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dar e que me ofereceu a possibilidade de o ajudar como monitor. Foi uma experiência

valiosa que não esquecerei.

Aos membros das equipes da EMC2 e do CENPES que estiveram juntos à equipe
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CUSTOS

Tiago Salviano Calmon

Março/2016

Orientador: Amit Bhaya

Programa: Engenharia Elétrica

Essa dissertação apresenta o modelo de parte de uma cadeia de suprimentos real

utilizada por uma grande empresa de óleo e gás. Esse modelo é construido utilizando

a metodologia de estoques e fluxos da literatura de sistemas dinâmicos e é baseado

em dados reais. A versão de espaço de estados do modelo, que contém atrasos e

chaveamento dependente de estado, é submetida a controle retroalimentado, usando

diversos controladores da familia do Sistema de Controle de produção baseado em

inventário e pedidos. A metodologia de previsão automática de demanda é utilizada

para previsão de demanda. Os parâmetros dos controladores são escolhidos por meio

de otimização de uma função de custo que reflete o custo operacional total. essa

otimização é feita por meio de um algoritmo genético. É feita uma comparação dos

controladores utilizando seus parametros ótimos e o resultado que esses controladores

atingem na função de custo.
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This dissertation presents a model of part of a real supply chain used by a large
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ogy from system dynamics and based on real data. The state-space version of the

model, which contains delays and state-dependant switching, is subject to feedback

control, using different controllers from the Inventory Order Based Production Con-

trol Sysyem family. The automatic demand forecasting methodology is used for

demand prediction. Controller parameters are chosen by optimizing a cost function

that reflects total operational costs through a genetic algorithm. A comparison of

the different controllers is carried out using the optimal controller parameters and

the proposed cost function.
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Chapter 1

Introduction

Offshore oil production plays a vital role in Brazil’s economy, and it is therefore very

important to provide robust logistics solutions that can ensure continuous produc-

tion from offshore installations, under conditions that involve both high values and

high risks.

Petrobras is the major state-owned oil company in Brazil, and is responsible for

96% of Brazilian oil and gas production. Recent discoveries of large reserves offshore,

estimated to contain about 12 billion recoverable barrels of oil equivalents (b o e) has

the potential of transforming Brazil into a world leader in oil production. However,as

opposed to the old reserves which are at an average depth of four kilometers below

sea level, the new reservoir formations are under an additional kilometer of rock

and another two kilometers of salt (in compressed form), in addition ti being about

three hundred kilometers from the closest ports on the Brazilian coast. Despite

these challenges, Petrobras has set itself the goal of doubling its production in the

next five year, and this will necessarily entail a huge investment in its supply chain

and a concomitant demand for cost-efficient logistics.

In the current worldwide scenario of falling petroleum prices, Petrobras faces the

additional problem of reducing production and logistics costs in order that exploita-

tion of its deep water and pre-salt oilfields remain viable. This is the overall context

in which the work reported in this dissertation was carried out with a specific focus

on modeling the logistics of petroleum supply chain. The short term objective is to

achieve a better understanding of the dynamics of the warehouse-to-offshore part of

the petroleum supply-chain and the longer term objective is to develop a tool that

could be used to help in dimensioning and economical design.

This dissertation covers the process of modeling the warehouse-to-offshore supply

chain using a Stock and Flow model [3],[4]. This is followed by the formulation of

an economic objective for the supply chain in question and the study of a class of

well known control schemes, the parameters of which are chosen in such a manner

as to optimize the proposed economic objective.
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1.1 Objectives

This report is about modeling and control of a supply chain using a control-theoretic

formulation and carrying cost optimization. The specific objectives are:

• To model a real world warehouse-to-offshore rig supply chain, contemplating

the main warehouse management issues, problems arising from post manage-

ment etc., and how these reflect on the total costs of the operation.

• To discuss how this proposed model can be controlled using different strategies

such as output feedback, state feedback and compensators that use demand

forecasting.

• To formulate an optimal control problem in which controller structure is fixed

and parameters must be chose so as to optimize an objective function that

represents total cost of the operation.

1.2 Organization of the Report

The text is organized as follows:

Chapter 2 contains a brief bibliographic review of the existing literature on the

application of controllers to mathematical models of supply chains.

Chapter 3 briefly reviews Stock and Flow Models which are then used to build

the final model, step by step. The state-space representation of the final Stock and

Flow model is also given.

Chapter 4 is devoted to explaining the fixed controller structures that will be

used as well as the process of automatically choosing the demand predictor [5].

In addition, an optimal control problem (OCP) is formulated, consisting of the

minimization of a function that represents the total costs of the operation, subject

to the dynamics of the supply chain to which a controller belonging to the IOBPCS

family has been applied. The parameters of the controller are found by solving the

OCP using a genetic algorithm.

Chapter 5 shows the results for both controllers and automatic forecaster algo-

rithm and compares controller performances based total cost.

Finally, chapter 6 makes some concluding remarks and suggests some possibilities

for future work.
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Chapter 2

Bibliographic Review

The problem of controlling supply chains has been studied since the 1950s and has

received a lot of attention, with many publications proposing different viewpoints

to tackle it. (for a sample see [6] and [7]).

These early papers introduced the simplest mathematical model of a supply

chain: a factory supplying a warehouse with a certain lead time or transportation

delay, in response to restocking orders from the latter, which, in turn, responds to

demand from a client further downstream. In control terminology, the plant consists

of an integrator/accumulator, preceded by a delay.

Since these pioneering works there has been a great number of papers on the

design of controllers for the simple model of a supply chain described above and

Ortega and Lin ([8]) provide a good review of this work.

In terms of modeling and simulation of simple supply chain, there has also been

a sustained effort, stemming from the work of Forrester ([9]) and Sterman ([3]).

The proportional integral derivative or PID controller is one of the most widely

used types of controllers. A PID controller uses one or more measurements from

the system to calculate an error (in the standard case, the difference between a

reference or set-point value and the measured value). This error is then subjected

to proportional, integral and derivative terms, which are then combined to generate

a control signal. Ortega and Lin ([8]) describe the use of PID control ideas in a

survey paper.

The basic continuous-time model of a simple inventory process consists of a delay

followed by an integrator, This model has been investigated intensively in the liter-

ature and Ortega and Lin ([8]) provide a comprehensive survey of the developments

and write that “none of the reviewed models implemented a systematic way to calcu-

late all the required model parameters” and furthermore, “some authors presented

suggestions to optimize some parameters, but no reference was found that tried to

obtain these values from a real system”.

Although the Ortega-Lin paper is relatively recent it emphasizes only classical
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control methodologies. A more recent survey ([10]) complements the Ortega-Lin

survey by presenting an extensive review of the application of the so called advanced

control methodologies to the production and inventory control problem. Specifically,

[10] describes different optimal control methods and, finally, approximate dynamic

programming methods. It is noted, however, that much of the literature is devoted

to models which are linear (because of the techniques applied) or quite simplified

(because of computational complexity of the advanced control methods, specially

those involving optimal control or dynamic programming).

In control of production-inventory systems, Inventory level is usually monitored

and the IBPCS (Inventory Based production control system) was coined by Towill

([11]) to describe the class of controllers that uses functions of errors defined by

deviations from a reference inventory level to generate a control signal.

Numerous studies were made about the tuning and functioning of the IOBPCS

(Inventory and Order based production control system) family. For example, [12]

uses APIBPCS (Automatic Pipeline Inventory based production control system)

control, or order up-to control, to measure bullwhip and investigate system behavior

using different values for the tuning parameters.

Bullwhip effect is a disruptive effect that can take place in a logistic system.

Since there are delays involved with the production and resupplying, controllers

usually use a estimate of the future demand. If that estimate is inaccurate, then

inventory level can sharply increase, leading to large variance in this particular state

of the system. Bullwhip refers, roughly speaking, to a large variance in inventory

level.

The paper [13] relates bullwhip reduction to the minimization of an appropriate

functional and proposes a method to optimize APIOBPCS parameters in order to

reduce bullwhip. It also proposes a explicit bullwhip formula.

These controllers and others that followed them, such as VIOBPCS and

APVIOBPCS are directly linked to classical PID-like control laws and utilize de-

mand forecasting. In fact, all of these controllers produce an input that results from

manipulation of state variables and disturbance (i.e. the demand).

These controllers are used on models that consider all product levels aggregate

or, alternatively, levels of a single product.

The reader is referred to the paper [14], for a Discrete Event System approach

to the production-inventory or supply chain simulation problem. controller.

In this context, this dissertation takes the following approach: The model is

built to be as close as possible to the real system, incorporating its non-linearities.

The controllers, on the other hand, are taken from the IOBPCS family of PID-

like controllers to be described below, with a fixed structure and parameters to be

chosen. A realistic cost function is formulated, and the controller parameters are
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then chosen by optimizing the former with respect to the latter.

Clearly, since the IOBPCS family of PID-like controllers was originally designed

for a linear production-inventory plant, when this family of controllers is applied to

the plant proposed in this dissertation, which contains non-linearities, the param-

eters must be chosen with an approach valid in the non-linear case. This is done

using a genetic algorithm to find the controller parameters, for each chosen and

fixed controller structure from the IOBPCS family, that optimizes a proposed (and

realistic) cost function.

