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LOCALIZAÇÃO DE UM ROBÔ AUTÔNOMO GUIADO POR TRILHOS
BASEADO EM FILTRO DE PARTÍCULAS

Guilherme Pires Sales de Carvalho

Março/2016

Orientador: Ramon Romankevicius Costa

Programa: Engenharia Elétrica

Recentemente, tem-se observado um crescente interesse no uso de sistemas
robóticos em instalações de produção na indústria de óleo e gás, sobretudo em
plataformas offshore. Um dos problemas nessas instalações é a manutenção de
plantas de processo, que atualmente exige que operadores sejam embarcados para
efetuar inspeções e intervenções no local, sendo submetidos aos riscos do ambiente
agressivo característico e representando custos devidos à logística complexa.

O robô DORIS está sendo desenvolvido pela COPPE em parceria com a
Petrobras e Statoil como uma solução para esse problema, tendo o objetivo de
realizar tarefas de inspeção de maneira autônoma em plantas de processo no topside
de plataformas. O robô se movimenta através de um trilho instalado em regiões de
interesse na planta e é dotado de diversos sensores capazes de fornecer informações
do ambiente a um operador remoto.

Este trabalho apresenta a implementação de um algoritmo de localização para
o sistema de navegação autônoma do robô DORIS utilizando uma abordagem
probabilística. Um filtro de partículas, que integra informações de movimentação e
percepção do robô, é utilizado para estimar sua localização no trilho. Uma técnica
proposta neste trabalho, baseada no histórico recente de eventos observados pelo
robô, é adicionada ao algoritmo de Monte Carlo padrão para adicionar robustez,
reduzir a complexidade computacional e acelerar a convergência da localização.

Simulações com dados de testes de campo com o robô mostram que o algoritmo
proposto estima sua localização no trilho com erro inferior a 25cm, se mostrando
superior à odometria e ao filtro de partículas padrão. Além disso, o algoritmo é
capaz de resolver importantes problemas de localização para um robô autônomo: os
problemas de condição inicial, localização global e o problema do robô sequestrado.
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Recently, it has been noted a growing interest on robotic systems in production
facilities of the oil and gas industry, especially on offshore platforms. One
problem in particular of those facilities is the maintenance of process plants, which
currently requires flying human operators to distant fields to perform inspection and
maintenance tasks on site, being subject to the risks inherent to the characteristic
harsh environment and accounting costs related to complex logistics.

DORIS is a robot being developed by COPPE in collaboration with Petrobras
and Statoil as a solution to this problem, with the purpose of autonomously carrying
out inspection tasks in offshore platforms process plants. The robot moves through
a rail installed in the regions of interest of the plant and it is equipped with various
sensors capable of providing real time information about the inspected environment
to a remote operator.

This work presents the implementation of a localization algorithm for the
autonomous navigation system of DORIS using a probabilistic approach. A particle
filter, which integrates motion and perception information of the robot, is used to
estimate the robot localization on the rail. A novel technique, based on the recent
history of events observed by the robot, is proposed to augment the standard Monte
Carlo localization algorithm to improve the robustness and convergence rate of the
estimation, and reduce its computational complexity.

Simulations using field tests data of DORIS show that the proposed algorithm
estimates the robot position on the rail with an error smaller than 25cm, proving to
be superior than odometry or a standard particle filter. In addition, the algorithm
is able to solve important localization problems for autonomous robots, which are
the initial condition, the global localization, and the kidnapped robot problems.
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Chapter 1

Introduction

Traditionally, robotics in the oil and gas industry is mainly applied in inspection
of underwater equipment and seabed mapping by Remotely Operated underwater
Vehicles (ROV) and Autonomous Underwater Vehicles (AUV) , as well as in pipeline,
tank and vessel inspection (Bos et al. 2015, Faber Archila & Becker 2013, Shukla
& Karki 2013, Yuh 2000). Some examples of robots used in these applications are
shown in Figure 1.1.

(a) A Pipeline Inspection Gauge (PIG). (b) PETROBOT’s vessel inspection robot.

(c) An ROV operating on a subsea structure. (d) An AUV mapping the seabed.

Figure 1.1: Examples of current robotic applications in the oil and gas industry.
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The motivation for the use of robotics in the oil gas industry comes from the
repetitive, unhealthy and hazardous tasks characteristic of oil and gas facilities. In
view of these conditions, such type of work should not be performed by human
beings, specially when the new oil fields in deepwater are considered. Furthermore,
the robotics technology employed in the applications cited above is developed in a
level that the required robustness and cost-effectiveness are provided.

On the other hand, the same attention has not been given to robotized systems
on the topside of platforms, mainly because this technology still has not shown to
be robust and safe enough, and with the desired cost-effectiveness for the current oil
exploration fields. However, the recent advances in robotics in the areas of auton-
omy, teleoperation, and non-structured environments, combined with the inherent
challenges of future oil fields are changing this scenario and motivating research and
development of robots for the topside of offshore platforms.

Currently, the main variables of a process plant in a platform are monitored
through instrumentation and automation networks. The installation and mainte-
nance costs of several sensors are proportional to the dimension of the process plant.
Moreover, studies show that the complete automation of an oil and gas facility re-
quires a system with 1000 operations additional to those already carried out by
operators (Anisi et al. 2011), such as valve manipulation, sample taking, and in-
sertion and removal of PIGs. A mobile robot provided with a variety of sensors
concentrated in just one place can dramatically reduce the number of fixed sensors
in an automation network, and, consequently, the costs and risks associated to the
installation and maintenance of these sensors (NREC/CMU 2012).

The depletion of oil resources within easy reach is imminent and an increase in
the current oil price may turn the exploration of previously unprofitable oil fields
feasible. Future exploration fields are more remote and have more severe environ-
mental conditions, representing challenges that require new technologies and even
new business models, which tend to increase the level of automation in platforms
and decrease human activity in such environments (Skourup & Pretlove 2009). New
technology will allow, besides of the exploration of challenge oil fields, the extension
of the current platforms life cycle. The trends are that future offshore platforms will
be completely uninhabited (Pfeiffer et al. 2011).

The higher costs associated with logistics and production of oil exploration in
remote and deepwater areas demand higher productivity and robustness. From
(2010) highlights that robotic operators are productive, given that they work 24
hours a day and 7 days a week, are more precise, and less prone to errors. Thus, one
can expect a smaller number of failures and unplanned production downtime, also
minimizing commissioning time and the risks of accidents (Johnsen et al. 2007).

Another important advantage in the use of robotic solutions is the improvement
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on Health, Safety, and Environmental (HSE) conditions, which has been receiving a
growing concern by oil and gas organizations. Several tasks performed by humans in
unhealthy, harsh, and confined areas, which are characteristic of an offshore facility,
as shown in Figure 1.2, could be assigned to robotic operators.

Figure 1.2: Operators in harsh conditions, typical of an offshore environment.

A feasibility study mapped tasks on the topside of offshore platforms that could
be performed by robots, implying a reduction of the operational costs and human
exposure to HSE risk factors. The research concluded that human labour in offshore
platforms operation can be reduced by 50%, and the number of planned manual
interventions can be limited to two times a year with robotic technologies (Pfeiffer
et al. 2011). Vatland & Svenes (2008) points out that automation in oil rigs decreases
the capital expenditures by 30% and the operational costs by 32% .

The employment of robots in offshore environments brings many challenges to be
overcome. Temperature in oil facilities ranges from -30◦C to 50◦C, relative humidity
can reach 100%, there may be splashing water, salt spray, storms, and severe corro-
sion with toxic gases (Graf & Pfeiffer 2007, Skourup & Pretlove 2009). Furthermore,
the robot must meet the required safety standards to operate in classified areas.

Another difficulty to be highlighted is related to autonomous navigation. Au-
tonomous robots are generally able to detect walls, surfaces and obstacles to localize
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themselves and plan trajectories to avoid collision. However, offshore platforms con-
tain complex structures in cluttered areas, such as pipelines, and balustrades as
limiting boundaries. These characteristics are difficult to be detected by typically
employed sensors in autonomous navigation, such as a laser range finder (Graf &
Pfeiffer 2008). Moreover, the platform floor contains steel gratings, and some of its
areas may be divided by levels with stairs, which hampers the mobility of the robot.

The idea of using mobile robots on the topside of offshore platforms was intro-
duced in P. Liljebäck & Schumann-Olsen (2005). However, the first implementation
took place with MIMROex robot (Bengel & Pfeiffer 2007), developed by Fraunhofer
IPA, in Germany. MIMROex has a two-wheeled base and a robotic arm with a
camera attached to its end-effector (Figure 1.3). The robot is certified to operate in
classified areas and has a navigation system that uses a laser scanner to detect poles
and reflective strips for self-localization, mapping of the surrounding environment,
and obstacle avoidance. According to Bengel et al. (2009), the robot proved to be
robust to different environmental conditions, being able to safely navigate, map the
environment, and execute inspection tasks autonomously. This first implementation
has shown the feasibility of using mobile robots on the topside of offshore platforms.

Figure 1.3: MIMROex being tested on an offshore facility. (Bengel & Pfeiffer 2007)

Another mobile robot already tested on an oil facility is Sensabot (Figure 1.4),
developed by the National Robotics Engineering Center (NREC) of Carnegie Mellon
University (CMU). It is a four-wheeled device with cameras, gas sensors, a vibra-
tion sensor, a microphone, a laser scanner, and a robotic manipulator (NREC/CMU
2012). The robot is certified to perform inspection and monitoring tasks in
flammable, explosive and toxic environments. The complete system also includes a
mechanism that allows the robot to access different platform levels by attaching its
wheels to a cog rail.

In addition to mobile robots, the use of industrial manipulators for operation in
platforms has also been recently studied. A research group involving ABB, Shell

4



Figure 1.4: Sensabot being tested in an offshore environment. (NREC/CMU 2012)

and Statoil adopts a step-wise strategy to demonstrate and validate technologies for
offshore applications (Anisi et al. 2012). The research focuses on valve manipulation,
an operation that represents several challenges to robots.

In a first moment, proofs of concepts are carried out in a controlled laboratory
environment (Anisi et al. 2010). As an intermediate step, the technology is validated
on an external facility (Anisi et al. 2011). Finally, the system is tested under on-
site operational conditions, that has safety requirements and a severe environment.
These steps are shown in Figure 1.5.

Figure 1.5: Industrial manipulators being tested in a lab and then in real operational
conditions. (Anisi et al. 2012, 2010)

SINTEF-ICT, together with Statoil and NTNU, forms another research group
interested on the development of robotic technologies for offshore platforms. They
present a new concept for remote inspection and maintenance with the division of
the platform workspace between an accessible area to humans and a permanently
inhabited area, which has only robots (Figure 1.6). The research group studies the
cooperation between a gantry-mounted manipulator and a floor-mounted robotic
arm on a simulated process plant (Bjerkeng et al. 2011, Fjerdingen et al. 2012,
Kyrkjebø et al. 2009, Transeth et al. 2010).
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Figure 1.6: SINTEF-ICT futuristic concept for offshore platforms with cooperative
manipulators. (Fjerdingen et al. 2012, SINTEF 2008)

Another recent highlights in onshore and offshore robotics research are the
PETROBOT project (Bos et al. 2015), carried out by the energy company Alstom
together with ETH Zürich, which develops modular robots for tank inspection, and
the ARGOS challenge, organized by the oil and gas company Total, which will be
completed in December 2016 (Kydd et al. 2015). More information about the state
of the art in offshore robotics is found in Transeth et al. (2013).

1.1 DORIS Project1

Huge oil reserves in the pre-salt layer of the Brazilian coast were recently discovered.
These oil reservoirs are located farther than 300 km from the shore and at 5000m
to 8000m below the sea level. The economic value and the challenges of exploration
in remote and deepwater fields motivates the development of an offshore production
system with a high degree of automation based on advanced robotics.

COPPE/UFRJ, in collaboration with Petrobras and Statoil, has been developing
technologies for offshore robotics. In addition to works in the areas of virtual reality
for robotic teleoperation (Carvalho et al. 2014, Santos et al. 2013) and autonomous
manipulation of valves with robotic arms (Faria et al. 2015), the research group is
developing the DORIS robot (Figure 1.7).

DORIS is a rail-guided robot conceived to perform monitoring and inspection
tasks on the topside of offshore platforms (Carvalho et al. 2013) carrying several
sensors and a robotic arm. The system can identify anomalies in the operation
through its following functionalities:

• Video: detection of video anomaly, visualization of control panels, level indi-
cators, switch positions, and LED status through cameras;

• Audio: detection of audio anomaly, and monitoring of rotating machines noise
pattern with microphones;

1This project is supported primarily by Petrobras S.A. and Statoil Brazil Oil & Gas Ltda under
contract COPPETEC 0050.0079406.12.9 (ANP-Brazil R&D Program), and in part by the Brazilian
research agencies CNPq and FAPERJ.
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Figure 1.7: DORIS being tested in an industrial environment.

• Temperature: monitoring of the thermal pattern of equipments, and detec-
tion of pipeline blockages and leakages with a thermal camera;

• Vibration: machinery vibration diagnosis through a vibration sensor at-
tached to the manipulator arm;

• Robotic manipulator: assistance to the operator in the visualization of
the process, and possible interaction with it through sensors and actuators
attached to the end-effector.

The robot is controlled autonomously or by teleoperation, providing to the op-
erator online access to the embedded sensors and real time information about the
monitored environment and the robot operating conditions using the Robot Opera-
tional System (ROS) (Quigley et al. 2009) as the operational system. DORIS weighs
approximately 30kg and moves with a maximum speed of 1m/s.

The system concepts of the traction mechanism, rail type, and teleoperation and
telemetry capabilities were firstly validated in a laboratory, as well as preliminar
results of the video and audio processing algorithms (Freitas et al. 2015, Galassi et al.
2014). Currently, the robot is being tested in a utility plant at CENPES , a Petrobras
research facility, to demonstrate its functionalities in an industrial environment as
an intermediate step to a further implementation on offshore platforms.

7



1.2 Problem Statement

DORIS moves in the monitored environment through a specifically designed rail,
composed of straight and curved tubular segments (Figure 1.8). The robot can be
positioned anywhere on the 3-D rail, including on vertical sections, by means of
friction between its wheels and the tubular rail, and by a complex patented traction
mechanism. The wheels are comprised in gimbal mechanisms that suspend the robot
on the rail and provide the necessary Degrees of Freedom (DoF) for 3-D motion.

Figure 1.8: Installation of DORIS rail system in a utility plant in CENPES.

The use of a rail as the robot locomotion mechanism alleviates many difficulties of
autonomous navigation, such as mapping, obstacle avoidance, motion on different
terrains, path planning, and localization. However, when complete autonomy is
desired for a robotic system, robustness is essential. The system must be resilient
to unpredictable or sudden changes of its operational conditions, such as failures,
and has to take decisions autonomously (Freitas 2016).

Furthermore, specific tasks of DORIS, such as vibration measurements with the
robotic arm in a particular area of the monitored environment (Xaud 2016), au-
dio and video alignment in signal processing algorithms, and switching of traction
modes on the rail, demand high accuracy, so that the localization problems are not
completely eliminated. As an example of how poor odometry can affect the robot
functionalities, consider an error of 1% in odometry on a rail of 1Km of extension.
The accumulated error in localization would be of 10m after moving throughout the
total rail extension, which is unacceptable.

The movement of a rail-guided vehicle is predictable and constrained, which, at
first, enables self-localization by simple odometry. However, this system does not
show to be robust to variations on the operational conditions and neither is accurate
enough for specific tasks, substantially after long periods of motion.

The major problem of an odometric system in a mobile robot is admittedly
the wheel slippage. Even though the robot is constrained to the rail, slipping is
inevitable due to the traction being provided by friction between the wheels and
the tubular rail surface. This is specially true in vertical motion or when the rail
surface is slippery due to rain, salt spray, or grease. Another problem associated
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with odometry is that it requires the complete knowledge of the system parameters,
such as the wheel diameter.

However, maybe the most significant problem addressed by advanced localization
techniques is the initial condition uncertainty. An odometric system works only if
the robot initial position is known, which is a strong assumption from the practical
point of view. Advanced localization techniques relax or even dismiss this hypothe-
sis, dealing with partially known (tracking problem) or completely unknown (global
localization problem) initial conditions.

An even more complex problem that can be addressed by some localization
methods is known as the kidnapped robot problem (Engelson & McDermott 1992).
In this case, it is considered that the robot firmly believes it knows where it, is while
it actually does not. Eventual failures in the robot system that reset or keep its
states constant while moving during the time of failure are examples that can cause
this situation. The kidnapped robot problem is often used to test the robot ability
to autonomously recover from catastrophic localization failures (Fox et al. 2001).

The problem to be addressed in this work is basically to reliably localize DORIS
on the rail, regardless of the knowledge of its initial conditions or even after occa-
sional failures. In other words, the objective of this work is to solve the tracking,
global localization, and kidnapped robot problems for DORIS.

1.3 Proposed Solution

To deal with the tracking, global localization and the kidnapped robot problems for
DORIS, a particle filter approach is considered. This type of probabilistic filter was
chosen due to its natural ability of dealing with multiple hypothesis on the state
estimation, and solving complex localization problems with an easy implementation
(Thrun et al. 2005). Given a known map of the rail, DORIS motion and perception
information through time is integrated in the filter to compute the belief of the
robot, which is its possible states and how probable these states are of being true.

As DORIS rail is specifically designed for it, a Computer Aided Design (CAD)
model is available, and thus, the rail map is supposed to be known. This assumption
is not completely true, given that there is uncertainty in the fabrication of the rail
segments, and mainly in the rail installation. As an example, consider a 90◦ curved
segment followed by a 50m straight track. An installation error of 1◦ in the joint
between the two segments results in a side error of almost 1m, preventing the robotic
arm to reach a previously considered workspace, for example. However, probabilistic
approaches to state estimation problems, as particle filtering, deals with several types
of uncertainty, including those of the map model.

A special feature of a rail-guided robot is that the rail constrains the robot mo-
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tion, making it have only one DoF, which is going forwards or backwards on the
along-track direction of the rail. Due to this motion constraint, the robot gimbals
poses (cartesian positions and orientations) are equivalent to the rail poses (Fig-
ure 3.6). Therefore, the localization problem is limited to find the robot in a digital
map of the rail that provides these poses, and not in the full continuous world.

Another particular characteristic is that the rail is composed of segments that are
one-dimensional elements. Therefore, a single variable s, which parameterizes the
length of the traveled track, is enough to determine the rail poses and, consequently,
the robot poses. Thereby, the robot can be completely localized by determining
this variable, which is considered as the only state variable to be estimated in the
localization problem of DORIS.

The classical solution of probabilistic state estimation applied for robotics is to
combine a prediction step given by the robot motion model with a correction step of
the estimate after receiving environment perception information through multiple
sensors. In this implementation, the motion model is considered to be the state
transition of the variable st at a time t, given by the odometric equation:

st = st−1 + vt∆T , (1.1)

where vt is the velocity of the robot at the time t, used here as the control input,
and ∆T is the difference in time between two steps of the algorithm. The robot
velocity is obtained by scaling the motors rotary encoders information by a factor
given by the transmission ratio and the wheel diameter. As all the four motors
have the same velocity control setpoint, the mean of the four encoders information
is used. In a future improvement, the switching of motion modes will be considered,
as the wheels velocities in curved parts should be individually controlled.

Another great advantage of rail-guided robots is that the natural features of the
rail or artificial landmarks placed on known positions can be recognized by the robot
and used in localization. Therefore, DORIS uses a monocular camera to detect red
markers placed on known locations of the rail, and a laser scanner to estimate the
robot distance to the floor and detect natural features of the rail, such as the rail
fixation system and the rail geometry. Additionally, an Inertial Measurement Unit
(IMU) provides attitude information.

Even though some of these measurements are not given in the estimation state
space, they are mapped through it by:

zt = fmap(st,m), (1.2)

in which zt is a measurement at a time t and fmap is a known mapping function, which
is derived in Chapter 3. The motion model, based on (1.1), and the measurement
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models, based on (1.2), are integrated in a particle filter to estimate the variable st
through time. The particle filter resampling step is taken based on an estimation of
the effective number of particles. Further, a novel extension to the standard particle
filter implementation, named History of Events Resetting (HER), is employed to
improve the estimation, enabling the solution of the global localization and the
kidnapped robot problems with a small number of particles.

Simulation results using data acquired in field tests show that the proposed algo-
rithm addresses the three types of localization problems mentioned above (tracking,
global localization, and the kidnapped robot problems) with a precision of approxi-
mately 25cm and using only a small number of particles (50), proving its advantages
over odometry and the standard particle filter.

