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Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos

necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

A LEARNING ALGORITHM TO REPLAN AND ADAPT THE MISSION OF

AN AUTONOMOUS UNDERWATER VEHICLE

Rodrigo Fonseca Carneiro

Março/2016

Orientador: Ramon Romankevicius Costa

Programa: Engenharia Elétrica

Robótica autônoma é um dos principais desafios de pesquisa na área de robótica

atualmente. Robôs submarinos são um caso especial por estarem imersos em um

ambiente dinâmico com pouca comunicação com a superf́ıcie, sensores ruidosos e

imprecisos e energia limitada.

Uma das principais tarefas para um robô submarino para ser autônomo é perce-

ber o mundo, tomar decisões com base nessas percepções e navegar através do am-

biente para cumprir sua missão.

Este trabalho irá introduzir os conceitos de percepção, tomada de decisão e

Machine Learning a ser aplicado a um Véıculo de Operação Remoto (ROV), a fim

de transformá-lo em um Véıculo de Operação Remoto Hı́brido (H-ROV).

Esses conceitos serão aplicados em um replanejamento de missão onde o robô

deve escolher a partir de um conjunto de diferentes ações aquelas que o farão atingir

seus objetivo. Essas ações formarão um novo plano quando algo impede a execução

do plano inicial. Para o replanejamento os conceitos de Reinforcement Learning

serão aplicados, de modo a minimizar a energia necessária para a realização do novo

plano de ações.

O algoritmo foi aplicado em um ambiente de simulação e mostrou-se eficaz para

replanejamento e adaptação da missão.
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Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Master of Science (M.Sc.)

UM ALGORITMO DE APRENDIZADO PARA REPLANEJAMENTO E

ADAPTAÇÃO PARA VEÍCULOS SUBMARINOS AUTONOMOS

Rodrigo Fonseca Carneiro

March/2016

Advisor: Ramon Romankevicius Costa

Department: Electrical Engineering

Autonomous robotics is one of the main challenges in present robotics research.

Underwater robots are a special case as they are immersed in a dynamic and chang-

ing environment with poor communication with the surface, noisy and imprecise

sensors and limited power.

One of the main tasks for an underwater robot to be autonomous is to perceive

the world, to make decisions based on those perceptions and to navigate through

the environment to accomplish its mission.

This work will introduce the concepts of perception, decision making and machine

learning to be applied to a Remotely Operated Vehicle (ROV) in order to turn it

into a Hybrid Remotely Operated Vehicle (H-ROV).

Those concepts will be applied on an autonomous mission replanning where the

robot should choose from a set of different actions those which will make ir ac-

complishes its objectives. Those actions would make a new plan, when something

prevents the execution of the initial plan. For replanning the concepts of Reinforce-

ment Learning will be applied in order to minimize the energy in the formation of

the new plan.

The algorithm was applied in a simulated environment and showed to be effective

for mission replanning and adaptation.
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Chapter 1

Introduction

Autonomous robots are one of the main challenges in present robotics research.

Underwater robots are a special case as they are immersed in a dynamic and chang-

ing environment with poor communication with the surface, imprecise and noisy

sensors and limited power.

One of the main tasks for an underwater robot to be autonomous is to perceive

the world, to make decisions based on those perceptions and to navigate through

the environment to accomplish its mission.

Autonomous decision making in robotics is the ultimate goal for autonomy.

1.1 Motivation

In 2004 Laboratório de Controle (LabCon) from Instituto Alberto Luiz Coimbra

de Pós-Graduação e Pesquisa de Engenharia (COPPE) started the development

of a Remotely Operated Vehicle (ROV) for hydroelectric intake tunnel inspection.

This vehicle, Called LUMA (LUMA), was successfully tested in field and in 2007

it was modified for Antarctic Operations where it collaborated in three consecutive

expeditions with the Census of Marine Life.

One of the objectives of using an underwater vehicle in Antarctic is to capture

seafloor images and measure its geomorphology and this kind of mission is bet-

ter accomplished by using an Autonomous Underwater Vehicle (AUV) instead of

a ROV. Aligned with COPPE’s idea about the strategic importance of the devel-

opment of autonomous systems, Grupo de Sistemas de Controle em Automação e

Robótica (GSCAR) started in 2010 a project funded by Conselho Nacional de De-

senvolvimento Cient́ıfico e Tecnológico (CNPq) to turn the ROV LUMA in a Hybrid

Remotely Operated Vehicle (H-ROV), which is a vehicle capable of working on a

remote or autonomous mode.

The first effort to turn LUMA autonomous was developed by JUNIOR (2014).

In this work it was developed a mission control system based on Petri Nets to inspect
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underwater pipelines with the H-ROV LUMA. Petri Nets are very efficient to model

primitive actions and to describe Discrete Event Systems (DES). PALOMERAS

et al. (2012) combined together Petri Net Building Block (PNBB)s, that are small

Petri Net (PN)s which properties are previously evaluated, to describe the behavior

of the system and to guarantee that the mission plan would be followed.

The study on autonomous systems brought the necessity of the creation of Au-

tonomous System Architecture and they are normally divided in three layers:

• Reactive Layer;

• Control and Execution Layer;

• Deliberative Layer.

JUNIOR (2014) work was focused on the Control and Execution Layer where

the Petri Net are defined. It was adopted an off-board paradigm for the deliberative

layer, this means that the mission must be pre-programmed for the vehicle to be

able to accomplish it. So the mission success depends on the ability of the program-

mer to predict every fault that can happen and insert all the possibilities on the

Deliberative’s Layer Planner. This kind of approach works well on very structured

environments.

To enhance the robots capabilities to work in unstructured environments it is

needed to implement certain functionalities in the Deliberative Layer as:

• a good World Modeler;

• a good Planner;

• a plan adapter.

A good World Modeler will generate information about the environment and

will update the World model based on the robots perceptions (better explained in

Section 2.1) received from the Reactive Layer. It is very important to choose a

good representation method as this model will be used during the whole mission

and should be stored, accessed, and shared efficiently. MIGUELANEZ et al. (2011),

for example, uses a Semantic Knowledge-based framework.

A good Planner will be able to get information from the World Modeler and

from the Mission Definition given by the operator and transform it in a Mission

Plan in the Execution Layer. In Component Oriented Layer-based Architecture for

Autonomy (COLA2) architecture (PALOMERAS et al. (2012)), for example, the

Mission Plan groups the PNBB to describe and execute the mission. This should

be done by the operator in JUNIOR (2014) work.

2



The Plan Adapter is responsible to change the plan without the interference of

the operator. It will use all the information given by a machine perception module

and a System Status module. To develop this functionality it is necessary to intro-

duce some intelligence on the robot so it can adapt and replace the primary plan.

The decisions should be based on its Situation Awarness (SAH) (Better explained in

Chapter 2). This module is dependent on the robot perception of the world and its

representation. PATRON (2010) used the SAH to replan or repair an ongoing mis-

sion.SAH is the capability of the vehicle to comprehend what is happening around

it and within its components.

Another good example of Adaptive Mission Planning is the work of PAPADIM-

ITRIOU e LANE (2014) where it was developed a Semantic Based Knowledge Rep-

resentation and Adaptive Mission planning for Underwater Mine Countermeasures

(MCM). In this work, they have used ontological representation of the world limited

for the MCM mission capable of semantically express the knowledge of their com-

ponents, their state and the state of the world in which they are deployed and to

demonstrate how they use the semantic knowledge to plan the missions and adapt

on the fly when the vehicle receives new information. They have executed the mis-

sion successfully in a simulation environment using a Planning Domain Definition

Language (PDDL).

Another issue when talking about autonomous systems is how the robot can

learn new things from the environment and update its World Model, optimizes its

control algorithm or even its own model. One example is the work of EL-FAKDI

(2010) where the robot learned how to track a pipeline by applying machine learning

techniques.

One of the advantages of using machine learning algorithms, especially Rein-

forcement Learning (RL) in the robot control is that the robot or the environment

model do not need to be known. Both can be acquired during the robot learn-

ing process and updated during its mission and every mission contributes for the

learning process.

