRR, v. abs/1504.00941, 2015.
Disponivel em: <http://arxiv.org/abs/1504.00941>.

NAIR, V., HINTON, G. E. “Rectified Linear Units Improve Restricted Boltz-
mann Machines”. In: Firnkranz, J., Joachims, T. (Eds.), Proceedings of
the 27th International Conference on Machine Learning (ICML-10), pp.
807-814. Omnipress, 2010. Disponivel em: <http://www.icml12010.org/
papers/432.pdf >.

MARTENS, J., SUTSKEVER, I. “Learning Recurrent Neural Networks with
Hessian-Free Optimization”. In: Getoor, L., Scheffer, T. (Eds.), Proceed-
ings of the 28th International Conference on Machine Learning (ICML-
11), ICML ’11, pp. 1033-1040, New York, NY, USA, June 2011. ACM.
ISBN: 978-1-4503-0619-5.

HOCHREITER, S., SCHMIDHUBER, J. “Long Short-term Memory”. 1997.

GERS, F. A., SCHRAUDOLPH, N. N., SCHMIDHUBER, J. “ Learning Precise
Timing with LSTM Recurrent Networks”, v. 3, pp. 115-143, 2002.

GERS, F., SCHMIDHUBER, J., CUMMINS;, F. “Learning to forget: continual
prediction with LSTM”. In: Artificial Neural Networks, 1999. ICANN
99. Ninth International Conference on (Conf. Publ. No. 470), v. 2, pp.
850-855 vol.2, 1999. doi: 10.1049/cp:19991218.

GRAVES, A. “Generating Sequences With Recurrent Neural Networks”, CoRR,
v. abs/1308.0850, 2013. Disponivel em: <http://arxiv.org/abs/1308.
0850>.

68

http://dx.doi.org/10.1162/153244303768966139
http://dx.doi.org/10.1162/153244303768966139
http://arxiv.org/abs/1504.00941
http://www.icml2010.org/papers/432.pdf
http://www.icml2010.org/papers/432.pdf
http://nic.schraudolph.org/pubs/GerSchSch02.pdf
http://nic.schraudolph.org/pubs/GerSchSch02.pdf
http://arxiv.org/abs/1308.0850
http://arxiv.org/abs/1308.0850

|45]

|46]

[47]

48]

[49]

[50]

[51]

[52]

[53]

[54]

CHO, K., VAN MERRIENBOER, B., GULCEHRE, C., et al. “Learn-
ing Phrase Representations using RNN Encoder-Decoder for Statistical
Machine Translation”, CoRR, v. abs/1406.1078, 2014. Disponivel em:
<http://arxiv.org/abs/1406.1078>.

CHUNG, J., GULCEHRE, C., CHO, K., et al. “Empirical Evaluation
of Gated Recurrent Neural Networks on Sequence Modeling”, CoRR,
v. abs/1412.3555, 2014. Disponivel em: <http://arxiv.org/abs/1412.
3555>.

HUBEL, D. H., WIESEL, T. N. “Receptive Fields and Functional Architec-
ture of Monkey Striate Cortex”, Journal of Physiology (London), v. 195,
pp. 215-243, 1968.

NAIR, V., HINTON, G. E. “Rectified Linear Units Improve Restricted Boltz-
mann Machines.” In: Fiirnkranz, J., Joachims, T. (Eds.), ICML, pp. 807
814. Omnipress, 2010. Disponivel em: <http://dblp.uni-trier.de/
db/conf/icml/icml12010.html#NairH10>.

SRIVASTAVA, N., HINTON, G., KRIZHEVSKY, A., et al. “Dropout: A Simple
Way to Prevent Neural Networks from Overfitting”, Journal of Machine

Learning Research, v. 15, pp. 1929-1958, 2014. Disponivel em: <http:
//jmlr.org/papers/vi5/srivastavald4a.html>.

LIANG, M., HU, X. “Recurrent Convolutional Neural Network for Object
Recognition”. In: The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2015.

“Recurrent Convolutional Layer”. https://github.com/stupiding/kaggle_
EEG, 2015. [Online; accessed 10-December-2015].

HE, K., ZHANG, X., REN, S., et al. “Deep Residual Learning for Image
Recognition”, CoRR, v. abs/1512.03385, 2015. Disponivel em: <http:
//arxiv.org/abs/1512.03385>.

LIN, T., MAIRE, M., BELONGIE, S. J., et al. “Microsoft COCO: Com-
mon Objects in Context”, CoRR, v. abs/1405.0312, 2014. Disponivel em:
<http://arxiv.org/abs/1405.0312>.

IOFFE, S., SZEGEDY, C. “Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift”, CoRR, v. abs/1502.03167,
2015. Disponivel em: <http://arxiv.org/abs/1502.03167>.