1.4 Literature Review

In this section, the main sensing techniques employed in mobile robot localization
problems are reviewed. The principles of Bayesian filters, which are the basis of
the state of the art in probabilistic filtering, are briefly introduced before a detailed
study in Chapter 2 along with the main probabilistic localization algorithms. Then,
some applications of localization techniques for rail-guided vehicles are presented.

The common approach in mobile robot localization is to integrate information
from an odometric motion model with multiple sensors data in a Bayesian filter. The
choice of which types of sensors to use and how to process the sensed data plays
a big role in the state estimation problem. Sensors can be distinguished into two
main groups: intrinsic robot sensors and extrinsic environment perception sensors.

Intrinsic sensors are related to proprioception, or the ability to sense the robot
own internal states. Odometers, wheel encoders, and inertial measurement units
are examples. Methods based only on intrinsic sensors, which are known as relative
localization or dead-reckoning, have several implementations (Angermann & Robert-
son 2012, Chitta et al. 2007, Doh et al. 2006, Ndjeng et al. 2008, O’Kane 2006). A
drawback of these systems is that they integrate relative increments, and errors can
considerably grow over time due to parameter uncertainty or bias (De Cecco 2003).

A more robust approach is to integrate these measurements with extrinsic sensor
data, which provide absolute information about the surrounding environment. A
vast number of work has been done in localization problems using this type of
sensor, which commonly are cameras, range finders (sonars and lasers), and Global
Navigation Satellite Systems (GNSS). Other not so common technologies applied to
mobile robot localization are Radio-Frequency IDentification (RFID) (Hahnel et al.
2004), Wi-Fi (Biswas & Veloso 2010), and magnetic field sensing (Christensen,
Fischer, Kroffke, Lemburg & Ahlers 2011, Robertson et al. 2013).
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1.4.1 Vision-based Localization

The use of vision in mobile robot navigation has been the source of countless research
contributions. Usually, image information is used to detect and possibly learn natu-
ral landmarks (Thrun 1998), as plans, corners, and edges in indoor environments, or
artificial landmarks, such as known patterns (barcodes, QR codes, ...), and colored
geometric objects or structures. The detected landmarks are then compared to a
database of known landmarks in a map of the environment that gives information
about the robot current localization.

Another approach to estimate position and orientation through image is visual
odometry (Nistér et al. 2004), which consists of estimating the camera motion from
optical flows composed of vectors that represent the displacement of detected fea-
tures in the image sequences. A recent survey of vision-based algorithms for local-
ization and mapping problems is provided in Bonin-Font et al. (2008).

1.4.2 Scan-based Localization

A common device used in mobile robots is a range finder. Sonars, mainly used in
underwater applications, and laser scanners measure range and bearing from objects
hit by the emitted beam. One approach to provide localization information from
range and bearing scans is to track the robot position relative to known landmarks,
as geometric beacons (Leonard & Durrant-Whyte 1991). These features can be
identified in the 2D scan trough methods such as the Random Sample Consensus
(RANSAC) or the Hough-Transform algorithms. A complete comparison of line
extraction methods in laser scans is found in Nguyen et al. (2005).

Another possibility is to compare the entire 2D scan (Diosi & Kleeman 2005)
or some of its recognized features (Aghamohammadi et al. 2007, Nieto et al. 2007)
to a known point cloud. The best matching between the target and reference scans
provides the position and orientation of the robot relative to an inertial frame. This
technique is called scan-matching and is generally applied using the Iterative Closest
Point (ICP) algorithm (Besl & McKay 1992), where, for each point in the target
scan, the point with the smallest Euclidean distance in the reference scan is selected.

1.4.3 IMU and GNSS-based Localization

Inertial measurement units are usually composed of three accelerometers and three
gyroscopes, which measure, respectively, linear accelerations and angle rates about
the three axes of the sensor coordinate system. Micro-Electromechanical Systems
(MEMS) gyroscopes are the most available ones, and features a bias of about 3◦/h
to 20◦/h, so that additional sensing is necessary to bound the error.
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The gravity estimation by the accelerometers is used to derive the body inclina-
tions about the axes perpendicular to the gravity direction, which are the roll and
pitch Euler angles. To compute the heading (or yaw), additional sensing is needed,
which usually is provided by magnetometers. Magnetometers measure the Earth’s
magnetic field to find the North Magnetic Pole, but its accuracy ranges from 0, 5◦ to
10◦ (Advanced Navigation 2013), and it is subject to static and dynamic magnetic
disturbances caused by the robot itself or by nearby ferromagnetic structures.

Bearing this in mind, GNSS systems are generally integrated with IMUs in nav-
igation problems, mainly in outdoor environments, as for cars (Montemerlo et al.
2008, Thrun et al. 2007), trains (Heirich et al. 2013), and wheeled robots (North
et al. 2012). GNSS provides absolute geospatial position and velocity with global
coverage, given that at least four satellites are in reach of the GNSS receiver.

The usual approach is to compensate odometry and inertial measurement errors
with GNSS data, when available. However, it is common to have GNSS outages due
to clouds, trees, and cluttered environments blocking the GNSS signal. Moreover,
its typical position error ranges from 2m to 8m (Advanced Navigation 2013), making
the estimation too rough for some applications. In this case, the system must be
augmented with more accurate sensors.

1.4.4 Bayesian Filters and Markov localization

Bayesian filters are the bases of the probabilistic approach to robot localization and
mapping problems. They can be understood as a recursive method that integrates
a prediction step, given by the robot motion, with a correction step, provided by
the robot perception of the environment, to compute state estimations in the form
of probability densities.

Usually, Bayesian filtering techniques are simplified by considering the Markov
assumption, which postulates that past and future data are independent if one knows
the current state. The state is said to be complete, which means that the knowledge
of past states, measurements, or controls carries no additional information (Thrun
et al. 2005). Probabilistic algorithms for state estimation are also referred to as filters
in the sense that they provide a better estimation than the robot measurements or
predictions alone. The current state-of-the-art methods are detailed in Chapter 2.

1.4.5 Rail-guided vehicle localization

Regarding the localization problem of DORIS, the most similar works found in the
literature are related to the localization of rail-guided vehicles and robots, which
are basically 1-D localization problems where the robot motion is constrained by
the rail geometry. Even though the localization problem for rail-guided vehicles is
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attenuated, all of these related works use advanced techniques based on probabilistic
filters to deal with uncertainty and ambiguity in the state estimation.

ARTIS (Autonomous Rail-guided Tank Inspection System, Figure 1.9) is a ballast
water tank inspection robot, developed by the DFKI Research Center, in Germany.
The robot is composed of modules with different sensors and moves on a thermo-
plastic rail. According to Christensen, Fischer, Kroffke, Lemburg & Ahlers (2011),
the magnetic field of the inspected environment is static and shows particularities
that can be used for localization purposes. Taking advantage of this feature, the
robot integrates odometry information from the motor encoder with gravitational
and magnetic data from an IMU in a particle filter to estimate its localization.

CAD data provides a geometric map, while the magnetic and gravitational map
are built after cycling through the rail with the IMU. The accuracy of the localization
system is enhanced by a computer vision template matching algorithm with the
camera images to detect artificial landmarks distributed on the rail (Christensen,
Kirchner, Fischer, Ahlers, Psarros & Etzold 2011).

Figure 1.9: ARTIS carrying sensors and a robotic arm in different modules on a
thermoplastic rail. (Christensen, Kirchner, Fischer, Ahlers, Psarros & Etzold 2011)

As pointed in Borgerink et al. (2014), the robot has one specific task that re-
quires a high position accuracy, just like DORIS has, which is the coating thickness
measurement with an embedded manipulator. The study points out that, due to
ship motion and the natural compliance of the plastic rail, position errors arise and
have to be compensated.

The Railway Collision Avoidance System (RCAS) is a project led by the German
Aerospace Center (DLR) that aims to develop technologies for rail collision avoidance
in European railways. The group implements probabilistic localization and mapping
algorithms based onDynamic Bayesian Networks (DBN) using onboard train sensors
to achieve precise localization in the topological map of the rail network.

In Heirich et al. (2012), a particle filter is proposed, where the train motion
is modeled as a Discrete Wiener Process Acceleration (DWPA) (Bar-Shalom et al.
2004)) and the train states are given by a mapping function of the topological pose

14



of the train and its displacement given on the variable that parameterizes the track
length. GNSS and IMU measurements are used to compute the particle weights.
Rail feature classification sensors, such as switch way detectors based on vision or
eddy current (Hensel et al. 2011), are suggested to improve the robustness of the
localization system.

The problem is further extended to Simultaneous Localization And Mapping
(SLAM), where the railway map is supposed to be unknown. RailSLAM, as named
by the authors, is implemented in García (2012) as a particle filter that uses GNSS
and IMU measurements, where each particle carries individual maps and a global
map is computed periodically. The rail is parameterized as a piece-wise linear poly-
nomial interpolation.

In Heirich et al. (2013), an Extended Kalman Filter (EKF) is used to estimate
the train topological pose, geographic position, and the rail curvatures. According to
the authors, this work is an intermediate step to a future Rao-Blackwellized SLAM
implementation, as is done in Montemerlo et al. (2002) and Montemerlo & Thrun
(2007). In this case, the particles rely on multiple realizations of the map, while
Gaussians represent the internal vehicle states for each particle.

The localization and mapping of rail vehicles is also studied by the Karlsruhe
Institute of Technology (KIT). In Hensel & Hasberg (2010), the authors argue that
odometry and GNSS are insufficient for an accurate localization and use only an
Eddy Current Sensor (ECS) to estimate the train velocity and the traveled distance
on a rail by a rail sleeper counting method. The ECS is also used to detect nat-
ural rail features, such as turnouts and bridges, to find the vehicle in the known
topological map. In Hensel et al. (2011), a particle filter is implemented to resolve
ambiguous hypotheses about the train position after passing through a rail turnout.

The KIT research group also investigates the SLAM problem for path-
constrained motion vehicles in Hasberg et al. (2012). A 1-D representation of the ve-
hicle kinematics in arc-length coordinates of local parameterized cubic spline curves
is used to compute an EKF. The method is validated in a train positioning system
using an Inertial Navigation System (INS) and Global Positioning System (GPS).

1.5 Text Organization

This dissertation is organized as follows:

Chapter 2 presents a deep review of the state of the art probabilistic techniques
for mobile robot localization. The main algorithms are detailed with discus-
sions about advantages, limitations, and possible solutions to attenuate or
even overcome these limitations.
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Chapter 3 addresses the interaction between DORIS and its environment. A
known map is created from a CAD model in a way that all the rail features
are accessed from a single parameter. Motion and perception models of the
robot are derived to be integrated in the particle filter.

Chapter 4 shows the particle filter implementation for DORIS localization and
the results of simulations with data acquired in field tests. A novel extension
to the standard particle filter is proposed in order to overcome some of the
standard particle filter limitations.

Chapter 5 presents the final remarks, and future works are suggested.
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Chapter 2

State of the Art in Localization

This chapter is based on contents of the book Probabilistic Robotics (Thrun et al.
2005). Some techniques presented there will be restated here for self-containess.

Probabilistic robotics is a relatively recent area that deals amazingly well with
uncertainty, which is a natural characteristic of several robotic systems. It can be
traced back to the Kalman filter (Kalman 1960), but only in the last two decades it
has received more attention, due to the increasing number of mobile robots, which
are less predictable than fixed robotic manipulators, for example. Mobile robots
have to deal with several types of uncertainty, as unmodeled variables, unstructured
environments, and noisy sensors. Therefore, managing uncertainty is perhaps the
most important step towards robust real-world systems (Thrun et al. 2005).

The key advantage of a probabilistic approach for state estimation is that it rep-
resents uncertainty through time using the probability theory. While a deterministic
method considers that the state is exact, a probabilistic approach returns estimates
and values that represent how probable of being true are these estimates. This
information is much valuable, as the robot can, for example, work with multiple
hypothesis and even take decisions based on how certain it is about its state, as
in active localization, which is a category of exploration where the robot seeks to
minimize its uncertainty (or maximize its knowledge about the external world) to
achieve self-localization (Fox et al. 1998).

2.1 Definitions

To derive the probabilistic algorithms presented in this chapter, one must consider
the robot interaction with its environment. An environment is a dynamic system
that possesses internal state, and the robot interaction with it can be categorized in
two different ways: motion and perception.

Robot motion is the influence on the environment caused by the robot actuators,
which affects both the environment state and the robot internal belief with regards
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to this state. Motion in mobile robotics is somewhat unpredictable, and, generally,
makes the robot less certain about its belief of the true state.

Perception is the robot’s ability to acquire information from the environment
using its sensors. Even though sensors may be noisy and there are many variables
which cannot be measured directly, the perception process usually makes the robot
more confident about its belief.

The localization problem consists of integrating motion and perception itera-
tively, given a map, to provide a state estimation. When the map is unknown, the
problem is extended to the Simultaneous Localization and Mapping (SLAM) prob-
lem. The SLAM problem is of great importance in mobile robotics, as usually one
does not have complete knowledge of the map a priori, or the environment is un-
structured. A great review of state of the art SLAM algorithms is found in Durrant-
Whyte & Bailey (2006) and Bailey & Durrant-Whyte (2006). In the present work,
the map is supposed to be known, and SLAM algorithms are not implemented.

To understand the algorithms derivations in this chapter, one needs to establish
the following important definitions about the robot interaction with its environment:

• State: the state vector at a time t, denoted here as xt, is the collection of all
variables of the robot and its environment that can impact the future. States
can be static or dynamic when they change with time. Thus, the vector state
has to be updated on every instant t with the measurements and the control
actions. Examples of state variables are the robot pose and the state of objects
in the environment, such as an open or closed door.

• Control Actions: the control actions at a time t, which are represented here
as ut, change the state of the robot and the environment. Examples of control
actions are the robot motion and the manipulation of objects.

• Measurements: measurements are the result of a perceptual interaction of
the robot with the environment through its sensors. The group of all measure-
ments taken at a time t are denoted here as zt. Examples of measurements
are laser scans and visual detection of landmarks with a camera.

• Map: the map, referred in this work as m, is the representation of the envi-
ronment, generally given by sets of landmarks, which can influence the robot
motion and perception. The map may be supposed to be known or unknown,
which, in the latter case, can be included in the state vector to be estimated.
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2.2 Probabilistic Generative Laws

In probabilistic robotics, the evolution of states, control actions, and measurements
is governed by probabilistic laws. At first, the state xt might be conditioned on all
past states, control actions, and measurements. So, at a discrete time t, the state xt
is stochastically calculated from the previous states x0:t−1, control actions u1:t, and
measurements z1:t−1

1 by the probability distribution p(xt | x0:t−1, z1:t−1, u1:t).
However, a reasonable approximation for most mobile robotics applications is

to have state completeness, in which the state xt−1 encompasses the information
of all the measurements z1:t−1 and control actions u1:t−1 that happened in previous
time steps. In this case, the process is said to satisfy the Markov property. This
approximation allows the expression of the posterior probability of the state xt by:

p(xt | x0:t−1, z1:t−1, u1:t) Markov= p(xt | xt−1, ut) , (2.1)

where xt is conditioned only on the previous state xt−1 and the most recent control
action ut. This is called the state transition probability and specifies how environ-
mental state evolves over time as a function of the robot control ut.

It is also important to model the process by which measurements are being
generated. The measurement model can be defined to describe the probability of
generating a certain observation conditioned on the previous states, measurements,
and control actions. Under the same assumption of state completeness of xt, the
probabilistic measurement model, which is commonly called measurement probabil-
ity, is given by:

p(zt | x0:t, z1:t−1, u1:t) Markov= p(zt | xt) (2.2)

The state transition probability and the measurement probability together rep-
resent the dynamical stochastic system of the robot and its environment. The evo-
lution of states and measurements defined by the probabilities in (2.1) and (2.2) can
be described as the Dynamic Bayesian Network (DBN) depicted in Figure 2.1.

Not all variables of the environment can be directly measured by the robot
sensors, so it must infer the states which cannot be sensed, maintaining an internal
belief of them. In probabilistic robotics, a belief distribution assigns a density value
to each possible hypothesis with regards to the true state. Belief distributions are
posterior probabilities over state variables conditioned on the available data. The
belief over the state xt conditioned on all measurements and control actions are
calculated after incorporating the most recent measurement zt, and is defined as:

bel(xt) = p(xt | z1:t, u1:t) . (2.3)
1It is assumed in this text that the robot executes a control action and then takes measurements
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Figure 2.2 The dynamic Bayes network that characterizes the evolution of controls,
states, and measurements.Figure 2.1: Evolution of states and measurements in a DBN. Thrun et al. (2005)

It is also useful to compute the posterior probability of xt before incorporating
the most recent measurement zt, but just after executing the control action ut. This
belief is often referred to as the prediction or control update in Bayesian filters, and
is defined as:

bel(xt) = p(xt | z1:t−1, u1:t) . (2.4)

Computing the belief bel(xt) from bel(xt) is usually referred to as the correction
step or the measurement update.

2.3 Bayesian Filters

The most common solution to calculate beliefs from control actions and measure-
ments is the Bayes filter algorithm, based on the Bayes rule:

p(x | y) = p(y | x)p(x)
p(y) = p(y | x)p(x)∫

x′ p(y | x′)p(x′)dx′
,

where p(x) is called the prior probability distribution, y is the measurement data,
and p(x | y) is referred to as the posterior probability distribution over x. Bayes
rule provides a convenient way to calculate the posterior p(x | y) from its "inverse"
conditional probability p(y | x) and the prior p(x). It is worth noting that p(y) does
not depend on x and can be understood as a normalization constant η, as the sum of
the posterior probabilities p(x | y) over all the states x must be 1 (∑x p(x | y) = 1).
Therefore, Bayes rule can be rewritten as:

p(x | y) = ηp(y | x)p(x) ,

where η = p(y)−1 = (
∫
x′ p(y | x′)p(x′)dx′)−1.

The Bayes filter algorithm pseudocode is stated in Algorithm 1. It is a recursive
algorithm that computes the posterior belief bel(xt) at a time t from the prior belief
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bel(xt−1) and the most recent control action ut and measurement zt.

Algorithm 1 Bayes Filter. Source: Thrun et al. (2005)
Require: bel(xt−1), ut, zt
Ensure: bel(xt)
1: for all xt do
2: bel(xt) =

∫
xt−1

p(xt | xt−1, ut)bel(xt−1)dxt−1

3: bel(xt) = ηp(zt | xt)bel(xt)
4: end for
5: return bel(xt)

The Bayes filter algorithm is composed of two essential steps: the prediction and
the correction. The prediction step is done in line 2 by a convolution of the prior
belief over state xt−1 with the state transition probability induced by the control
action ut. The correction step, or measurement update, is performed in line 3 by
a product multiplication of the prediction bel(xt) with the measurement probability
p(zt | xt) of having observed zt given xt. This procedure is done for all the states xt.

As already mentioned, to return a valid probability distribution, a normalization
constant η is calculated by summing bel(xt) for all xt. Then, the calculated beliefs
bel(xt) are normalized by η, as stated in line 3 of the algorithm.

To compute the posterior belief recursively, an initialization bel(x0) of the belief
is required. If the state x0 is exactly known, bel(x0) should be initialized as a Dirac
delta function centered in x0. If the initial state is partially known, bel(x0) may
be represented as a Gaussian with mean x0 and variance given by how uncertain is
this knowledge. In the extreme case, where the initial state is completely unknown,
bel(x0) should be initialized as an uniform distribution over the domain of x0.