1.2 Objectives

The objective of this work is to modify LUMA’s control architecture in order to

turn it into and H-ROV.

This work proposes this new architecture based on the three-layered architectures

found on literature.

It also implements a mission plan adaptation algorithm based on RL techniques.

3



1.3 Methodology

For the purpose of this work it will be considered that a Knowledge Represen-

tation framework is developed and the AUV always have a complete perception of

the environment. This means that the robot always identifies targets, obstacles and

its system status, more than that it always identifies if the primitive action chosen

from JUNIOR (2014) was executed correctly.

The SAH and the Semantic Knowledge-Based framework from MIGUELANEZ

et al. (2011) will be introduced for better comprehension of a complete autonomous

system and the parts that are desired for a system to become completely au-

tonomous, but its implementation is left for a future work. The introduction of

those frameworks will make the system capable of detecting the pipeline, inspect

and adapt its mission plan in case something interfere with its initial plan (given by

the operator).

The work from PATRON (2010) presents an effective adaptive mission planning

where he uses high level primitive actions to accomplish its mission. The primi-

tives presented in JUNIOR (2014) are much simpler than those found on PATRON

(2010) work making the rearrangement of primitive actions easier as they can be

considered policy actions instead of a policy plan. The extrapolation of the method

can be considered easy if it is guaranteed the correct execution of the more complex

primitive actions.

EL-FAKDI (2010) applied RL to learn how to track a pipeline, this knowledge

can be used to implement in itself a pipeline tracking primitive creating an upgrade

to the capabilities of the robot. Inspired by that, this work will apply RL methods so

the robot can learn how to track fixed and moving targets by changing the mission

plan created with JUNIOR (2014) primitives.

The plan will consist of simple actions like, move forward, move backward,

turn, move down and move up that are easily mapped in the primitives proposed by

JUNIOR, making this approach a simple way to introduce learning and replanning

algorithms to an AUV in its initial development phase like the H-ROV LUMA.

1.4 Summary and Outlook

Chapter 2 will present a brief evolution on the autonomous systems control

architecture, shows the present configuration of LUMA robot and proposes a new

architecture that would include the results of this work and would make it possible

for the robot to achieve some degree of autonomy.

Chapter 3 will introduce the concepts of machine learning, the algorithm used

in this work and a brief description of the its implementation.
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Chapter 4 will discuss the evolution on mission planning, make the proper defi-

nitions of mission and presents the missions LUMA should be able to accomplish.

Chapter 5 will present the simulation environment and show and discuss the

simulation results.

Chapter 6 will conclude the work and suggests future works related to Au-

tonomous Systems and with immediate use in LUMA.
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Chapter 2

Control Architectures in

Autonomous Systems

According to TURNER (2005) the primary goal in a Control Architecture is

flexibility and adaptation as the autonomous robots are immersed in a dynamic and

changing world.

The first suggested architecture was developed in 1960 and is called Classical

Deliberative Architecture(FIKES e NILSSON (1971), NILSSON (1984), ALBUS

(1991), LAIRD e ROSENBLOOM (1990)) and is represented by Figure 2.1. The

main characteristic of this architecture is a top-down philosophy. In this archi-

tecture the sensors are read and flowed into a world model which is used by the

Planner to execute the tasks to accomplish the mission without directly using the

sensors data, this brings difficulties when environmental changes occur. This kind

of approach proved to be very inefficient in non structured and highly unpredictable

environments.

Figure 2.1: Classical Deliberative Architecture

To solve this problem (BROOKS (1986)) developed a behaviour-based control

architecture which is built from layers of interacting finite-state machines (FSMs)

- also called behaviours - that are executed in parallel bringing a fast and reac-

tive characteristic. This makes the robot very efficient in respect to environmental

changes, but it needs a very reliable arbitration mechanism as it needs to choose

efficiently between a set of behaviours to be executed making long range missions

very difficult to undertake.
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Figure 2.2: behaviour-based Architecture

A new architecture was then created joining together the benefits of both. Called

Hybrid Architecture or Layered Architecture it combines planning capabilities of

Classical Deliberative and reactivity of behaviour-Based architecture (FIRBY (1989)

ARKIN e BALCH (1997) LYONS (1992) GAT (1991)). This approach is structured

in three layers: Reactive layer; Control execution layer and Deliberative layer or Mis-

sion Layer. In this approach sensors and actuators are connected to the Reactive

Layer which also receives information from control execution layer allowing fast re-

sponse to environmental changes while executing the mission instructions generated

by deliberative layer.

Figure 2.3: Hybrid Architecture

Deliberative/Mission Layer Transforms the mission into a set of tasks which

defines a plan and determines the long-range tasks of the robot based on high-level

goals.

Execution Layer Interacts between the upper and lower layers, supervises the

accomplishment of the tasks, acts as an interface between the numerical reactive

layer and the symbolical deliberative layer interpreting high-level plan primitives

activation, monitors the primitives being executed and handles the events that these

primitives may generate.
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Reactive Layer takes care of the real-time issues related to the interactions with

the environment. It is where the necessary sensors and/or actuators are directly

connected and the data is collected to be passed to other layers.

One good example of Hybrid Architecture is the COLA2 presented by PALOM-

ERAS et al. (2012) which diagram can be viewed in figure 2.4.

Figure 2.4: COLA2 Architecture1

Recent control architectures aims in a methodology to adapt to new incoming

events that may occur during a planned mission (KORTENKAMP e SIMMONS

(2008)). In 2012 LANE et al. (2012) started a project called PANDORA (LANE

et al. (2012)) where they introduced the concept of persistent autonomy which means

that the robots should be autonomous for a long time.

They identified three essentials areas to provide the foundations for Persistent

Autonomy:

• Describing the World

• Directing and Adapting Intentions

• Acting Roboustly

1Extracted from PALOMERAS et al. (2012)
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PANDORA architecture is divided in four levels: Execution, Operational, Tac-

tical and Strategic and they are connected as shown in figure 2.5.

Figure 2.5: Pandora Architecture

In the Operational Level, the Perception Module process sensor data, removes

noise, extract and track features and localize using SLAM. This module outputs are

used on Robust Control Module that updates the controller reference

In Tactical Level, Status Assessment Module uses status information from around

the robot in combination with expectations of planned actions, world model and

observed features to determine whether actions were executed satisfactorily or have

failed.

In Strategic level, sensor features and state information are matched with geo-

metric data about the environment to update the world model. Planning uses both

semantic and geometric information as pre-conditions on possible actions or action

sequences that can be executed.

In figures 2.5 and 2.4 one can notice the Perception module. This module is the

key for autonomous systems, note that its information is transmitted for the whole

system. The more accurately information this module can generate the better for

the system. This is used for localization and mapping, detecting targets or obsta-

cles, executing an auto diagnostics to check the system status, calculate capabilities

among others.

2.1 Perception

From the dictionary Perception is the ability to see, hear, or become aware of

something through the senses. It is a way of regarding, understanding, or interpret-

9



ing something.

Perception covers all the way from detecting a certain configuration of the world

around the observer to his way of thinking about it.

There are two contexts affecting the process of perceiving, the first covers the

environment in which the perceived object rests within the observers world and the

second concerns the way in which the world is understood inside the observer.

The object in the environment is perceived by the observer system because a

certain interaction takes place between them. The most common interaction is called

stimulation and it happens when the objects emits the signal, like the reflection of

the incident light or a smell release, for example.

Perceiving an object depends on environmental correlation and cognitive equiv-

alence. This relation is determined by the capacities, purposes and state of the

observer system (PANIAGUA (2007)).

Studies and theories of perception are concentrated on cognitive equivalence and

they are mainly divided in the following areas:

• Exploration and categorization of forms of cognitive equivalence in real sys-

tems;

• Studying the biological parts involved and their electrical, electro-chemical

behaviour and the way they correlate with its cognitive equivalent;

• Investigating ways of designing cognitive equivalence relations for artificial

systems and

• Extracting general principles and laws from the relation of cognitive equiva-

lence with goal-oriented behaviour, survivability, efficiency, resources, etc.

