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Todo dia mais eventos de esportes são televisionados por todo o mundo, porém
cada emissora não possui tempo hábil para a exibição de todo esse conteúdo. Con-
tudo, as emissoras não podem perder essas informações, tudo de importante deve
ser armazenado para futuras consultas e também deve ser resumido para utilizações
compactas. A mão de obra necessária para seleção manual seria muito custosa e
demorada. Para resolver este dilema, é necessária uma ferramenta confiável capaz
de executar a seleção de forma eficiente. Uma ferramenta dessas foi desenvolvida
em um trabalho anterior, tendo obtido bons resultados. Entretanto, a sua com-
plexidade computacional e eficiência ainda deixavam a desejar. O objetivo deste
trabalho é aprimorar essa ferramenta de modo que ela se torne menos complexa
e mais eficiente sem comprometer seu desempenho. Isso foi obtido empregando-se
inicialmente técnicas de seleção de características com o intuito de reduzir a massa
de dados necessária inicial para o processo. Em seguida, através de experimentos
com novos classificadores, se buscou aumentar o seu desempenho em termo de taxas
de erro de classificação. Foi obtido uma redução de pelo menos 4 vezes do número
de entradas usadas pelos classificadores, sem nenhuma perda de desempenho. No
caso de se tolerar uma pequena redução de desempenho, alcançou-se uma redução
de até 40 vezes no número de entradas originais.
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Each day more sports events are broadcasted around the world, but each tele-
vision broadcaster does not have enough time for the exhibition of all the content.
However, TV broadcasters can not miss such information, every important content
must be stored for further queries, and also they must be summarized for compact
exhibition. The manpower necessary for manual selection would be too expensive,
besides slow. To solve this dilemma, a reliable tool capable of executing this selec-
tion in an efficient way is necessary. One such tool has been developed in a previous
work, and good results have been obtained. However, its computational complexity
and efficiency are still not ideal. The objective of this work was to improve this tool
in order to it become less complex and more efficient without compromising its per-
formance. This was achieved initially by employing techniques of feature selection
with the aim of reducing the amount of initial data required for the process. Then,
by making experiments with different classifiers, we tried to increase the performance
in terms of classification error rates. We have obtained a four-fold reduction in the
number of inputs used by the classifiers with no loss of performance. In case a small
reduction of performance is allowed, we have reached a reduction in the number of
inputs of up to 40 times.
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Chapter 1

Introduction

Most TV broadcasters have their own video logging system. In general, it consists of
a collecting every important event which occured in videos owned by the broadcast-
ers is discriminated by defining its content and time (beginning and end) stamps.
Such a system is a very powerful tool for which reporters and screenwriters can make
queries, in case they need to find any specific video content, such as a desired event
or person.

There are many ways to insert a video description into the logging system. The
most common method is through a direct human interface, where someone sits in
front of the video screen and watches the target video. Every time that person finds
out an important moment, he/she inserts into the computer the label (some sort
of brief description), the mark in and the mark out of the event in that particular
stream. In this process, logging a given video excerpt takes at least the duration of
the video, requires at least one professional, and carries a great deal of subjectivity.

During large sport events, for instance, such as the FIFA World Cup and Olympic
Games, where many events of interest occur simultaneously, logging costs may in-
crease substantially by employing more people to expedite the process. An alterna-
tive is to record all videos and have the logging process performed by fewer people
in non-real time. For journalistic purposes, however, this cost-efficient solution may
not be viable, as the broadcaster cannot waste any time to transmit news related
to that event.

The logging process is still performed manually requiring full attention from the
operator to avoid missing an important event. There are many studies, however,
which attempt to perform the logging task automatically, with the assistance of a
computer. In that case the main challenge lies in making the computers understand
and evaluate the event importance similarly to a human being. Some recent studies
have succeeded in finding important events in particular types of TV broadcasts,
such as specific sport events, but still with a considerable error: either missing
important events (false negative situation) or classifying a dull event as an important
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one (false positive situation). The focus of this work is the automatic summarization
of football transmissions, using both audio and video information, in an attempt to
minimize both error situations.