In order to use controllers of the IOBPCS family one must tackle the problem

of forecasting demand in almost all variants, the only exception being the IBPCS

Controller itself, which only requires one feedback loop. The IBPCS controller block

diagram is depicted in figure 4.2 and it is explained briefly in section 4.1.1.

There has also been much research on the demand forecasting problem and

its relevance to the supply chain problem. Some researchers claim that demand

forecasting can lead to impaired stability, or even that PID control performs the

same role as forecasting but more efficiently, since PID Controllers are aware of the

feedback loops they create, unlike demand forecasting [15].

Specifically, the claim made in [15] is that, while forecasting and derivative con-

trol have similar reasoning behind them, the former often leads to more uncertainty

and the latter, less. Although both derivative control and forecasting predict trends,

they do so in different ways.

The paper [2] provides overview of all commonly used methods for forecasting

an unknown or stochastic variable.

The book [5] provides a comprehensive framework for demand predictor selection

that will be explained in more detail in section 4.2. It uses training data in multiple

tests of several models of exponential smoothed demand forecasting and calculates a

functional that computes the likelihood of the prediction provided by each model,

subsequently choosing the model that maximizes the likelihood.

The papers [16] and [17] use a simple production-to-stock model coupled with

a controller from classic control theory. While [16] has an interesting approach to

both the control and the forecasting problem by using respectively a PID control

attached to the APIOBPCS control scheme and Kalman Filters to forecast demand,

[17] is a generally simpler approach to the same problem and its goals are to provide

an educational resource and control tuning recommendations.

The paper [18] uses the same system structure in a different context, a chemical

process. Since the model to be controlled is the same, controllers proposed to control

supply chain models could also be applied in this case or other analogous contexts.

Similarly, the control scheme proposed by this work could also be used to control

supply chains.
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Chapter Summary: This chapter provided a brief summary of the literature

on control approaches to the production-inventory dynamical system model and

contextualized the approach taken in this dissertation to the specific problem of

modeling and control of a real supply chain.
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Chapter 3

Modeling Liquid Supply-Chain

Bulk Process

This chapter provides a general overview of part of the process that will be mod-

eled, commonly referred to as the upstream supply chain for offshore oil and gas

production. In order to arrive at a prototype model, the systems dynamics (SD)

approach, based on stocks and flows, was used initially and this modeling process

is described in detail. The chapter closes with a description of the cost function as

well as the state space model, which was used to write MATLAB code for the final

model, including the controller and cost function.

3.1 The upstream supply chain for offshore oil

and gas production

Figure 3.1 shows a schematic view of the upstream and downstream supply chains

to offshore installations
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Figure 3.1: Schematic of upstream and downstream supply chains. Source:[1]

The present dissertation limits its study to the upstream part of the supply chain

to offshore oilfields owned and operated by Petrobras, in the southeast of Brazil, an

area known as the Campos Basin. Within the upstream supply chain, for reasons

that will be given below, the study is further restricted to liquid bulk items.

Offshore installations need to be kept supplied with a large variety of items (the

complete list is available at Petronect, 2015). The term offshore installations used

in the title and body of this dissertation includes traditional production platforms,

floating production storage and offloading units (FPSOs), as well as drilling rigs.

These installations place requests to an onshore warehouse for supplies to be de-

livered. Offshore installation sizes vary from small, in the case of unmanned units,

to large, manned by several hundred workers. Platform supply vessels (PSVs) ply

on scheduled routes and serve these supply requests or demands, transporting cargo

from the port to the set of installations on their routes and also bring material

(waste, empty containers, etc.) from the installations back to the port (this reverse

transport, also referred to as backload, will not be considered in this dissertation).

The most crucial aspect of this supply chain is to fulfill all the demands in a timely

manner, so as to guarantee uninterrupted production of petroleum.

Petrobras, like most oil companies, charters PSVs from third parties. The cost

of chartering and operating PSVs is around USD 100,000 per day and is one of the

largest upstream logistics costs, so that immediate and important objectives are to

use as few PSVs as possible and, at the same time, maximize the use of each one

[19].

The overall goal of this dissertation and the project is to create a modeling and

simulation platform that is sufficiently general to encompass logistics and supply

chains that commonly occur in upstream supply chains for oil, but also providing

tools that allow inclusion of process detail in the specific case considered.
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3.2 Modeling and simulation approaches for sup-

ply chains

In order to justify our choice of modeling only the liquid bulk supply chain in this

dissertation, we first present a brief overview of the existing literature using all

methods, followed by one of related work using systems dynamics methods ([4], [3]).

There is a reasonable amount of literature in journals on operations research,

warehouse and supply chain management, as well as more specialized journals on

marine economics and logistics on the general topic of optimization different stages

of the process and some of the relevant papers will be cited below, although we will

mostly restrict ourselves to citing the literature using SD methodology. Supply chain

management issues are discussed by [20], where several strategies are examined to

improve supply chains in the oil and gas industries. An extensive review of general

supply chain modeling strategies is presented in [21], where the key challenges and

efforts to solve this problem are presented.

Computer simulation based analysis of logistics processes is also an important

field of research, computer simulations may provide important insights about the

whole process, allowing effective planning and optimization. Object-oriented simula-

tion is used by [22], while stochastic programming modeling and solution techniques

are used in [23] to solve the problem of planning logistics operations of oil companies.

Other approaches using discrete event simulation and stochastic methods to address

the problem of logistics and supply chain operations can be seen, for instance, in

[24], [25].

3.2.1 Models of upstream supply chain

As far as models of the upstream supply chain are concerned, most published studies

deal with the last stage, namely optimization of PSV routing and scheduling and

up to date bibliographies can be found in [1], as well as [26], to which we refer the

reader.

Systems dynamics models of the upstream supply chain have focused mainly on

problems related to maritime transport (see review [27]) and optimization of tanker

freight modeling ([28]) or tanker sizes ([29]) and container sizes ([30]). There are a

few papers devoted to more complete models (not specifically for upstream SCs),

such as [31] (modeling and simulation of the rail-port cycle).

Since there appear to be no published warehouse-to-offshore installation inte-

grated models, this dissertation is devoted to proposing such a model. Furthermore,

even the existing models are devoted to dry bulk transport and, as far as we know,

no models exist for liquid bulk transport. This fact, combined with the practical
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observation from Petrobras data that the largest demand from offshore installations

is, in fact, liquid bulk, led to the decision to focus on the latter.

3.3 Brief overview of the upstream supply chain

Figure 3.2: Stages of the offshore oil & gas upstream supply chain

Figure 3.2 shows the successive stages in the upstream supply chain, from demand

handling to delivery, including the picking process in the warehouse; the container-

ization of picked items to be transported to each offshore installation; truck trans-

portation from the warehouse to the port; the loading operation at the port; and

the shipping, using the scheduled routes of PSVs serving the offshore installations.

Figure 3.3 contains an overview of the process timeline used for planning the

logistics process. All orders are processed by an Integrated Planner (IP), which

distributes demands in accordance with PSV schedules and criticality of the de-

mand. When all demands have been handled and ordered appropriately, the IP

starts planning how to meet the demands, segmented by operational area. A rep-

resentative of the operational area performs a demand versus capacity analysis and

returns his conclusions to the IP. The IP then negotiates new due dates with the

offshore installations for the non-critical orders that are over capacity. Finally, it

plans daily activities for warehouse and transport operations, in order to ensure

that the planned schedule can actually be met in practice, when a limited amount

of uncertainties and unforeseen delays are present.
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Figure 3.3: Timeline for Offshore Oil & Gas Logistics planning used by US-LOG,

Petrobras

After the planning phase, the job of the logistics team is to execute the plan.

As shown in Figure 3.3, different types of materials shown in the three separate

horizontal flows, have different time-frames. Tubes (top flow) must start to be pre-

pared 14 days before scheduled PSV departure, materials in the warehouse (middle

flow) must have a transport requisition ready 7 days before and contracted materials

(bottom flow) must be planned in a 4-day ahead window.

The process is similar for the 3 branches shown in Fig. 3.3, although the time-

frames are different. The warehouse process is composed of picking the requested

items and making them available for packaging and, subsequently, containerization.

Containers are packed and loaded into a truck to be transported to the port. Truck

transportation has its own timeframe. When the containers reach the port, they are

loaded on to the scheduled PSV and transported to their respective destinations.

Each ship departure has a route, which usually consists of four to five destinations.

The ship unloads containers at each destination and then receives the backloads

(anything that needs to return to land). Routes are revisited periodically

3.4 Model building and assumptions for liquid

bulk supply chain

3.4.1 Model building methodology

The model presented in this dissertation was built as part of a collaborative project

involving Petrobras as client, the company EMC2 R© as consultant to Petrobras for

logistics and big data analytics and a university team (from COPPE/UFRJ) as
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consultant specialists in modeling. Engineers from Petrobras/CENPES (the research

center), researchers from EMC2 R©, and professors and students from the university

met regularly, in addition to visits to one of Petrobras’ warehouses. In addition,

engineers and operational staff from Petrobras’ logistics planning center (GIOP,

US-LOG) were interviewed and provided logged data of the logistics operation over

one year, information, as well as flow charts pertaining to the upstream supply

chain. These were the elements used to build the mathematical model described in

this dissertation.

3.5 Stock and Flow Diagrams

Stock and Flows diagrams are a convenient way to build and visualize complex dy-

namic systems as well as to understand macroscopic behavior by analysing Feedback

Loop Diagrams ([3],[4]) or the Stock and Flows diagram of the dynamical system.