Perceiving the world means that the robot has to get sensor data and make a

Cognitive Equivalence from the collected data and the knowledge base available

for him. For that reason, it is needed a representation of that knowledge in a

language that a computer can understand. To share common understanding of the

structure of information among people or software agents Ontologies are widely

used (PAPADIMITRIOU e LANE (2014) and MIGUELANEZ et al. (2011)) and

for that Stanford developed the Protege framework that is a free software with a

Graphical User Interface (GUI) to define ontologies. Only with a good perception

of the environment the autonomous decisions will be possible.

For the purpose of this work, it will be considered that the robot perceives

perfectly the environment and its perception generates a trustful world model and

an exactly localization, even though the model that will be presented will consider

that a partial observability is possible, so the same model can be used in future

works, thus the Perception Module is not implemented.
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2.2 Situation Awareness and Decision Making

According to the U.S. Cost Guard SAH is the ability to identify, process, and

comprehend the critical elements of information about what is happening to the

team with regards to the mission. More simply, its knowing what is going on around

you. SAH breaks down into three separate levels: perception of the environment,

comprehension of the situation and projection of the future status (MIGUELANEZ

et al. (2011)).

Improving an agent SAH means improving the information in its database and

John Richard Boyd, a United States Air Force fighter pilot and Pentagon con-

sultant of the late 20th century, described the OODA loop (Observe-Orient-Decide-

Act) as the main command and control loop of a decision making process which is

represented in figure 2.6 (BOYD (1992)).

Figure 2.6: OODA Loop

According to ENDSLEY et al. (2003) and MIGUELANEZ et al. (2011) Obser-

vation is acquired through the available information and it can be said that this is

the perception level of SAH . Orientation is provided based on previous acquired

knowledge and cultural factors of the decision maker and determines also which in-

formation should be observed and how it should be used. Decision stage represents

the SAH levels of comprehension and projection and determines the appropriate

courses of action. Acting is made by the field units, in the robots case by the actu-

ators and sensors, this stage not only actuate but it feed more information on the

changing situation into the observation cycle.

Improving a robot SAH means improving its capability of sensing the environ-

ment and improves its database and data access to correctly correlate the sensed

data into useful information and improve its correlation speed. This is a research

topic of MIGUELANEZ et al. (2011) and is a key business for robots to become

persistently autonomous.
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The SAH improvement is achieved by constant updates to the database, the

correct access and use of this database and the correct categorization of the new

information received and perceived by the robot. One useful strategy for that is the

use of knowledge frameworks and the use of Artificial Intelligence (AI) to collect

and categorize the data received during the robot operation in a way it contributes

to the enrichment of the knowledge (MIGUELANEZ et al. (2011)).

For the aim of this work SAH level will not be considered as the knowledge

frameworks are not implemented and tests with different levels of SAH are not

possible but it will be discussed where the SAH will be included in the architecture.

2.3 H-ROV LUMA

The H-ROV LUMA (figure 2.7) is being upgraded in the last years so it could act

autonomously, for that, new sensors are being integrated and some older equipments

are receiving upgrades in order to improve its localization and SAH . Also the

video system gained a dedicated processor so it offers computer power to use video

processing algorithms and the navigation system gained a dedicated processor so

it is possible to implement more complex control, navigation and decision making

algorithms.

Figure 2.7: H-ROV LUMA

Nowadays LUMA counts with the following configuration:

• 5 1000 W electrical thruster

• 1 Pan&Tilt color camera
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• 1 High Definition (HD) color camera with photo and zooming capabilities

• 1 Low light black&white camera

• 2 Standard definition (SD) color cameras

• 4 LED Lamps (Light Emitting Diode)

• 2 Laser pointers for size reference

• 1 Hydroacoustic modem

• 1 Pressure sensor

• 1 Altimeter

• 1 Inertial Measurement Unity (IMU)

• 1 Imaging sonar

• 2 PC-104 1.8 Ghz Dual core Atom processor

• 1500 m fiber optics communication link

• Expansion capabilities for more sensors or actuators

Moreover LUMA is now programmed using the Robot Operating System (ROS)

framework, where all the control and observation algorithms are implemented in a

way that new functionalities/capabilities would be easily integrated in the future.

A good example would be the the work of DE OLIVEIRA LIMA (2015), where it

was implemented a localization technique based on low cost sensors.

2.3.1 LUMA framework

LUMA software was developed using ROS framework. The ROS is a set of

software libraries and tools that simplifies the task of creating complex and robust

robot behaviour across a wide variety of robotic platforms (ros.org in 4th of March

2016).

The most important concept of this framework is that the robot software is

divided into small units called Nodes, so instead of creating one chunk of code the

developer creates a series of independent modules. These Nodes are processes that

can communicate with each other even on different machines. This communication

is transparent for the developer as the framework resolves that automatically.

ROS was built with code reutilization in mind. The codes are defined inside

packages that are published in ros.org so everyone can use it. This functionality
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makes ROS a powerful tool for development as there are bunches of packages avail-

able for lots of equipments, like sonars, motor drivers, depth sensors, among others.

By that way you only need to download the package you need from the community

and integrate it with the the robot’s software.

Logging, parameters server for Node configuration, standard messages (data

structure)) for devices or control and Unified Robot Description Format (URDF)

are very useful features for software development and robot operation. Nodes com-

municate to other nodes by the standard messages so it is not needed to know what

the other node does, only what messages it needs to work. Basically two types of

communication happens in ROS Client-Server and Publisher-Subscriber and there

are two basic types of messages Topics or Services, everything represented by Figure

2.8

Figure 2.8: ROS Message Passing

LabCon/GSCAR software team designed the Robot GUI a GUI to be used on all

laboratories projects that would be useful to save man-hour in software development

in future projects. This software is being tested in two robots at that moment:

LUMA and DORIS (DORIS).

The Robot GUI is a ROS Node and its windows behaviour is similar to ROS

GUI. It has three main features:

• Component;

• Tool;

• Robot Package.

The Component has the same purpose of a Node, it is created inside the ROS

GUI and can exchange ROS messages with topics or services. It is represented by

one or more classes in C++ language. While a Tool is a Graphical windows in the
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Robot GUI, the Tool is the way users can interact with the robots and it is also

represented by one or more classes in C++. Figure 2.9 shows how these features

are connected in the Robot GUI.

Figure 2.9: Component and Tools connections in Robot GUI

A Robot Package is a library containing Tools and Components for a certain

Robot and can depend on other Robot Packages, also Components and Tools can

be derived from Components and Tools from another ROS Package which allows

Tools to be connected to Components defined on other Robot Packages.

Robot GUI can load Robot Packages and after loading, the User can create as

many Tools as he desires and can customize the windows with them dynamically.

the process of loading Robot Packages is what allows the same GUI to be used in

different robots with the same Tools.

An Instance of a Robot Package has components. The components to be created

are described in a Extensible Markup Language (XML) Components and tools to be

created are described in XML files and when they are created Robot GUI searches

for all suitable connections. Figure 2.10 shows some of the components on LUMA

Package and how they are connected and figure 2.11 shows the connections between

some of its components and tools.
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Figure 2.10: LUMA Package

Figure 2.11: Component and Tools connections in LUMA Package

This software architecture allows the system to be modular, so any system up-

grade is easily done by creating a new component and each module of LUMA control

architecture should be developed as one or more components in the Robot GUI.

The learning algorithms will also be implemented as a Component connected to the

Robot GUI. Other components will be necessary to implement the World Model,

the Planner and the Knowledge Framework.

A good ROS characteristic is that some simulation environments integrates with

the framework making it natural to move from the simulation environment to the

real world. This characteristic will prove to be very efficient when talking about

machine learning as the agent can learn from a simulated environment before acting

in the real world. Although it is not the same thing because of the uncertainties

found on the real environment, letting the robot acting in the simulated environment

for its first steps is a good policy.
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Tecgraf and GSCAR developed a simulation environment for the offshore market

where robot models are operated by its own software integrated through the ROS

framework. One example can be found in SANTOS et al. (2013) where MOTOMAN,

an anthropomorphic robot with two arms from YASKAWA, is controlled in a virtual

offshore facility performing some tasks like valve control.