1.1 Automatic Summarization

For humans, the task of identifying highlights in a football game is simple. If you
are watching the game, you can easily tell which event you would call important or
not. However, if you try to describe the fact that made that event important, you
would probably say something like: the player shot at the goal. You will identify
the player, the ball and the interaction between both to detect the event. The same
happens to other events like goals, fouls and etc. The problem is that computers do
not identify such entities easily, like we do. Thus, the simple task of detecting the
game highlights requires performing several pre-detection tasks, which often require
additional procedures, and so on, until we reach the task level that computers can
do easily, like addition and multiplication operations.

There are many ways to teach a computer how to detect highlights, but every
method has its advantages and also disadvantages. The method described above is
the object tracking method. which is the easiest way to be understood. However,
when we try to understand how to make computers working the same way, that
method becomes one of the most complex methods to reach the desired target. In
practice, when using computers to perform a human task, it is often easier to have
the programmer to think like a computer (and take advantage from the computer’s
main capabilities) than to have the computer to think like a human being.

Figure 1.1 represents most of the approaches used for automatic highlight de-
tection in some sport events [2]. Following that framework, most methods can be
classified according to three different aspects, as discussed below.

The dependence on the video models can be divided into genre-specific and
genre-independent. To be genre-specific means that the work is fully oriented to a
specific sport, i.e., the algorithm can only be applied to football if it was designed
for football. This approach normally leads to better results but has an inherent loss
of generality. The genre-independent is a class of approaches which tries to keep the
algorithm generic for most sport events.

With respect to the data dependence, there are also two separate groups: the
external-source-based and the internal-source-based algorithms. In the external-
source-based group, the work uses information from outside the original broadcasted
signal, such as closed caption and web-casting text. The internal-source model
extracts all required information from the standard transmitted signal. In this case,
the three information sources, that is, video, audio, and textual data can be used

2



Figure 1.1: A taxonomy of different approaches proposed for sport video semantic
analysis [2].
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separately or in a multi-modal approach.
The third and final aspect is the algorithm pattern. The object-tracking tech-

nique, as mentioned before, is the most complex method, as it tries to identify and
track every significant object in the video. The heuristic or rule-based approaches
use rules which are created based on the observation of some event patterns in the
video. For example, if a logo is displayed on the screen, an important event must
have happened in the game. The last method is the machine-learning approach
where a classifier is selected and trained using single- or multi-modality features. In
such method, the classifier training creates some intrinsic model of the highlights,
which is then used to identify the events of interest in an automatic manner.

The work presented in this dissertation is genre specific, as we focus on football
summarization. By analyzing the data dependence, the proposed work may be
classified as multi-modal internal-source based, as it is based on features extracted
from the available audio and video signals. Also we follow the machine-learning
approach, and investigate the use of different classifiers such as random forest and
SVM.

This work achieved large reduction of the features used in the input of the clas-
sifier without any loss of precision. The initial inputs in the classifier were 976 input
features, as obtained in [1]. After the feature selection the number decreased to 488,
and later with the spacing between frames the number decreased to 248 without any
loss of precision and a big increase of performance. Later, experimenting new clas-
sifiers, the Random Forest was discovered as a strong classifier this job. It achieved
similar results to the ones obtained by [1] using AdaBoost.

1.2 Organization of the Dissertation

The organization of this master thesis as follows:

• The bibliographic review (Chapter 2) about the newest papers in the area,
and also the new method, techniques and directions of the works of the area;

• The previous work(Chapter 3) which this work is taking as a start. Describing
the techniques used by [1] and the results obtained by it.

• The feature selection (Chapter 4) applied over the [1]. Using correlation tech-
niques to excluded unnecessary information used in the classifier. Improving
the performance of the whole process.

• The classifiers (Chapter 5) search for some of the most relevant classifiers in
the state of art. The background theory of each one of the selected classifiers

4



and also the main characteristics for the scenario which they are going to be
applied.

• The experiments (Chapter 6) is where the empirical study is done. This Chap-
ter is very important to conclude the affirmations claimed before in the work.
And also to test new possible ways to direct the studies of this and later works.

• The conclusion (Chapter 7) is the Chapter where the whole conclusion of the
project is combined, so the final conclusion can be done.

5



Chapter 2

Bibliographic Review

This Chapter discusses different interpretations of the summarization problem by
several authors and compare their approaches and techniques for solving that prob-
lem. The main differences described in this review are:

• The type of events of the game to be selected by the algorithm;

• Different types of algorithms;

• The low-level, mid-level, and high-level features;

• Feature processing;

• Segmentation of the game;

• Most common features;

• Highlighting and semantic detection;

• Most common classifiers.