Stocks are a representation of integrators or accumulators and the stock level is

usually referred to as the state of the system. The iconic representation of a stock

and a flow is shown in 3.4.

The stock, with its associated flow, corresponds to the discrete-time state space

recurrence on dynamical system:

x(k + 1) = x(k) + f(x, u, τ, w) (3.1)

where x is the state, u represents the control input, k represents discrete time, τ

represents a vector of integer constants that can be used to access previous states

of the system ,w represents disturbances, stochastic or deterministic and h is the

sampling period. The iconic representation is shown in Fig 3.5.

Figure 3.4: Icon that represents a Stock and two flows

Flows are a way to represent rates of flow to and from stocks. The representation

of a Flow is an arrow, emanating from a source or stock and passing through a

valve, to terminate in a sink or another stock. Sources and sinks are depicted by

cloud icons. Flows determine the rate of changes of states over time, thus represent

x(k + 1)− x(k).
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Figure 3.5: Icon that represents a the interconnection of a stock and a flow and

correspondence to equation 3.1. f(x, u, τ, w) is the difference Inflow −Outflow.

3.5.1 Conveyors

Conveyors are a special kind of stock-flow connection (in that order) used to repre-

sent delay. Conveyors are idealized versions of assembly lines: once an item enters

a conveyor, it stays in it for a specified amount of time (which can be deterministic

or random) and leaves it as soon as the residence time limit ( also referred to as a

delay τ) is reached. Figure 3.6 shows the iconic representation of this structure in a

stock and flow model.

Figure 3.6: Icon that represents a Conveyor in a Stock and Flow Diagram

3.5.2 Converters

Converters are used to define inputs to flows (allowing the introduction of formulas)

or to represent data coming from an external source, such as demand. Converters

are represented by a circle, as shown in Fig. 3.7.

Figure 3.7: Icon that represents a Converter in a Stock and Flow Diagram
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3.5.3 Interconnections

Stock, flows and converters are interconnected to build models. Figure 3.8 shows an

interconnected model containing all of the aforementioned structures. This simple

model, widely studied in literature, is called the manufacture to stock model.

The only element present in 3.8 that was not explained earlier is the single arrow

(the one emanating from the stock to the converter), which represents information

flow. In figure 3.8, Converter 1 carries out some calculations based on (possibly

historical) information about Stock 1 levels, while Flow 1 is a function of what was

calculated in Converter 1. Integrators such as Stocks or Conveyors can only supply

information, while Converters and Flows can either supply or receive information

from other structures.

Figure 3.8: The manufacture-to-stock model, shown in the figure, is a simple instance

of the use of the elementary building of stocks, flows, converters, conveyors and

information flow between them. This model is also referred to as conveyor-stock or

CS model. The conveyor represents the delay between placing an order (arrow from

converter 1 to flow valve 1), based on stock level at stock 1(arrow from stock 1 to

converter 1) and its arrival at stock 1, through Flow 2.

3.5.4 Model building assumptions and hypothesis

In the early stages of the modeling process, it was decided to build two models, an

aggregate model that would serve as a flight simulator and was intended to help in

making strategic decisions, as well as a more detailed microscopic model, that would

bookkeep movements of essentially every item in the whole process and is intended

to be used together with big data analytics to make predictive models, as accurate

as possible of specific process variables, such as lead time. This dissertation reports

on the former model, which was built using SD methodology, while the latter is

reported on elsewhere ([32]).
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Given that the warehouse has the usual structure, it was a natural decision

to use the standard stock-and-flow model of SD. For illustrative purposes, in this

dissertation, we decided to use just two offshore installations (one a production

platform and the other a drilling platform). The criterion for the choice of these two

was that the logged data showed that they had the highest volume of demand for

a one year period. As far as the demanded items are concerned, we chose, for the

purposes of the study reported here, the two items which had the highest demand,

and turned out to be the same two liquid bulk items, here referred as product A and

product B. This information led us to model the warehouse as a vector stock of the

two liquid bulk items. The demand from the two offshore installations (abbreviated

as rigs in this section, for brevity) is modeled as an array (rig X items) and, in

the experiments shown below, real data for a two month period was used. The

warehouse receives the processed rig demands and, since these are liquid bulk items,

we assume that they are grouped into separate tanks of a fixed capacity. Each tank

carries the label of the rig that demanded it. Tanks are transported by truck to

the port and grouped by PSV that contains their destination (i.e., demanding) rigs

on their route, using an FCFS queue for the tanks. Liquid bulk cargo, such as the

products mentioned above, are stored in separate storage compartments below deck

and thus do not compete for deck space with the dry bulk containers. In addition,

delivery of dry bulk containers and liquid bulk can occur simultaneously, since the

latter is pumped into tanks on the rig, while dry bulk containers are offloaded, from

PSV to rig, by cranes (Aas et al. 2009).

Since purchase data was not available, we used a simple model for restocking

based on a desired minimum stock level trigger. For the baseline case, all transport

delays (to warehouse, truck transport and maritime transport) were chosen as fixed

and compatible with the available real data.

The modeling process is now detailed step by step.
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3.5.5 Summary of model assumptions and hypothesis

• The model represents the two liquid bulk items that had highest demand in

the analysed real data.

• The warehouse is modelled as a vector of the two liquid bulk items mentioned

in the first assumption.

• The demand is represented as an array: rig × items.

• Items are grouped into separate tanks for each rig.

• One rig has fixed priority over the other one.

• Tanks are transported by truck from warehouse to port

• Port dispatches tanks to rigs on Platform Supply Vessels (PSVs);

• Tanks are grouped by supply vessel that contains their rigs on its route [First-

Come First-Served queue for tanks].

• Supply vessels are fed from FCFS queue according to their deck capacity.

3.6 Modeling Process

We are now ready to explain the modeling process.

We start by discussing the CS module in 3.8. This model represents a worksta-

tion, i.e., one module of the overall process. A generic item called a ”job” enters the

conveyor, which represents the process module with its corresponding delay. When

the process finishes, the item is put in the stock and is ready to be ”delivered”. If

the process module has limited capacity of handling a job (or for instance the job

inflow rate exceeds the process module capacity), it becomes necessary to place a

stock in front of the conveyor, as shown in 3.9.

Figure 3.9: The SCS Module. A Stock is added to the CS model in 3.8 to accumulate

Jobs that cannot be processed because of process capacity limitation

This new structure incorporates process module capacity limitation by adding

a stock of ”jobs” wating to be processed. Such modules are widely used (e.g. in
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the chemical industry [18]) and in the description of business processes, in which

there could be delays in both the entrance of the processing unit, as well as in the

processing itself.

The first step in modeling the process studied in this report was to represent each

task in the liquid bulk supply chain by a CS module. Subsequently, the CS modules

were connected in series in accordance with a process flow diagram provided by

logistics specialists of the oil & gas company. This resulted in a fairly complicated

model, and one that was difficult to be checked consistency using provided data.

Subsequently, after several meetings, interviews with the logistics specialists of

the company and data access, it became possible to arrive at a model that could

capture all the relevant process and give insightful information, yet simple enough

to be data verifiable. This final model is subdivided in three smaller submodels,

namely the Warehouse submodel of the model, the Loading Consolidation submodel

and, finally, the maritime transportation submodel that represents transportation

of liquid bulk from the port to the rigs.

In the warehouse portion 3.10 the model is similar to a stock-to-sales model.

Demand from rigs must be fulfilled in this portion, which accounts for the outflow

from Warehouse levels. The CS module is also used to describe the warehouse

replenishment process. The control input is the quantity of liters bought from

suppliers, and it is the most important control in the model. Good control of this

quantity means being able to fulfill the demand without letting the warehouse levels

become too high.

Figure 3.10: Warehouse submodel of the Liquid Bulk Supply Chain Model

The warehouse submodel feeds into the load consolidation submodel. The first

block of the load consolidation submodel is a conveyor to represent the process of

storing the liquid supply in tanks. This is followed by stock representing queue

of tanks ready to transport. The tanks are moved to the next conveyor using the

following rule: If the stock levels in port area plus transport to port stock levels are
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below a specified maximum allowed quantity, tanks are sent to the port until there

are no more tanks to send or the port capacity is reached. The port area for tanks,

represented by the stock port, is emptied on a periodic basis by loading tanks on to

a ”regularly scheduled vessel”. The operator of the system also has the opportunity

to send these tanks on an express vessel, in case of an emergency (meaning that a

regularly scheduled vessel is not available). Express vessels cost more than regularly

scheduled ones. In the Cost analysis that follows it will become clear that there is a

trade-off involved in avoiding the use of express vessels because longer queues also

mean increasing costs.

Figure 3.11: Ground Transportation portion of the Liquid Bulk Supply Chain Model

Finally, there are two flowcharts representing maritime transportation, one for

regularly scheduled vessels and another one for express vessels. These two flowcharts

are just conveyors since the levels of storage on the rigs are not relevant for this

particular model.