Using ROS it is possible to integrate MATLAB, SIMU-EP that already has a

virtual underwater environment and the LUMA Robot GUI so that it is possible to

check LUMA’s control algorithms performance before deploying the robot in the real

world. The same can happen with the learning algorithms, as it will be explained

in chapter 3 it is needed some trial and error essays if we want LUMA to act

autonomously and so, having a virtual environment for that more than accelerating

the learning process, it makes it safer for the equipment and through the ROS

integration the knowledge acquired in the virtual world can be applied in the real

world.

2.3.2 LUMA control architecture

Figure 2.12 shows the present LUMA control architecture. The Mission Plan

is defined offline by the system operator using the primitives available in LUMA’s

database. This plan is then transmitted to the Mission Player which will start to

execute the tasks when a start mission signal is generated by the operator. From

this point on, LUMA operation turns to autonomous mode and the Mission Player

constantly sends reference signals to the Controller Module which will execute the

low level controllers, using information received from Signal Interface in order to

control Depth, Yaw and X − Y plane position. Signals generate by the Controller

Module will be sent to the Signal Interface that is also responsible to generate

the correct signals to drive the actuators.
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Figure 2.12: LUMA control architecture

This is the first autonomous control architecture developed to LUMA and al-

though it is not implemented it has been successfully simulated in JUNIOR (2014).

This work was developed before the changes on LUMA framework and no worries

were considered by that time on the lack of compatibility of nowadays Petri Net

players and the ROS-framework. Section 2.3.3 will show a solution for this problem.

2.3.3 New LUMA Architecture

With the development of this work, several changes should take place in LUMA’s

architecture so it would be possible to include the new modules, the changes can be

seen in Figure 2.13.
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Figure 2.13: New LUMA control architecture

The first change should be the exchange of the PN developed by JUNIOR (2014),

considering that there is not a stable connection between PN players and the ROS

frameworks, with the state machines programmed in the Phyton Library SMACH

proposed in DE FREITAS (2016) which is perfectly compatible with ROS. Now the

mission plan is composed by a set of state machines which will be executed by the

Mission Player.
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A Perception module has been added so all sensor data, system status and con-

troller status information are collected by it turning the system able to get a precise

perception of the environment and generates the vehicle SAH . These perceptions

are transmitted back to the Controller Module in order to improve the control

algorithms, and also to the Skill Learning module and World Modeler so the

world model would be updated and new skill could be learned in each mission.

The Skill Learning module is responsible for the creation of new system prim-

itives which would turn the robot capable of more complex missions. The primi-

tives and the Mission Description would be used together by the Mission Plan-

ner to generate the Mission Plan based on the world info given by the World

Modeler.

Besides the inclusion of new equipments, the Controller Module, Signal In-

terface and Sensors & Actuators remain the same, except that now more com-

plex algorithms could be executed by the Controller Module.
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Chapter 3

Machine Learning

Machine learning is present almost everywhere, like helping Netflix to suggest

movies for us to watch or amazon to suggest new books or products or in smart-

phones in the technologies like google now or SIRI. Besides that it is known that

European soccer teams invests thousands of dollars in machine learning to process

all the kinds of data acquired during a game to improve the team’s strategy. More

than that there is a push to use machine learning to help in the cure of cancer and

AIDS and possibly solve every problem humanity has. (DOMINGOS (2015))

Knowledge used to come from three sources: Evolution, Experience and Culture.

Evolution is the knowledge encoded on your DNA, Experience is the knowledge

in the neurons and Culture is the knowledge acquired by studying. According to

DOMINGOS (2015), Professor of Computer Science and Engineering at the Univer-

sity of Washington, a forth source appeared recently: the computers. Yann LeCun,

Director of AI Research once said “Most of the knowledge in the world in the future

is going to be extracted by machines and will reside in machines”.

The question here is how computer discovers new knowledge? For that there are

mainly 5 ways to do that and each one of them is connected to school thoughts on

Machine Learning. The 5 most expressive schools are summarized on table 3.1.

School Origins Algorithm

Symbolists Logic, Philosophy Inverse Deduction

Connectionists Neuroscience Backpropagation

Evolutionaries Evolutionary Biology Genetic programming

Baysians Statistics Probabilistic Inference

Analogizers Psycology Kernel Machines

Table 3.1: Schools of Machine Learning

Symbolists believe that the the discovery of new knowledge is to fill in the gaps of

the knowledge one already have. This process is normally done by inverse Induction.
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Connectionists believes that the process of learning should be like in human

beings. The algorithm should be programmed to act like the brain works. This

school is the responsible for the Neural Networks also know nowadays as Deep

Learning. It was built a simple mathematical model of single neuron containing all

that is needed to provide learning capabilities and they put lots of them together

building a network. The neuron model is a sum of weighted inputs with an activation

function such that if the sum is higher than a threshold its output is activated (See

figure 3.1).

Figure 3.1: Neuron Model1

The challenge now is to make this network behaves like a reduced capability

brain. This is done by training the network that is adjusting the weights and thresh-

olds to make the neurons activate accordingly. The most common process of doing

this is called back propagation, where you put an input on the network and check if

the output is the expected one and if it is not all the neurons of the previous layer

are checked and has its thresholds and weighted inputs adjusted so they shows the

expected output. This is done until the first layer is reached and adjusted.

This technology is vastly used in almost everything nowadays like in predicting

the stock market, video recognition, simultaneous translation, among others.

Evolutionaries believes that the knowledge comes from the evolution, in how the

brain is built, so they believe that we should study how evolution works in order to

learn really powerful things. The first work on that area started by the middle of

the 50th century and started with Genetic Algorithm (GA). By the 80th century it

was developed more powerful version called genetic programming.

In GA a population where each individual is represented by a genome interacts

with the environment to perform a given task or tasks. The ones that achieve

better results performing the given tasks are gains a bigger fitness value and for

1Extracted from https://en.wikibooks.org/wiki/Artificial_Neural_Networks/Print_

Version

22

https://en.wikibooks.org/wiki/Artificial_Neural_Networks/Print_Version
https://en.wikibooks.org/wiki/Artificial_Neural_Networks/Print_Version


that have a higher chance to be the parents of the next generation of individuals.

GA operators are applied in two individuals generating a new one that has part of

the genome of each one of the two individuals involved (father and mother), after

that a random mutation can be applied on the result representing what actually

happens in evolution. This process will generate the new population. (Figure 3.2)

Figure 3.2: Genetic Algorithm Fluxogram Representation2

Hod Lipson from Creative Machine Lab in Columbia University is working in

applying this algorithms to evolve real robots where they start as a pile of parts and

as they interact with the environment they learn how they can improve themselves

and generates a model to program a 3D printer to print their next generation.

Baysians believes that everything you learn is uncertain, so they compute the

probabilities of the hypothesis and updates the probabilities as new data is given.

Bayesian reasoning provides a formal and consistent way to reasoning in the pres-

ence of uncertainty; probability theory is an embodiment of common sense reason-

ing.Their learning algorithm is based on the Bayes Theorem (equation 3.1) which

describes the probability of an event based on conditions that might be related to

that event.

2Extracted from “An Educational Genetic Algorithms Learning Tool”, Ying-Hong Liao, and
Chuen-Tsai Sun, Member, IEEE - Weblink: http://www.ewh.ieee.org/soc/es/May2001/14/

Begin.htm
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P (H|e) =
P (e|H)P (H)

P (e)
(3.1)

where:

P (H) is the probability of H to happens

P (e) is the probability of e to happens

P (H|e) is the probability of observing event H given that e is true

P (e|H) is the probability of observing event e given that H is true

From the point of view of machine learning, P (H) is the Prior probability of

each hypothesis H considered before any data or evidence e is observed. Then, as

the data is observed, the probability of the hypothesis goes up if it is consistent

with the data and goes down if it is not. The likelihood function P (e|H) measures

this consistence between the hypothesis and the data, this function measures how

probable the data is observed if the hypothesis is true. The marginal function P (e)

measures how probable is the new evidence under all hypotheses and it is defined as

P (e) =
∑
P (e|Hi)P (Hi). The function P (H|e), called the posterior measures the

probability of the hypothesis given the observed data and it shows how much you

believe in the hypothesis after you see the evidence.