The associated literature has many different approaches for the summarization
of sport videos and also different understandings. Some works like [4] summarize the
video by looking for goals within the football game, whereas works such as [5] and [6]
go further and classify events like yellow and red cards, corner kicks, free-kicks and
a lot of other events.

The type of event summarized depends on the focus of the summarization. Some
applications, such as the complete logging process, need the full semantic meaning
of the event, while others only require the highlight event itself with no semantic
meaning associated.

Also, summarization approaches can vary from using only the camera shot type
for classifying the event, such as in [7], to doing a complete object tracking as
proposed in [8]. The camera-shot classification although simple is very limited to

6



the producer method of operation, whereas the object-tracking method elevates the
complexity of the classification as it attempts to catch the full meaning of the event
like humans do.

Besides those techniques, other works such as [9] and [10] use a mid-level layer of
information processing. The mid-level layer is an intermediate processing step, which
attempts to achieve a good compromise between system complexity and generality.
In that scheme, the process transforms the raw signal features into new variables
that carry more semantics to the overall final context, splitting the classification job
in, at least, two steps. For example, [6] uses line detection to detect straight lines in
the field as low-level features. The identified lines are then processed to determine if
the scene contains or not the penalty box (which, can be identified by some parallel
lines close to each other). In this case, the penalty-box detection becomes the mid-
level feature, which is nearer to a semantic event in a football game, as it allows
one to deduce if the attacking team is close to the opponent’s goal. The mid-level
technique is also an important tool for reducing the number of system inputs, what
sometimes hinders the use of some classifier families such as support vector machines
(SVM).

Table 2.1 shows some features used in some of the main articles in the area. The
most common low-level feature used in the summarization literature is the frame
dominant color. There are many ways to extract this feature, like getting it from the
hue histogram along the frame, as used in [2], [11], [12], or [13], which also cuts off
the superior part of the frame before getting the dominant color. The motion vector
is the second most widely used low-level feature [14], [15]. In [16], the motion vector
is extracted directly from the coded stream as given by the H.264/MPEG-4 codecs
or by calculating the discrete cosine transform (DCT) between consecutive frames.
Both of these low-level features are used to get the camera-shot type, which is the
most common used by mid-level feature. This feature tries to describe the camera
view type of a given frame, like global panoramic, close up, and zoom shots. This
mid-level classification employs the dominant-color percentage, the object sizes and
the average pixel motion in a given frame to decide the camera-view type. A Table
with the main mid-level features used in some articles are described in Table 2.2.

The play-break technique is also widely used in video segmentation works, such
as [6], [13], and [14]. This technique, as studied in [18], uses the fact that every
important event is followed by a break, which should be considered by the viewer to
provide a complete understanding of the event itself. For example, the yellow and
red cards in football games only happen during a break, after some foul play. This
technique uses the dominant color as main low-level feature but can also use replay,
slow-motion, and logo detection to improve the video segmentation, at the cost
of increasing dependency on the video production framework. Video segmentation

7



Table 2.1: Summary of video low-level features employed in the summarization
literature.

[5] [6] [7] [9] [13] [11] [12] [2] [17] Proposed
Dominant color X X X X X X X X
Motion Vector X X X X X X
Player Size Detection X
Count White Pixels X
Line Detection X X X X X
Face Color X X X X
Color Histogram X X
Region Entropy X
Jersey Color X
Non Zero DCT for Crowd X
Shot Cut X

Table 2.2: Summary of video mid-level features employed in the summarization
literature.

[5] [6] [7] [9] [13] [11] [12] [2] [17] Proposed
Camera Shot type X X X X X X X X X
Penalty Box X
Break Duration X
Replay Duration X
Number of Close-Up X
Shots in Break X
Nb of Players in Penalty Box X
Players Detection X
Referee Detection X X
Goal-Keeper X
Graphical Captions X X
Slow Motion Detection X X
Logo Detection X X X
Shot Boundary Detection X X

helps separate the candidates for highlight events from the normal play, greatly
reducing the number of times a classifier is activated.

Most of the articles in this area do the main work using only video features,
completely disregarding the audio or other auxiliary signals. In fact, the related
literature indicates that audio features do not give a semantic meaning to the event
unless keywords are detected, which is a very computationally intensive process.
However, the audio signal may be quite efficient in separating football highlights
from the normal play, particularly for typical Brazilian broadcasts. Table 2.3 shows
some of the main audio features used in the highlight identification process.