Figure 3.12: Maritime Transportation portion of the Liquid Bulk Supply Chain

Model

Figure 3.13 shows the complete model. There are some converters to perform

the appropriate unit conversions, a matter that will be discussed more thoroughly

in section 3.7
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Figure 3.13: Complete Liquid Bulk Supply Chain Model

Our interest is to calculate how this model fares in terms of cost of the whole

operation. To do so, we must use some values from variables in 3.13 to calculate

these costs. We also need a model that tells us how these costs are calculated. This

model is shown in figure 3.15
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Figure 3.14: Variables from the main model used in the sub-model of costs
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Figure 3.15: Sub-model of Costs

The sub-model of Costs is divided in four main areas. The first cost associated

with this operation management is the Operational Cost, which comprises handling

costs associated with resupplying and maintaining the Warehouse. Another impor-

tant cost that is directly linked to the Warehouse are the Material Costs, or the

prices paid in the act of buying goods to resupply the Warehouse. Contingency

Costs are penalties incurred due to delays in operations or the inability to fulfill

a particular demand. If one of these problems occurs, the Rig will need to stop

producing at some point, and there is an important cost (loss) associated with such

an event. Finally, transportation costs measure how much is spent in the act of

transporting the goods from the warehouse to the rig. These costs can increase

dramatically if the company needs to use Express Vessels often and, thus, good port

management is fundamental to keep these costs low.
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3.7 Mathematical Representation of Full Model

In this section the stock and flow model described in section 3.6 will be written as

a difference equation model. This difference equation or state-space model will be

used to formulate the optimal control problem of interest in this report, which is

discussed in section 4.3.

The Warehouse sub-model state vector consists of the Warehouse levels W (k)

and the state equations can be written as follows.

W (k) = W (k − 1) +O(k − τ)− ywo(k)

ywi(k) = ywi +O(k)−O(k − τ1)

W (0) = [W10 · · ·Wimax0 ]
′

ywi(0) = [0 · · · 0]′

(3.2)

where W (k) are the warehouse levels of liquids in liters at day k, imax is the number

of different items, tW (k) means to warehouse and measures the amount of liters in

transit, O(k) is the order placed by the Warehouse on day k, τ is the resupply delay

in days and ywo(k) means ready to dispatch and is a vector of sent items that can

be represented by equations 3.3

ywoi(k) = min

(
rmax∑
r=1

di,r(k),Wi(k)

)
(3.3)

where i represents the item dimension and di,r(k) represents the demand of rig r

and item i in day k, rmax represent the total number of rigs considered and di,∗ is a

column vector and represents the demand from all rigs for the item i.

After being processed in the warehouse, the liquid bulk goes through load con-

solidation, i.e. is pumped into tanks. The units used for liquid bulk change from

liters to tanks. The relationship between these two units is given by (3.4)

Nt = ceil

(
1

Klt

.l

)
(3.4)

where Nt is the number of tanks, Klt is the conversion rate (number of liters that can

be stored in a tank) between liters and tanks and l represents the quantity in liters,

and ceil operation is a function f : R 7→ Z and returns the first integer greater than

or equal to the quantity evaluated. This report uses a fixed value in simulations,

since real data indicate that this is the case. It is, of course, possible to simulate

with different tank sizes whenever it is the case of interest.

After the liquid bulk is placed in tanks, the number of tanks (partially or fully
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filled) needs to be accounted for in the bookkeeping process. Also, after this con-

solidation into tanks, it is only necessary to consider where these tanks need to be

delivered. Thus , after load consolidation, the number of tanks and the destination

rig become the variable to be accounted for.

Based on warehouse practice determined from interviews, the following assump-

tions are made in order to convert liters of dispatched liquid to number of tanks

filled:

• Each destination rig has a known priority.

• Rigs with higher priority are supplied, to the fullest extent possible, ahead of

those with lower priority. Thus, for example, in the case of two rigs, with one

having higher priority over the other, the full demand from the higher priority

rig is met first, whenever possible, followed by the demand of the lower priority

rig.

Equation 3.5 embodies these assumptions in a single mathematical formula.

Fr(k) = ceil

(∑imax

i=1 (max(min(di,1(k),Wi(k)−
∑r−1

j=1 Fj(k)), 0)

Klt

)
(3.5)

where F (k) means filled tanks to transport and measures how many tanks are going

to each rig, from the priority rig r = 1 to the lowest priority rig r = rmax.

A delay is used to represent the time required to fill the tanks, as follows:

tr(k) = tr(k − 1) + Fr(k − τ2)− wr(k)

tr(0) = 0
(3.6)

tr(k) denotes tanks ready to transport to rig r on day k, and τ2 is the delay asso-

ciated with the process of filling tanks. The next step in the process is once again

represented by a coupled CS module, involving qr(k) or truck transportation on day

k and P (k) or Port levels (in number of tanks) on day k. This system is represented

by the state equation below:

P (k) = P (k − 1) + w(k − τ3)− s(k)

q(k) = q(k − 1) + w(k)− w(k − τ3)

P (0) = [0 · · · 0]′

q(0) = [0 · · · 0]′

(3.7)
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where P ∈ Zrmax is a vector representing tanks at the port going to all destination

rigs, q ∈ Zrmax is a vector that represents tanks in transit by truck transportation

from warehouse to port, τ3 represents truck transport delay, w represents tanks to

truck transport and is given by (3.8), and s stands for to Supply Vessels and is given

by (3.9).

The formula for tanks-to-truck transport, indexed by rig r is given by:

wr(k) = min(tr(k − 1), Pr,max − (Pr(k) + qr(k))) (3.8)

where Pr,max stands for port maximum capacity for each rig. Equation 3.8 is inter-

preted as follows: If there is space at the port, send all tanks ready to transport. If

not, send as much as possible to fill all the available space at the port. For simplicity,

we will assume Pmax = Pr,max for all rigs. This means that it is being assumed that

the port has an equal area set aside for each Rig.

The total tank load to supply vessels, denoted s is calculated as follows:

sr(k) =


min((Pmax), Pr) if k mod TPSV = 0

min((Pmax/2), Pr) if k mod TPSV 6= 0 and EVD(k) = 1

0 otherwise

(3.9)

where TPSV is the period of regular scheduled PSV’s, EVD stands for Express

Vessel Decider and is a decision variable and a mod b is the operation defined by

the function mod : N× N∗ 7→ N which returns the remainder of the division a/b.

Finally, the travel time of the PSV to the Rig is represented by a simple conveyor,

as follows:

toRigr(k) = toRigr(k − 1) + sr(k)− sr(k − τ4) (3.10)

Since this process is assumed to occur with the same delay for regular and express

vessels, it is not relevant for the cost analysis.

Chapter Summary: This chapter described the general and specific contexts

underlying the liquid bulk supply chain (LSBC) model proposed in this dissertation.

The main assumptions that were made to build a stock-and-flow model of the LSBC

are then described, followed by the modeling process itself. A cost model and the

discrete-time state equations and formulas which characterize the proposed model

finalize the chapter.
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Chapter 4

Control of the proposed LSBC

model

This chapter focueses on control of the LSBC model introduced in chapter 3. The

control strategy, in general terms, is to use the well knpown family of IOBPCS

controllers, also described in chapter 3, originally designed for the simplest plus

integrator linear model of a production-inventory system, for the (nonlinear) LSBC

model. Since several controllers of the IOBPCS family use demand prediction, the

automatic demand forecasting methodology, due Hyndman et al. [2] is also briefly

described. Finally, in order to choose controller parameters, a genetic algorithm

is used to optimize the cost function (described in chapter 3) with respect to the

parameters. Controller performance is evaluated based on the use of these optimal

parameters.

4.1 The Inventory and Order Based Production

Control System (IOBPCS) family of Con-

trollers

This section reviews control of warehouse level W (k), which is the conventional

approach to supply chain control, focusing specifically on the family of IOBPCS

(Inventory and order based production control system) controllers.

In this report, controllers from the IOBPCS family for the warehouse submodel

will be compared. These controllers are usually used to control linear plants with a

single delay and a single integrator. Figure 4.1 shows the general structure of the

IOBPCS family of controllers.

These controllers rely on three kinds of policies for error handling, the Inventory

Policy, which processes the error of Inventory levels, the Demand Policy, which adds
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demand prediction to the decision variable and the Work-in-Progress(WIP) Policy,

which creates an error between the quantity that actually is being processed and

the desired quantity being processed at a given time instant.

Gi(z)

K

z−τ
∫
/
∑O(k − τ)

+

∫
/
∑

Ga(z)

Gw(z)

−

Gd(z)

Isp(k)

d(k)

+ O(k)

−
+

I(k)

WIP (k)

−

−

d̂(k)

+

e w
(k

)

+
+

Figure 4.1: The IOBPCS family of Controllers

Table 4.1 gives a detailed description of these blocks in each controller from the

IOBPCS family, for a linear plant consisting of a delay followed by an integrator

(accumulator)

Controller Inventory Ref Inventory Policy Demand Policy WIP Policy

IBPCS Constant Gi(z) = Kp Ga(z) = 0 Gd(z) = 0

Gw(z) = 0

IOBPCS Constant Gi(z) = Kp Ga(z) =
1

1−(1−a)z−1 Gd(z) = 0

Gw(z) = 0

VIOBPCS Multiple of De-

mand Prediction

Gi(z) = Kp Ga(z) =
1

1−(1−a)z−1 Gd(z) = 0

Gw(z) = 0

APIOBPCS Constant Gi(z) = Kp Ga(z) =
1

1−(1−a)z−1 Gd(z) = τ

Gw(z) = Kw

APVIOBPCS Multiple of De-

mand Prediction

Gi(z) = Kp Ga(z) =
1

1−(1−a)z−1 Gd(z) = τ

Gw(z) = Kw

Table 4.1: Transfer functions defining the IOBPCS family

In most MRPs (Material Resource Planning Systems), the controller that man-

ages orders is a simple relay-type control. It is assumed that the resupply delay is

known, if deterministic, or, if stochastic, that the mean, variance and probability

distribution function are given.
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The controllers keeps track of inventory levels. When these levels are below the

mean demand times resupply delay, the system orders a (usually fixed-size) bulk of

materials from the suppliers.