69

http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.3555
http://dblp.uni-trier.de/db/conf/icml/icml2010.html#NairH10
http://dblp.uni-trier.de/db/conf/icml/icml2010.html#NairH10
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://github.com/stupiding/kaggle_EEG
https://github.com/stupiding/kaggle_EEG
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1405.0312
http://arxiv.org/abs/1502.03167

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

|63]

[64]

LAURENT, C., PEREYRA, G., BRAKEL, P.; et al. “Batch Normalized Recur-
rent Neural Networks”, CoRR, v. abs/1510.01378, 2015. Disponivel em:
<http://arxiv.org/abs/1510.01378>.

HE, K., ZHANG, X., REN, S., et al. “Delving Deep into Rectifiers: Sur-
passing Human-Level Performance on ImageNet Classification”, CoRR,
v. abs/1502.01852, 2015. Disponivel em: <http://arxiv.org/abs/
1502.01852>.

SAXE, A. M., MCCLELLAND, J. L., GANGULI, S. “Exact solutions to the
nonlinear dynamics of learning in deep linear neural networks”, CoRR,
v. abs/1312.6120, 2013. Disponivel em: <http://arxiv.org/abs/1312.
6120>.

MAAS, A. L., HANNUN, A. Y., NG, A. Y. “Rectifier nonlinearities improve
neural network acoustic models”, Proc. ICML, v. 30, pp. 1, 2013.

BOTTOU, L., BOUSQUET, O. “The Tradeoffs of Large Scale Learning”. In:
Platt, J., Koller, D., Singer, Y., et al. (Eds.), Advances in Neural Informa-
tion Processing Systems, v. 20, NIPS Foundation (http://books.nips.cc),
pp. 161-168, 2008. Disponivel em: <http://leon.bottou.org/papers/
bottou-bousquet-2008>.

POLYAK, B. T. “Some methods of speeding up the convergence of iteration
methods”, USSR Computational Mathematics and Mathematical Physics,
v. 4, n. 5, pp. 1-17, 1964.

KINGMA, D. P., BA, J. “Adam: A Method for Stochastic Optimization”,
CoRR, v. abs/1412.6980, 2014. Disponivel em: <http://arxiv.org/
abs/1412.6980>.

TIELEMAN, T., H. G. “Lecture 6.5 - rmsprop, COURSERA: Neural Networks
for Machine Learning”. 2012.

DUCHI, J., HAZAN, E., SINGER, Y. “Adaptive Subgradient Methods for
Online Learning and Stochastic Optimization”, J. Mach. Learn. Res.,
v. 12, pp. 2121-2159, jul. 2011. ISSN: 1532-4435. Disponivel em:
<http://dl.acm.org/citation.cfm?id=1953048.2021068>.

GRAVES, A., SCHMIDHUBER, J. “Framewise phoneme classification with
bidirectional Istm and other neural network architectures”, Neural Net-
works, pp. 56, 2005.

70

http://arxiv.org/abs/1510.01378
http://arxiv.org/abs/1502.01852
http://arxiv.org/abs/1502.01852
http://arxiv.org/abs/1312.6120
http://arxiv.org/abs/1312.6120
http://leon.bottou.org/papers/bottou-bousquet-2008
http://leon.bottou.org/papers/bottou-bousquet-2008
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://dl.acm.org/citation.cfm?id=1953048.2021068

[65] BENGIO, Y., LOURADOUR, J., COLLOBERT, R., et al. “Curriculum Learn-
ing”. In: Proceedings of the 26th Annual International Conference on Ma-
chine Learning, ICML ’09, pp. 41-48, New York, NY, USA, 2009. ACM.
ISBN: 978-1-60558-516-1. doi: 10.1145/1553374.1553380. Disponivel em:
<http://doi.acm.org/10.1145/1553374.1553380>.

[66] ZAREMBA, W., SUTSKEVER, L “Learning to Execute”, CoRR,
v. abs/1410.4615, 2014. Disponivel em: <http://arxiv.org/abs/1410.
4615>.

[67] AVRAMOVA, V. Curriculum Learning with Deep Convolutional Neural Net-
works. Tese de Mestrado, KTH Royal Institute of Technology Stockholm,
2015.

[68] TIBSHIRANI, R., WALTHER, G., HASTIE, T. “Estimating the number of
clusters in a dataset via the Gap statistic”, v. 63, pp. 411-423, 2000.

[69] CORMEN, T. H., LEISERSON, C. E., RIVEST, R. L., et al. Introduction
to Algorithms, Third Edition. 3rd ed. , The MIT Press, 2009. ISBN:
0262033844, 9780262033848.

[70] WANG, H., SONG, M. “Ckmeans.1d.dp: Optimal k-means Clustering in One
Dimension by Dynamic Programming”, The R Journal, v. 3, n. 2, pp. 29—
33, 2011. Disponivel em: <http://journal.r-project.org/archive/
2011-2/RJournal_2011-2_Wang+Song.pdf >.

[71] HIRSCHBERG, D. S., LARMORE, L. L. “The least weight subsequence
problem”, 2013 IEEE 54th Annual Symposium on Foundations of Com-
puter Science, v. 0, pp. 137-143, 1985. ISSN: 0272-5428. doi: http:
//doi.ieececomputersociety.org/10.1109/SFCS.1985.60.