2.3.1 Mathematical Derivation (Thrun et al. 2005)

The Bayes filter algorithm can be proved by induction. To do so, it must be shown
that it correctly calculates the posterior probability distribution p(xt | z1:t, u1:t)
from the posterior one time step earlier, p(xt−1 | z1:t−1, u1:t−1). The correctness of
the proof follows then by induction given that the prior belief at time t = 0, bel(x0)
is correctly initialized. Applying Bayes rule to the target posterior yields:

p(xt | z1:t, u1:t) Bayes= p(zt | xt, z1:t−1, u1:t)p(xt | z1:t−1, u1:t)
p(zt | z1:t−1, u1:t)

= ηp(zt | xt, z1:t−1, u1:t)p(xt | z1:t−1, u1:t)
(2.5)

Equation (2.5) can be simplified with the assumption of state completeness (or
the Markov assumption), where if a state xt is given and a measurement zt has
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to be predicted, no past measurements or control actions would provide additional
information. This is expressed by the following conditional independence:

p(zt | xt, z1:t−1, u1:t) Markov= p(zt | xt) . (2.6)

Replacing (2.6) in (2.5) gives:

p(xt | z1:t, u1:t) = ηp(zt | xt)p(xt | z1:t−1, u1:t) , (2.7)

which is rewritten with the previously defined beliefs:

bel(xt) = ηp(zt | xt)bel(xt) (2.8)

The next step is to expand bel(xt) using the Theorem of Total Probability 2 and
simplifying p(xt | xt−1, z1:t−1, u1:t) using the Markov assumption again:

bel(xt) = p(xt | z1:t−1, u1:t)

=
∫
xt−1

p(xt | xt−1, z1:t−1, u1:t)p(xt−1 | z1:t−1, u1:t)dxt−1

Markov=
∫
xt−1

p(xt | xt−1, ut)p(xt−1 | z1:t−1, u1:t−1)dxt−1

=
∫
xt−1

p(xt | xt−1, ut)bel(xt−1)dxt−1 (2.9)

Equations (2.9) and (2.8) coincide with lines 2 and 3 in Algorithm 1, respectively.
It is worth noting that some simplifications were done in this derivation regarding

the Markov assumptions. In practice, state completeness is hard to achieve, and
unmodeled dynamics, inaccuracies in the probabilistic models, and approximation
errors are examples of real-world applications that induce violations of the Markov
assumption. However, incomplete state representations are usually applied to reduce
the computational complexity of the algorithm and Bayes filters have shown to be
robust to such violations, obtaining good results with the Markov assumption even
for incomplete states. (Thrun et al. 2005).

Bayes filter requires the exact calculation of beliefs, state transition probabili-
ties, and measurement probabilities. However, this is only possible for very simple
estimation problems, where these distributions can be represented in closed form.
Additionally, the computational complexity of the algorithm turns it impracticable
for real-world applications. Therefore, different techniques, based on the Bayes fil-
ter, use assumptions and approximations to represent these probability distributions
and derive computationally feasible algorithms.

A complete review of several of these algorithms and their applications is found
2Theorem of Total Probability: p(x) =

∫
y
p(x | y)p(y)dy
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in Chen (2003). The most common ones are presented in the following sections.

2.4 Gaussian Filters

One way to represent probability distributions is by Normal Distributions, which
are Gaussian Functions that have unitary area. The Probability Density Function
(PDF) of a unique state normal distribution is parameterized by its mean µ and
covariance σ2:

p(x) = 1√
2πσ2

exp
(
−1

2
(x− µ)2

σ2

)

Normal distributions over a state vector x∈Rn are called Multivariate Normal
Distributions, which are given by:

p(x) = 1√
det(2πΣ)

exp
(
−1

2(x− µ)TΣ−1(x− µ)
)
,

where µ is the mean vector and Σ is the covariance matrix, which is a symmet-
rical positive semidefinite matrix. Normal distributions p(x) are abbreviated as
N (x;µ, σ2) for the scalar state x or N (x;µ,Σ) for the multivariate case.

The Gaussian representation of a probability distribution is characterized by
two parameters: the mean µ, which is the expected value of the state x and the
covariance Σ, which represents the uncertainty of the state variables in x, which may
be correlated or not. This parametrization is called the moments parametrization,
as the mean and covariance are, respectively, the first and second moments of a
probability distribution.

The representation of the posterior by a Gaussian has the important character-
istic of being unimodal, that is, having only a single maximum value. The implica-
tions are that they are suited to tracking problems in robotics, where the posterior
is concentrated around the true state with some margin of uncertainty. However,
for global localization problems, where multiple hypothesis may be considered, a
Gaussian representation may not be a good choice.

2.4.1 The Kalman Filter

The Kalman Filter (KF) (Kalman 1960) is perhaps the most consolidated technique
for state estimation problems. It is an optimal state estimator in the sense that it
processes model predictions and measurement corrections to infer a state estimation
with minimum error, given that the following conditions are satisfied:

1. The state is continuous. So, Kalman filters cannot be applied to discrete or
hybrid state spaces.
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2. The state transition probability p(xt | xt−1, ut) and the measurement proba-
bility p(zt | xt) are linear functions in their arguments with added Gaussian
noise.

3. The initial belief bel(x0) is normally distributed.

These assumptions, together with the Markov assumption in the Bayes filter,
ensure that the posterior density bel(xt) at a time t is always Gaussian in a KF. To
fulfill these requirements, the Kalman filter represents posteriors using the moments
parametrization. It recursively computes the belief bel(xt) at time t, represented by
a mean µt and a covariance Σt, from the belief bel(xt−1) at time t−1, parameterized
by µt−1 and Σt−1. To do so, the state transition probability p(xt | xt−1, ut) is derived
from the linear function:

xt = Atxt−1 +Btut + εt , (2.10)

where εt is a Gaussian noise (or white noise) vector, which has zero mean and a
covariance denoted by Rt. This variable models the uncertainty introduced in the
system by the state transition.

At is a square nxnmatrix, where n is the number of states, and linearly calculates
the state transition. Bt is of size nxm with m being the dimensionality of ut, and
computes the influence of the control action on the states.

The state transition probability is then given by a Gaussian with mean Atxt−1 +
Btut and covariance Rt, that is, p(xt | xt−1, ut) ∼ N (xt;Atxt−1 +Btut, Rt), or:

p(xt | xt−1, ut) = 1√
det(2πRt)

exp{−1
2(xt−Atxt−1−Btut)TR−1

t (xt−Atxt−1−Btut)}

(2.11)
Additionally, the measurement probability p(zt | xt) also has to be linear Gaus-

sian, which is defined to be a linear function in its arguments with added Gaussian
noise, as is (2.10). The linear Gaussian measurement function is given by:

zt = Ctxt + δt , (2.12)

where Ct is a kxn matrix that maps states to observations, with k being the
number of measurements. The variable δt represents the measurement noise by
a multivariate Gaussian with zero mean and covariance Qt. The measurement
probability is then given by an MVN with mean Ctxt and covariance Qt, that is,
p(zt | xt) ∼ N (zt;Ctxt, Qt), or:

p(zt | xt) = 1√
det(2πQt)

exp{−1
2(zt − Ctxt)TQ−1

t (zt − Ctxt)} (2.13)
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Finally, the initial belief bel(x0) is normally distributed with defined mean µ0

and covariance Σ0, that is, bel(x0) ∼ N (x0;µ0,Σ0), or:

bel(x0) = p(x0) = 1√
det(2πΣ0)

exp{−1
2(x0 − µ0)TΣ−1

0 (x0 − µ0)} (2.14)

The recursive Kalman filter pseudocode is shown in Algorithm 2.

Algorithm 2 Kalman Filter. Source: Thrun et al. (2005)
Require: µt−1, Σt−1, ut, zt
Ensure: µt, Σt

1: µ̄t = Atµt−1 +Btut
2: Σ̄t = AtΣt−1A

T
t +Rt

3: Kt = Σ̄tC
T
t (CtΣ̄tC

T
t +Qt)−1

4: µt = µ̄t +Kt(zt − Ctµ̄t)
5: Σt = (I −KtCt)Σ̄t

6: return µt, Σt

Lines 1 and 2 of the algorithm calculates the predicted belief bel(xt) before the
measurement incorporation, which is centered at µ̄t and given by the deterministic
version of the state transition function (2.10), replacing xt−1 for µt−1. The covari-
ance update Σ̄t considers that it is dependent on previous states through At and
includes the Gaussian noise uncertainty represented by Rt, which increases the state
uncertainty. Mathematically speaking, the predicted mean µ̄t is derived from the
minimum of a function Lt(xt) related to the prediction belief bel(xt):

bel(xt) =
∫
xt−1

p(xt | xt−1, ut)︸ ︷︷ ︸
∼N (xt;Atxt−1+Btut,Rt)

bel(xt−1)︸ ︷︷ ︸
∼N (xt−1;µt−1,Σt−1)

dxt−1 = ηexp{−Lt(xt)}

The first derivative of Lt(xt) valued at zero gives the equation of µ̄t in line 1 of
Algorithm 2, while the second derivative yields the equation of Σ̄t in line 2. Lines
3 to 5 computes the state estimation bel(xt) through the prediction belief bel(xt) by
incorporating the measurement zt. It does so by weighting the measurement incor-
poration in the estimation through the Kalman gain Kt. Line 4 manipulates the
mean by adding to the predicted value µ̄t the deviation between the actual measure-
ment and the predicted measurement according to (2.12), adjusted proportionally
to the Kalman gain. The covariance Σt of the posterior belief is computed in line 5,
adjusting the prediction covariance Σ̄t with the measurement information gain.

The three equations of lines 3 to 5 are derived from the minimization of a function
Jt related to the posterior belief bel(xt):

bel(xt) = η p(zt | xt)︸ ︷︷ ︸
∼N (zt;Ctxt,Qt)

bel(xt)︸ ︷︷ ︸
∼N (xt;µ̄t,Σ̄t)

= ηexp{−Jt(xt)}
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The full demonstration of the Kalman filter algorithm is somewhat extensive and
will not be reproduced here, but can be found in Thrun et al. (2005). An illustration
of the Kalman filter steps for a scalar state is shown in Figure 2.2.
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Figure 2.2: Kalman filter steps: (a) initial prediction of the belief; (b) a measurement
probability is received, (c) and incorporated to calculate the new belief; (d) the robot
motion introduces uncertainty; (e) a new measurement is received; (f) the new belief
is computed. Adapted from Thrun et al. (2005)

One can see that a nice feature of the Kalman filter is that the belief variance
is lower than the prediction and the measurement variances themselves. Also, the
mean of the Gaussian belief is always between the prediction and the measurements
means, as the filter is unbiased.

Probably, the most important advantage of the Kalman filter is its computational
efficiency. The complexity of the algorithm is of the order O(k2.376) (Coppersmith
& Winograd 1987), with k being the number of measurements, due to the matrix
inversion in line 3, or O(n2), with n being the number of states, due to the matrix
multiplications in line 5, whichever is the greatest. For comparison, other state
estimation algorithms have computational complexity that is exponential in n.

On the other hand, as already mentioned, one disadvantage of the KF is its
difficulty to deal with multi-hypothesis, as it uses a unimodal representation of the
belief. One way to work around this problem is to use a mixture of Gaussians:

bel(xt) = 1∑
l ψt,l

∑
l

ψt,ldet(2πΣt,l)−
1
2 exp{−1

2(xt − µt,l)TΣ−1
t,l (xt − µt,l)} ,

where ψt,l are weights of the l mixture components. This type of filter is called
Multi-Hypothesis Kalman Filter (MHKF).
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It is also worth mentioning the Information Filter (IF) , which can be understood
as the dual of the Kalman filter. It is also a Gaussian filter, but instead of repre-
senting Gaussians by its moments, it uses the canonical parametrization, which is
comprised of an information vector ξ = Σ−1µ and an information matrix Ω = Σ−1.

The duality implies that what is computationally complex in one algorithm is
simple in the other, and vice versa. While incorporating measurements is difficult in
the Kalman filter due to the matrix inversion in line 3 of Algorithm 2, this is easy
in the IF. However, the control update, which is simple in the KF, is involved in the
IF. Particularly, the IF is well suited for situations that involve the integration of
multiple information, as in multi-robot problems (Fox et al. 2000).

2.4.2 Extensions to the Kalman Filter

One strong assumption to the derivation of the Kalman Filter is that the state
transition and measurement functions have to be linear. However, in the real world,
the majority of systems is nonlinear. If one tries to make a transformation of a
Gaussian with a nonlinear function, the result is not a Gaussian anymore, and
hence, the KF cannot be applied. Therefore, linearizations have to be done to make
the KF practical, considering that the state transition and measurement models are
given by the following nonlinear functions:

xt = g(xt−1, ut) + εt

zt = h(xt) + δt

The Extended Kalman Filter (EKF) approximates the true belief by a Gaussian
performing linearization via first order Taylor expansion of the nonlinear models
around the most likely state. For the state transition model, this is µt−1 and for the
measurement model, µ̄t:

g(xt−1, ut) ≈ g(µt−1, ut) + g′(µt−1, ut)︸ ︷︷ ︸
:=Gt

(xt−1 − µt−1) (2.15)

h(xt) ≈ h(µ̄t) + h′(µ̄t)︸ ︷︷ ︸
:=Ht

(xt − µ̄t) , (2.16)

where Gt and Ht are Jacobians and they replace At and Ct of the KF algorithm
in the EKF. The expected values for the state prediction and the measurement
prediction are g(µt−1, ut) and h(µ̄t), respectively. Given these linearizations, the
EKF algorithm derivation is straightforward, following the same steps of the KF.

Another option of dealing with nonlinearities is the Unscented Kalman Filter
(UKF) (Julier & Uhlmann 1997). The UKF performs a stochastic linearization
using a weighted statistical linear regression process. The algorithm applies the
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Unscented Transform (UT), which deterministically chooses sigma points from the
Gaussian mean and covariance, which are passed through the nonlinear functions.
Statistical parameters from the resulting set are then computed to obtain a better
approximation of the mean and the covariance of the posterior belief.

The UFK linearization through the UT generally provides more accurate results
than the first order Taylor expansion linearization in the EKF, yielding better results
in the state estimation. A comparison of the EKF and UKF algorithms for state
estimation problems is found in Van Der Merwe (2004).

2.5 Nonparametric Filters

While Gaussian filters represent posterior beliefs in a fixed functional parameterized
form, nonparametric filters approximate the posterior by a finite number of values,
each corresponding to a region in the state space. One approach is to discretize
the state space in finitely many subregions and represent the cumulative posterior
density for each region by a single probability value. This is the case of Histogram
Filters. Other filters approximate the state space by finitely many random samples
drawn out from the posterior distribution, as the Particle Filter (PF).

The quality of the approximation depends on the number of subregions or sam-
ples used to represent the posterior. When this number goes to infinity, the ap-
proximation converges to the true posterior. A great advantage of nonparametric
filters is that they are capable of approximating any form of posterior distribution.
Particularly, they are well-suited to represent complex multimodal beliefs, and thus
are able to solve the global localization and even the kidnapped robot problems,
which were defined in Section 1.2.

Moreover, they have the ability to deal with nonlinear transformations of random
variables, which the Gaussian filters do not. Finally, nonparametric filters are easy
to implement, and have become very popular in recent robotic applications.

The main drawback of nonparametric filters is their computational complexity,
which is exponential in the number of states. This may be the number of bins in
histogram filters or the number of particles in particle filters, which can be very
high (up to hundreds of thousands) to have a good posterior approximation in more
complex problems. However, there are techniques to dynamically adapt the number
of parameters to represent the posterior belief.

2.5.1 The Particle Filter

The particle filter has its basis in Monte Carlo methods, due to Metropolis & Ulam
(1949), and was introduced in Gordon et al. (1993). Since then, it has found many
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applications in Bayesian statistics (Smith et al. 2013), where it is commonly known
as Sequential Importance Sampling (SIS), in computer vision, where it is also referred
to as the Condensation Algorithm (Isard & Blake 1998), and in artificial intelligence,
sometimes under the name of Survival of the Fittest (Kanazawa et al. 1995). In the
last fifteen years, particle filters have received great attention in robotics as a solution
to the robot localization and mapping problem.

The particle filter can be understood as a sampling-based method that uses the
Darwinian concept of survival of the fittest. State samples, denoted particles, are
drawn from a prior distribution and each particle receives an importance weight
according to the correctness of the measurements, given the particle state represen-
tation. In other words, a particle is a hypothesis of what the true state may be and
the importance weight quantifies the correctness of this hypothesis relative to the
other ones. After iterations of the method, the fittest particles (the ones with the
highest weights) are most likely to survive, while the weakest ones tend to collapse.

This superficial explanation comprises the three basic steps of particle filtering:
sampling, calculation of importance factors (or importance weights, or just weights),
and resampling (or importance sampling). Mathematically speaking, a set Xt of N
particles is defined as:

Xt := {x1
t , x

2
t , . . . , x

N
t } ,

where each particle xnt is associated to a weight wnt , forming the set of weights Wt:

Wt := {w1
t , w

2
t , . . . , w

N
t }

The objective of the particle filter is to approximate the posterior belief bel(xt)
by the set of particles Xt. It does so by incorporating the state hypothesis xt in the
particle set Xt with probability proportional to its posterior distribution bel(xt):

xnt ∼ p(xt | z1:t, u1:t) (2.17)

As an implication of (2.17), a state space subregion with high density of particles
has a higher likelihood of the true state being in there. Just like all the other
Bayesian filters, the particle filter calculates the belief bel(xt) at time t recursively
from the belief bel(xt−1) one time step earlier. Thus, particle filters construct the
particle set Xt recursively from the set Xt−1.

Figure 2.3 helps to understand the particle filter steps. The goal is to approach
the target distribution p, which is bel(xt), by sampling particles from it. However, it’s
usually impossible to directly sample from p, as p is generally not given in a closed
form. Instead, one can sample from a proposal distribution g, which is commonly
chosen to be bel(xt). Thus, the particles are distributed according to the proposal,
and do not represent the target distribution properly.

To offset the difference between these two distributions, each particle xnt is
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weighted by the importance factor wnt = p(xnt )/g(xnt ). This weight shall be
proved in Section 2.5.2 to be proportional to the measurement probability, that
is, wnt = ηp(zt | xt). After the computation of the particle weights, the resampling
step chooses particles with probability proportional to their weights to form a new
set, usually resulting in denser regions of the posterior representation. The number
of particles in the new set is preserved and some particles may have duplicates, as
they can be chosen more than one time in the resampling step.

Samples from
proposal distribution

Weighted samples

Proposal

Target

Figure 13.5 Samples cannot be drawn conveniently from the target distribution
(shown as a solid line). Instead, the importance sampler draws samples from the pro-
posal distribution (dashed line), which has a simpler form. Below, samples drawn
from the proposal distribution are drawn with lengths proportional to their impor-
tance weights.

Figure 2.3: Particle filter importance sampling illustration. (Montermerlo 2003)

The standard particle filter algorithm is presented in Algorithm 3. Line 3
samples N particles from the proposal distribution given by the state transition
p(xt | xnt−1, ut), where xnt−1 are particles from the set Xt−1. Line 4 computes the
importance factor wnt for each particle xnt according to p(zt | xnt ). After sampling N
particles and calculating the associated weights, the set X̄t represents bel(xt).

Finally, the resampling step is done through lines 7 to 9. The algorithm draws
with replacement N particles from the temporary set X̄t, creating the set Xt. The
probability of drawing each particle is proportional to its importance factor. In
this process, many particles might have several duplicates. By incorporating the
measurements through the weights wt, the new set Xt is distributed according to
the posterior belief bel(xt).

2.5.2 Mathematical Derivation (Thrun et al. 2005)

To derive the mathematical correctness of the particle filter, it is easier to think of
particles as samples of state sequences xn0:t = {xn0 , xn1 , . . . , xnt }. New particles xnt are
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Algorithm 3 Standard Particle Filter. Adapted from: Thrun et al. (2005)
Require: Xt−1, ut, zt
Ensure: Xt
1: X̄t = Xt = ∅
2: for n = 1 to N do
3: sample xnt ∼ p(xt | xnt−1, ut)
4: wnt = p(zt | xnt )
5: X̄t = X̄t + 〈xnt , wnt 〉
6: end for
7: for n = 1 to N do
8: draw i with probability ∝ wit
9: add xit to Xt

10: end for
11: return Xt

appended to the sequence of particles xn0:t−1 from which it was generated. With this
modification, the posterior belief is calculated over all the state sequences, but does
not lose generality:

bel(x0:t) = p(x0:t | z1:t, u1:t)

This posterior is expanded analogously to the mathematical derivation of
Bayesian filters in Section 2.3.1:

p(x0:t | z1:t, u1:t) Bayes= ηp(zt | x0:t, z1:t−1, u1:t)p(x0:t | z1:t−1, u1:t)
Markov= ηp(zt | xt)p(x0:t | z1:t−1, u1:t)

= ηp(zt | xt)p(xt | x0:t−1, z1:t−1, u1:t)p(x0:t−1 | z1:t−1, u1:t)
Markov= ηp(zt | xt)p(xt | xt−1, ut)p(x0:t−1 | z1:t−1, u1:t−1) (2.18)

The derivation is obtained by induction, as in the Bayesian filter derivation.
Supposing that the first particle set is obtained by sampling p(x0) and that the
sample set at time t−1 is distributed according to bel(x0:t−1), the nth particle xn0:t−1

generates the sample xnt from the proposal distribution p(xt | xt−1, ut)p(x0:t−1 |
z1:t−1, u1:t−1) with importance factor wnt , given by:

wnt = target density
proposal density

= ηp(zt | xt)p(xt | xt−1, ut)p(x0:t−1 | z1:t−1, u1:t−1)
p(xt | xt−1, ut)p(x0:t−1 | z1:t−1, u1:t−1)

= ηp(zt | xt) (2.19)

By resampling particles with probability proportional to wnt , the constant η is
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irrelevant and the resulting particle set is distributed according to the product of
the proposal and the weights:

bel(x0:t) = ζwnt p(xt | xt−1, ut)p(x0:t−1 | z1:t−1, u1:t−1) (2.20)

This proof is only valid forN −→∞ due to loss of dimension after normalization.
While the non-normalized weights are drawn from an N -dimensional space, they
reside in N − 1 dimension after normalization, as the nth weight can be recovered
from the N − 1 other weights by subtracting them from 1. However, this effect is
negligible for a high number of particles and the derivation holds true.