Currently, most works focus on the semantic of the event applied after a simple
highlight or non-highlight selection. Works like [6] and [17], for instance, make logo,
replay, or slow motion detection to filter the non-highlight events, which is a very

8



Table 2.3: Summary of audio low-level features employed in the summarization
literature.

[5] [6] [7] [9] [13] [11] [12] [2] [17] this
Short Time Energy X X X X
Comb Sum Energy X X X
ZCR X X
STE X
Pitch X X X
Brightness X
Shots in Break X
Bandwidth X
Spectrum flux X X
Sub-band power X X
LPCC X
MFCC X X

poor approach considering that not all video productions follow the same sequence of
scenes. For example, the Brazilian championship broadcast never uses logos after a
highlight or before a replay and also almost never uses slow-motion takes. Therefore,
those algorithms would not be effective in the Brazilian football broadcasts, which
require a more sophisticated highlight detection.

Another important characteristic of a given highlight-detection system is the
type of classifier employed in the system. Table 2.4 shows the most frequently
employed classifier families in the related literature. In general, these classifiers
differ in the corresponding computational complexity, capability of generalization
(avoiding overtraining), number of input features, and misclassification rates.

Table 2.4: Summary of classifier families employed in the summarization literature.

[5] [6] [7] [9] [13] [11] [12] [2] [17] this
Support Machine Vector X X X
Hidden Markov model X X X

Bayesian Network X X
Neural Network X X

Unsupervised Clustering X
Ranked Classification X

Rule-Based X
AdaBoost X

2.1 The [1] Approach

In the work, a genre-specific approach was considered, suited to highlight detection
in football broadcasts. Some similarities of football with other sports (grass play
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field, such as American football and rugby; goal oriented, as indoor football and
handball; and so on) may make, however, the final system suitable to other sports
as well.

It uses joint audio and video features, leading to a multi-modal approach. Over-
all, were verified that the audio features are the main features in the highlight clas-
sification, whereas the video features provide a slight increase in system accuracy
and, most importantly, greater independence from the game narrator.

The main information to be extracted from the audio features was the narrator
excitement, which can be detected mostly from the associated pitch and energy.
In practice, one can say that the narrator uses these features to indicate the best
moments of the game for the spectators. This was the same behavior wanted for
the classifier using the narrator’s voice features.

The video features were used to generalize the classifier performance to another
narrator’s voice or style. The dominant color, camera movement, and panoramic
frames are going to be the video features considered here. The video features also
help discard events that happen outside the playing field, like the ones associated
to the fans. It can also be used to remove replays, logos, and closed-up takes.

One of the main contributions of the present dissertation is the analysis of im-
portance of all audio and video features considered in this work. Such a survey
is needed to reduce the number of classifier input parameters, which on its turn
may lead to a faster feature-extraction stage, simpler training procedures, and more
reliable classification rates (as noisy information is removed a prior).

Other contribution is the performance analysis of several classifier families on
the problem at hand. In particular, in this dissertation, we consider the use of
neural networks, AdaBoost, SVM, and random forest classifiers, investigating the
advantages and disadvantages of each classifier type in several aspects.

10



Chapter 3

Previous Work

3.1 Introduction

This dissertation is closely related to reference [1]. To facilitate comparisons between
both works, this Chapter summarizes the main aspects of [1], detailing its signal
features, classifier, and database, as well as the results achieved by the corresponding
system.

3.2 The features

3.2.1 Audio Features

Following [19], [20], [21], [22], and [23], one may conclude that the audio features
such as pitch (fundamental frequency, for all practical purposes) and energy con-
tribute significantly for the highlight detection in football games, as, in general, the
narrator’s voice tends to reflect the excitement of the game.

The pitch estimation was the first feature employed by [1]. Given the audio signal
x(n), the pitch estimation can be performed using the autocorrelation function as
given by [24]:

Rxx(τ) =
N∑

n=1
x(n)x(n − τ) , (3.1)

where N indicates the number of signal samples considered in this process. For
stationarity purposes, audio segments are usually in the range of 20 to 30 ms. In this
work, we have adopted 33.3 ms duration to match the duration of an NTSC frame,
since this is a multi-modal system. An example of the autocorrelation function of
an audio signal is depicted in Figure 3.1, where it is possible to extract the period
T , and consequently, its inverse, which is the desired fundamental frequency F0 of
the audio signal (Pitch).