In this work we use a control similar to the ones present in MRP but more

sophisticated because the control used here does not always orders a fixed bulk, the

orders are instead a function of the demand prediction.

4.1.1 IBPCS: One Input, One Output

The simpler controller of the IBPCS family is the P-IBPCS (Proportional IBPCS),

which is simply achieved by making Inventory the only controlled variable and using

the error directly as the control input. More sophisticated IBPCS carry out some cal-

culation to obtain control input from error. This is the case of the PID-IBPCS, which

computes the control input after passing the raw error through a PID-Compensator.

Other structures could be used to sophisticate the IBPCS controller even further,

but the main focus of this work are the P-IBPCS and PID-IBPCS controllers
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−
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−
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+

e w
(k

)

+
+

Figure 4.2: The IBPCS Controller. The thicker lines indicates the parts of the full

block diagram which are used by this controller.

Equation 4.1 gives the equations corresponding to an IBPCS controller. Isp(k)

is usually a constant Isp (Inventory Set-Point). This controller has two adjustable

parameters, Kp and Isp which are chosen using conventional tools from a linear plant

([33],¡CITE ORTEGA¿), but will be chosen using optimization of a cost function

for the proposed nonlinear LSBC model.
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ei(k) = Isp(k)− I(k)

e(k) = ei(k)

u(k) = Kpe(k) (4.1)

4.1.2 IOBPCS: Two Inputs, One Output

IOBPCS Controller is a more elaborate version of the IBPCS controller. It has

everything IBPCS Controllers have and a new branch that adds demand prediction

to the error previously found on the IBPCS controller. This way, if a big fluctuation

in demand occurs, the IOBPCS controller should, in principle, respond better, since

the information from the disturbance (demand) is present in this controller. Figure

4.3 shows the structure used by an IOBPCS Controller.
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Figure 4.3: The IOBPCS Controller.The thicker lines indicates the parts of the full

block diagram which are used by this controller.

The discrete time equations for an IOBPCS controller are given in 4.2 shows how

works in a discrete system. Once again, Isp(k) is usually a constant Isp (Inventory

Set-Point). This controller has the same adjustable parameters as its predecessor,

but since it also relies on demand prediction, more parameters need to be set. If,

however, automatic demand forecasting, described latter, is used, then only Kp and

Isp need to be chosen.
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ei(k) = Isp(k)− I(k)

ed(k) = d̂(k)

u(k) = Kpei(k) + ed(k) (4.2)

4.1.3 VIOBPCS: Two Inputs, One Output

The complexity added by the VIOBPCS Controller when compared with the

IOBPCS Controller is that, in the VIOBPCS structure, the set point for inventory

levels is no longer a fixed parameter, instead, it is now a function of the demand

prediction. Again, several structures can be used to increase the complexity and

sophistication of this controller, such as PID controllers. The basic P-VIOBPCS

produces the output by comparing one state variable (I) with a function of the

demand.

While this feature may appear to be an improvement, the fact that we use

the demand information twice, in both producing the set-point for inventory and

adding it directly to the error variable, turns out to make this controller (and all

the other ones with variable inventory set-point from this family) quite sensitive for

the nonlinear plant, as shall be seen subsequently in simulation results.

Figure 4.4 shows the structures used by this controller.

Gi(s/z)

K

e−sτ/z−τ
∫
/
∑O(t− τ/k − τ)

+

∫
/
∑

Ga(s/z)

Gw(s/z)

−

Gd(s/z)

Isp(k)

d(k)

+ O(k)

−
+

I(k)

WIP (k)

−

−

d̂(k)

+

e w
(k

)

+
+

Figure 4.4: The VIOBPCS Controller. The thicker lines indicates the parts of the

full block diagram which are used by this controller.

The discrete time equations for VIOBPCS are given in 4.3. As stated previously,
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this controller relies on a variable reference for inventory level derived from demand

prediction. This controller has two adjustable parameters, which in this case are Kp

and K, the gain to transform demand prediction into inventory set-point.

ei(k) = Kd̂(k)− I(k)

ed(k) = d̂(k)

u(k) = Kpei(k) + ed(k) (4.3)

4.1.4 APIOBPCS: Three Inputs, One Output

The AP prefix stands for Automatic Pipeline, which means that this family of

controllers uses information from both states now, rather than just from Inventory

Levels. This extra structure permits it to calculate errors using the Work-in-progress

or WIP variable. Since there are two error variables, two PIDs could be used to

handle each error or one PID that acts on the aggregate error.

The main advantage of this control scheme is that it considers past control deci-

sions that have not yet influenced the Inventory State. Thus, if the system decided

to buy a large amount of goods at one time instant, this information will influence

its next decisions from the very next instant. This is an improvement from previous

controllers, in which the delay in receiving an order did not influence subsequent

decisions, which could lead to ordering a large bulk quantity repeatedly in a short

period of time, leading to undesirable Inventory Peaks.
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Figure 4.5: The APIOBPCS Controller. The thicker lines indicates the parts of the

full block diagram which are used by this controller.
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The APIOBPCS equation for discrete systems (4.4) has the same terms in 4.2

plus a new component in error, the WIP (Work-In-Progress) error. This component

aids specially when there are larger delays, since it perceives the amount of goods in

transit and inhibits repeated requests for supplies, which are, in fact, in the pipeline,

that would lead to undesirable bullwhip effect.

ei(k) = Isp(k)− I(k)

ed(k) = d̂(k)

ew(k) = τ.d̂(k)−WIP (K)

u(k) = Kpei(k) + ed(k) + ew(k) (4.4)

4.1.5 APVIOBPCS: Three Inputs, One Output

APVIOBPCS, as the name suggests, is a combination of all the controllers already

described. It works similarly to the APIOBPCS controller, but uses a variable set-

point for Inventory, in the same way that the VIOBPCS does.

Again, this apparent improvement may not produce better results if compared to

its fixed set-point version. The reasons for this are explained on the next paragraph.
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Figure 4.6: The APVIOBPCS Controller. The thicker lines indicates the parts of

the full block diagram which are used by this controller.

While this controller seems to be the most advanced when compared to others

from the IOBPCS family, the fact that it relies on demand prediction to calculate all

three errors makes it heavily dependent on accurate demand prediction. If demand
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is not reasonably precise, this controller might not perform as well as, for instance,

the APIOBPCS Controller.

ei(k) = Kd̂(k)− I(k)

ed(k) = d̂(k)

ew(k) = τ.d̂(k)−WIP (K)

u(k) = Kpei(k) + ed(k) + ew(k) (4.5)

4.1.6 Coupling PID Control with the IOBPCS family

The most widely used Controller from Classic Control Theory is the Proportional

Integrative Derivative Controller, or PID in short. The PID generates Control Input

using error as its input as described in equation 4.6

u(t) = Kp.e(t) +Ki

∫ t

0

e(τ)dτ +Kd
de(t)

dt
(4.6)

Since this work studies a discrete system, the discrete version of 4.6 is more

relevant. The discretization can be performed in several ways, one of which is the

backward Euler approximation. To do so, we differentiate the control law in order

to calculate u̇, which is shown in 4.7

u̇(t) = Kpė(t) +Kie(t) +Kdë (4.7)

Now applying the backward Euler transformation to (4.7) yields

u(tk)− u(tk−1)

h
= Kp

e(tk)− e(tk−1)
h

+Kie(tk)+Kd
e(tk)− 2e(tk−1) + e(tk−2)

h
(4.8)

where h is the sampling period. For a discrete model it is usual to use h as 1, since

the sampling period is chosen to be equal to the time constant, this:

u(k) = u(k−1)+Kp[e(k)−e(k−1)]+Kie(k)+Kd[e(k)−2e(k−1)+e(k−2)] (4.9)

Finally, it is enough to use the error, calculated from any of the controllers pre-

viously described, in the formula given by (4.9) to have a controller of the IOBPCS

family and a PID controller working in synchrony.
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4.2 Automatic Demand Forecasting

This section is based on [5] and briefly reviews the idea of so-called automatic de-

mand forecasting. The basic idea is to provide an automatic mechanism to choose

between the large variety of demand forecasting methods. Hyndman et al [5] intro-

duce a unified state-space description of the major forecasting methods and propose

a figure of merit that, when optimized, leads to the optimal method with respect to

this figure of merit.

Exponential Smoothing methods are a popular way to forecast a given stochas-

tic variable, and rely on 3 complementary kinds of forecasting: Error, Trend and

Seasonality. These models are known by the acronym ETS, meaning error, trend

and seasonality, respectively.

There are two different kinds errors, additive and multiplicative. Seasonal com-

ponents can be additive, multiplicative, or simply not exist. Likewise, Trend can

be additive, multiplicative, additive damped and multiplicative damped. Combin-

ing the two kinds of error, three kinds of seasonality and five kinds of trends, 30

different exponential smoothing methods are possible.