2.5.3 Discussions about the Particle Filter

In practice, the standard particle filter performs poorly for most applications. One
has to understand its properties and practical considerations to make improvements
in the algorithm in order to overcome its problems.

Sampling Bias

One issue of the particle filter is the sampling bias, which is the introduction of bias
in the posterior estimate due to the use of finitely many particles. Considering the
extreme case of N = 1 particle, a single particle will be sampled from the motion
model and it will be accepted in the resampling step, regardless of its weight wt,
completely ignoring the measurements information. The result is that this particle
estimates the density p(xt | u1:t) instead of the posterior p(xt | z1:t, u1:t).

This is an effect of the normalization step, implicit in resampling, which causes
a loss of dimensionality. The use of a sufficient number of particles, usually higher
than 100, can turn this issue negligible.

Sampling Variance and Resampling

Other important source of error in particle filtering lies on the variance of the sam-
pler, which is the variance inherent in random sampling. A finite number of random
samples drawn from a probability density has statistics (mean and variance) different
from the original distribution from which they were sampled.

The sampling variance can be augmented through repetitive resampling. Con-
sidering an extreme case of a static robot that possesses no sensors and is unaware
of its state, it should never find out anything about it. Hence, the state estimate at
any time t should be exactly the initial estimate.

However, as the standard particle filter outlined in Algorithm 3 performs a
resampling step in every algorithm iteration, where some particles are duplicated
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and others erased, it will occasionally fail to reproduce a particle xnt , losing particle
historical information. As the state transition model in this example is deterministic
(the robot is static), no new particles will be generated. The absence of sensing will
give equal weights to all particles, and, due to the random nature of resampling, N
identical copies of a single particle will survive in the long term.

The resampling process induces a loss of diversity in the particle set. Even
though the variance of the particle set itself decreases due to particle replacement,
the variance of the estimation of the true belief increases. Therefore, the resampling
step must be applied with caution.

When to Resample?
A common strategy to alleviate this problem is to reduce the resampling fre-

quency. When the state is known to be static, one should avoid the resampling step
(and even the PF iteration at all), as no new information is obtained, and, due to
the random nature of the algorithm, particles tend to degenerate. Even when the
state is dynamic, resampling should be taken with some criteria, and not on every
iteration. To comply with the occasional resampling, the importance weights must
keep the historical information of the measurements taken at each iteration of the
particle filter. This can be done through the following simple modification:

wnt =

1 if resampling was performed

p(zt | xnt )wnt−1 otherwise
(2.21)

If resampling is taken too often, the particle diversity might decrease, while infre-
quently resampling wastes computational resources, as many particles may be in low
probability regions of the state space. A great advantage of occasional resampling
is the reduction of computational effort.

When to resample is still an open problem in particle filtering, and, in practice,
heuristics are used to determine the resampling times. A simple and somewhat
sloppy alternative is to deterministically set a resampling frequency, determined by
practical experience. Resampling is done on every kth iteration of the algorithm.

A more elaborated way to establish the resampling times is to keep track of a
measure of the sample degeneracy, which may be the variance of the set of impor-
tance weights Wt. If this variance is too small, the particles have a rich diversity
and resampling should not be taken. A high variance implies particle concentration
and resampling should be performed. According to Crisan & Obanubi (2012), this
method turns out to return random resampling times.

The most popular metric for the sample degeneracy of a set of particles is the
so called effective sample size (or effective number of particles), introduced in Liu
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(1996) (see also Doucet et al. (2000), Liu & Chen (1998)). One cannot evaluate the
exact effective sample size, but a good estimation is given by:

Neff = 1∑N
n=1(wnt )2 , (2.22)

where Neff is the effective sample size, N is the number of particles, and wnt

are the normalized importance weights. When Neff is below a fixed empiri-
cal threshold Nthres, which is usually set as a fraction of the total number of
particles, a resampling procedure is taken. The interpretation of the effective
sample size is that any inference based on a weighted sample set of size N will be
approximately as accurate as one based on an independent sample set with size Neff .

Low Variance Samplers
A second possible solution to the particle degeneration problem is to decrease the

variance due to resampling by implementing a low variance sampler. Low variance
samplers are improved algorithms overmultinomial resampling, which is the ordinary
resampling method of independently drawing N random particles with probability
proportional to their weights.

The main three low variance resampling methods found in the literature are
the residual sampling, the stratified sampling and the systematic sampling. Briefly
speaking, residual sampling is a mostly-deterministic algorithm that enforces the
number of duplicates of a particle to be proportional to its weight. Stratified sam-
pling considers subgroups of particles and is performed in two steps. Initially, the
number of particles drawn from each subgroup is given by the sum of the weights
of the particles contained in it. Then, samples are drawn from each subset using
other resampling algorithm. Systematic sampling draws a single random number
and systematically cycles through the weight set by adding fixed increments to this
random number, picking the particle that corresponds to the resulting value.

Several other resampling techniques are found in the literature, including hybrid
methods, as in Bolić et al. (2003), and comparisons of the resampling methods
cited above can be found in Douc & Cappé (2005) and Hol et al. (2006).

The Resampling Wheel
One example of a systematic resampling algorithm is the Resampling Wheel

(Thrun 2012), which finds its similarities in genetic algorithms with the Roulette
Wheel Sampling (Goldberg et al. 1989). The idea is to select samples with a se-
quential stochastic process instead of selecting particles independently. Rather than
choosing N random numbers and selecting samples assigned to these random num-
bers, a low variance sampler computes a single random number and selects particles
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according to it, but still proportionally to the particle weights. The resampling
wheel algorithm is given in Algorithm 4 and illustrated in Figure 2.4.

Algorithm 4 Resampling Wheel. Adapted from Thrun (2012)
Require: X̄t, Wt

Ensure: Xt
1: Xt = ∅
2: i = rand(1, N)
3: β = 0
4: for n = 1 to N do
5: β = β+rand{0, 2max(Wt)}
6: while β > wit do
7: β = β − wit
8: i = i+ 1
9: end while
10: append x̄it to Xt
11: end for
12: return Xt
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Figure 2.4: Illustration of the steps of the resampling wheel algorithm.

In the resampling wheel algorithm, each particle occupies a slice of a circle with
area proportional to its weight. A particle index i is initialized at random in line
2, and a variable β is set to zero in line 3. To build the new particle set Xt from
the previous set X̄t, in the loop in lines 4 to 11, a random value between 0 and
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2max(Wt)3, which is the largest value in the importance weight set Wt, is added to
β in each iteration in line 5. The while loop through lines 6 to 9 picks the particle
index that corresponds to where the value β is sitting on the wheel. Finally, in
line 10, the ith particle x̄it in the set X̄t, is added to the new particle set Xt. In
this way, the β value cycles throughout the wheel, picking particles with probability
proportional to their importance factors.

This low variance sampler has three main advantages over other resampling
methods. First, it cycles through all particles in a systematical manner rather then
choosing them independently at random. Also, if all particles have the same weight,
the resulting set Xt will be equal to the initial set X̄t. Finally, its computational
effort is lower than other resampling methods, as it requires a complexity of O(N),
while other algorithms require O(N logN).

Particle Deprivation

Another issue to be dealt with in particle filters is the particle deprivation problem (or
particle depletion). In each resampling step, there is a probability higher than zero
that particles on the vicinity of the correct state, with high importance factors, are
erased, while particles with small weights survive. This happens specially in global
localization problems when the estimation is done in a high-dimensional space and
the number of particles is insufficient to cover all the relevant regions.

A natural idea to mitigate particle depletion is to increase the number of particles.
However, as the computational effort in particle filters increases exponentially with
the number of particles, this may be impractical. A good solution is to adapt the
number of particles dynamically based on the complexity of the posterior belief.
Simple posteriors, which is the case when samples are focused on a single state
with small uncertainty, need few particles for a good representation, while complex
posteriors, when particles are scattered across the full state domain, demand more
samples for a reasonable parametrization. Considering this, in many cases particle
filters are implemented as resource-adaptive algorithms. They adapt the number of
particles based on the available computational resources, as in Kwok et al. (2003).

The KLD-sampling algorithm (Fox 2001) is an example of a method that adap-
tively estimates the number of samples needed on each iteration. It does so by a
statistical bound of the particle filter approximation error, which is measured by
the Kullback-Leibler distance between the PF belief and the true posterior. The
algorithm generates particles until this bound is satisfied. The result is that a large
number of samples are used if the state uncertainty is high, as in the initial steps of

3The value max(Wt) is multiplied by 2 here so that the expected value over the random variable
rand{0, 2max(Wt)} is max(Wt). Hence, it is expected to add max(Wt) to β in each iteration, while
keeping the random nature of the algorithm.
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a global localization problem, and a small number of particles (typically 1% of the
initial number) are used if they are concentrated in a small subregion of the state
space. KLD-sampling has shown to consistently outperform fixed sample set sizes in
global localization problems by employing a higher number of particles in the initial
phase, and much less computational effort in the long run, using less than 10% of
the particles used in the fixed sample set approach Fox (2003).

A simpler solution to the particle deprivation problem is to heuristically add
a small number of randomly generated particles to the set after each resampling
step in order to increase diversity. This method, introduced in Fox et al. (1999), has
shown to add robustness to the particle filter and even deal with the kidnapped robot
problem. However, it decreases the estimation correctness and should be considered
only as a last resource option.

Divergence between the Proposal and Target Distributions

Another source of error in particle filtering is the divergence between the proposal
and target densities. This difference is specially large when the measurement is
highly accurate and the motion is not. In this situation, the limited number of
samples results in an arbitrarily inefficient particle filter. In other words, the target
distribution has narrow peaks, while the proposal is wide. If one uses a small number
of samples drawn from the proposal, it may happen that no particles will sit near
the narrow peaks of the target density, which will not be correctly represented.

An extreme example is the robot with deterministic sensors, which has the mea-
surement probability p(zt | xt) as Dirac delta functions centered on the states that
exactly match the given measurement. Therefore, the proposal distribution will
practically never sample particles that exactly correspond to these states, and all
importance weights will be zero, turning the filter ill-conditioned.

A close-minded solution in this case is to simply assume more noise in the mea-
surement model than it actually has. Despite being counter intuitive and odd to
model a sensor worse than it really is, this can improve the accuracy of some particle
filter implementations. Other possible solution is to simply increase the number of
particles or use adaptive techniques as the ones described above. However, they can
take a long time to converge, and, thus, use a lot of computational power.

A smarter approach is to modify the sampling process and weight computation
described in lines 3 and 4 of Algorithm 3. The idea is to sample some particles
according to the measurement model, and not the state transition model.

A good alternative to recover from global localization failures that uses this pro-
posal modification is the Sensor Resetting Localization (SRL) algorithm, introduced
in Lenser & Veloso (2000). In a nutshell, after the sampling, computation of weights,
and occasional resampling steps, the algorithm jumps some particles to states that
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match the most recent measurement if the robot thinks it is lost. Put differently,
it samples particles from the measurement model if the non-normalized weights are
small, indicating that the robot is lost. The number of particles to be reset is given
by how uncertain the robot is about its belief. A threshold value determines wether
the algorithm is accounted, and it is used to avoid particle replacement when the
robot is confident about its belief. The SRL algorithm is shown in Algorithm 5.

Algorithm 5 Sensor Resetting Localization. Adapted from Lenser & Veloso (2000)
Require: Xt, Wt, zt
Ensure: Xt
1: Nnew = (1−mean(Wt)/wthres)N
2: if Nnew > 0 then
3: for i = 1 to Nnew do
4: sample xit ∼ p(zt | xt)
5: Replace sample from Xt by xit
6: end for
7: end if
8: return Xt

In line 1, the number of new samples to be drawn is calculated based on the
mean of the non-normalized weights of the set Wt compared to a threshold wthres.
If this value is positive, new samples drawn from the measurement model in line 4
replace samples from the set Xt in line 5.

The interpretation of the algorithm is that if the average of the particle weights
is smaller than an expected value, a fraction of the total particles should be replaced
proportionally to the deviation between the average and the threshold. The value
(1−mean(Wt)/wthres) can be understood as the probability of the robot being wrong
about its belief. In the extreme case of mean(Wt) = 0 (when the robot is completely
lost), all particles are replaced, while, if this value is greater than the threshold (the
robot has a good idea of where it is), no particle is replaced. The new samples are
generated in regions consistent with the most recent sensor readings. As long as the
tracking of the true state is working, no new particles are generated from SRL.

Compared to other related particle filter methods, the SRL algorithm generally
uses a smaller number of samples, handles larger errors in the model, and deals
with global localization and the kidnapped robot problems very well. The drawback
of this method is that sampling from p(zt | xt) is usually hard, unless its inverse
possesses a closed form solution.

The Mixture Monte Carlo Localization (Mixture MCL) is another algorithm that
modifies the proposal distribution in the sampling process (Thrun et al. 2001, 2000).
As in SRL, Mixture MCL also samples from the measurement model, but only for
a small fixed fraction of all particles (empirically chosen around 10%), and on the
very particle filter step, and these particles are merged with the ordinary particle
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set. Also, the algorithm computes the importance weights of these particles based
on the prior distribution according to the following equation:

wit =
∫
xt−1

p(xit | xt−1, ut)bel(xt−1)dxt−1 (2.23)

While this method is mathematically more rigorous than SRL and approximates
the true posterior by the dual proposal distribution, it needs to deal with the integral
in (2.23) and requires an additional approximation, as bel(xt−1) is a set of particles,
and not a probability density. The latter issue is usually addressed by density
extraction algorithms, such as k-means clustering, density trees, and kernel density
estimation. As SRL, Mixture MCL yields superior results over the standard particle
filter algorithm, and also provides a sound solution to the kidnapped robot problem,
adding a level of robustness to system.

2.6 Localization

The problem of mobile robot localization is that of estimating the pose of a robot
relative to a known map m of the environment. The pose cannot be sensed directly,
so it has to be inferred from data. Therefore, the robot motion, provided by the
control actions u, and the robot perception about the environment, given by the
measurements z, are integrated through time to estimate the robot pose relative to
the map m. This procedure is characterized by the Dynamic Bayesian Network of
Figure 2.5, where x are the poses to be estimated.

m

x

zt

t+1x

t+1z

t+1
u

xt−1

u
t−1

u
t

t−1z

t

Figure 7.1 Graphical model of mobile robot localization. The value of shaded nodes
are known: the map m, the measurements z, and the controls u. The goal of localiza-
tion is to infer the robot pose variables x.

Figure 2.5: DBN of a mobile robot localization. The shaded values are known and
the blank cells have to be estimated. (Thrun et al. 2005)

One can see in Figure 2.5 that the map plays an important role in the system, as
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measurements are conditioned to the map information. Usually, the control actions
u are independent from the map, but the poses x are clearly dependent.

Probabilistic localization algorithms are variants of the Bayesian filters presented
so far in this chapter with the addition of the map information. Therefore, the state
transition and measurement models have to be modified to accommodate the map.
Equations (2.1) and (2.2) are respectively redefined as follows:

p(xt | x0:t−1, z1:t−1, u1:t,m) Markov= p(xt | xt−1, ut,m) (2.24)

p(zt | x0:t−1, z1:t−1, u1:t,m) Markov= p(zt | xt,m) (2.25)

2.6.1 Markov Localization

Markov localization is the straightforward application of the Bayes filter algorithm
(Algorithm 1) to the localization problem incorporating the map information, as
shown in Algorithm 6.

Algorithm 6 Markov Localization. Source: Thrun et al. (2005)
Require: bel(xt−1), ut, zt, m
Ensure: bel(xt)
1: for all xt do
2: bel(xt) =

∫
xt−1

p(xt | xt−1, ut,m)bel(xt−1)dxt−1

3: bel(xt) = ηp(zt | xt,m)bel(xt)
4: end for
5: return bel(xt)

As in Bayes filter, the initial belief bel(x0) has to be initialized. If the localization
problem is one of tracking, then there is some knowledge about the initial pose x0

and bel(x0) should be a point-mass distribution or a Gaussian centered at x0 with
uncertainty given by the covariance σ2

0. If the initial pose is completely unknown,
bel(x0) is initialized as a uniform distribution over all the valid poses on the map.

Figure 2.6 illustrates the traditional one-dimensional hallway robot localization
problem (Thrun et al. 2005). The robot motion model consists on moving to the
right, the perception model is given by the probability of identifying a door, and the
known map contains three landmarks, which are doors.

Initially, the robot is unaware of its position, and so, bel(x0) is the uniform dis-
tribution represented in Figure 2.6a. The robot does not move in the first iteration
(u1 = 0), so bel(x1) = bel(x0). After sensing a door with the measurement probabil-
ity density p(z1 | x1,m), the robot’s belief bel(x1) is updated by multiplying bel(x1)
with p(z1 | x1,m), with implicit normalization, according to line 3 in Algorithm 6
and depicted in Figure 2.6b. At this stage, the poses near the three doors are equally
valid hypothesis, and much more probable than the other poses on the map.
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Figure 1.1 The basic idea of Markov localization: A mobile robot during global local-
ization. Markov localization techniques will be investigated in Chapters ?? and ??.

Figure 2.6: Illustration of the Markov localization algorithm. (Thrun et al. 2005)

In a second step, the robot moves to the right with the state transition probability
p(x2 | x1, u2,m) implicitly given by a Gaussian. The result bel(x2) of the convolu-
tion of the previous belief bel(x1) with the state transition model p(x2 | x1, u2,m),
given in line 2 of the algorithm, is a flattening on the density, as motion introduces
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uncertainty (Figure 2.6c). After identifying the second door, the belief bel(x2) is
calculated by the multiplication of bel(x2) and p(z2 | x2,m) (Figure 2.6d). Accord-
ing to the belief bel(x2), the robot is already quite confident about its localization.
Figure 2.6e shows another motion step and the introduction of uncertainty.

As in Bayes filter, Markov localization needs the state transition and measure-
ment models to be implemented in practice. This can be done using any of the
different derivations of Bayes filter already described in this Chapter. In the next
two sections, the EKF application to localization is briefly presented, and the par-
ticle filter algorithm applied to localization receives more attention.

2.6.2 EKF Localization

EKF localization is based on the EKF filter, described in Section 2.4.2, which repre-
sents beliefs by Gaussians parameterized by their first and second moments, µt and
Σt. The map is seen as a collection of landmarks, that may be uniquely identifiable
or not. When the robot cannot distinguish between landmarks in the measurements,
it is said that the landmarks have unknown correspondences to the measurements.
In this case, the algorithm has to estimate these correspondences, as Gaussian filters
only deal with single hypothesis due to their natural unimodal characteristic. The
EKF localization is described in Algorithm 7, where Gt and Ht are the Jacobians
of Equations 2.15 and 2.16.

Algorithm 7 EKF Localization. Adapted from Thrun et al. (2005)
Require: µt−1, Σt−1, ut, zt, m
Ensure: µt, Σt

1: µ̄t = g(ut, µt−1,m)
2: Σ̄t = GtΣt−1G

T
t +Rt

3: Kt = Σ̄tH
T
t (HtΣ̄tH

T
t +Qt)−1

4: µt = µ̄t +Kt(zt − h(µ̄t,m))
5: Σt = (I −KtHt)Σ̄t

6: return µt, Σt

Figure 2.7 illustrates the one-dimensional hallway example using EKF localiza-
tion. The landmarks, which are the doors in this example, are assumed to have
known correspondences, as the doors are tagged with numbers.

The differences between Figures 2.7 and 2.6 are evident. All the probability den-
sities are represented by Gaussians, which are unimodal representations, the initial
belief was supposed to be partially known, and the three doors are distinguishable.
Considering these assumptions, the robot did a good tracking of its position.