11
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Figure 3.1: Example of fundamental period T of a given audio signal extracted from
the corresponding autocorrelation function. (Source: [1])

An alternative pitch estimation method, which is less computationally intensive,
uses the frequency domain to estimate the autocorrelation function, as given by [25]

Rxx(τ) = IDFT{|DFT [x(n)]|2} , (3.2)

where DFT (·) and IDFT (·) are the direct and inverse discrete Fourier transforms.
In [1], the method for calculating the pitch are similar to [3] but with two slight

differences: following [26], pitch values lower than 50 Hz and above 500 Hz are
discarded, the same happens for audio segments with low energy values. Such
modifications lead to the differences between the performances of the two methods
illustrated in Figure 3.2.

Another audio feature selected in [1] is the energy of the voice within a given
segment, which can be determined as

est(t) =
t+ N

2∑
n=t− N

2

x2(n)h(n) , (3.3)

where h(n) denotes the window function applied to the audio signal, which in this
case was of the Hamming type.

To emphasize the fundamental frequency of a given audio signal and its corre-
sponding harmonics, we may put the signal through a comb filter with frequency

12



0 5 10 15 20 25 30 35
−1

0

1
Audio Signal

time (seconds)

0 5 10 15 20 25 30 35
0

200

400

Pitch Signal Proposed

time (seconds)

P
itc

h 
(H

z)

0 5 10 15 20 25 30 35
0

200

400

Pitch Signal by COLDEFY e BOUTHEMY (2004)

time (seconds)

P
itc

h 
(H

z)

Figure 3.2: Pitch comparison between the methods of [1] and [3]. (Source: [1])

response of the form

C(f) =
d∑

k=1
δ(f − kF0) ∗ Π(f) , (3.4)

where δ is the Dirac’s impulse function, d is the number of harmonics which will
have their energy emphasized, and Π is the window function associated to the comb
filter. Figure 3.3 illustrates the role of the comb filter in emphasizing the voiced
information of the given audio signal.

Another interesting audio feature attempts to evaluate the signal’s dynamic evo-
lution along time. The idea is to determine the moments where the energy signal
increases significantly indicating a possible highlight of interest. This can be done by
using a differentiator followed by a low-pass filter to smooth out the differentiator’s
output. Another possibility is to evaluate the local growth by using the auxiliary
functions

µa(t) =
t+Na∑

n=t+1
f(n), (3.5)

µp(t) =
t−1∑

n=t−Np

f(n), (3.6)
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Figure 3.3: Use of a comb filter tuned to the signal pitch and its harmonics to
estimate the audio signal energy. (Source: [1])

and then calculate the so-called local-growth estimate given by

µs(t) =

1, if µp(t) − µa(t) ≥ 0

0, if µp(t) − µa(t) < 0
. (3.7)

3.2.2 Video Features

The first video feature used in [1] is the dominant color of the frame. This feature
indicates when the camera focuses the playing field (which should be dominantly
green) or it has a panoramic take (close-ups may have other dominant colors), as
illustrated in Figure 3.4.

When showing the field, a large proportion of the frame tends to be of some
shade of green. In order to avoid dependency on illumination intensity, the dominant
color algorithm should operate in a color space such as the hue-saturation-intensity
(HSI) system, as opposed to the standard red-green-blue (RGB) domain. In the
HSI system, the first component corresponds to the traditional concept of color [27].
Figure 3.5 shows the representations of those HSI and RGB systems, where one
concludes how the HSI controls the shades of green with a single parameter, different
of RGB system which the color depends on all three parameters.

Usually, the video signal is encoded in the RGB space. In order to transform the
RGB domain into the HSI system, one must employ the following relationships:
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Figure 3.4: Examples of video frames for dominant color computation. (Source: [1])

r = R

R + G + B
, (3.8)

g = G

R + G + B
, (3.9)

b = B

R + G + B
, (3.10)

A =
√(

r − 1
3

)2
+
(

b − 1
3

)2
+
(

g − 1
3

)2
, (3.11)

B = 2
3

(r − 1
3

) − 1
3

(b − 1
3

) − 1
3

(g − 1
3

). (3.12)
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(a) (b) (c)

Figure 3.5: Video representation systems: (a) RGB; (b) HSI; (c) The range of the
Hue value. (Source: [1])

θ = arccos

 B

A
√

2
3

 180
π

, (3.13)

H =

 θ , if g ≥ b;
360◦ − θ , otherwise.