All of these 30 exponential smoothing methods can be written as an innovation

state space model, and they work as depicted by figures 4.7 and 4.8.
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Figure 4.7: Process of obtaining estimate for a given variable. From estimate x and

error ε,, observation y is made for a given time instant. The process goes on until

variable t reaches its prespecified limit.Figure reproduced from [2]
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Figure 4.8: An example of Automatic Forecasting Selection working. From all

exponential smoothing models, ETS forecasting with M,A,N) for Error, Trend and

Seasonality, which means (Multiplicative, Additive, None), is selected. Time Series

is plotted as well as forecasting error (the part with greyed area around).Figure

reproduced from [2]

The goal of the automatic forecaster is to minimize the likelihood L computed

from εi, i = 1, 2, ..., n.

Writing the coupled system-observer as state equations, we get equation (4.10).

yt = h(xt−1) + k(xt−1)εt

xt = f(xt−1) + g(xt−1)εt
(4.10)

Then, for additive errors, yt = µt + εt so that k(xt−1) = 1. If error is multiplica-

tive, then yt = µt(1 + εt) and k(xt−1) = µt.

The objective function being minimized is a function of the likelihood, and is

given by equation 4.11

L(θ∗, x0) = n log

(
n∑
t=1

ε2t/k
2(xt−1)

)
+ 2 log |k(xt−1)| = 2 log(likelihood) + constant

(4.11)

The goal then is to minimize L with respect to θ = (α, β, γ, φ), which are pa-

rameters of the estimator, and x0. One version of this function is known as AIC,
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or Akaike Information Criteria, and it is a penalized version of the Likelihood, as

written in (4.12).

AIC = −2log(L) + 2k (4.12)

where AIC is the Akaike Information Criterion, L is the Likelihood and k is the

number of parameters being estimated.

If L is Gaussian, AIC ' c + T log(MSE) + 2k where c is a constant, T is the

length of the time series, and MSE is calculated from one-step forecasts on training

sets.

For small T , AIC tends to over-fit. To correct this biased behaviour, corrected

AIC, denoted AICc adds another term to AIC, as shown in equation 4.13.

AICc = AIC +
2(k + 1)(k + 2)

T − k
(4.13)

Since in the practical case studied in this dissertation, the data provided by the

company contained only relatively small time series to analyse (up to 60 days), the

best estimator will be selected using the AICc criteria.

4.3 Formulation of the Optimal Control Problem

4.3.1 State Space Form of LSBC model

The system model presented in section 3.7 can be represented in state space form

(with the state toRig(·) being omitted since it does not affect the costs in this model)

by choosing the state vector as follows:

x(k) =


W (k)

ywi(k)

t(k)

P (k)

q(k)

 (4.14)

where
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W (k) = W (k − 1) +O(k − τ1)− ywo(k) (4.15)

ywi(k) = ywi(k − 1) +O(k)−O(k − τ1) (4.16)

t(k) = t(k − 1) + F (k − τ2)− w(k) (4.17)

P (k) = P (k − 1) + w(k − τ3)− s(k) (4.18)

q(k) = q(k − 1) + w(k)− w(k − τ3) (4.19)

Choosing the pair u(k) = [O(k) EVD(k)]′ as controls, interpreting demand as

an exogenous input, we can introduce the notation introduced below permits the

expression of the model dynamics in state space form

Let

u(k) :=

[
O(k)

EVD(k)

]
(4.20)

L(k) := ywo(k) = f(D(k)) (4.21)

N(k) := g(EVD(k), k) (4.22)

x(k) = x(k − 1) +


O(k − τ1)

O(k)−O(k − τ1)
0

g(EVD(k), k)

0

+


−f(d(k))

0

f(d(k − τ2))
0

0

 (4.23)

x(k) = x(k−1)+


0

1

0

0

0

u1(k)+


1

−1

0

0

0

u1(k−τ1)+


0

0

0

1

0

N(k, u2(k))+


−1

0

0

0

0

L(k)+


0

0

1

0

0

L(k−τ2)

(4.24)

4.3.2 Formulation of the cost function in terms of the state

variables

The function that it is desired to optimize is a Total Cost, and it is represented

by the sum of four main costs, namely the Operational Costs, which accounts for

inventory maintenance and storage process costs; the material costs, or the ones
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associated actively with buying liquid bulk from (possibly multiple) suppliers; the

transportation costs, which are the costs associated with transporting the tanks

from the ports to the rigs; and, finally, the contingency costs, costs associated with

out of stocks or tanks waiting without being able to move because the port capacity

is being used at its maximum.

This function is expressed mathematically by equation 4.25

C(k) = OC(k) +MC(k) + TC(k) + CC(k) (4.25)

Each of these four cost components are represented by equations that relate the

State Variables from the main model with these costs. These are seen in 4.26, 4.27,

4.28 and 4.29.

OC(k) = OC(k − 1) +
imax∑
i=1

(tWi(k).HuC +W (k)i.SuC) (4.26)

MC(k) = MC(k − 1) +
imax∑
i=1

Oi(k).BuC (4.27)

TC(k) = TC(k − 1) +
rmax∑
r=1

((EVDr(k) + 1).sr(k).sC) (4.28)

CC(k) = CC(k − 1) +
imax∑
i=1

(
rmax∑
r=1

Di,r(k)− ywoi(k)

)
.OoSuC

+
rmax∑
r=1

t(k).DuC

(4.29)

(4.30)

where HuC and SuC are the Handling Unit Cost and Storage Unit Cost, respec-

tively; BuC is the Buying Unit Cost per liter, sC is the Shipment Cost for Regular

Scheduled Vessels, and since EVD(·) can only be 0, when Express Vessels are not

used and 1 when Express Vessels are used, using this variable directly in the Trans-

portation Cost formula has the effect of doubling it when Express Vessels are used.

OoSuC is the (theoretical) cost associated with Out of Stocks that prevent Demand

from being fully fulfilled. DuC is the Delay Unit Cost and measures how the delay

of Tanks not able to proceed for the port impact the operation.

4.3.3 Formulation of the Optimal Control Problem

Finally, the optimal control problem is to minimize C(khoriz), in which the variable

khoriz denotes the last day of the simulation horizon. Let u(k) be defined with a
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state feedback function ϕ : Rζ×R2imax+3rmax×Rimaxrmax×R×R 7→ Rimax+rmax with

ζ denoting the parameters to be optimized, i.e.:

u(k) = ϕ(ζ, x(k), d̂(k), τ1, τ3). (4.31)

where ζ is a vector containing IOBPCS parameters and the Queue Thresholds

EVDthresh.

The Optimal Control problem can now be defined mathematically as

min
ζ

C(khoriz)

s.t. x(k) = G(x(k − 1), ϕ(ζ, x(k), d̂(k)), τ1, τ3) + L(k) + L(k − τ2) (4.32)

For EVD(·) control, t(·) levels are observed and it will be activated when a

certain threshold is met, the Waiting Line Threshold or Queue Threshold. This

constant is different for each destination r and will be selected by the Genetic Al-

gorithm, along with the parameters needed by the IOBPCS family of controllers.

4.4 Genetic Algorithm for the optimal control

problem

Genetic Algorithms provide a way to deal with difficult optimization problems, spe-

cially the ones without analytical solution, such as the one described in section 4.3,

in which the underlying dynamical system possesses non-linearities and delays.

This section explains the use of a genetic algorithm to find an optimal set of

parameters in the optimal control problem presented in section 4.3.

Genetic Algorithms are one of the many stochastic search optimization algo-

rithms from the class of meta-heuristic algorithms. Such algorithms, instead of

finding the global optimum analytically using derivatives of the objective function

and its constraints (e.g. KKT conditions), focus on incremental improvement of the

value of the objective function, relying on evolution and mutation (the names vary

from one algorithm to another) to get as close as possible to the global optimum

without getting stuck in local optima.

In this section we describe the basics of a genetic algorithm, the choice of algo-

rithm parameters and describe the mutation and crossover functions. For further

knowledge of evolutionary algorithms, [34] is a comprehensive source.
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4.4.1 Parametrization

The concept of individual is central to GAs. An individual, is an n-tuple made up

of all n parameters that are going to be optimized. As an example, for the IBPCS

Controller from section 4.1.1, the parameters Kc, Isp would define an individual, or

more specifically, the individual’s phenotype.

The genotype, on the other hand, is represented by the bits that code this in-

dividual. The phenotype and genotype are then, respectively, the individual itself

and a representation or codification of this individual. There is a function that re-

lates the phenotype with the genotype and it varies from one implementation of the

Genetic Algorithm to another.

In this work, the genotype is represented as a binary bit string and the phenotype

is represented as a n-tuple of Real Numbers. The relationship between these two

representations is as follows:



p1 = (b1 + 21bn+1 + 22b2n+1 + · · ·+ 2mb(m−1)n+1)Kp1

p2 = (b2 + 21bn+2 + 22b2n+2 + · · ·+ 2mb(m−1)n+2)Kp2

...

pn = (bn + 21b2n + 22b3n + · · ·+ 2mbmn)︸ ︷︷ ︸
m bits

Kpn

(4.33)

where pi is the i-th parameter of the n-uple, bj is the j-th bit from the string, n is

the number of parameters, m is the number of bits used to represent one parameter,

mn is the size of the bit string and Kpi is a multiplier associated with the desired

range of the parameters.

As this representation shows, the phenotype of each parameter is scrambled in

the bit string with the others. This allows the algorithm to change all parameters

at once using a more simple crossover function, which will be discussed in next

sub-section.