Some self driving car and SPAM filters are examples where Baysian learning is

used.

Analogizers says that everything we learn is reasoning by analogies, that is mak-

ing connections between the new situations and the situations that we are familiar

with. This is widely used in recommendations systems like Netflix, Amazon or any

other e-commerce site.

All the algorithms presented can be divided in three parts:

• Representation;

• Evaluation;

• Optimization.

Verifying that, DOMINGOS (2015) is working to unify them all in a universal

learner capable of deriving all knowledgepast, present and futurefrom data. His

work extracts the better characteristics of each school and apply all together in a

new Algorithm that is being called the Master Algorithm.

The way he is doing that is through the application of the best algorithm that

better suites in each of the parts. Representation contains the information on
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how the learner represents what it is learning. In this part Domingos combined

the logic characteristics of the symbolists, that are variations of First-order logic

and the probabilistic model of the baysians represented by graphycal models (Bay-

sen networks, Markov models among others). Both representations are extremely

general and by combining them it is possible to represent almost everything. This

generates a Probabilistic Logic model and the most widely used representation for

that is called Markov Logic Networks (MLN).

The second part Evaluation tells how good a candidate model is, for that

posterior probability is used as evaluation function. The third part, Optimization,

is the algorithm that searches for the highest-scoring model and returns it. Genetic

search coupled with gradient descent were chosen for that task.

Independent of the school, there are mainly three forms of learning:

• Supervised Learning;

• Unsupervised Learning and

• RL.

Supervised Learning basically is a function approximation

y = f(x)

where given a bunch of pairs < x, y > the goal is to find the function f that

maps a new x to a proper y. This is called Classification. Supervised Learning

is used in prediction of future cases, knowledge extraction and compression, where

the function is simpler than the data it represents. A good example of Supervised

Learning is Anti Spam where the computer has to classify an e-mail as it is or it is

not a Spam and the user sometimes shows tha a wrong classification was done.

In Unsupervised Learning you only have bunches of xs and has to find the func-

tion f that gives a compact description of the set of xs given. This is called clustering

and is used to identify in which cluster a new x belongs to. This is like “learning

what normally happens” and it produces no output function like in supervised learn-

ing. A good example is Bioinformatics where the computer uses the input data to

give the most possibly diagnoses.

In RL, given a stream of < x, z >s the goal is to learn some f to generate y in

y = f(x).

RL is used on game plays where a sequence of moves is needed to win, on Robots

in a maze where a sequence of actions is necessary to achieve the goal, in multiple

agents systems, among others. In this examples, the computer has to learn a policy,

that is a sequence of outputs to produce the desired behaviour.
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The main difference between RL and supervised learning is that the agent must

interact with the environment to actually learn something, so no input/output pairs

< x, y > are given, they are produced dynamically on this robot interaction.

This work will use the concepts of RL and for that the variables < x, z, y > and

function f and its uses will be explained further on.

3.1 Reinforcement Learning

Although RL is widely used in statistics, psychology, neuroscience and computer

science, only on the last twenty years it attracted the interests in the machine

learning and artificial intelligence communities. It works on ways of programming

agents by reward and punishment without needing to specify how the task is to be

achieved (KAELBLING et al. (1996)).

Figure 3.3 shows a RL model. Basically an agent, in this case a robot, is con-

nected to the environment via its perceptions and actions.

Figure 3.3: Reinforcement learning model3

On each step of interaction, the agent receives the input i that contains some

indication of the current state s of the environment and based on that it chooses

an action a as output. The action a changes the state of the environment and the

3Adapted from KAELBLING et al. (1996)
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value of this transition is passed to the agent as a reinforcement signal r, also called

reward. The agent’s behaviour B should choose actions that tends to increase the

sum of the r signals received. The problem on RL is that the agent only learn how

to behaves in an environment overtime by systematic trial and error, guided by a

wide variety of algorithms (KAELBLING et al. (1996)).

The RL model consists of

• a discrete set of environment states, S;

• a discrete set of agent actions, A;

• a set of scalar reinforcement signals, R;

• an input function, I, wich determines how the agent perceives the environment

state; and

• a function T that represents the model of the environment.

Although the environment is non-deterministic, which means that taking the

same action in the same state on two different occasions may result in different

state and reinforcement values, we are going to assume that the environment is

deterministic, meaning that the probabilities of making state transitions or receiving

reinforcement signals do not change over time. Even if this assumption is not very

realistic, many RL algorithms showed to be effective in slowly-varying environments,

unfortunately there are not many theoretical analysis for that.

Markov Decision Process (MDP) is widely used in many autonomous systems

in different modules inside the architecture. PALOMERAS et al. (2012) and EL-

FAKDI (2010) uses MDP in the reactive layer to learn and optmize the robot prim-

itives. EL-FAKDI (2010), for example applyied Gradient-based RL techniques to

learn a pipe tracking primitive. Once made, it can be easily used to learn other

primitives.

URE et al. (2013) uses RL for solving the path planning problem on mobile

robots acting in unknown dynamic environments.

PATRON (2010) on the other hand, uses MDP in the mission layer to implement

an approach to mission planning. In this approach they map states to plan candi-

dates which means that the selection of plans are done by calculating their estimated

cost of execution and the reward obtained by reaching the new configuration of the

mission environment.

3.1.1 Optimal Behavior

The objective of applying learning techniques on agents is for them to try to

optimize their behavior. When talking about optimization it is need to specify what
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should be optimized and the model of optimality that will be used. In the case of

robots interacting with the environment it is needed to consider how it should take

the future reward in account in the decisions it is taking now.

According to KAELBLING et al. (1996) there are various models of optimality

but three of them are used in the majority of work in this area.

The easiest one to think about is the finite-horizon where the agent should

optimize the expected reward for the next h steps:

E
( h∑
t=0

rt

)
(3.2)

Where rt is the scalar reward received in step t. In this case it is not needed

to worry what would happen after the last step. There are two ways to use this

model. In the first, the agent with a non-stationary policy4would take the h-step

optimal action, that is the action considered the best action given that there is h

steps remaining, and then takes the (h-1)-step optimal action until the last 1-step

optimal action. In the second, the agent does what is called receding-horizon control,

in which it always takes the h-step optimal action and the value of h limits how far

the agent will take in account future steps. In this case after each step it includes

in the reward expected value the action in step h+ 1.

In the infinite-horizon model, the long-run reward is take into account but the

more in the future the reward is, the more geometrically discounted it is:

E
( ∞∑
t=0

γtrt

)
(3.3)

where γ ∈ [0, 1)

The discounted value γ is necessary because the series may not sum up to ±∞
as it would make every policy optimal and no decision process would be taken, but

it can be interpreted as an interest rate or the probability that the agent would be

alive for one more step.

The third model is the average-reward model where the agent should optimize

its long-rum average reward:

lim
h→∞

E
(

1

h

h∑
t=0

rt

)
(3.4)

This policy is also called as gain optimal policy, it is the limiting case of the

infinite-horizon discounted model as the discounted factor approaches to 1 (BERT-

SEKAS (1995)). In this criterion it is not possible to distinguish between the policy

that gains lots of rewards in the beginning and one that does not because the per-

4A policy that changes over time
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formance received at the initial states are overshadowed by the long-run average

performance.

When talking about choosing a policy, the model of optimality is decisive, de-

pending on the model the choices in each state changes. For example, the finite-

horizon is appropriate when the agents lifetime is known and an important fact

about this model is that when its lifetime decreases it may change its policy.

For example, let’s consider the grid world show in Figure 3.4. The final state

represented by the green circle would give a total reward of +10, each other state

except from the one marked by the red X would give a reward of −1 while the red

X gives a reward of −7. The agent is represented by the the blue triangle.