[72] EPPSTEIN, D., GALIL, Z., GIANCARLO, R. “Speeding up Dynamic Pro-
gramming”. In: In Proc. 29th Symp. Foundations of Computer Science,
pp. 488-496, 1988.

[73] YAO, F. F. “Efficient Dynamic Programming Using Quadrangle Inequali-
ties”. In: Proceedings of the Twelfth Annual ACM Symposium on The-
ory of Computing, STOC ’80, pp. 429-435, New York, NY, USA, 1980.
ACM. ISBN: 0-89791-017-6. doi: 10.1145/800141.804691. Disponivel em:
<http://doi.acm.org/10.1145/800141.804691 >.

[74] ROKACH, L. “Ensemble-based classifiers”, Artificial Intelligence Review, v. 33,
n. 1, pp. 1-39, 2009. ISSN: 1573-7462. doi: 10.1007/s10462-009-9124-7.
Disponivel em: <http://dx.doi.org/10.1007/s10462-009-9124-7>.

71

http://doi.acm.org/10.1145/1553374.1553380
http://arxiv.org/abs/1410.4615
http://arxiv.org/abs/1410.4615
http://journal.r-project.org/archive/2011-2/RJournal_2011-2_Wang+Song.pdf
http://journal.r-project.org/archive/2011-2/RJournal_2011-2_Wang+Song.pdf
http://doi.acm.org/10.1145/800141.804691
http://dx.doi.org/10.1007/s10462-009-9124-7

[75] PASCANU, R., DAUPHIN, Y. N., GANGULI, S., et al. “On the saddle point
problem for non-convex optimization”, CoRR, v. abs/1405.4604, 2014.
Disponivel em: <http://arxiv.org/abs/1405.4604>.

[76] JADERBERG, M., SIMONYAN, K., ZISSERMAN, A., et al. “Spatial Trans-
former Networks”, CoRR, v. abs/1506.02025, 2015. Disponivel em:
<http://arxiv.org/abs/1506.02025>.

[77] PAPERNOT, N., MCDANIEL, P. D., GOODFELLOW, 1. J., et al. “Prac-
tical Black-Box Attacks against Deep Learning Systems using Adversar-
ial Examples”, CoRR, v. abs/1602.02697, 2016. Disponivel em: <http:
//arxiv.org/abs/1602.02697 >.

[78] HYUN LEE, D. “Pseudo-Label: The Simple and Efficient Semi-Supervised
Learning Method for Deep Neural Networks”. .

72

http://arxiv.org/abs/1405.4604
http://arxiv.org/abs/1506.02025
http://arxiv.org/abs/1602.02697
http://arxiv.org/abs/1602.02697

	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Nonintrusive Load Monitoring
	1.2 About this work
	1.3 Text Structure

	2 Nonintrusive Load Monitoring
	2.1 Basic Concepts
	2.1.1 Event and Non-Event based methods
	2.1.2 Intrusive and Nonintrusive Monitoring
	2.1.3 Supervised, Unsupervised and Semi-supervised Learning
	2.1.4 Low and High Sampling Rate

	2.2 Reference Energy Disaggregation Dataset (REDD)

	3 Deep Learning
	3.1 Basic Concepts and Brief History
	3.2 Recurrent Neural Network
	3.2.1 Simple Recurrent Network (SRN)
	3.2.2 Long short-term memory (LSTM)
	3.2.3 Gated Recurrent Unit (GRU)

	3.3 Convolutional Neural Network
	3.4 Recurrent Convolutional Neural Network (RCNN) and Residual Learning
	3.5 Batch Normalization
	3.6 Initialization Methods
	3.6.1 Gaussian and Uniform initialization
	3.6.2 Glorot initialization
	3.6.3 Orthogonal initialization

	3.7 Optimization Methods
	3.7.1 Stochastic Gradient Descent (SGD)
	3.7.2 Nesterov Accelerated Gradient (NAG)
	3.7.3 ADAM

	4 Applying deep learning on NILM
	4.1 Pre-Processing
	4.2 Individual Appliance Identification
	4.3 Window Length Selection
	4.4 Choice of appliances
	4.5 Synthetic data generation and Curriculum Learning
	4.6 Space Quantization and Softmax classification
	4.7 Dynammic Programming
	4.7.1 Dynamic Programming algorithm for 1D clustering
	4.7.2 A divide and conquer dynamic programming based optimization for one dimensional clustering

	4.8 Test-time Sliding Window Approach
	4.9 Metrics

	5 Simulations and Results
	5.1 Applying on Real Data
	5.2 Validating on houses seen during the training
	5.2.1 Microwave
	5.2.2 Dishwasher
	5.2.3 Refrigerator

	5.3 Testing on houses not seen during the training
	5.3.1 Microwave
	5.3.2 Dishwasher
	5.3.3 Refrigerator

	5.4 Analysis of the results

	6 Conclusions
	6.1 General Conclusion
	6.2 Limitations and Future Work

	Bibliography