, (3.14)

S = 1 − 3 min(r, g, b), (3.15)

I = R + G + B

3
. (3.16)

After this transformation, the color of each pixel can be used to calculate the
dominant color in the frame. Using a pixel-level hue histogram within a frame, the
dominant color appears as the mode of such distribution. For high values of intensity
(I) or saturation (S), the hue value (H) is not reliable, as these limits correspond
to the white and black colors, respectively. Hence, the following equations are used
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to calculate the dominant color:

H[imin − 1] < K ∗ H[ipeak] ≤ H[imin], (3.17)

H[imax + 1] < K ∗ H[ipeak] ≤ H[imax], (3.18)

imin ≤ ipeak ≤ imax, (3.19)

DominantHue =

imax∑
i=imin

H[i] ∗ i

imax∑
i=imin

H[i]
. (3.20)

where K = 0.2 corresponds to a 20% safety margin for the respective variable.
During a football transmission, graphical insertions can interfere in the

dominant-color computation, as they usually present some artificial color, which
corresponds to spikes in the color histogram. To remove these undesirable peaks, a
simple moving average filter is used to smooth out the histogram, before detecting
the dominant color.

A distinct feature associated with the dominant color is the percentage of pixels
associated with that color.

Another phenomenon which usually occurs during a highlight is an increase on
the camera movement. For this reason, the information of the camera type and
movement are also employed as video features. The algorithm for estimating the
camera movement attempts to quantify the global movement of the image and its
objects. A simple way to calculate the global movement is using the correlation be-
tween subsequent video frames. Following this reasoning, the phase correlation [28],
represented by the vector (vx, vy), quantifies the translational movement of image
I1 with respect to image I2:

I2(x, y) = I1(x − vx, y − vy). (3.21)

Applying the Fourier transform, one gets

F2(m, n) = F1(m, n)e−πj(mvx+nvy), (3.22)

where F represents the Fourier transform of the corresponding I function [29].
Hence, one has that

F1,2(m, n) = F1(m, n)F2(m, n)∗ = F1(m, n)F1(m, n)∗e2πj(mvx+nvy), (3.23)
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which leads to

C(x, y) = IDFT
{

F1,2(m, n)
|F1(m, n)||F2(m, n)|

}
= δ(x − vx, y − vy), (3.24)

where the Dirac’s impulse represents the shift between the images I1 and I2. In
practice, however, C(x, y) is not a perfect impulse function, as the relationship
between these two images is not perfectly translational, as several objects present
in the scene (ball, players, and so on) may have independent movements.

Using the polar coordinate system, one can represent the camera movement by
its magnitude ∆ and direction θ such that

∆ =
√

x2 + y2 , (3.25)

θ = arctg
(

y

x

)
. (3.26)

, this parameters were added to the set of features too.
Another parameter of interest is the amplitude ρ of the peak generated by equa-

tion (3.24). Such value provides an indication of how reliable is the movement
estimate, where higher ρ values correspond to more global movements. The vari-
ances of these values within a 15-frame interval (which correspond to about a half
second) also provide some degree of confidence for such estimates.

3.2.3 Feature Collection

Table 3.1 summarizes all audio and video features employed by reference [1], as
discussed in the previous subsections.

3.3 Database

The database employed for system training is probably as much important as the
choice of the classifier and its features for system success. The database must rep-
resent the process in a reliable and compact manner. In our problem, the database
must be diversified about the type of events being selected as highlights, the game
time, the stadiums, the narrator, the teams involved, the broadcasting style and
so on. Table 3.2 summarizes the employed database of 30 games representing the
following aspects [1]:

• 5 different tournaments which show different production rules, different shots
and effects;

• 30 different teams which bring different jersey colors;
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Table 3.1: Low-level audio and video features employed in reference [1].