However, if the initial belief was supposed to be unknown and the landmarks
were not uniquely identifiable, the EKF localization algorithm would have poor
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Figure 7.6 Application of the Kalman filter algorithm to mobile robot localization.
All densities are represented by unimodal Gaussians.

Figure 2.7: EKF localization applied to the hallway example. Thrun et al. (2005)

results, as it does not handle multiple hypothesis well. Variations of the EKF
exist in an attempt to deal with this problem, such as Multi-Hypothesis Tracking
(MHT), already cited in 2.4.1, which maintains multiple EKFs to represent different
hypothesis.

2.6.3 Monte Carlo Localization

Monte Carlo Localization (MCL), due to Fox et al. (1999), is the particle filter algo-
rithm implementation for robot localization problems. It has the following important
advantages over the Gaussian localization algorithms:

• MCL can process raw sensor measurements, instead of extracting features from
them. As a result, it can also read negative information.

• MCL probability models do not have to be linearized to be represented in a
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parametric form, as in EFK localization.

• Due to its non-parametric characteristic, MCL can naturally deal with multiple
hypothesis, including unknown landmark correspondences. This implies that
it is able to solve global localization and even kidnapped robot problems.

Perhaps the main advantage of MCL is its power to approximate any distribu-
tion, not being bounded to a parametric representation, as in EKF localization.
However, in many applications, the distributions to be estimated may be intricate,
demanding a large number of particles for a reliable representation. Considering
that the computational complexity of the algorithm grows exponentially on the
number of particles, this is the main drawback of MCL. Nonetheless, this can be
overcome by using the methods presented in Section 2.5.3, as SRL. The standard
MCL pseudo-code is detailed in Algorithm 8, and illustrated in Figure 2.8.

Algorithm 8 Monte Carlo Localization algorithm. Source: Thrun et al. (2005)
Require: Xt−1, ut, zt, m
Ensure: Xt
1: X̄t = Xt = ∅
2: for n = 1 to N do
3: xnt = sample_motion_model(xnt−1, ut,m)
4: wnt = measurement_model(xnt , zt,m)
5: X̄t = X̄t + 〈xnt , wnt 〉
6: end for
7: for n = 1 to N do
8: draw i with probability ∝ wit
9: add xit to Xt

10: end for
11: return Xt

The modifications of this algorithm relative to the particle filter is the inclusion
of the map m in the system models, and the implementation of motion and mea-
surement models to sample from the distribution p(xt | xnt−1, ut,m) and compute
p(zt | xnt ,m), respectively. In some cases, the map m plays no role in the motion
model, and, thus, is disregarded from the state transition probability.

In Figure 2.8, the robot’s belief is initialized as a uniform distribution over all
the valid poses on the map. It is considered that the robot does not move in the first
step (u1 = 0), so its prior belief bel(x1) is represented by particles sampled from the
motion model in line 3 of Algorithm 8 and depicted in Figure 2.8a. After the robot
senses a door, the importance weights are calculated in line 4 and associated to the
particles in the set Xt (Figure 2.8b). The robot’s prior belief bel(x2) is represented
in Figure 2.8c after resampling particles through lines 7 to 10 and sampling the
resulting set from the motion model in line 3 when the robot moves to the right.
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Figure 8.11 Monte Carlo Localization, a particle filter applied to mobile robot local-
ization.
Figure 2.8: MCL applied to the 1-D hallway example. Thrun et al. (2005)

At this time, the robot still keeps three main hypothesis about its position,
represented by the high density of particles near them. After sensing the second door
and computing the particle weights in Figure 2.8d, the robot has a good estimation
of its localization. Figure 2.8e shows the belief after resampling the particle set and
moving to the right, when there is a high density of particles near the true position.
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Chapter 3

DORIS Models

3.1 DORIS Environment and Rail Map

At the time of the elaboration of this work, DORIS was being tested on a rail
installed in a utility plant at CENPES, a Petrobras research facility, as an interme-
diate step to the offshore application. The intention was to demonstrate the robot
functionalities, mentioned in Section 1.1, in an industrial environment.

The rail path was designed so that the robot could partially fulfill the daily
equipment checklist performed by the operators of the utility plant. This includes
the visual checking of a diesel generator oil level, switch positions and led status of
electric panels, and temperature indicators of boilers.

To comply with the routine inspection characteristic of the daily checklist, the
robot periodically travels through the regions of interest on a closed rail path. The
closed loop rail also adds a level of safety to the robotic application in the industrial
plant, as there is no chance of a derailing due to an eventual unexpected motion
caused by a software failure, for example.

Considering this, the rail installed in CENPES has near 130m length and covers
almost all the utility plant area of 40m x 20m. It has a base region, with a distance
of 1.7m to the floor, where the robot is inserted and removed from the rail by a
removable segment. The remaining rail circuit is at a height of at least 2.8m to avoid
collision between the robot and passersby. There are occasional level changes on the
rail path in order to access regions of interest or deviate from installed equipments.

Any rail used for DORIS may be composed of straight and curved 3in steel
tubes. The CENPES rail, in particular, has straight segments, and 45◦ and 60◦

curved parts, which all have the same radius of curvature (635mm). The rail is
supported by poles fixed to the floor or angle brackets fixed to preexisting beams in
the plant.
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3.1.1 Rail CAD Model

Prior to the rail design, construction and installation, all the 800m2 utility plant
environment was modelled in a CAD software with a precision of 0.5m. The CAD
design is compared to the actual rail installation in Figure 3.1.

Figure 3.1: CAD design of the rail and the surrounding environment compared to
the real world.

After concluding the rail design, fabrication, and installation steps, the CAD
model was updated with as built measurements of the rail features, as the segments
lengths, and the poles positions. However, the CAD model is not completely precise
due to the fabrication process and measurement of the rail segments, and to the
uncertainty introduced in the rail installation procedure. As an implication of the
accumulated uncertainty, the loop does not close in the CAD model when updating
it with the as built measurements, as shown in Figure 3.2.

The solution to this problem was to estimate the optimal rail path by solving a
minimization problem with constraints. The optimization is in the sense of minimiz-
ing the errors of the rail segments measurements subject to a loop closure constraint
and bounding limits to the length and radius of curvature of the rail segments. One
can assume that the rail length designed in CAD corresponds to the real rail length,
as the installation and measurements errors are accumulated in the Cartesian space,
and not in the rail extension, which is the sum of all the segments lengths. So, this
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Figure 3.2: The loop of the as built rail does not close in the CAD model.

constraint is also included in the problem.
In order to structure the optimization problem, a straight segment i is parame-

terized by its length li = l̂i + εli , where li is the real length value, l̂i is the measured
value, and εli represents the deviation between the real and measured values. A
curved track j is parameterized by a curvature radius rj = r̂j + εrj

and an angle
θj = θ̂j + εθj

. The total number of segments is N = Nstraight +Ncurve, where Nstraight

is the number of straight tracks and Ncurve is the number of curved tracks. Thus,
the total number of parameters of the rail system is Np = Nstraight + 2Ncurve, as each
curve has two parameters.

By properly attaching a coordinate system En to each rail part, and knowing
the sequence of the installed segments and how the curves are disposed (going up,
down, left, or right), one can calculate the homogeneous transformation matrices
that represent the rotation and translation between consecutive coordinate frames,
which are given by:

Ti,i+1 =
Ri,i+1 pi,i+1

01x3 1

 .
Starting from the first segment and attaching the rail parts sequentially, the loop

closure constraint is given by:

T1,2T2,3 . . . TN−1,NTN,1 = T1,1 =
I3x3 03x1

01x3 1

 . (3.1)

The loop closure assumption gives 9 equality constraints in the rotation matrix
and 3 in the translation vector. All the 12 equations are nonlinear in the parameters
θj, which turns it a nonlinear optimization problem.
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However, given that the fabrication of the curved parts was very accurate (0.5◦

of tolerance) and that the rail installation was well aligned, one can consider that all
the angles θj are known, that is, θj = θ̂j. This assumption implies that the rotation
matrix of T1,2T2,3 . . . TN−1,NTN,1 is the identity, reducing the problem to only 3 linear
equations in the translation vector:

Aε = 0 , (3.2)

where A is a 3xN matrix with coefficients calculated from the measured values l̂i,
r̂j and θ̂j, and ε = {εl, εr} is the Nx1 vector of errors to be estimated arranged in
the correct sequence of the rail path.

There are 2N additional constraints by applying lower and upper bounds lbn
and ubn to each variable εn, which limits the measurement and installation errors.
Finally, one more constraint is included by making the designed rail length equal to
the as built rail length, that is, ∑N

n=1 εn = 0.
The objective function must represent the total error to be minimized, so that

the sum of squared errors εT ε is a first choice. However, it is not reasonable to think
that the uncertainty in a 10m length section is the same of a 1m track. Therefore,
the errors are weighted proportionally to the corresponding segment length by a
diagonal matrix Λ. Representing straight section lengths by ŝi = l̂i and curve
lengths by ŝj = θ̂j r̂j, the diagonal elements of Λ are the inverse of these values
arranged in the correct sequence of the rail parts.

The optimization problem is structured below, and it is easily solved by common
linear programming algorithms.

minimize
ε

εTΛε

subject to Aε = 0 ;

lbn ≤ εn ≤ ubn,∀n = 1, . . . , N ;
N∑
n=1

εn = 0 .

(3.3)

After solving the optimization problem, the CAD model of the rail is updated
and the rail path is sampled with a step of 1cm between consecutive samples (or
track points). An algorithm removes many samples belonging to straight sections, as
they can be represented by only two connected points in the space. Each resulting
track point position [Xs, Ys, Zs]T is exported from the CAD model.

3.1.2 Rail Frames

The inertial frame of the system is defined with its origin on a known position of
the rail base, and corresponds to the first sample point. The ~zI axis of the inertial
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frame points up, to the opposite direction of gravity. The ~xI axis is defined in the
along-track direction of the rail, which is positive in the counterclockwise (CCW)
direction in ~zI of the rail loop. The ~yI axis is obtained from ~yI = −~xI × ~zI , and
coincides with the cross-track direction pointing to the interior of the loop.

To define the position and orientation of each track point s relative to the inertial
frame, they also receive coordinate frames Es, which are defined as follows. The ~xs
axis of a track sample s points to the following sample s + 1, in the along-track
direction. The ~ys axis points to the interior of the rail, in the cross-track direction.
The ~zs axis is obtained from the cross product ~zs = ~xs × ~ys. To characterize the
rail path as a loop, the track point that follows the last sample in the set is the first
sample point.

The translation between the frames Es to the inertial frame EI is given by
the track point position [Xs, Ys, Zs]T exported from the CAD model. The rotation
matrix can be parameterized by roll (ψs), pitch (φs), and yaw (θs) Euler angles for
an intuitive representation. However, the Roll, Pitch and Yaw (RPY) representation
has a singularity in φ = ±π/2, which happens in vertical parts of the rail. In this
case, ψ and φ cannot be uniquely determined, but only their sum ψ + φ.

To solve this singularity, the following important assumption is established:

A1. ψs = 0,∀s = 1, . . . , Ns; where Ns is the total number of generated samples.

Despite that the robot has the DoF to roll around the tubular rail, the roll angle
is kept to a minimum due to the weight of the robot, and can be neglected in the
model. Actually, after several field tests with DORIS, the roll angle measured by an
IMU was smaller than 2◦ in straight sections and 6◦ in curved and vertical parts, as
can be seen in Figure 3.11.

The sampled rail points s are then completely referenced to the inertial frame
through the position [Xs, Ys, Zs]T and the RPY Euler angles [0, φs, θs]T . Figure 3.3
shows some generated rail samples in the Cartesian space and coordinate frames
represented for a fraction of them.

3.1.3 Rail Map

The position of the robot on the rail can be given by a one-dimensional value s that
parameterizes the length between the zero point of the rail and the given position
in the along-track direction. Based on the definitions given in Section 3.1.2, all the
information contained in the rail path can be referenced by the parametric position
s. A mapping function fmap can access this parameter and return the corresponding
pose relative to the inertial frame:

50



3

2

1

0

-1

X (m)

-2

-3

0

1

2

Y (m)

3

4

5

6

7

2

1.5

1

0.5

0

Z
(m

)

Sample points
Zero point
~xs
~ys
~zs

Figure 3.3: Some track points sampled from the rail CAD model and some repre-
sentative coordinate frames.

[
X, Y, Z, 0, φ, θ

]T
= fmap(s,m) . (3.4)

This continuous function can be built by a spline interpolation of the discrete
samples poses. A spline interpolation is a continuous piecewise polynomial inter-
polation that calculates the best set of polynomials that pass through the samples
and satisfy some smoothness criteria. In the case of linear polynomials (spline of
order one), this function is the polygonal line approximation, which interconnects
the adjacent points with straight lines.

DORIS rail map is represented by this simplest type of spline, as in RailSLAM
(García 2012). The reasons are that 85% of the rail path is composed of straight
lines, and that, in curved sections, the resolution of 1 sample per centimeter is
good enough to turn the approximation error negligible, which turns out to be
0.2mm in the total length of all curves summed up. For more complex rail paths,
an alternative to smoothen the function would be a cubic spline interpolation, as
used in Hasberg et al. (2012), where the polynomials are of order 3. However, this
adds computational complexity, so that the choice of a linear interpolation for the
CENPES rail was sufficient.

Besides of poses on the rail referenced by the parameter s, rail features can also
be mapped by this value. In the CENPES rail environment, there are natural and
artificial landmarks. The natural landmarks are considered the recognizable poles
(by a laser scanner) of the rail fixation system, and the artificial landmarks are
visual red markers positioned on known rail positions.

Figure 3.4 depicts the rail spline parametrization with the corresponding land-
marks positions along with the zero point representation. The "Inside pole" and
"Outside pole" are fixation structures that were installed in the interior and exterior
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regions of the rail loop, respectively. As they can be distinguished in the laser scan,
they are represented as different landmarks. The red landmarks, on the other hand,
are indistinguishable between them.
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Figure 3.4: Rail spline and landmarks represented in the Cartesian space.

3.2 Robot frames

As mentioned in Section 1.2, DORIS moves through the rail suspended by two
mechanisms connected to a base (Figure 3.5). Each mechanism has two gimbals (an
external gimbal and an internal gimbal) coupled to each other with orthogonal pivot
axes, enabling pitch and yaw rotations. The inner gimbal comprises four equally
spaced wheels that closely encompass the rail. These mechanisms provide a total of
4 DoF and turn the robot mechanically compliant to any type of rail path.

gimbals

gimbals

Figure 3.5: DORIS CAD model showing the gimbal mechanisms.

The two gimbal mechanisms are compliant to the rail path, so that it is con-
venient to represent the coordinate frames E1 and E2 for each of the two gimbals
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set with origins placed in each intersection point between the internal and external
gimbals axes. This point coincides with the rail path, which is defined to be the
interior contour of the tubular rail. In this way, the gimbals poses can be obtained
through the mapping function fmap(s,m) using their parametric values on the rail,
s1 and s2, as follows:

[
X1, Y1, Z1, 0, φ1, θ1

]T
= fmap(s1,m) , (3.5)[

X2, Y2, Z2, 0, φ2, θ2

]T
= fmap(s2,m) . (3.6)

The parametric position of the rear gimbal (2) is obtained from the position of
the frontal gimbal (1) from s2 = s1−d, where d is the constant distance between the
gimbal frames E1 and E2. This is actually an approximation, as in curved sections,
the arc length between the two gimbal frames is greater than d. However, this
difference is smaller than 5mm for the considered rail curvature of 635mm, and can
be neglected.

It is also useful to attach a coordinate frame to the robot base, which is fixed to
the two gimbal mechanisms, as the robot sensors are mounted on it. However, the
robot base is not solidary to the rail path when the robot is on a curved section.
Therefore, its pose cannot be directly mapped by the rail length parameter using
the function fmap(s,m). However, it can be inferred from the poses of the frontal
and the rear gimbals.

The origin of the base frame is defined as the midpoint of the line that connects
the two gimbal frames. The ~xb axis points in the direction of E2 to E1. To derive
the second axis, and, thus, completely define the coordinate frame after calculating
the third axis by the cross product between the other two, the following second
assumption has to be considered:

A2. The robot does not move on two curves at the same time.

Although DORIS is mechanically capable of moving on two or more curves at
the same time, the rail installed in CENPES does not have this type of track. This
assumption implies that at least one of the ~y and ~z axes of both gimbals set will be
coincident, and, thus, this axis will also be the same for the base frame.

DORIS perception system is composed of three sensors, which are detailed in
Section 3.4: an IMU, a camera, and a laser scanner. All the three sensors are
mounted on the robot base, and, so, they are solidary to the base motion. This
implies that the translations and rotations of the sensors frames relative to the base
frame are constant.

The IMU is mounted with the ~xIMU axis pointing to the cross-track direction,
as is ~yb, and the ~yIMU axis pointing to the along-track direction, as is ~xb. The
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rotation matrix between the IMU and the base frames is given below. The IMU
measurements given in the local frame have to be represented in the robot base
frame using the rotation matrix below:

Rb,IMU =


0 1 0
1 0 0
0 0 −1

 . (3.7)

As just the orientations and angle velocities measured by the IMU are used in
this work, the translational component of the homogeneous transformation between
the IMU and the base frames is irrelevant.

Regarding the camera frame, only its position in the along-track direction relative
to the base frame is significant in the model. The camera was mounted aligned to
the base frame so that this difference is zero.

The laser scanner is mounted on the rear part of DORIS, aligned to the robot
symmetrical right plane. The homogeneous transformation Tb,laser that takes a vector
represented in the laser frame Elaser to the robot base frame Eb is given as follows:

Tb,laser =


0 0 −1 −Lx
1 0 0 0
0 −1 0 −Lz
0 0 0 1

 , (3.8)

where Lx and Lz are the distances between the two frames in the ~xb and ~zb, respec-
tively. Figure 3.6 shows all the relevant robot frames cited in this section.

Figure 3.6: DORIS frames: inertial, gimbals, base, IMU, camera, and laser scanner.
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The following motion and perception models apply to the specific environment
of DORIS rail installed in CENPES. However, the models presented here can be
easily generalized to any environment, given that the assumptions A1 and A2 are
satisfied, and that the rail map is known.

3.3 DORIS Motion Model

After defining the robot main coordinate frames and the transformation functions
between them, we can derive the motion and perception models to be used in DORIS
probabilistic filter. As we have the transformation matrices between the frames
themselves and the inertial frame, which are calculated from a single parameter s,
the robot systems can be completely represented by this single value. Thus, the
frontal gimbal parametric position, s1, is chosen as the variable to be estimated.
From now on, s1 will be simply denoted as s.

DORIS moves through the rail using a velocity control provided by Maxon
EPOS2 70/10 controllers. The velocities of the motors are measured by digital
encoders, and converted to the wheels speeds using a relation obtained from the
gear ratio of the transmission system, and the wheel diameter. The position st, at
a time t, can be calculated from the position st−1 one time step earlier added to the
displacement ∆st = vt∆T , where vt is the measured velocity, and ∆T is the time
increment between two state evaluations.

Thus, the state transition probability p(st | st−1, ut) can be given by the Gaussian
in (3.10) and can be easily sampled from the linear Gaussian function in (3.9):

st = st−1 + vt∆T + εt(vt) , (3.9)

p(st | st−1, ut) ∼ N (st; st−1 + vt∆T, εt(vt)) , (3.10)

where ut = vt∆T is the control action at time t and εt is a Gaussian noise with
standard deviation σmotion

t = αodom|vt∆T |, where αodom is the odometry error, given
as a percentage of the displacement vt∆T . This random noise models the odometry
uncertainty, which is reasonable to think as being proportional to the displacement
∆st = vt∆T . It is worth noting that the map m was disregarded in (3.10), as it
adds no information in the state transition model in the case of DORIS.

3.4 DORIS Perception Model

The prediction step of a probabilistic filter, given by the motion model, introduces
uncertainty in the estimation. Suppose that the robot is devoid of sensors and start
moving through its environment with a known initial condition and an inaccurate
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motion. The introduction of uncertainty in the motion update step implies that, in
steady state, the robot will be completely lost, with a posterior density uniformly
distributed over all the possible states, characterizing maximum confusion.

Therefore, measurements have to be taken and integrated with the prediction
estimate to keep uncertainty to a minimum. DORIS has several embedded sensors
that extract useful information from the environment, and some of them can be
used for localization purposes. In this work, a camera is used to detect artificial
landmarks positioned on the rail, an IMU provides orientation measurements, and a
laser scanner extracts localization information from natural features of the rail and
the surrounding environment.