4.4.2 Selection, Mutation and Evolution of the Algorithm

The Genetic Algorithm works as follows: Several genotypes are generated randomly

and the corresponding individuals (parameters) are used to simulate the dynamic

system which is being studied and thereby evaluate the cost function. The individu-

als are compared in terms of the total cost they result in at the end of the simulation

horizon. The individuals that achieved the minimum costs are more likely to repro-

duce (i.e. copied into the next generation of individual with higher probability).

The best one is copied without changes into the next generation: this is referred to

as elitism and functions as a kind of algorithm memory.
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Reproduction is the process through which individuals combine and produce a

new one. This combination is performed through an operation called gene crossover,

now described briefly. The crossover mechanism used by this dissertation is single

point crossover, and it splits the bit strings in two at a randomly chosen position.

The new individual will inherit the first segment from one parent and the other

segment from the other. More complex crossover mechanisms exist, and they range

from two point crossover, which is analogous to the first case but with two splitting

points and multi-point crossover, in which an entire bit string with the size of an

individual is randomized.

Mutation is performed next. After a new generation is formed, a number from a

uniform probability distribution (0,1) is generated for each gene. If this number is

lower then or equal to the mutation probability, then the gene value is flipped. This

mechanism reduces the probability that the algorithm gets stuck at local minima,

but a high mutation probability can lead to excessive variation in individuals, causing

the algorithm not to converge.

After reproduction and mutation, a new generation is formed and re-evaluated.

This continues until a termination condition is met. In this work, the only termina-

tion condition used is a maximum number of generations, but other conditions such

as tolerance values, relative change from one iteration to other, amongst others, can

be used

Figure 4.9 shows a flowchart of the GA used in this dissertation.
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Figure 4.9: Genetic Algorithm flowchart

Chapter summary: This chapter details the proposed control strategy for the

LSBC model presented in chapter 3, presenting its main ingredients. These are

(i) a fixed controller from the IOBPCS family, (ii) a demand prediction from the

family of exponential smoothing methods chosen by the so called Automatic Demand

Forecasting methodology, and (iii) a genetic algorithm to find optimal controller

parameters by solving an appropriately formulated optimal control problem.
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Chapter 5

Comparison of proposed

controllers for the liquid supply

chain model

This chapter compares the performance of the controllers discussed in Chapter 4

through simulation in which different parameters are varied.

This chapter is divided into three sections. Section 5.1 presents the methodology

used and details the use of the Genetic Algorithm together with the model.

Section 5.2 presents simulation results followed by a brief explanation for those

results.

Section 5.3 is dedicated to a discussion of the results and an evaluatio of the

controllers in the context of the chosen application.

5.1 Test Methodology

In order to compare the family of controllers proposed in chapter 4 for the LBSC,

a test methodology, applied to all controllers, as well as some parameter choices

common to all the tests, is given first. This is followed by a flowchart describing how

the various components (controllers, plant, predictor and GA) interact in order to

find optimal parameters for each controller and evaluate the corresponding controller

performance.

Each of the controllers are tested multiple times in order to achieve the best

possible performance for each one of them. One way to do that, and the way we

will use, is to subject the couple System-Controller to a series of runs in a Genetic

Algorithm.

The simulation works as depicted in figure 5.1. First, all parameters are started

by the Genetic Algorithm Toolbox in MATLAB. This makes one individual. The
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toolbox then generates several other randomized individuals to compare. For each

individual, a full simulation of the system is triggered and, at the end of it, total

cost is computed.

Figure 5.1: Connections between model, Genetic Algorithm and Results

The total cost is the variable that will be used to compare parameters, or the

goal variable. It is an obvious choice based on the Optimal Control problem we are

trying to solve, written in equation 4.32.

The best individual of a single run is then stored, and afterwards compared to

the best individuals of other runs. To achieve meaningful results, we will use 100

simulations of the Genetic Algorithm for each controller.

Results are shown both with respect to best individual run of 100 simulations,

with tables and graphics showing control and states evolution and regarding all 100

simulation, with tables showing mean costs and standard deviation regarding each

best individual.

Lastly, we will present a brief analysis on the demand predictor performance.

For all control strategies being tested we will present the resulting gains and

references, when applicable, found with the genetic algorithm.

All simulations are subjected to the same demand pattern, shown in figure 5.2,

and the same parameters, shown in table 5.1
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Figure 5.2: Demand of Product A and Product B over time in Liters

Figure 5.3: Demand Predictor and Demand at a given instant for Product A

Figure 5.4: Automatic Forecasting Choosing Algorithm applied to the demand of

Product A by one Rig
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Table 5.1: Values of simulation Parameters
Parameter Value

horizon 45 days

τ1 3 days

τ2 2 days

τ3 3 days

τ4 2 days

TPSV 7 days

imax 2

rmax 2

W10 200.000 l

W20 400.000 l

Klt 5.000 l

Pmax 100 tanks

The data presented in table 5.1 reflects how the real process works and were

obtained through interviews, documents and meetings.

For each controller it will also be presented the overall performance of the genetic

algorithm. Better controllers should have not only the lowest cost in best run, but

also a low mean and standard deviation of total cost along all runs.

Finally, we will show a comparative table containing information about each

controller scores. This is shown in table 5.16 and it is an easier way to compare

scores.

5.2 Results

5.2.1 IBPCS Controller

IBPCS Controller is the most simple compensator of the level controllers. We need

to optimize three parameters in this first case, the controller gain Kp and two fixed

Inventory references, one for Product A and another one for Product B. They will

be represented Isp1 and Isp2 respectively
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Overall Performance

Table 5.2: Best Run, Mean and Standard Deviation in 100 GA run

Statistic Value

Best Cost 84288

Mean Cost 89437

Standard Deviation 431.14

Best Run Performance

Figure 5.5: Evolution of Warehouse levels (Liters) and Port Queue (Number of

Tanks) using IPBCS Controller

Figure 5.6: Evolution of Controlled variable level for the IBPCS Controller
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Figure 5.7: Total Cost Evolution and Final Day Total Cost Breakdown for the

IBPCS Controller

Table 5.3: Final Day Cost Breakdown for the IBPCS Controller

Type of Cost Value Color

Material Cost 12039 Dark Blue

Transportation Cost 9600 Brown

Operational Cost 34706 Cyan

Contingency Cost 27884 Yellow

Total Cost 84228 -

5.2.2 IOBPCS Controller

The IOBPCS Controller is more complex compared to the IBPCS Controller. The

only difference here is that Demand Prediction is utilized to calculate the control

variable, as shown in fig. (4.3). Again, three parameters need to be optimized, the

controller gain Kp and two Inventory references, one for Product A and another one

for Product B. They are denoted as Isp1 and Isp2, respectively.

Overall Performance

Table 5.4: Best Run, Mean and Standard Deviation in 100 GA run

Statistic Value

Best Cost 78196

Mean Cost 81756

Standard Deviation 438.91
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Best Run Performance

Figure 5.8: Evolution of Warehouse levels (in Liters) and Port Queue Size (number

of Tanks) using IOPBCS Controller

Figure 5.9: Evolution of Controlled variable level for the IOBPCS Controller

Figure 5.10: Total Cost Evolution and Final Day Total Cost Breakdown for the

IOBPCS Controller
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Table 5.5: Final Day Cost Breakdown for the IOBPCS Controller

Type of Cost Value Color

Material Cost 13694 Dark Blue

Transportation Cost 9600 Brown

Operational Cost 35083 Cyan

Contingency Cost 19819 Yellow

Total Cost 78196 -

5.2.3 VIOBPCS Controller

The VIOBPCS Controller is different from the two previous controllers. While

the two first feedback controllers rely on fixed set-points, the VIOBPCS controller

chooses the set-point as a multiple of the current demand prediction, as shown in

fig. (4.4). Again, three parameters need to be optimized, the controller gain Kp

and two gains to find references, one for Product A and another one for Product B.

They are denoted as Ka and Kb, respectively.

Overall Performance

Table 5.6: Best Run, Mean and Standard Deviation in 100 GA run

Statistic Value

Best Cost 88613

Mean Cost 91726

Standard Deviation 223.74

Best Run Performance

Figure 5.11: Evolution of Warehouse levels (in Liters) and Port Queue Size (number

of Tanks) using VIOPBCS Controller
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Figure 5.12: Evolution of controlled variable level for the VIOBPCS Controller

Figure 5.13: Total Cost Evolution and Final Day Total Cost Breakdown for the

VIOBPCS Controller

Table 5.7: Final Day Cost Breakdown for the VIOBPCS Controller

Type of Cost Value Color

Material Cost 11122 Dark Blue

Transportation Cost 9600 Brown

Operational Cost 30520 Cyan

Contingency Cost 37370 Yellow

Total Cost 88613 -

5.2.4 APIOBPCS Controller

APIOBPCS Controller is the first controller from the IBPCS family to incorporate

WIP feedback and, thus, it is an evolution from all prior controllers with exception
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of the VIOBPCS. The figure describing APIOBPCS is given in (4.5). Again, three

parameters need to be optimized, the controller gain Kp and two Inventory Set-

Points, one for Product A and another one for Product B. They are denoted as Isp1

and Isp2, respectively.