Note that if the agents life is more than 6 steps, the optimal path would be

the set (LEFT, LEFT, UP, UP,RIGHT,RIGHT,RIGTH) resulting in a reward

of +4, but if the agents life is fewer or equal to 6 steps the optimal policy would be

the set (UP,UP,RIGHT ) resulting in a reward of +2. If the agent tries to follow

the first policy with a limited number of steps left it would end in a state in between

resulting in a reward of −x where x is the agents life.

Figure 3.4: Grid World example showing the changes on reward function based on
the agent’s life

3.1.2 Exploration versus Exploitation

Exploration and Exploitation are what makes RL different from other kinds

of learning. The agent should choose its action based on those concepts to try

to reach the optimality. Exploration is a long-term process, with a risky and

uncertain outcome while Exploitation consider the short-term process, where it

tries to maximize the immediate benefit. For example, figure 3.5 shows a state

machine where the first state has two possible transitions to be taken. If the agent

chooses the +5 path it would receive +5 in the first action +5 in the second action

and +1 for every action after the second one while if he chooses the +1 path it would

receive +1 for its first action and then a +10 for every action taken after the 7th

action. Note that if it is said that the agent will only live from 1 to 6 turns (∈ [0, 6])

then the optimal path would be the +5 but if he would live more than 7 turns the
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optimal path would be the +1. In the case of 7 turns both paths are equal, so the

agent can choose freely.

Figure 3.5: Exploration X Exploitation Example

It is easy to note that if the agent is an exploitation agent it would choose for

the +5 path but if it is an exploration agent it would choose for the +1 path. This

is easy when all the states and transitions are known, meaning that the model is

completely defined, unfortunately in the case of autonomous agents this is not true,

the agent should act and learn with the environment and in the environment so

its first action would be chosen without knowing the true reward, what it normally

computes is the expectation of the rewards and takes the actions based on that.

According to KAELBLING et al. (1996) there are fairly well-developed formal

theory of explorations for very simple problems but those methods do not scale well

to more complex problems like:

• Dynamic-Programming Approach

• Gittins Allocation Indices

• Learning Automata

These methods will not be discussed as their discussion are not part of the scope

of this work but are mentioned here for a better overview of the RL problem.

3.1.3 Delayed Reward and the Markov Decision Processes

Although the methods present in section 3.1.2 were designed for the one state

agent, they can be replicated for multiple state systems by applying them on each

state individually. Most of these techniques converges to a regime where exploratory

actions are rarely taken which is not a good strategy when talking about non-

stationary environment. In a dynamic world, exploration must take place so the

agent can notice its changes and learn with them.

In the general case, the agent’s actions determine the immediate reward and

the next (probable) state of the environment, remember that the real world is non
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stationary and so the same action taken in the same state can lead to different

states. The model of optimality described in section 3.1.1 will determine how the

future would be taken into account.

In this case, the agent takes a long sequence of actions receiving insignificant

reinforcement until it reaches a state with high reinforcement. During the process

the agent must be able to learn which actions are desirable based on reward received

arbitrarily in the future. This process is called delayed reinforcement or delayed

reward.

The delayed reinforcement problems are well modeled as MDP that consists of:

• a set of states, S

• a set of actions, A

• a reward function: R : S × A → R that specifies expected instantaneous

reward as function of current state s and action a. The notation is R(s,a).

• a state transition function T : S × A → Π(S), where a member of Π(S) is a

probability distribution over the set S. The notation is T (s, a, s′) that is the

probability of making a transition from state s to state s′ using action a

The model is considered Markov if the state transitions are independent of any

previous environment states or agent actions. That means the past does not matter

for the future state transitions.

Finding a policy

The first step before letting an agent tries to learn how to behave in MDP

environments is to explore techniques for determining the optimal police given the

correct model as these techniques are the foundation for the learning algorithms.

The algorithms presented here are for the infinite-horizon discounted model,

there are analogs algorithms for the other models of optimality but are not going to

be discussed here as they are not going to be used in this work.

Let’s start with the definition of the optimal value of state (equation 3.5) that

is the expected infinite discounted sum of reward that the agent will gain if it starts

in that state and executes the optimal policy.

V ∗(s) = max
π

E

(
∞∑
t=0

γtrt

)
(3.5)

where π is the complete decision policy.

Doing some math and substitutions we find that

31



V ∗(s) = max
a

(
R(s, a) + γ

∑
s∈S

T (s, a, s′)V ∗(s′)

)
,∀s ∈ S (3.6)

Given equation 3.6 it is possible to specify the optimal policy as

π∗(s) = arg max
a

(
R(s, a) + γ

∑
s∈S

T (s, a, s′)V ∗(s′)

)
,∀s ∈ S (3.7)

With the equations defined, one possible way to compute the optimal policy is

to find the optimal value function. The simplest way is using an iterative algo-

rithm called value iteration (presented below) that BELLMAN already proved its

convergence to the correct V ∗ values.

Function Value Iteration is

initialize V (s) arbitrarily

while policy not good enough do

forall s ∈ S do

forall a ∈ A do

Q(s, a)← R(s, a) + γ
∑

s′∈S T (s, a, s′)V (s′)

end

V (s)← maxaQ(s, a)

end

end

end

The biggest problem with iterative methods is choosing a stop criterion as a very

restrict criterion would make the convergence very slow and a very loose criterion

could make the algorithm to converge to a non optimal value. There are many works

on literature that treat this problem like WILLIAMS e III (1993) or PUTERMAN

(1994). In this work the stop criterion will be specified in each application example

and explained as needed.

Updates like those used in this method is known as full backups since they use

information from all possible successor states. The computational complexity of

this algorithm, per iteration, is quadratic in the number of states and linear in the

number of actions making it hard to compute in systems with a large variety of

states.

Another algorithm needed for the understanding of the next steps is the pol-

icy iteration (presented below) that manipulates the policy directly instead of the
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indirect value iteration method where only the value function is found.

Function Policy Iteration is

choose and arbitrary policy π0

while πt 6= πt+1 do
Vt(s)← R(s, πt(s)) + γ

∑
s′∈S T (s, πt(s), s

′)Vt(s
′)

πt+1 ← arg maxa
∑

s′∈S T (s, πt(s), s
′)Vt(s

′)

end

end

Vt(s) is called a Bellman Equation and solving that problem means solving n

equations in n unknowns.

3.1.4 Learning a policy

Section 3.1.3 cited methods for obtaining an optimal policy for an MDP assuming

that T (s, a, s′) and R(s, a) are known but what happens to the agent when it has

to take an action without knowing future rewards and the probability function? In

this case the only possible think to do is to interact with the environment and tries

to compute an immediate reward.

According to KAELBLING et al. (1996) there are two methods that can be used:

• Model-free: Learn a controller without learning the model

• Model-based: Learn the model and use it to derive a controller

The simplest strategy would be to let the agent interact continuously with the

environment with their chosen policy and checks if at the end its mission have been

accomplished and give it the correct reward. The problem in this approach is that,

sometimes it is difficult to determine what the end would be and if the agent does

not perform correctly the task it would be impossible to know where the policy

should be corrected and if the initial policy was the optimal one.

RL techniques suggests temporal difference methods that uses value iteration

to adjust the estimated value of a state based on the immediate reward and the

estimated value of the next state.

A well known algorithm is called adaptive Heuristic Critic that is composed by

two blocks, the critic (AHC) and the RL, the connections of these two blocks are

presented in figure 3.6.
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Figure 3.6: Adaptive heuristic critic algorithm5

In this algorithm the RL block will act in order to maximize the heuristic signal

v instead of instantaneous reward r. The AHC, on the other hand, uses the rein-

forcement signal r to learn to map states to their expected discounted values given

that the chosen policy is being executed in the RL component.

So the AHC learns the value function Vt for the policy π implemented by the

RL, then, given this value function the RL component learns a new policy π′ that

maximizes it.

For the critic to learn the value of a policy Sutton’s TD(0) algorithm is used

(SUTTON (1988)) and its update rule is expressed by

V (s) = V (s) + α(r + γV (s′)− V (s)) (3.8)

where α is a learning rate.