Label Parameters Abbreviation Feature Type
1 Hue Mean 3.18 Hue Dominant Color Video
2 Percent of pixels associated to Hue PHue Dominant Color Video
3 ∆ 3.25 ∆ Camera Movement Video
4 θ 3.26 θ Camera Movement Video
5 ρ Peak of correlation ρ Camera Movement Video
6 V AR(∆) V AR(∆) Camera Movement Video
7 V AR(θ) V AR(θ) Camera Movement Video
8 Pitch 3.2 Pitch Pitch Estimation Audio
9 Pitch Diff 3.5 PitchDiff Pitch Estimation Audio
10 Pitch Diff Ascending 3.7 PitchDiffA Pitch Estimation Audio
11 Short-time Energy 3.3 STE Energy Audio
12 Short-time Energy Diff 3.5 STEDiff Energy Audio
13 Short-time Energy Diff Ascending 3.7 STEDiffA Energy Audio
14 Comb Short-time Energy 3.4 CSTE Energy Audio
15 Comb Short-time Energy Diff 3.5 CSTEDiff Energy Audio
16 Comb Short-time Energy Diff Ascending 3.7 CSTEDiffA Energy Audio

• 15 different stadiums which resulted in different color of the grass and camera
distance;

• Different time of the day which changes all the color set of the camera;

• 4 different narrators who have different voices and pitches;

• 86 goals and 421 goal attempts.

The game signals were captured by TV Globo in the SD system with 486 lines
and 720 columns, with a frame rate of 29,97 frames per second encoded in MPEG-2
at 6 Mbps. The audio was captured with 48000 samples per second and encoded in
PCM.

For the labeling, every goal attempt (like any shot in the direction of the goal,
including the scored goals, or any moment inside the penalty box that the attacking
team has the possession of the ball and has a chance to score) was considered as a
“good moment”.

3.4 The Classifier

The classifier employed in [1] was of the AdaBoost type, which aggregates several
weak (with low discriminative rate) features to the system to form a strong overall
classifier.

One of the initial AdaBoost drawbacks is its inability to deal with temporal
evolution, as it considers each input sample independent to the others. This problem
was solved using past and future samples as additional features to the system.
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A post-processing step was added to the final system, using a median filter to
smooth out the frame-based highlight classification. The implementation used is the
GML AdaBoost Matlab Toolbox [30].

The AdaBoost has two main parameters to be configured. One is the depth of
the internal tree, which was set to 3. The other parameter is the number of iterations
which the classifier weights are adjusted in the training stage.

A k-fold cross-validation process was employed to evaluate the robustness of
the resulting classifier performance. This process consists of selecting one fold to
validate the process and using the others for training. The process is repeated
selecting another fold to be the validation fold, and so on, until all folds are used as
the validation fold, as illustrated in Figure 3.6 and summarized in Table 3.3.

Figure 3.6: Representation of k-fold cross-validation technique to evaluate robust-
ness of overall system performance. (Source: [1])

The system performance was evaluated using the following metrics: the preci-
sion rate (PR, percentage of detected highlights which were true highlights in the
database annotation stage), the recall rate (RR, percentage of true highlights de-
tected by the system), and the summarization rate (SR, game percentage classified
as a highlight), defined as

PR(%) = Good Moments Correctly Detected
Good Moments Detected

,

RR(%) = Good Moments Correctly Detected
Good Moments Existing

,

SR(%) = Duration Good Moments Detected
Duration All Moments

, (3.27)
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Table 3.3: Game division for the 8-fold cross-validation scheme. (Source: [1])

Match Narrator Time of the day

Fold 1

Argentina x Germany Luís Roberto Afternoon
Spain x Portugal Cléber Machado Night

Corinthians x Fluminense Luís Roberto Afternoon/Night
Barcelona x Internazionale Galvão Bueno Night

Fold 2

Denmark x Japan Luís Roberto Night
Netherlands x Japan Cléber Machado Afternoon

Uruguay x South Korea Luís Roberto Afternoon/Night
Spain x EUA Cléber Machado Night

Fold 3

Germany x England Luís Roberto Afternoon/Night
Italy x Slovakia Cléber Machado Afternoon/Night

Spain x Netherlands Galvão Bueno Night
Cruzeiro x São Paulo Cléber Machado Night

Fold 4

Brazil x Chile Galvão Bueno Night
France x Mexico Galvão Bueno Night

Germany x Uruguay Cléber Machado Night
Netherlands x Slovakia Luís Roberto Afternoon/Night

Fold 5

Argentina x Nigeria Galvão Bueno Afternoon/Night
Germany x Spain Galvão Bueno Night

Portugal x North Korea Luís Roberto Afternoon
Atlético Mineiro x Vasco Luís Roberto Afternoon/Night