Overall Performance

Table 5.8: Best Run, Mean and Standard Deviation in 100 GA run

Statistic Value

Best Cost 77212

Mean Cost 81940

Standard Deviation 245.72

Best Run

Figure 5.14: Evolution of Warehouse levels and Port Waiting Line using APIOPBCS

Controller
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Figure 5.15: Evolution of Controlled variable level for the APIOBPCS Controller

Figure 5.16: Total Cost Evolution and Final Day Total Cost Breakdown for the

APIOBPCS Controller

Table 5.9: Final Day Cost Breakdown for the APIOBPCS Controller

Type of Cost Value Color

Material Cost 14495 Dark Blue

Transportation Cost 9600 Brown

Operational Cost 39143 Cyan

Contingency Cost 13974 Yellow

Total Cost 77212 -

5.2.5 PID-APIOBPCS Controller

PID-APIOBPCS Controller is a controller derived directly from the APIOBPCS

Controller. Instead of only using a proportional controller on the feedback loop,
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a PID controller is used. Thus, it is necessary to optimize five parameters, the

controller proportional, integral and derivative gains (Kp,Ki and Kd respectively)

and two Inventory Set-Points, one for Product A and another one for Product B.

They are denoted as Isp1 and Isp2 respectively.

Overall Performance

Table 5.10: Best Run, Mean and Standard Deviation in 100 GA run

Statistic Value

Best Cost 76629

Mean Cost 83593

Standard Deviation 343.99

Best Run

Figure 5.17: Evolution of Warehouse levels and Port Waiting Line using PID-

APIOPBCS Controller
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Figure 5.18: Evolution of Controlled variable level for the PID-APIOBPCS Con-

troller

Figure 5.19: Total Cost Evolution and Final Day Total Cost Breakdown for the

PID-APIOBPCS Controller

Table 5.11: Final Day Cost Breakdown for the PID-APIOBPCS Controller

Type of Cost Value Color

Material Cost 13427 Dark Blue

Transportation Cost 9600 Brown

Operational Cost 35984 Cyan

Contingency Cost 17653 Yellow

Total Cost 76629 -
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5.2.6 APVIOBPCS Controller

The APVIOBPCS Controller is a controller that has features from all previous

controllers, except PID-APIOBPCS, since this controller does not incorporate a

PID in its structure. It contain a feedback loop to calculate errors in Inventory

and WIP and has a variable set-point. The APVIOBPCS is described in fig. (4.6).

Again, three parameters need to be optimized, the controller gain Kp and two gains

to find references, one for Product A and another one for Product B. They are

denoted as Ka and Kb respectively.

Overall Performance

Table 5.12: Best Run, Mean and Standard Deviation in 100 GA run

Statistic Value

Best Cost 80039

Mean Cost 87738

Standard Deviation 303.92

Best Run

Figure 5.20: Evolution of Warehouse levels (in Liters) and Port Queue Size (number

of Tanks) using APVIOPBCS Controller
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Figure 5.21: Evolution of Controlled variable level for the APVIOBPCS Controller

Figure 5.22: Total Cost Evolution and Final Day Total Cost Breakdown for the

APIOBPCS Controller

Table 5.13: Final Day Cost Breakdown for the APVIOBPCS Controller

Type of Cost Value Color

Material Cost 13346 Dark Blue

Transportation Cost 9600 Brown

Operational Cost 35817 Cyan

Contingency Cost 21275 Yellow

Total Cost 80039 -

5.2.7 PID-APVIOBPCS Controller

The PID-APVIOBPCS Controller is the most complex controller tested in this

work. A PID controller is used on the feedback loop, with all other features of

57



the APVIOBPCS family being present. Thus, it is necessary to optimize five pa-

rameters, the controller proportional, integral and derivative gains (Kp,Ki and Kd

respectively) two gains to find references, one for Product A and another one for

Product B. They are denoted as Ka and Kb, respectively.

Overall Performance

Table 5.14: Best Run, Mean and Standard Deviation in 100 GA run

Statistic Value

Best Cost 77524

Mean Cost 89147

Standard Deviation 868.57

Best Run

Figure 5.23: Evolution of Warehouse levels (in Liters) and Port Queue Size (number

of tanks) using PID-APVIOPBCS Controller
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Figure 5.24: Evolution of Controlled variable level for the PID-APVIOBPCS Con-

troller

Figure 5.25: Total Cost Evolution and Final Day Total Cost Breakdown for the

PID-APVIOBPCS Controller

Table 5.15: Final Day Cost Breakdown for the PID-APVIOBPCS Controller

Type of Cost Value Color

Material Cost 14476 Dark Blue

Transportation Cost 9600 Brown

Operational Cost 38643 Cyan

Contingency Cost 14805 Yellow

Total Cost 77524 -
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Table 5.16: Cost Comparison Between all Control Strategies

Controller Best Run Mean Standard Deviation

P-IBPCS 84288 89437 431.14

P-IOBPCS 78196 81756 438.91

P-VIOBPCS 88613 91726 223.74

P-APIOBPCS 77212 81940 245.72

PID-APIOBPCS 76629 83593 343.99

P-APVIOBPCS 80039 87738 303.92

PID-APVIOBPCS 77524 89147 868.57
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5.3 Discussion of Results

It is noticeable that Costs from the best strategy ($76692.00) to the worst one

($88613.00), show a variation of 15%. Choosing the right controller is important to

keep costs low even with optimized parameters.

Furthermore, it is observed that, despite being more complex, APVIOBPCS

controllers does not perform better than APIOBPCS controllers. In the presented

study, this happens due to a demand that is not well predicted by ADF. Recalling

figure 5.4, we have shown using automatic demand prediction that the better predic-

tor is the simpler one, or a (M,N,N) predictor. If the demand had more recognizable

trends or seasonality, controllers with variable set-points would likely outperform

the ones with fixed set-points.

There is an obvious trade-off between Operations and Contingency Costs. Con-

trollers with best performance had higher operational costs compared with the other

ones, but significantly lower Contingency Costs. Contingency Costs never drop be-

low $10000.00 on the other hand, which implies that the relation between these

two variables is not as simple as a constant ratio, but rather a more complicated

relationship.

Compared to other control strategies, APIOBPCS is not only the one that pro-

vides lower Total Costs, but also low Mean Total cost and low Standard Deviation.

That suggests that APIOBPCS is the most robust controller for this model with the

demand being investigated.

If both APIOBPCS strategies are compared, PID-APIOBPCS wins on best run,

but P-APIOBPCS or just APIOBPCS strategy performs better on both mean and

standard deviation criteria. The fact that the controller has fewer parameters to

adjust is certainly an advantage and it is shown by those two last statistics. This

can be observed in table 5.16.

The fact that the APIOBPCS controller fares better than the APVIOBPCS

controller and the IOBPCS controller achieves a better result, when compared to

VIOBPCS, agrees with the conclusions in [15] regarding demand forecasting and its

possible negative effect on control, since the variable set-point strategies rely more

heavily on demand prediction than the fixed set-point strategies.

Chapter Summary: This chapter presented methodology to compare different

controllers from the IOBPCS family. A flowchart describes the use of the plant

model, predictor and genetic algorithm to find optimal controller parameters and

calculate corresponding performance in terms of the cost function. Finally, the

simulation results are discussed to obtain a perspective on the comparison of the

different controllers studied.
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Chapter 6

Conclusion

It is certainly not a easy task to model a real world process of a supply chain in

terms of a dynamic system. Information is not always accessible, from both process

itself and for model validation purposes, flow sheets may not reflect exactly how the

process is performed and the whole process encompasses several people from different

areas in the company, which means there is no single person that is familiar with

the whole process from start to finish.

The model proposed and studied in this dissertation focused on an important

part of the whole upstream supply chain for which data became available. The

experience gained during the modeling process indicated that the porposed model

could be modified, without much additional work, to encompass other types of bulk

cargo, which were not modeled due to lack of data and detailed process information.

The controllers used in this dissertation were based on the production control

literature and are more advanced than the classic MRP relay controller. Some

modifications of the IOBPCS family of controllers were also studied.

In particular, the simulation results show that the PID-APIOBPCS and the P-

APIOBPCS controller are good choices for this LSBC plant model. Their reliance

on derivative control to track the trend of the disturbance in the former and the sim-

plicity and the smaller amount of parameters to be optimized in the latter controller

confers advantage in a real world demand scenario in which there are no obvious

trends and seasonality and, for which, even the optimal ADF predictor did not turn

out to deliver good performance.
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6.1 Future Work

This dissertation presented a model of the liquid bulk supply chain to offshore rigs,

but the model is general enough to be applied to other types of bulk material, with

minor modifications, In the liquid bulk control, a feature of practical interest, that

should be added in future work, is the consideration of backload (i.e. the return of

empty tanks to land).

For reasons of practicality and simplicity the controllers studied in this disserta-

tion used inventory level control based on the IOBPCS family, with parameters set

through optimization of a cost functional.

While this approach provide guidelines for controller design, solving the optimal

control problem with traditional optimization tools or using more sophisticated con-

trol schemes such as Model Predictive Control (MPC) or Economic Model Predictive

Control (EMPC) is certainly an interesting option, that should be investigated.

The functional being optimized in this dissertation is the overall cost of the

operation, and it was chosen as the simplest option with economic significance. It is

also possible to calculate costs based on the value of items supplied and subsequently

calculate how these items (or the lack of them) impact production revenues. In other

words, a cost function reflecting Profit or even Economic Value Added or EVA should

be of greater financial interest and thus influence future design of (upstream) supply

chains.
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