For the learning process the experience tuple < s, a, r, s′ > where s is the agent’s

state before the transition, a is its chosen action, r is the reward received and s′

the resulting state. When a state s is visited its estimated value is updated to be

closer to r + γV (s′) where V (s′) is the estimated value of the actually occurring

next state and r + γV (s′)is a sample of the value of V (s). The main difference

between this algorithm and the Value iteration is that the sample is collected from

the environment instead of a known model.

There is a more general class of algorithm called TD(λ) with the same update

rule but instead of updating only the visited state , it updates recent visited states.

The more general one is TD(1) that updates every visited state. The larger the

value of lambda, the more computationally expensive it is but it often converges

faster.

5Extracted from KAELBLING et al. (1996)
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Q-learning

WATKINS (1989) unified the two blocks of the Adaptive heuristic algorithm in

the Q-learning algorithm that is typically easy to implement and because of that

one of the most used in RL works found on literature.

Let’s introduce a new function Q∗(s, a) that is the expected discounted reinforce-

ment of taking action a in state s by choosing the actions optimally. V ∗ is the value

of s assuming that the best action is taken and so V ∗(s) = max′aQ
∗(s′, a′). The

recursively form of Q∗(s, a) can be written as

Q∗(s, a) = R(s, a) + γ
∑
s′∈S

T (s, a, s′) max
a′

Q∗(s′, a′) (3.9)

and the optimal policy π∗ can be written as

π∗(s) = arg max
a
Q∗(s, a) (3.10)

As the action is explicit in the Q function it becomes easy to estimate the Q-

value online using the TD(0) method, but more than that it is easier to define the

policy. The Q-learning update rule using the same < s, a, r, s′ > experience tuple is

Q(s, a) = Q(s, a) + α(r + γmax
a′

Q(s′, a′)−Q(s, a)) (3.11)

where α is the learning rate.

WATKINS (1989) proved that if each action is executes in each state an infinite

number of times on an infinite run and α is decayed appropriately the Q values will

converge to Q∗. Another advantage of Q-learning is that it is exploration insensitive

meaning Q values will converge to the optimal values independent on how the agent

behaves while the data is being collected as long as every < s, a > pair is visited

often.

This work will use the Q-learning algorithm as they are easy to implement and

there are plenty of work on literature to support its implementation.
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Chapter 4

Mission Planning

For the intent of this work a mission plan is a sequence of command primitives

concatenated to accomplish a job given by a Mission Description.

In a ROV the mission is given to a Human Operator that has the role

to elaborate a Mission Plan using human like primitives like go forward,

go to depth 50m, inspect ground and check equipment status, on a mission

planning phase. This Plan is pre-scripted based on what the operator thinks it is

necessary to accomplish the mission. After that, the operator starts the mission by

launching the ROV and manually controls it trying to follow the plan and in case

something goes wrong or different from the plan, the operator has autonomy to take

new decisions, modify the plan and take actions that would make it accomplish the

mission. Figure 4.1 shows how the information cycles occur in a ROV architecture.

Figure 4.1: Information cycle in an ROV 1

This kind of architecture uses the human knowledge and SAH in order to deter-

mine the mission success.

When talking about going autonomous, a first step to be considered is to give

some intelligence to the vehicle so the operator does not need to execute the whole

mission. Figure 4.2 shows a representation on how information cycles occur on

the most common architectures like those shown in FOSSEN (1994), RIDAO et al.

(1999) and YUH (2000).

1Modified from PATRON (2010)

36



Figure 4.2: Information cycle in a vehicle with some autonomy2

In this kind of cycle, a Human Operator receives the mission description, pro-

cess it in system primitives creating the mission plan and program it in the Mission

Executive. Mission Executive sends C ommands and receives Observations from

the platform that are continuously receiving Events from the environment. Differ-

ent from the ROV loop (figure 4.1, in this loop the Human Operator may not

receive information about the mission status letting the mission control to be exe-

cuted by the vehicle without any surveillance. In this case it is important that the

Human Operator computes a certain amount of pre-scripted situations that he

believes could happen during the mission and let the vehicle to execute the steps

of the mission plan converted in system primitives. The main problem on this kind

of approach is that the lack of a decision module can cause a mission to abort

unexpectedly.

More recently, PATRON (2010) proposed a modification in the cycle to include

the decision making. This approach was motivated by the fact that two problems

were affecting the the effectiveness of the decision loop. The first one is that Orien-

tation and Observations should be linked together so the new Observations would

be placed in context. The second one is that the decision and action should be iter-

ating continuously. To solve this two additional components were added to the loop

(see figure 4.3). In this configuration the Human Operator does not participate

on the loop, the mission is passed directly to an offline Mission Generator that

process it in system primitives creating the mission plan and program it in the Mis-

sion Executive. Mission Executive sends C ommands to the platform that are

continuously receiving Events from the environment and sending its Observations

to the Status Monitor that sends information to the Mission Adapter. In this

case the Mission Adapter took the place of the Human Operator sending a new

plan to the Mission Executive when needed. The Mission Adapter uses MDP

to adapt the initial mission plan.

2Modified from PATRON (2010)
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Figure 4.3: Information cycle in an AUV3

4.1 Adaptive Mission Planning

The purpose of this section is to show how the mission should be adapted during

its execution.

Figure 4.4 shows the proposed mission execution flow in LUMA system. An Ini-

tial Mission Plan is passed to the system by the operator. An Action Selector

gets the next primitive to be executed and make a capability check before its execu-

tion. This check is necessary to evaluate if the action can be executed. For example,

suppose that the mission to be executed is a temperature profiling over a surface

installed 300 m depth in the ocean. After reaching the surface, the primitive that

appear in the plan is check_temperature, if the temperature sensor fails the check

capabilities would show that the accomplishment of this primitive is impossible so

the robot should try to replan the mission. As the robot does not have other means

to check the temperature, like a thermal camera, the replaning is not possible and

the emergency_surface primitive is executed. Note that if the thermal camera is

an option, the robot would have to calculate another plan to reposition itself in a

way that the use of the camera becomes possible.

3Modified from PATRON (2010)
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Figure 4.4: Execution Flowchart

The Replan block is responsible to make a new plan based on the system capa-

bilities, the mission description and the world model present in LUMA architecture.

The replanner uses MDPs in the World Model to check the optimal policy that

would solve the mission. As the World Model may not be updated, modeled or

perceived correctly by the vehicle the new mission plan can result in an impossible

sequence of actions given that the robot can find itself in an environment completely
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different from the one it is expecting. World Model Update is a big challenge and

will not be treated in this work.

4.2 LUMA Mission Description

LUMA was firstly designed as an ROV for intake pipeline inspections, for that

all equipments and mechanical characteristics were chosen to accomplish that mis-

sion. After the robot was fully functional and tested, it was adapted for Antarctic

survey missions, where some of the mechanics were redesigned and the need of new

equipment became imminent.

More than that, in recent years GSCAR was consulted for the possibility of using

the ROV to register the whale migration in Abrolhos Archipelago in the southern

coast of Bahia state in the northeast of Brazil.

The objective of this session is to describe how the Mission Control System

(MCS) should act in order to execute the mission. In JUNIOR (2014) developed

the first MCS for the HROV LUMA. The following primitives were developed:

• heading - Turns the vehicle along the z axis and maintains the direction during

the movement;

• depth - Goes to the desired depth;

• surface - Goes to the surface;

• emergencySurface - Goes to the surface if something goes wrong that could

put in danger the robot integrity or the mission;

• goto - Goes to the < x, y > position;

• initializeVehicle - Initializes the vehicles equipments;

• stopVehicle - Stops the Data Acquisition and the Vehicle that could put in

danger the robot integrity or the mission;

• alarm - Verify the status of every element on the vehicle and generates an

alarm if any of them are wrong;

Using these primitives JUNIOR (2014) completed a pipeline tracking mission

with and without maritime current in a simulated environment. All the mission have

been pre-programmed and the actions in case something went wrong were defined

before the robot started the mission which is and emergencySurface primitive.