3.4.1 Camera Measurements

DORIS has a low cost Red, Green and Blue (RGB) camera mounted on the robot
base and pointing to the rail, which has 20 red sheets manually placed on known
positions (Figure 3.4). A particular region of the rail in CENPES is at a height of
4.5m, being unreachable without scaffolds, so that no markers were positioned on it,
although they would be useful. The idea is to detect the markers according to the
predominance of red pixels on the image frame. As the camera is always framing the
rail, which has a naturally grey surface, and the markers are red, the color change is
very distinguishable, and a positive detection can be associated to known positions.
Figure 3.7 shows DORIS approaching a red landmark on the rail base area.

Figure 3.7: DORIS near two red markers installed on the rail base area.

The red detection is done by a simple image processing algorithm using the
OpenCV library. The image frames are received in RGB values, and are converted
to the Hue, Saturation and Value (HSV) representation, which is perceptually more
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relevant than RGB. A filter over the HSV values is applied with minimum and
maximum values for each component to distinguish the red pixels on the image. An
additional filter is implemented to eliminate noisy pixels, and the result is a boolean
matrix of white and black pixels representing if each pixel has the predominance
of the red color. The percentage of white pixels over the total number of pixels in
the image is used in the localization algorithm. Figure 3.8 shows a camera frame
in RGB values and the resulting black and white matrix after processing the image
with the red detection algorithm.

Figure 3.8: Original RGB image frame and the resulting black and white image
representing the predominance of the red color.

The main advantages of using the visual detection of this type of artificial land-
mark is that the markers are very simple and easy to include in the environment,
and the software implementation is trivial, as described above. The main drawbacks
are that the landmarks have unknown correspondences, that is, they are indistin-
guishable from each other, they can wear over time, and the detection is subject to
light conditions.

An alternative approach was tested to eliminate the correspondence problem
between the landmarks. QR codes were positioned on known locations of the rail
to be detected by the camera through a QR detection algorithm. However, after a
few field tests with DORIS, it was verified that the camera image gets significantly
blurred while the robot is moving, even with very low speeds (0.1m/s, or 10% of
the maximum speed), so that the QR code is not identified by the algorithm. As a
result, the simpler colored features were found to be more appropriate.

The detection of a red landmark can be modeled by a boolean variable, where zredt

represents a positive detection and ¬zredt a negative detection. Based on the known
positions of the red markers on the rail, we can derive the probability p(zredt | st,m)
of detecting a red landmark given a position st. A positive detection zredt is given
when the percentage of white pixels over the total number of pixels in the camera
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frame exceeds an empirical threshold, obtained after analysis of several field tests.
With this boolean value, the current position st, and the red markers positions, the
probability p(zredt | st,m) is modeled by:

p(zredt | st,m) ∼ N
(
st − sredj ; 0, σred2)

, (3.11)

where sredj is the closest red landmark position to st and σred is the standard deviation
used to accommodate small errors in the model, as the landmarks positions and the
total lap length uncertainties. Obviously, the probability of not detecting the red
landmark on a position st is obtained by p(¬zredt | st,m) = 1− p(zredt | st,m). The
red detection probability is computed through Algorithm 9.

Algorithm 9 Red Landmark Detection
Require: st, RGB image frame, m
Ensure: p(zredt | st,m)
1: Convert image frame from RGB to HSV
2: Filter image with HSV min. and max. values for red predominance
3: Filter noisy pixels
4: Compute the percentage red% of white pixels over the total number of pixels
5: Search for the nearest red landmark sredj to st
6: Compute p(zredt | st,m) ∼ N

(
st − sredj ; 0, σred2)

7: if red% < redthres then
8: p(zredt | st,m)← 1− p(zredt | st,m)
9: end if

10: return p(zredt | st,m)

Figure 3.9 shows the normalized distribution, in the sense of the maximum value
truncated to 1, of a positive red landmark detection over all positions s on the rail
using σred = 0.3m and a detection threshold redthres = 75%. The model is compared
to the real test percentages of white pixels.

According to Figure 3.9, the model is good enough in comparison to the real
measurements. However, in this specific test, one of the red landmarks was not
detected, due to excessive light in that region. The image taken was so bright that
the white color predominated over the red. Note that the phase difference between
the model and the test graphs is due to odometric errors, which are associated to
the position axis of the test graph.

3.4.2 IMU Measurements

DORIS has an embedded Spatial OEM IMU, of Advanced Navigation (Figure 3.10).
The device comprises three MEMS gyroscopes, three accelerometers, a GNSS re-
ceiver, three magnetometers, and other sensors used for calibration purposes.

The drift error of MEMS gyroscopes is typically of 3◦/h to 20◦/h, but the ac-
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Figure 3.9: Normalized probability density of detecting a red landmark over s.

Figure 3.10: Advanced Navigation Spatial OEM inertial measurement unit.

celerometers measurements can limit this error by estimating the roll and pitch an-
gles of the body through gravity information. On the other hand, to infer the body
heading (or yaw), an additional measurement is required. Otherwise, the heading
angle will be obtained by integrating the gyroscopes measurements, which typically
results in drift issues. The common way to derive the heading direction, and hence
the yaw angle, is to use magnetometers to search the Earth’s North Magnetic Pole,
as is the case of the Spatial OEM IMU.

However, the typical measurement accuracy of the heading direction by magne-
tometers is of 0, 5◦ to 10◦, and it can be severely degraded by disturbances on the
nearby magnetic field. Static magnetic interferences can be compensated with a pre-
vious calibration, but dynamic disturbances are a much bigger issue. Unfortunately,
the CENPES utility plant has several ferromagnetic structures and equipments that
generates significant static and dynamic disturbances on the magnetic field, which
invalidate the yaw values measured by the IMU.
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Figure 3.11 compares the RPY values obtained from the model, given by the
mapping function in (3.4), with the IMU measurements for positions within a com-
plete rail loop. The device is installed on the robot base (Figure 3.6), so that the
IMU measurements are computed in the base frame after taking the readings pro-
vided in the IMU frame to the base frame by the static transformation in (3.7).
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Figure 3.11: Differences between the modeled RPY values and the IMU measure-
ments within a complete rail loop on CENPES rail.

It can be seen that there are roll variations between the model and the measure-
ments mainly when the robot is on a vertical motion, but they are not greater than
6◦. It is interesting to note that, as expected, even when the robot rolls on vertical
tracks of the rail, the roll value decreases exponentially to zero due to the robot
weight. The pitch measurement is actually fairly true to the model. The phase
differences observed in the pitch graph of Figure 3.11 are due to the odometry error,
as the IMU measurements are referenced to the odometric position in these graphs.

On the other hand, after the robot has travelled about only 11m, the IMU yaw
graph gets totally distorted from the truth due to magnetic interference. Note that
the sudden transitions in the yaw measurements are due to the discontinuity between
0◦ and 360◦, as the measurements are wrapped into the interval [0◦, 360◦).

Spatial OEM IMU offers the option of using other sources to infer the heading
direction. One possibility is to estimate it from the direction of the linear velocity
and acceleration. However, they have to be significant for a good estimate, that is,
more than 2m/s in the case of the velocity, which is higher than DORIS maximum
speed. Also, the linear velocity measurement is subject to GNSS availability. Other
option is to use an external source to derive heading, as north seeking gyroscopes
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and reference markers, but this is not the case for DORIS.
Spatial OEM IMU also receives GNSS signals from the American GPS and Rus-

sian GLONASS satellite navigation systems. It also supports the Chinese BEIDOU
and the European GALILEO, but these systems are not fully operational yet. GNSS
systems provide absolute position and linear velocities with a precision of 2.5m in
position and 0.05m/s in velocity (Advanced Navigation 2013). However, this accu-
racy is unacceptable for DORIS, and the GNSS receiver must have a clear signal
from at least four satellites to work, while the CENPES utility plant is not an out-
door environment, being full of obstructions to the GNSS signals. For these reasons,
GNSS measurements are not used for DORIS localization.

The IMU ends up providing only the pitch angle as a useful measurement for
DORIS localization. Therefore, a probability model p(φIMU

t | st,m) for the pitch
measurement has to be derived. Actually, the pitch and yaw angular velocities are
also used to detect in which type of curve the robot is, and that is useful in a proposed
extension to the particle filter algorithm, described in Section 4.2. However, they
will not be used directly as measurements in the perception step.

An appropriate way to model this probability is to represent it by a Gaussian
centered on the expected pitch value derived from the mapping function φbt =
fmap(st,m), where φbt is the base pitch angle. The standard deviation σφ of the
Gaussian models the inaccuracy of the sensor. As the pitch values are wrapped to
the interval [−π, π), it is better to evaluate the difference φIMU

t − φbt in a Gaussian
with zero mean and σφ standard deviation. This Gaussian returns the probability
of measuring a pitch value of φIMU

t given a position st, as φb is a function of st:

p(φIMU
t | st,m) ∼ N

(
φIMU
t − φb(st); 0, σφ2)

. (3.12)

The pseudocode for the pitch measurement probability is given below.

Algorithm 10 IMU Pitch Probability
Require: st, φIMU

t , m
Ensure: p(φIMU

t | st,m)
1: φbt = fmap(st,m)
2: ∆φt = φIMU

t − φbt
3: Wrap ∆φt to [−π, π)
4: p(φIMU

t | st,m) ∼ N
(
∆φt; 0, σφ2)

5: return p(φIMU
t | st,m)

3.4.3 Laser Scanner Measurements

DORIS is also provided with a SICK LMS111-10100 laser scanner. This model has
an aperture angle of 270◦ and provides scan points with range and bearing data with
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a resolution of 0, 25◦ at a rate of 25Hz. The maximum range of the scan is 20m and
the sensor has an accuracy of a few centimeters (Figure 3.12).
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10.2 Operating range diagrams
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Figure 3.12: (a) SICK LMS111-10100 laser scanner and (b) its scanning range.

The device is mounted on the rear part of the robot base in a way that the 90◦

blind region is always oriented to the external area of the rail loop. Thereby, the
laser scans the process plant environment enclosed by the rail, which is important
for DORIS mapping and monitoring tasks, but also for localization purposes. Three
features of the rail and the environment were found to be interesting for localization
and they are detectable in the laser scans: the floor, the rail geometry, and the rail
fixation system. A probabilistic model for each of these three features is described
in the following sections.

Floor Scan Model

The rail installed in CENPES has four different height levels. Thus, a measurement
of the distance from the laser scanner to the floor is a useful information to distin-
guish localization hypothesis about these heights. This distance is easily obtained
by processing the laser scan, and can be compared to a model if one knows the robot
position on the rail.

Considering the assumption A1 that the robot does not turn around the rail,
and that the laser is mounted on the robot base with its ~ylaser axis pointing to the
floor when the robot is on a horizontal section, it is easy to known which points in

62



the laser scan correspond to the floor. Therefore, one way to estimate the distance
zfloor from the laser scanner to the floor in the ~ylaser direction is to specify a Region
of Interest (RoI), select the points of the laser scan that are inside this region, and
calculate the mean value of the ranges of these points in the ~ylaser component.

The RoI for the floor points was specified as a rectangle that goes 6m under the
laser position and has a width of 0.2m. If the number of points situated inside this
region is insufficient, which may be the case when the robot is on a vertical position,
the algorithm truncates the range value to zfloor = 6m. Otherwise, the mean of
the ~ylaser components of the floor points is calculated and returned as the variable
zfloor. The truncation is made because ranges greater than the maximum rail height
(4.7m) are inaccurate, as they are only given when the robot is approaching a vertical
position, where the theoretical range tends to infinity.

Figure 3.13 shows a typical laser scan, the specified floor RoI, and the range
value returned by the algorithm. For a more intuitive visualization, the scan points
are disposed in the ybzb robot base plane, as if the robot is viewed from the front.
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Figure 3.13: Typical laser scan with the identified floor points in green.

The laser distance to the floor can be modeled by simple geometric relations
from the robot frontal gimbal position s, the base pitch angle φb (which is actually
obtained from s), and some robot parameters, as shown in Figure 3.14.

The value Z1 is obtained from the mapping function Z1 = fmap(s,m) and can
also be expressed by the relation in (3.13), where Zfloor

m is the modeled distance from
the laser to the floor in the ~ylaser axis:

Z1 = d

2 sin(φb) + Lz cos(φb) + Lx sin(φb) + Zfloor
m cos(φb) (3.13)
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Figure 3.14: Geometric model of the floor scan.

This equation can be rearranged to express Zfloor
m as a function of Z1 and φb:

Zfloor
m = Z1

cos(φb)
+
(
d

2 + Lx

)
tan(φb)− Lz (3.14)

Zfloor
m goes to infinity when φb = ±π/2, as expected. Thus, Zfloor

m is also trun-
cated to 6m.

In specific parts of the rail path, there are obstructions between the robot and
the floor, and the laser may detect points other than the floor points, corrupting the
floor distance estimation. However, if one knows the positions and distances of these
obstructions relative to the floor, they can be included in the model. In CENPES
environment, there is a single situation where DORIS passes above electric panels
and, thus, the algorithm returns the distance from the robot to the top of these
panels. However, as the position and dimensions of these panels are known, they
are included in the model.

The measurement model p(zfloort | st,m) can then be computed as a Gaussian
with mean equal to Zfloor

m (st) and standard deviation σfloor, which represents the
uncertainty in the laser measurements and the model:

p(zfloort | st,m) ∼ N
(
zfloort ;Zfloor

m (st), σfloor
2) (3.15)
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The procedures to compute the floor measurement probability are listed in Al-
gorithm 11.

Algorithm 11 Floor Scan
Require: st, laser scan, m
Ensure: p(zfloort | st,m)
1: Search for the laser scan points in the floor RoI
2: Compute the mean zfloort of the ~yb components of these points
3: if st is in the region above the panels then
4: Zfloor

m = Zpanel
m

5: else
6: [Z1, φbt]

T = fmap(st,m)
7: Zfloor

m = Z1
cos(φbt)

+
(
d
2 + Lx

)
tan(φbt)− Lz

8: end if
9: if Zfloor

m > Zmax then
10: Zfloor

m = Zmax
11: end if
12: p(zfloort | st,m) ∼ N

(
zfloort ;Zfloor

m , σfloor
2)

13: return p(zfloort | st,m)

Figure 3.15 compares the model with the laser readings of the distance to the
floor. The observed phase difference is due to the odometry error, as the laser
measurements are referenced to the odometric position in this graph.
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Figure 3.15: Comparison between the model and the laser readings of the floor.

One can see that the model is fairly true to the real laser measurements unless in
regions of non-modeled obstructions, as when the robot passes above 50mm diameter
pipelines or when DORIS is moving up on a 45◦ curve near electric panels. As these
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regions are very short relative to the entire rail, and considering that probabilistic
algorithms deals well with non-modeled features, these differences can be neglected.

However, it is important to note that this measurement model has the disad-
vantage of being vulnerable to non-modeled obstructions. People walking under the
robot, although they shouldn’t due to safety reasons, and equipments under the
rail path are some examples. The algorithm also may not be applicable for offshore
environments, where some parts of the floor are made of gratings, and the floor may
not be recognized in the laser scans. However, for onshore environments, as is the
CENPES utility plant, the floor measurement is useful and is considered here.

Rail Scan Model

An interesting feature that can also be recognized by the laser scanner is the rail
geometry. As the laser is mounted on the rear part of the robot, the positions of the
scan points that correspond to the tubular rail geometry are different for curved and
straight segments. As a consequence, each type of curve has a particular pattern
that can be recognizable in the scans, as is shown in Figure 3.16. In this figure,
the laser scans are plotted as if the robot was seen from the back for an intuitive
comparison with the CAD figures on the left.

As can be noted in Figure 3.16, the information of the rail points in the scan is
very useful for self-localization, as the robot can identify in which of the five types
of rail segment it is. Therefore, a probabilistic model p(zrailt | st,m) for the rail
scan is also derived to be integrated with the other measurements in the localization
algorithm.

The detection of the type of rail section the robot is on could, in principle, be
given by a simpler algorithm that uses the angular velocities measured by the IMU
and the linear velocity provided by the motion control. However, the laser approach
has the advantage of recognizing the section type through the rail geometry observed
by the robot, instead of the robot motion. This implies that, even when DORIS is
stationary on a curved part of the rail, the laser scan algorithm can reliably detect
which curve type it is, while the same does not occur for the other approach.

The position of the rail points relative to the laser frame can be modeled with
simple trigonometry, as in the floor scan model. To simplify the rail scan model,
one can summarize the positions of all the rail points detected by the laser by the
mean zrail of these points given in the robot base ybzb plane. In this way, one can
work with a single point, instead of a set of points, with reasonable accuracy. If
one knows the robot st position and the position sr of this single rail point, the
transformation between the laser frame and the rail frame corresponding to this
point can be obtained. Then, the expected position µrail of the rail point in the
laser scan (ybzb plane) can be calculated.
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Figure 3.16: Typical laser scans for the five different types of rail segments.
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Considering that the robot does not move in two curves at the same time (as-
sumption A2), each rail section type can be analyzed separately. For the straight
section, it is trivial to retrieve the position of the rail point in the scan: it is directly
above the laser frame with the distance of Lz − ørail/4 in the ~zb direction, where
ørail is the rail tube diameter.

For the curved sections, we have to estimate the parametric position of the
rail point identified by the laser, as it cannot be directly inferred from the geometric
model. Considering Figure 3.17, the arch length ∆s between the rear gimbal position
s2 and the rail point position sr can be approximated according to (3.16). This is
the best approximation one can get from the geometric model.

Figure 3.17: Geometric model of the rail detection for the vertical case.

a =
Lx − d

2
cos(αb − α2)

a ≈ ∆s = s2 − sr

∆s ≈
(Lx − d

2)
cos(αb − α2) , (3.16)

where α is φ for vertical curves and θ for horizontal curves. The figure of the
horizontal case was omitted here, but the same relation is obtained.

In this formulation, it is supposed that the robot roll angle is zero (assumption
A1). Noting that at least one of the two statements φb = φ2 and θb = θ2 is always
true, due to assumption A2, equation (3.16) can be rewritten as:
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∆s ≈
(Lx − d

2)
cos(φb − φ2) cos(θb − θ2) . (3.17)

One should note that the denominator will never be zero, as there is no situation
in the DORIS rail where φb − φ2 or θb − θ2 equals to ±π.

After calculating the rail point parametric position by sr = s2−∆s, its Cartesian
position is mapped through [XR, YR, ZR]T = fmap(sr,m), and the translation vector
between the laser frame and this position is obtained. If φb and θb are known, this
vector can be represented in the laser scan plane.

Identifying the points in the scan that correspond to the rail geometry is not
as easy as detecting the floor points, for example. However, it can be done by
searching points near the expected rail point µrail, given by the model described
above. Therefore, a RoI centered on the expected rail point µrail is defined, and the
scan points inside this RoI are considered as the rail points. For a computationally
simple search of these points, the RoI was defined as an hexagon centered at µrail

with side LRoI, defined after field tests analysis. The average position of the points
inside the RoI is then considered to be the measurement zrail.

If there are insufficient number of points inside the RoI, the algorithm considers
that zrail is on the RoI boundary. In this case, a gain γ, with 0 ≤ γ ≤ 1, is considered
to decrease the probability in (3.18). This gain represents that the algorithm has
failed to find rail points, and, so, the probability should be decreased.

In Figure 3.18, the RoIs of the laser scans acquired when the robot was in a
straight section (Figure 3.18(a)) and right turn (Figure 3.18(b)) are illustrated,
highlighting the rail point µrail given by the model, and the measurement zrail.
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Figure 3.18: Rail points inside RoIs for (a) a straight section and (b) a right turn.

Figure 3.19 shows the comparison of the model with field test measurements
corresponding to a complete loop in the CENPES rail. It can be seen that the model
is fairly true to the real measurements. The observed amplitude differences are due
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to the approximations considered in the model, and there are phase differences
between the graphs because these measurements are associated to the odometry.
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Figure 3.19: Comparison between the model and the real measurements of the rail
position as seen by the laser scanner.

The rail scan probability p(zrailt | st,m) is calculated through the evaluation of
zrailt in a multivariate Gaussian centered at µrailt with covariance Σrail, which mod-
els the incorrectness of the model and the measurement noise. This measurement
probability is expressed as:

p(zrailt | st,m) ∼ N (zrailt ;µrailt (st,m),Σrail) (3.18)

This Gaussian is two dimensional, as the points are evaluated in the scan plane,
and, thus, the mean µrailt is a vector with two components. The covariance matrix
Σrail2 is a two dimensional diagonal matrix with σrail as the diagonal elements, as
it is supposed that the uncertainty is the same in both dimensions. The rail scan
algorithm is given in Algorithm 12.