For the purpose of this work 2 missions are going to be considered where the

MDP will be applied:
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• A pipeline tracking mission (fixed target)

• A whale tracking mission (moving target)

In the pipeline tracking mission, an initial plan will be passed to the robot,

when a problem occur during the plan, the robot should calculate a new plan and

try to execute it. A camera loss, a counter flow and an obstacle will be considered

in the simulations.

In the whale tracking mission the robot should wait for a moving target to reach

its field of vision and then approximate the target and stay inside a determined

area without hitting the target. For this example, different perception levels will be

simulated.

The two missions are going to be simulated and MDP will be applied during

the mission so the vehicle should learn how to adapt in case anything unexpected

happens.
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Chapter 5

Simulation and Results

5.1 Simulation environment

The simulation is programmed using the Brown-UMBC Reinforcement Learning

and Planning (BURLAP) java code library, this library was developed by the Com-

puter Science department from Brown University in Rhode Island. It is ideal for

the use and development of single or multi-agent planning and learning algorithms

and domains to accompany them. At the core of the library is a rich state and

domain representation framework based on the object-oriented (OO) MDP (DIUK

et al. (2008)). The main advantages of using BURLAP is that the program created

here can be used in the real robot without the need of adaptation and it has a ROS

bridge so it can be connected with LUMA framework.

As the BURLAP does not have an intuitive way to show the results, the same

code was developed in MATLAB so the results could be presented here.

5.2 The pipeline tracking problem

The first step for the simulation is defining the world model to be used:

• It is a 30x30x30 grid world;

• All the primitives proposed by JUNIOR (2014) will be considered;

• The robot always receive a negative reward when it moves unless it is moving

through its objective. The battery is discharging while the robot is ON

• When the robot reaches the limits of the environment, the action that would

move it outside the environment would move it to the same state

Secondly a reward must be defined while the robot is tracking the pipeline. The

proposed one is the following:
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• When the robot reaches the pipeline in the entrance point it gets +10

• While tracking it receives +1

• If it drifts 1 state to both the left or right of the pipeline it receives +0.5

• If it drifts 2 state to both the left or right of the pipeline it receives +0.25

• If it drifts more than 2 state to both the left or right of the pipeline it is

considered that the camera cannot capture the pipeline image so it gets −2

The first test is a simple follow the pipeline mission, where the operator entered

the mission plan and nothing wrong happened. Figure 5.1 shows the state and

action evolution for the mission.

Figure 5.1: State Evolution for a mission without any occurrences. Red star repre-
sents the vehicle and Blue lines represent the pipeline.

The first experiment showed that the state evolution makes the mission to be

accomplished properly and the offline method for planning is effective when nothing

unexpected happens in the environment.

The same mission was executed without the replanner in an environment with a

sea current and the mission could not be accomplished as showed in Figure 5.2.
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Figure 5.2: State evolution for a mission with a sea current without the replanner.
Red star represents the vehicle, Blue lines represent the pipeline and Green triangles
represents the sea current.

After turning on the replanner, the mission could be accomplished as the vehicle

created a new plan that would take itself out of the sea current and returned to

the pipeline through another path. Figure 5.3 show the state evolution for this

experiment.
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Figure 5.3: State evolution for a mission with a sea current with the replanner. Red
star represents the vehicle, Blue lines represent the pipeline and Green triangles
represents the sea current.

5.3 The whale tracking problem

The second mission suggested is the whale tracking mission. For this mission the

vehicle should wait for the whale to be in its camera viewfinder and starts to follow

the whale. Four experiments will be conducted where in each one the perception

level of the whale will be modified. In the first one there is a 100 % chance that

the whale is perceived by the robot and a 25 % decreased chance will occur in the

following tests with the last one with a 25 % probability for the vehicle to perceive

it. Only when the whale is perceived the robot starts to follow it. If during the

mission the robot looses the capability to track it, it would return to the start point.

5.4 and 5.4 shows the state evolution for this problem.
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Figure 5.4: Whale tracking problem with perception level of 100%(Right) and
75%(Left). Red star represents the vehicle and green circles represent the whale

Figure 5.5: Whale tracking problem with perception level of 50%(Right) and
25%(Left). Red star represents the vehicle and green circles represent the whale

Note that with 25% perception level, the robot starts to track it but it looses

the whale due to distorted perception, like in low visualization conditions and so it

returns to the start point. With 50% perception level, the robot perceives the whale

but only a few states after it passed by making the robot to follow it with a delay

if compared with the 75% and 100%, wich gave the same behaviour.

5.4 Results Discussion

The results presented in this section showed that it is possible to implement a

mission replanning for an autonomous vehicle. Although the underwater environ-

ment is much more aggressive and uncertain than the environment presented here,

research in perception and robust control would make all the theory tested here to

be perfectly applied in Underwater Autonomous System. The application of this

theory in LUMA can present a high cost as the investment in new sensors and al-

gorithms is required to improve the system perception and make it act more likely

the behaviour presented in the simulated environment.
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Chapter 6

Conclusion and Future Work

This work introduced some of the components needed to make a system au-

tonomous. Although many other concepts are needed to make a system completely

autonomous the concepts presented here showed to be an effective start on this area

of research.

This chapter will review the contribution and the results achieved by this work.

6.1 Conclusion

As mentioned during the whole work, autonomous system are a wide area of

research, there are lots of new concepts and new tools are been created to solve the

various problems that appear every day.

Concepts like artificial intelligence, perception, situation awareness and others

that tend to imitate human behavior are becoming common turning autonomous

systems into more and more multidisciplinary area where studies on biology, psy-

chology, neuroscience, statistics and computer science are changing the quality of

the new control systems.

Studying human and animal behavior combined with the computer capabilities

of manipulating lots amount of data is showing to be a key thing to solve almost

every problem presented.

The new control architecture implementation was simulated and showed to be

functional. Although not every module presented in the control architecture were

implemented, the ones that were made quite a good job in giving some autonomy

to the vehicle.

The assumptions on the environment, although very restrict, can be easily loosen

with the implementation of the modules proposed for the architecture. Perception

is a very important characteristic that has to be explored and upgraded in order to

achieve higher levels of Situation Awareness and Decision Making.
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RL applied to underwater robotics showed that it is possible to deal with un-

known environments if the correct reward rules are given to the robot. MDP applied

in Mission replanning showed to be very effective in solving the problem besides the

high computational load.

The Q-learning algorithm used in this work, despite been very simple to imple-

ment needs lots of computational capabilities that can be very difficult to deal when

implemented in real robots, other algorithms should be tested.

6.2 Future Work

As a second effort in turning LUMA autonomous, lots have been reached through

this work and new challenges were presented opening new opportunities for research.

The implementation of the Perception module and ways to improve the Situa-

tion Awareness through the use of Knowledge Frameworks should be a priority

in order to make the control system more reliable.

All the work presented here were simulated so its implementation on the robot

should be done shortly. The development using BURLAP facilitates the implemen-

tation on the mission replanning block as it is ROS compatible. Besides that all the

control system architecture should be executed.

An important decision should be taken between the use of the Petri Nets pre-

sented in JUNIOR (2014) and the SMACH system presented in DE FREITAS

(2016). Tests should be done considering system stability and integration.

Other RL algorithms should be tested to minimize computational load so the mis-

sion replanning module does not represent risk to the mission control system making

the computer almost all the time dedicated to the execution of the Q-Learning al-

gorithm. Replanning should be a fast operation seen that the robot cannot stay

still for a long time waiting for the calculations to be done. The overview on RL

algorithms presented dyna as a good alternative but others should be considered.

Of course there are a lot of future works to be done considering that Autonomous

Systems is a growing area on todays research and the implementation and tests of

this new techniques in LUMA missions in Antarctic will be a considerably push on

the studies on underwater autonomous systems on COPPE research and the first

step for a journey that could include, for example, the World Climate Research

Programme (WCRP) Polar Challenge opened since 2019 where Autonomous Un-

derwater Vehicle have to complete a 2000 km continuous mission under the sea

ice.
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