Pole Detection Model

Another feature that is recognizable on the laser scans is the rail fixation system.
This system is composed of tubular poles and angle bracket structures that support
the rail from the top, suspending it. There are two types of fixations on the CENPES
rail: angle brackets attached to poles fixed on the floor (Figs. 3.2 and 3.7), and just
brackets fixed to beams. After analysis of the laser scan pattern throughout the rail
loop, it was found that some of these fixations are very distinguishable in the scan,
and, as their positions are known, they are useful for localization.
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Algorithm 12 Rail Scan
Require: st, laser scan, m
Ensure: p(zrailt | st,m)
1: [φ2, θ2]T = fmap(st,m)
2: [Xb, Yb, Zb, 0, φb, θb]T = fmap(st,m)
3: [Xlaser, Ylaser, Zlaser]T = RT

b,laser[Xb, Yb, Zb]T

4: ∆s =
(
Lx − d

2

)
/ [cos(φbt − φ2t) cos(θbt − θ2t)]

5: [XR, YR, ZR]T = fmap(st − d−∆s,m)
6: Plaser,R = [XR, YR, ZR]T − [Xlaser, Ylaser, Zlaser]T
7: Represent Plaser,R in the robot base yz plane and compute µrail by decreasing

the magnitude of (Plaser,R)base by ørail/4
8: Search for scan points in the rail RoI centered at µrail and get the mean zrailt of

these points
9: if there are insufficient points in the RoI then
10: Consider zrailt at the RoI boundary
11: p(zrailt | st,m) ∼ γN (zrailt ;µrailt (st,m),Σrail)
12: else
13: p(zrailt | st,m) ∼ N (zrailt ;µrailt (st,m),Σrail)
14: end if
15: return p(zrailt | st,m)

The detectable parts of the fixation system are then included in the map (Fig-
ure 3.4), and a probabilistic model for their detection is formulated. It is pretty
simple and somewhat similar to the red landmark detection model. We are inter-
ested here in deriving the probability distribution p(zpolet | st,m), and, to do so, we
have to associate a measurement zpolet with information of the model provided by
the robot position st and the map m.

Within the recognizable fixation system parts, two types of features can be dis-
tinguishable, as there are poles positioned inside the rail loop region and others on
the external part. Therefore, they are on different sides in the rail scan and can be
seen as distinct features. A model for the pole type detection is created by associ-
ating each type of pole with its respective position spolei on the rail. Type one is
defined as the poles inside the loop, while type two are the external ones, and type
zero is the event of not detecting any pole in the scan.

To detect a pole type in the laser scan, a procedure similar to the floor scan
model is used. Regions of interest to search forpole points are defined according
to the poles geometry and positions relative to the laser scanner, which are given
in the CAD model. There are two RoIs for each pole type, one corresponding to
the pole tubular geometry and the other to the angle bracket geometry. If there
are enough scan points in both the two RoIs, then a pole type is detected. The
minimum number of scan points was defined after several analysis of the rail scans
acquired in field tests. With the defined parameters, the robot is able to detect all
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the considered poles of the map even when moving at its highest speed.
The external pole RoIs are obtained by simply mirroring the internal pole RoIs

about the robot right plane. Figure 3.20(b) shows the detection of a pole that is
inside the rail loop and Figure 3.20(a) a pole in the external area.
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(a) Detection of a pole outside the rail loop.
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Figure 3.20: Detection of poles on the scan: (a) outside, and (b) inside poles.

With the detected pole type, the robot position st, and the positions of all the
recognizable poles, the probability p(zpolet | st,m) is calculated through:

p(zpolet | st,m) ∼ N
(
st − spolei ; 0, σpole2)

, (3.19)

where spolei is the closest pole (of the detected type) position to st and σpole is the
standard deviation used to accommodate small errors in the model, as the poles
positions and the total lap length uncertainties. Naturally, the probability of not
detecting any pole at a position st is obtained by p(zno_polet | st,m) = 1− p(zin_pole

t |
st,m) − p(zout_polet | st,m). In this model, it is assumed that two poles are not
detected at the same time, which is true, as no more than one fixation is used at
the same place of the rail. The pole detection algorithm is found in Algorithm 13.

The probability densities of inside and outside pole detections according to the
model over all the rail positions within a loop are shown in Figure 3.21.

3.4.4 Other Measurement Possibilities

Besides of using a camera to detect artificial landmarks, IMU gyroscopes to provide
pitch angle data, and a laser scanner to detect natural landmarks, other measure-
ment possibilities were investigated.

DORIS has an RGB camera pointed to the inspected environment that could
be used in a visual odometry algorithm, where the direction of motion and the
displacement between two frames would be estimated. The camera images could
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Algorithm 13 Pole Detection
Require: st, laser scan, m
Ensure: p(zpolet | st,m)
1: Search for scan points in the in_RoIs and out_RoIs
2: if num. of points inside the in_RoIs > threshold then
3: pole = in_pole
4: else if num. of points inside the out_RoIs > threshold then
5: pole = out_pole
6: else
7: pole = no_pole
8: end if
9: Search for the nearest poles sin_pole

i and sout_polej on the rail map m
10: p(zin_pole

t | st,m) ∼ N
(
st − sin_pole

i ; 0, σpole2)
11: p(zout_polet | st,m) ∼ N

(
st − sout_polei ; 0, σpole2)

12: if pole = in_pole then
13: p(zpolet | st,m) = p(zin_pole

t | st,m)
14: else if pole = out_pole then
15: p(zpolet | st,m) = p(zout_polet | st,m)
16: else
17: p(zpolet | st,m) = 1− p(zin_pole

t | st,m)− p(zout_polet | st,m)
18: end if
19: return p(zpolet | st,m)
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Figure 3.21: Probability densities of pole detection over the position on the rail.

also be matched to a reference sequence of a complete loop on the rail, where each
frame would be associated to a rail position. However, these algorithms would
be computationally expensive and probably would work only when the robot is
travelling relatively slow.

Other types of artificial landmarks could be placed on the rail and detected by
the robot, such as QR codes (as mentioned in 3.4.1), RFID tags, and magnets with
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hall effect sensors. However, the option for visual landmarks was the simplest one in
terms of implementation and computational effort, besides of being detectable even
when the robot is moving fast.

DORIS IMU also provides acceleration, magnetic, and GPS data, besides of
orientation values. As in García (2012), the acceleration component on the along-
track direction ~x could estimate motion, while the other two components could be
useful to estimate rail curvatures. However, as DORIS motion is relatively slow
compared to other implementations, such as cars and trains, the signal to noise
ratio on the acceleration measurements would be considerable.

Magnetic data acquired by the IMU was analyzed and a consistent magnetic map
of the environment during a rail loop was found when DORIS was slowly moving.
This information could be useful in localization, as in Christensen, Fischer, Krof-
fke, Lemburg & Ahlers (2011). However, the robot motors unfortunately caused
considerable magnetic interference when DORIS was travelling faster, and eventual
operation of some equipments of the utility plant also caused this effect, disturbing
the magnetic map. While the motors magnetic interference could possibly be com-
pensated, the disturbances caused by the local equipments are unpredictable and
uncontrollable.

Finally, GNSS data was also acquired in field tests and analyzed for localization.
Unfortunately, the robot was not able to receive data from enough satellites to
provide absolute position information, possibly due to the cluttered aspect of the
utility plant environment. Moreover, the GNSS uncertainty of 2m probably would
be too much to give any improvement to the localization algorithm.

3.4.5 Probabilistic Perception Model

DORIS measurement probability p(zt | xt) is the probability of observing the mea-
surements zt = {zredt , φIMU

t , zfloort , zrailt , zpolet } given a rail position st and the map
m, as expressed below:

p(zt | st,m) = p(zredt , φIMU
t , zfloort , zrailt , zpolet | st,m) (3.20)

Assuming that each measurement is independent from another, they are condi-
tionally independent on st and m. Therefore, (3.20) can be expressed as:

p(zt | st,m) = p(zredt | st,m) . p(φIMU
t | st,m) . p(zfloort | st,m) .

p(zrailt | st,m) . p(zpolet | st,m) (3.21)

This probability is used in DORIS particle filter algorithm, which is described
in Section 4.1, to compute the particle importance weights. The individual proba-
bilities are calculated through equations (3.11), (3.12), (3.15), (3.18), and (3.19).
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Chapter 4

DORIS Localization

Considering the algorithms presented in Chapter 2, the particle filter (or Monte
Carlo Localization, when it is implemented for localization) is the most suitable
method for the DORIS localization problem. This is due to the following reasons:

• Nonlinearities of the motion model: DORIS moves suspended on a rail
by two gimbal mechanisms fixed to a base. So, its motion is conditioned to
a map of the rail, as the gimbals poses are equivalent to the rail track points
poses. Although the gimbal motion is linear on the rail parametrization space,
the robot base pose is not, specially when represented in the Cartesian space.

• Nonlinearities of the measurement model: DORIS measurements are
conditioned on the characteristics of the rail and the surrounding environment,
but most of them, as the laser scans, are given in the Cartesian space. The
transformation of the robot position in the rail parametrization space to the
Cartesian space is nonlinear. As mentioned in Section 2.5, nonparametric
filters can deal with nonlinearities in the model.

• Multimodal representation of beliefs: several sections of DORIS rail have
the same characteristics, such that a set of measurements may not distin-
guish multiple hypothesis of positions on the rail. Furthermore, DORIS uses
landmark detection as measurements, but the correspondences are unknown.
Therefore, a multimodal representation, that also deals with unknown corre-
spondences, as MCL, is more appropriate.

• Global localization and recovery from failures: in order to increase the
robot autonomy, it must be capable of finding itself in situations of complete
confusion about its current position on the rail. Also, the robot must recover
from failures, which could reset the robot position or keep it constant while
the robot is moving, characterizing a kidnapped robot problem. Particle filters
are capable of solving both problems.
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In the following sections, the particle filter implementation for DORIS localiza-
tion and a modification on the PF proposal distribution, similar to the one found in
Lenser & Veloso (2000), are presented. Basically, this modification resets particles
to positions that are consistent to the recent events observed by the robot. This ex-
tension of the algorithm was proved to substantially increase the filter performance,
solving the global localization and kidnapped robot problems, and providing fast
convergence of the estimation with only a small number of particles.

4.1 DORIS Particle Filter

The implementation of MCL for DORIS is pretty straightforward, given that the
particle filter steps were already presented in Section 2.5, and the motion and per-
ception models were established in Chapter 3. Considering that the map is known,
the DORIS localization problem is that of estimating the posterior belief of the sin-
gle state st derived in (4.1) on a similar manner to (2.19), with the addition of the
map information:

bel(s0:t) = p(s0:t | z1:t, u1:t,m)
Bayes= ηp(zt | s0:t, z1:t−1, u1:t,m)p(s0:t | z1:t−1, u1:t,m)

Markov= ηp(zt | st,m)p(s0:t | z1:t−1, u1:t,m)

= ηp(zt | st,m)p(st | s0:t−1, z1:t−1, u1:t,m)p(s0:t−1 | z1:t−1, u1:t,m)
Markov= ηp(zt | st,m)p(st | st−1, ut,m)p(s0:t−1 | z1:t−1, u1:t−1,m)

= η

measurement probabilities︷ ︸︸ ︷
p(zredt | st,m)p(φIMU

t | st,m)p(zfloort | st,m)p(zrailt | st,m)p(zpolet | st,m)

p(st | st−1, ut,m)︸ ︷︷ ︸
state transition probability

p(s0:t−1 | z1:t−1, u1:t−1,m)︸ ︷︷ ︸
bel(s0:t−1) → recursion

(4.1)

Note that, in this derivation, the state is given as a sequence over time to simplify
notation, but this does not lose generality. However, the particles were actually
implemented to represent only the most current state estimation, and not all the
particle history, as this would be computationally unfeasible.

As explained in Section 2.5.1, in a particle filter, the posterior belief is represented
by a set of particles X0:t = {x1

0:t, x
2
0:t, . . . , x

N
0:t}. As the particles cannot be sampled

directly from the posterior, they are drawn from a proposal distribution g(xn0:t) and
weighted proportionally to the fraction of the posterior function p(xn0:t) over the
proposal, which is represented as follows:

xn0:t ∼ g(s0:t | z1:t, u1:t,m) (4.2)
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wnt = p(s0:t | z1:t, u1:t,m)
g(s0:t | z1:t, u1:t,m) (4.3)

The proposal distribution should be calculated in a recursive way. Therefore, it
is factorized as:

g(s0:t | z1:t, u1:t,m) = g(st | s0:t−1, z1:t, u1:t,m) g(s0:t−1 | z1:t−1, u1:t−1,m)︸ ︷︷ ︸
recursion

. (4.4)

The proposal function can be defined in different ways, but it should be appro-
priate to approach the true posterior and spread particles near the true state. As is
usual in particle filter applications, the proposal g(st | s0:t−1, z1:t, u1:t,m) is chosen
to be the motion model of (4.5) in order to spread particles according to the state
transition density given by (3.10) regarding on a previous state. The samples can
be easily drawn from the proposal density using (3.9).

g(st | s0:t−1, z1:t, u1:t,m) :=
state transition probability (3.10)︷ ︸︸ ︷

p(st | st−1, ut,m) (4.5)

g(s0:t | z1:t, u1:t,m) = p(st | st−1, ut,m) g(s0:t−1 | z1:t−1, u1:t−1,m)︸ ︷︷ ︸
recursion

(4.6)

The particles importance factors incorporate the measurement data in the state
estimation. They are calculated by the relation in (4.3) using the proposal distribu-
tion of (4.6) and the posterior from (4.1):

wnt = ηp(zt | st,m)p(st | st−1, ut,m)
p(st | st−1, ut,m)

recursion = wn
t−1︷ ︸︸ ︷(

p(s0:t−1 | z1:t−1, u1:t−1,m)
g(s0:t−1 | z1:t−1, u1:t−1,m)

)
(4.7)

∝ p(zredt | st,m)p(φIMU
t | st,m)p(zfloort | st,m)p(zrailt | st,m)p(zpolet | st,m)wnt−1

The individual particle weights are calculated disregarding the normalization
constant η, at first. Subsequently, they are normalized by η = (∑N

n=1w
n
t )−1. Note

that the new importance factors wnt keep the history of the particle weights (until a
resampling step is done) by including wnt−1 in their calculations.

After sampling particles and computing weights to them, it is verified if resam-
pling must be done by calculating the effective sample size with equation (2.22).
When this value is below a fixed empirical threshold Nthres, a resampling procedure
is performed through the resampling wheel algorithm, described in Algorithm 4.
If resampling is performed, all particle weights are reset to 1/N . Otherwise, the
weights calculated in recursion are kept, according to equation (2.21).

To start the recursive PF algorithm, an estimation of the initial state s0 has to
be given. This requires the initialization of particles wn0 sampled from bel(s0). If one
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knows the exact position µ0 of the robot on the rail, allN particles must be initialized
as µ0. If the robot position is partially known around µ0 with some uncertainty σ0,
then the particles are sampled from the Gaussian N (s0;µ0, σ0

2). However, if the
initial condition is completely unknown, then the particles are randomly distributed
over all the rail track. DORIS particle filter is described in Algorithm 14.

Algorithm 14 DORIS Particle Filter
Require: Xt−1, Wt−1, zt, ut = {vt,∆T}, m
Ensure: Xt, Wt

1: if vt is too small then
2: Xt = Xt−1
3: Wt =Wt−1
4: return Xt, Wt

5: end if
6: Xt =Wt = ∅
7: for n = 1 to N do
8: sample xnt ∼ p(xt | xnt−1, ut) (3.9)
9: wnt = p(zt | xnt )wn−1

t (4.7)
10: Append xnt to Xt
11: Append wnt to Wt

12: end for
13: Normalize Wt

14: Calculate the effective sample size Neff by (2.22)
15: if Neff < Nthres then
16: Resample (Algorithm 4)
17: Wt = {1/N, 1/N, . . . , 1/N}
18: end if
19: return Xt, Wt

4.1.1 Simulation Results

In this section, simulation results of the particle filter algorithm implemented for
DORIS localization using experimental data acquired in field tests are presented.
The tests were done with known initial and final positions, usually being started on
the rail zero point and ended on the same position after one complete loop. Differ-
ent velocities were considered to test the algorithm robustness to different motion
conditions. All the results are compared to the odometric localization system, which
uses the assumption that the robot initial state is known.

The rail map was built following the procedure described in Section 3.1 using a
sample resolution of 1cm over the 130.85m of rail length installed in CENPES. The
parameters in Table 4.1 were established for all the simulations presented in this
work. These parameters were defined after several analysis of the data acquired in
the field tests.
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αodom redthres σred σφ σfloor σrail σpole Nthres

5% 75% 0.3m 5◦ 0.25m 0.1m 0.25m 75%N

Table 4.1: Table of parameters considered for the simulations.

Simulation 1: tracking
In this first simulation, the localization algorithm is tested for a tracking problem,

in which the robot initial position is s0 = 0m, which corresponds to [X, Y, Z]T =
[0, 0, 0]T , and it completes a rail loop moving on the positive direction (CCW) with
constant velocity v = 0.6m/s. The robot’s belief is initialized as a Gaussian centered
at s0 = 0 with standard deviation σ0 = 1m, and 50 particles are drawn from this
distribution, as shown in Figure 4.1(a).

After a single iteration of the algorithm, the particles that are not at the same
height of the robot, and the ones that are in curves, receive very low weights, so
they are replaced in the resampling step. In a further iteration, the robot senses a
red landmark and now the only surviving particles are on the regions near the two
red markers of the rail base (Figure 4.1(b)). The robot moves further, carrying on
two hypothesis about its belief, when it finally reaches a curved section. The height
and rail geometry observed by the robot when it is on the curve makes one of the
hypothesis (that is still on the base) unlikely, and the corresponding particles are
eliminated after resampling is performed (Figure 4.1(c)). At this stage, the robot
has successfully localized itself and it carries particles near the true state until the
end of the test (Figure 4.1(d)).

The average value of the particles positions compared to the rail length
(which is supposed to be the actual travelled distance) reveals an error of -18.25cm,
while the odometry estimate has an error of -59cm, due to wheel slipping and sliding.

Simulation 2: tracking with different motion patterns
While the odometry error observed after a complete loop in Simulation 1 is not

so significant, Simulation 2 analyzes a situation where this error is very large. After
several field tests, it was evidenced that the wheels slip when the robot is moving
upwards and slide when it is descending. The slipping issue is due to the difficulty
that the motor controllers have of moving the robot on the opposite direction of
gravity, while the sliding is due to the controllers trying to brake the robot when it
is moving on the same direction of gravity.

In the last example, the robot only moved forwards, which implies that the
amount of displacement overestimated by the wheels in upward motion is compen-
sated by the lack of displacement not accounted by the wheels in descending sections.
As the robot returns back to the same initial point that is started to move, it is ex-
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(a) Algorithm initialization with particles spread around the initial state.
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(b) After a few iterations, the particles are concentrated in two hyposthesis.

5

0

-5

-10

-15

-20

X (m)

-25

-30
0

2
4

6

Y (m)

8
10

12
14

16
18

0

1

2

Z
 (

m
)

Rail spline

Zero rail point

Red landmarks

Inside pole

Outside pole

Odometry pos.

Particles

Iteration 74

(c) The ambiguity is solved when the robot reaches the first curve.
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(d) Particles at the end of the test are near the true state.

Figure 4.1: Simulation 1: tracking problem in a complete loop test with 0.6m/s.
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pected that the accumulated odometry error should be null. However, it was noted
that the controllers are in more trouble to brake the robot than to lift it, hence
the -59cm negative error. Furthermore, there are errors related to horizontal curved
motion, and uncertainty in the rail length.

In this second simulation, the robot is forced to climb the first level transition of
the rail and return to the base 5 times before going forwards (on the CCW direction)
to complete a loop. In this way, the odometry error related to the vertical sections
are not compensated, but accumulated, as the direction of motion changes.
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Figure 4.2: Simulation 2: tracking with accumulated odometry error.

After 5 times travelling through the up and down initial trajectory, the odometry
error is of 1.28m, while the particles have successfully localized the robot with an
error of just 15cm. At the end of the test, the odometry error is increased to 1.51m,
while the estimation provided by the particle filter kept the error smaller than 25cm
(Figure 4.2).

As the algorithm has some randomness included, the simulations were repeated
several times. Moreover, various field tests data with different robot motion were
considered in the simulations, which consistently yielded similar results. These
simulations proved that the particle filter algorithm performs better than the simple
odometric system for tracking problems.

Simulation 3: global localization with 50 particles
In order to test the particle filter capabilities, the algorithm was applied to solve

a global localization problem, which is more complex than tracking. In this problem,
the robot is completely unaware of its initial position in the environment.

The simulation was purposely initialized when DORIS was on a straight section
of the rail at a height of 2.8m, as these characteristics are found in several regions
of the rail, and, thus, the robot has multiple valid hypothesis of where it is. Fifty
particles were randomly drawn throughout the rail path, as shown in Figure 4.3(a).

The cyan dot in Figure 4.3 represents the robot position estimated by odometry,
which in the case of this test, indicates the true position of the robot with an
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(a) Algorithm initialization with 50 particles randomly distributed.

5

0

-5

-10

-15

-20

X (m)

-25

-30
0

2
4

6

Y (m)

8
10

12
14

16
18

0

1

2

Z
 (

m
)

Rail spline

Zero rail point

Red landmarks

Inside pole

Outside pole

Odometry pos.

Particles

Iteration 1

(b) After a few iterations, only the particles at 2.8m survive.
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(c) The algorithm has failed to estimate the true state.

Figure 4.3: Simulation 3: global localization with 50 particles.

error near 0.5m, as the odometric error was not accumulated in this case. Note in
Figure 4.3(a) that no particles were assigned near the ground truth position.

After a single iteration of the algorithm, almost all the particles that do not
match the real measurements taken by the robot are eliminated (Figure 4.3(b)).
These particles are the ones that are at a height different than 2.8m, or in a curved
part of the rail, or those that are observing landmarks, while the robot is not.

In Figure 4.3(c), the robot detects a red landmark, and only the particles that
are near red markers survive. However, as there was no particle near the true state,
the two surviving hypothesis are wrong and the robot gets lost. Eventually, all
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particles will be concentrated around one of the two wrong hypothesis, and the
correct position of the robot will never be estimated.

This example shows the limitations of the particle filter presented in Sec-
tion 2.5.3. In this case, the algorithm was not able to globally localize the robot
because the posterior belief was coarsely estimated by a proposal density with a
relatively small number of random particles. Abstractedly thinking of the rail as a
histogram with 50 bins, each bin has 2.6m of rail length and each of the 50 particles
should cover the features that are present in a 2.6m length of the rail. Even if one
or a few particles happen to be initialized near the true state by random, they
still have to survive the resampling steps against all the other particles, besides of
having higher importance weights.

Simulation 4: global localization with 500 particles
One alternative to improve the algorithm in the global localization problem is to

increase the number of particles. In this simulation, N is increased to 500, while the
remaining parameters and test data are the same as in Simulation 3. The results
are shown in Figure 4.4.

In Figure 4.4(a), the 500 particles have their positions randomly assigned in the
initialization step, and now represent the rail states much better than the 50 particles
of the previous example. A single step is enough to eliminate all the particles in
positions with incompatible features than the straight rail at 2.8m height with no
landmarks near it (Figure 4.4(b)).

When the robot moves forward and observes a red landmark, the particles near
the red markers distributed on the rail receive high weights and are now concentrated
in 9 different hypothesis (Figure 4.4(c)). Finally, when the robot turns left, it senses
the turning by observing the rail geometry from the laser scanner, and only one of
the 9 hypothesis (the correct one) has consistent features with the real measurements
(Figure 4.4(d)). At this stage, all particles are concentrated near the true state and
the robot has successfully self-localized after being lost in the beginning of the test.
Running the simulation until the end of the test results in an estimation error of
less than 25cm for the particle filter and near 60cm for the odometry system.

Despite of being able to solve the global localization problem for this specific
simulation, the algorithm has to be repeatedly tested to prove its robustness and
decrease the effect of randomness, inherent to a probabilistic filter, on the results.
The simulation was repeated 10 times, but only 2 times the robot was successfully
localized. If the number of particles used in the algorithm is increased, the algorithm
would naturally perform better, as expected, as when the number of particles tends
to infinity, the approximation of the posterior by the weighted samples drawn from
a proposal distribution is exact.
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(a) Algorithm initialization with 500 particles randomly distributed.
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(b) After one iteration, only the particles at 2.8m survive.
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(c) After a red landmark detection, the particles are concentrated on 9 distinct regions.
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(d) The true position is successfully estimated after the robot turns left.

Figure 4.4: Simulation 4: global localization with 500 particles.

84



Even though increasing the number of particles further more is an immediate
solution, the also increasing computational costs may turn the algorithm infeasible
to operate in real time. As an example, a simulation with 5000 particles in MATLAB
environment took 2.5s in each iteration of the filter. Furthermore, the PF algorithm
does not solve the kidnapped robot problem, as when all particles are concentrated
near a single region, they will not jump to the true position, as already show above.

In order to deal with these problems, an extension of the particle filter is proposed
in Section 4.2. The algorithm modifies the proposal distribution when the robot finds
itself lost, resetting particles to positions that are consistent with the recent features
observed by the robot.

4.2 History of Events Resetting (HER)

According to the simulation results presented in Section 4.1.1, the particle filter
implementation performs well in tracking problems, but fails to solve the global
localization and the kidnapped robot problems when the number of particles is small.
In this condition, due to the particle filter limitations explained in Section 2.5.3, the
algorithm can get ill-conditioned, which means that the robot might get completely
lost forever.

Fortunately, as DORIS moves through a constrained path, it observes some char-
acteristics of the environment in a predictable sequence. The history of events ob-
served by the robot is, therefore, a valuable information that can be used to reset
the robot position. When the robot finds itself lost, it can compare this sequence
of events to a standard known sequence and reset particles in positions that comply
with the observed history of events.

The selected events to be tracked by DORIS are the red landmark detection,
the pole detection, and the curve types, as each of them is fairly recognizable and
is a distinct feature of the environment. Red landmarks and poles can be detected
by the algorithms described in Section 3.4.1 and Section 3.4.3, respectively, where
a positive or negative detection is returned in the red landmark algorithm, and a
detected pole type is returned in the pole detection algorithm.

Curve types can be recognized by analyzing turn rates measured by the IMU
gyroscopes and the velocity provided by the motors drivers. A simple algorithm
compares the pitch and yaw angular velocities to the sign of the linear velocity to
identify one of the 5 types of tracks on the rail, which are left, right, up and down
turns, and the straight track.

The robot keeps track of the detected events while it is moving through the rail
on a single direction of motion. When it changes the motion direction and further
detects one of these features, the event history is reset. This is because the standard
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events history is represented as the sequence of rail features on the counterclockwise
direction. When the robot keeps a history of detected features, changes its motion
direction, and continues to add events in this same sequence, it cannot be compared
anymore to the standard sequence.

This approach is reasonable, as DORIS is intended to perform inspection rounds
in the rail on a single direction of motion. Also, the robot may keep track of only
the last 3 or 4 events, which are enough to make a sequence of events unique in the
entire rail. Another assumption of the proposed algorithm is that the robot may
detect only one event at a time. As this method is based on a sequence of detection
to be compared to a standard sequence, if the robot detects two or more events at
the same time, it will not be able to sort the correct order of detection, and the
algorithm might fail.

The method proposed here resembles the Sensor Resetting Localization technique
presented in Lenser & Veloso (2000), with the important difference that not only
the most recent measurement, but the history of measurements is accounted to reset
particles. The History of Events Resetting (HER) algorithm is depicted in Algorithm
15.

Algorithm 15 History of Events Resetting (HER)
Require: Xt, W t, Et, zt
Ensure: Xt, Wt

1: Nnew =
(
1−mean(W t)/wthres

)
N

2: if Nnew > 0 then
3: Search for the K positions sk that comply with Et
4: for k = 1 to K do
5: for i = 1 to Nnew/K do
6: xit ∼ p(zt | sk,m)
7: wit = p(zt | sk,m)
8: Replace sample with the lowest weight in Xt by xit
9: Replace the corresponding weight in W t by wit

10: end for
11: end for
12: end if
13: Wt =W t normalized
14: return Xt, Wt

In line 1, the value (1 −mean(W t)/wthres) is calculated and can be understood
as the probability of the robot being lost. W t in this case is the set of weights
computed in the current iteration, not the weights Wt calculated recursively.

As in Algorithm 5, a number of new particlesNnew is computed as the percentage
(1−mean(W t)/wthres) of the total particles N . If the mean of the weights exceeds a
threshold, then the robot is reasonably aware of its location and no particles should
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be reset. Otherwise, Nnew particles will be replaced in positions sk that comply with
the recent history of events Et.

The new particles are sampled from the distribution p(zt | sk,m) in line 6 and
the corresponding weights are computed according to p(zt | sk,m) as well in line 7.
The new samples replace particles in the set Xt that have the smallest weights. The
importance factors are also replaced accordingly. Finally, after all the iterations, the
new set of weights is normalized in line 13.

Mathematically speaking, the algorithm modifies the proposal distribution of
the particle filter for a fraction of the particle set, as in the methods presented in
Section 2.5.3. The modified proposal is given by the probability density of measuring
a feature in a certain position given that this position should be compatible with
the history of events observed by the robot. As the positions of the natural and
artificial landmarks on the rail map are known, it is easy to sample particles from
this distribution.

There exists the possibility of an incorrect detection of an event or the absence of
detection, as for example red landmarks that are receiving too much light, turning
the camera image bright enough to prevent its detection. Also, if two events are
detected at the same time, the algorithm might get troubled to sort the correct order
of events in the standard sequence. In these cases, the sequence of events may not
be found in the standard array, and the algorithm considers only the most recent
event in the history to perform particle resetting. In a worse situation, the incorrect
sequence of detected events may match a sequence in the standard array that is not
compatible with the actual robot position. In these situations, the algorithm may
reset particles in the wrong place. However, the robot will eventually find itself lost
and reset particles on the correct positions after properly detecting the events in the
correct sequence.

The HER algorithm is triggered after DORIS PF iteration (Algorithm 14) is
computed and when a red landmark or a pole is detected, and the event is added
to Et. The two steps combined sums up the complete particle filter implementation
for DORIS localization, and simulation results are presented in section (4.2.1).

4.2.1 Simulation Results

In this section, the global localization problem is reassessed, but now with the HER
algorithm as an extension to DORIS particle filter. All the parameters used in the
previous simulations (Table 4.1) are kept the same and the parameter wthres is set
as 10% of the maximum measurement probability. This implies that if the robot is
less than 10% sure of its state, then HER is performed.

The number of events to be stored in the history array is set as 3. Three events
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in sequence were found to be unique, or, at most, have only two hypothesis in the
standard sequence of events. In theory, a greater value would turn the sequences
unique in the standard history, and particles would be reset without ambiguity.
However, a small number of traced events diminishes the effects of an occasional
incorrect detection of an event, as explained in Section 4.2.

Simulations 5 and 6: HER and global localization with 50 particles
Simulation 5 considers 50 particles and the system is initialized with the robot

having travelled 13.5m from the rail zero point. This is a similar initial position as
the ones considered in Simulations 3 and 4 (straight section, 2.8m, no landmarks).
The robot moves on the CCW direction with velocity 0.6m/s and the simulation
results are shown in Figure 4.5.

The 50 particles are initialized at random, and no particle is in the vicinity of the
actual position (Figure 4.5(a)). After iterations, all the particles are concentrated
near an incorrect position (Figure 4.5(b)), and the robot gets lost. Note that, at
this stage, a red landmark detection is already accounted in the history of events.
In Figure 4.5(c), after the robot moved forwards and stored in the history array the
detection of a red landmark followed by a right turn and an outside pole, the HER
algorithm is triggered and resets particles on only the two regions of the rail that are
consistent with this given sequence. The ambiguity is finally solved when DORIS
turns right again, as in the wrong hypothesis the robot should turn left.

In Simulation 6, the algorithm was tested again using a different initial condition
to prove its robustness and efficiency. The simulation results are shown in Figure 4.6.
After the 50 particles were randomly initialized in the rail (Figure 4.6(a)) and were
concentrated near a wrong hypothesis (Figure 4.6(b)), the robot was able to recover
its position estimation correctly when the particles were reset (Figure 4.6(c)) by
HER. In this case, DORIS sensed a red landmark, an up turn, a down turn, and an
inside pole since the start of the simulation. Only the three most recent events are
considered, and, as the detected sequence is unique in the standard events history,
all particles were reset near the true state after DORIS detected an inside pole.

These simulations show that the robot position was correctly estimated in a few
steps of the algorithm in a global localization problem. After DORIS moved and
sensed three rail features, the particles converged to a region near the true state,
even if they were randomly distributed over the rail environment in the initialization
step. After running the simulations until DORIS reached the final position in the
test, the estimation error was verified to be less than 25cm.

Figures 4.5 and 4.6 also show that the algorithm was able to solve the kidnapped
robot problem. In Figs. 4.6(b) and 4.5(b), all particles converged to one single
incorrect hypothesis, making the robot firmly believe it knows where it is while it
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(a) Algorithm initialization with 50 particles randomly distributed.
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(b) After some iterations, only an incorrect hypothesis survives.
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(c) After a pole detection, HER is called and particles are reset as two different hypothesis.
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(d) The ambiguity is solved after the robot turns right again.

Figure 4.5: Simulation 5: global localization using HER with 50 particles.
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(a) Algorithm initialization with 50 particles randomly distributed.
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(b) After some iterations, only an incorrect hypothesis survives.
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(c) After a pole detection, HER resets particles near the true position.

Figure 4.6: Simulation 6: global localization using HER with 50 particles.

does not. However, by analyzing the particle weights relative to an expected value,
the robot noticed that it was lost and reset the particles to consistent assumptions
about the true position with HER after it detected a sequence of events.

Several simulations were made to confirm the robustness of the algorithm, which
was able to correctly localize the robot in the majority of the simulations, considering
different initial conditions and tests data. However, the algorithm failed in a few
simulations due to a violation of an assumption of the HER algorithm cited in
Section 4.2. Unfortunately, the red landmarks were positioned on the rail without
concerns about the chances of the robot detecting two events at the same time.
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Unluckily, in some cases the red markers were placed with a distance to a pole
exactly equal to the distance between the camera and the laser scanner on the
robot, leading to a dual detection.

At first, this issue could probably be overcome by treating dual detection of
events as a different event, but this also could lead to failures on the detection of
the events. A possible solution would be to disconsider one of the features being
tracked as events, as the red landmarks. Simulations done without these features
in the history of events were successful in all cases, but with a slower convergence,
as the robot had to move further to detect valid events. A more sound and simple
solution would be to reposition the red markers to avoid dual detection with the
poles, but new data would need to be acquired in the field, and this was left as a
future work.

Other limitations of the algorithm are the ones already mentioned in Section 4.2,
which are the chances of a misdetection (false positive or false negative) of an event,
corrupting the correct event history and maybe the localization estimation. How-
ever, the algorithm would reliably recover the true state when a consistent detection
of events is provided and the robot realizes it is lost. Once the particles populate
the region near the actual position of the robot, their individual weights are con-
siderably high, and the robot is correctly safe about its position. In this case, the
standard particle filter will be able to track the robot position, the HER algorithm
should not be called anymore, and the particles will remain near the true state.
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Chapter 5

Conclusions

This dissertation has presented a localization algorithm proposed for DORIS, an au-
tonomous rail-guided robot developed to operate in offshore platforms. Autonomous
navigation systems in mobile robots must be resilient to failures and deal with un-
certainty, so that, even though the characteristic rail motion of DORIS alleviates
navigation problems, some localization issues still have to be addressed.

Probabilistic techniques are great in dealing with uncertainty and have received
much interest in robotics recently. Therefore, its main algorithms applied to mobile
robot localization were thoroughly investigated in the literature review of this text
(Chapter 2). The characteristics of the algorithms, along with a detailed discussion
about their advantages and limitations, were analyzed to conclude that a particle
filter is the most appropriate method to solve the DORIS localization problem.

In Chapter 3, the robot environment and probabilistic models were presented. A
rail was installed in a utility plant in CENPES to test the robot and demonstrate its
functionalities. The environment characteristics, such as the rail Cartesian position,
and its natural and artificial landmarks positions, were considered as known and
included in a map. As the rail track is a unidimensional element, all these features
can be associated to a single parameter that represents the travelled distance from
the zero point position of the rail. Therefore, it suffices to estimate this single
parameter to provide the robot localization.

DORIS motion model is trivially defined as the displacement provided by the
velocity in a time interval with a given odometric uncertainty, and different sensors
were considered in the perception model. While an IMU provides the robot pitch
angle, a laser scanner and a camera detects natural and artificial landmarks.

In the basic implementation of the particle filter, the proposal distribution is
given by the motion model and is used to sample a set of particles, which are
weighted according to the perception model to approach the posterior belief. The
resampling step is performed whenever the effective number of particles is too low.

The simulation results shown in Chapter 4 using data acquired in field tests
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with DORIS confirm that the particle filter performs better than a simple odometry
system in tracking problems, that is, when the robot initial condition is partially
known. However, the particle filter was not able to correctly estimate the robot
position when its initial state was completely unknown (global localization problem).

A novel extension to the basic particle filter was then proposed. The History
of Events Resetting algorithm modifies the proposal distribution for a number of
particles calculated proportionally to how lost the robot is. A new set of particles
is built after resetting some of them to positions that are consistent with the recent
feature observations made by the robot.

The results showed that the extended particle filter with HER algorithm was
able to solve the global localization and even the kidnapped robot problems using a
very small number of particles compared to what is used in other particle filter im-
plementations. In the global localization problem, while only 50 particles converged
to the true state after the robot detected up to 3 rail features, a number 100 or
even 1000 times greater would be necessary to reliably localize the robot using the
standard particle filter algorithm. Moreover, the HER algorithm was able to solve
the kidnapped robot problem, while the standard PF did not.

This demonstrates that the algorithm proposed in this work provides a more
reliable and efficient solution to a rail-guided robot, and specifically for DORIS.
Furthermore, it is computationally more efficient and can be easily implemented in
a real time application.

The limitations of the proposed method are related to the assumption of a com-
pletely known map, and to the rail features recognition models. The red landmarks
can have false negative detections if the image is very bright due to light conditions,
and also, the markers can wear over time due to weather conditions. In addition, the
poles may have false negative detections if the robot is moving too fast, for example.
Furthermore, the distance from the robot to the floor measured by the laser scanner
can be corrupted by equipments positioned under the rail or people following the
robot, although neither of them should occur due to safety reasons. Finally, the
HER algorithm considers the detection of only one event at a time, being unable to
deal with dual event detection.

5.1 Future Work

In the following, suggestions of future work are presented in order to improve the
developed algorithm and extend it to more general implementations:

• Include other measurements in the system, as the heading angle. De-
spite of being a challenge to use IMU heading data in such an adverse environ-
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ment with significant magnetic interference, the heading information would be
great to distinguish localization hypothesis that are not discriminate in the
present implementation.

• Reposition the red landmarks on the rail and acquire new field tests data.
The correct positioning of the red markers would avoid the dual event detection
problem, described in Section 4.2.1.

• Change the type of artificial landmarks to a more reliable one. Vision
landmarks can wear over time, are subject to light conditions, and false neg-
ative detections may occur. Possibly, another type of landmark positioned on
the rail, as a magnet (and a hall sensor in the robot), would be detected with
more robustness.

• Include more rail fixations in the map. In this work, only the poles fixed
to the floor were considered, as they are easily recognizable. With a more
elaborated detection model, other types of rail fixations could be included in
the map as landmarks.

• Implement and validate the algorithm in real time, that is, integrate
the code in DORIS autonomous navigation system and test it in the field. The
filter parameters should also be tuned. Usually, switching from the comfortable
simulation environment to a real time implementation requires extensive work.

• Relax the assumptions considered in the robot models. To derive the
map, motion, and perception models in Chapter 3, assumptions A1 (zero roll)
and A2 (only one curve at a time) were considered. These hypothesis have to
be relaxed or disregarded to derive universal models for any type of rail.

• Extend the rail map to have more than one track. The use of DORIS
in larger environments might need a rail network with more than one open or
closed circuit. In this case, the algorithm should consider modifications such
as a local and global map, switch modelling, and inclusion of a track ID as a
state variable, as in García (2012).

• Simultaneous localization and mapping. The SLAM problem was not
considered in this work, as the map was supposed to be known. However, this
is not entirely true, as there may have been measurement errors of the rail seg-
ments, and the rail optimization to close the loop, described in Section 3.1.1,
considers approximations. Moreover, for longer rails, taking manual measure-
ments of each segment may be a costly task, and the rail path can always be
changed if needed, requiring new measurements. The automatic update of the
map in SLAM could deal with all these issues.
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