Fold 6

Argentina x South Korea Cléber Machado Afternoon
Spain x Switzerland Luís Roberto Afternoon/Night

Uruguay x Netherlands Cléber Machado Night
Brazil x Italy Galvão Bueno Night

Fold 7

Argentina x Mexico Cléber Machado Night
Brazil x Netherlands Galvão Bueno Afternoon/Night

Bayern Munich x Internazionale Galvão Bueno Afternoon/Night
São Paulo x Cruzeiro Cléber Machado Night

Fold 8 Chile x Switzerland Rogério Pinheiro Afternoon/Night
Santos x Vasco Rogério Pinheiro Afternoon/Night
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respectively.

3.5 Results

Tables 3.4 and 3.5 provide a breakdown of the overall results achieved by [1]. In
Table 3.4, the ‘Operational’ mode disregards any error on the beginning and end
classification of each detected highlight.

Table 3.4: The automatic and operational validation applied to each fold of the
database. (Source: [1])

Automatic Operational
Fold PR (%) RR (%) PR (%) RR (%)

1 92.32 91.98 83.52 100
2 95.39 94.83 89.28 100
3 90.24 86.07 86.66 95.78
4 92.30 93.07 79.72 100
5 92.37 89.91 86.74 97.29
6 93.89 90.88 84.37 94.18
7 91.26 95.43 67.24 100

Average 92.55 91.74 82.50 98.17
Standard Deviation 1.68 3.19 7.37 2.44

An interesting analysis performed in [1] evaluated the system performance con-
sidering video (V) and audio (A) features, in isolated and combined manners. Re-
sults in this case are shown in Table 3.6 where one concludes that the audio features
already provide a good system performance, whereas the video features only increase
the final performance in a marginal rate.

The overall results achieved by the system presented in [1] are provided in Ta-
ble 3.7.

3.6 Conclusion

This Chapter presented the highlight-detection system developed in [1], detailing
its performance for the corresponding database. The present dissertation devel-
ops several improvements to the system in an attempt to reduce its computational
complexity and increase its detection efficiency and robustness.
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Table 3.5: Classification applied to full games of the database. The bold lines is
the games which aren’t in the training set. IM = Missed important moment. G =
Missed goals. (Source: [1])

Match MIM MG PR (%) RR (%) SR (time) SR (%)
1 1 0 20.21 95.00 10:39 13.62
2 0 0 13.38 100 15:37 16.42
3 1 0 13.38 94.40 10:24 10.94
4 1 0 14.58 93.33 11:34 12.42
5 0 0 6.39 100 14:42 15.77
6 1 0 11.29 93.33 12:37 13.37
7 0 0 12.29 100 10:15 10.77
8 1 0 18.55 94.73 9:16 9.64
9 0 0 14.73 100 5:39 6.01
10 0 0 25.00 100 12:23 13.30
11 2 0 28.20 84.60 2:16 2.40
12 0 0 19.14 100 11:06 11.77
13 0 0 17.89 100 11:39 11.92
14 0 0 15.00 100 6:24 6.80
15 0 0 26.08 100 1:45 5.81
16 1 0 22.58 95.45 6:58 12.69
17 3 0 35.71 83.33 2:34 2.70
18 1 0 13.17 94.44 12:48 13.57
19 0 0 21.68 100 7:35 8.10
20 2 0 19.73 88.23 12:27 12.85
21 0 0 22.58 100 10:09 10.79
22 0 0 17.98 100 10:54 11.57
23 0 0 10.65 100 18:53 20.59
24 0 0 17.82 100 7:46 8.30
25 1 0 15.38 93.33 7:37 8.08
26 0 0 12.71 100 11:15 12.10
27 0 0 5.85 100 23:35 28.32
28 0 0 12.31 100 17:14 18.25
29 0 0 8.96 100 12:27 13.05
30 0 0 12.50 100 20:22 21.93

Average 0.46 0 16.85 97.00 10:57 12.12
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Table 3.6: Precision and Recall Rates resulting of the experimental script. A =
Audio. V = Video. MF = Median Filter(page 21). PF = Past/Future(page 19)
Samples. (Source: [1])

Test Summary Precision Rate Recall Rate
Average Std Dev Average Std Dev

1 V 61.21% 2.30% 63.69% 11.29%
2 V + MF 61.91% 2.45% 64.75% 11.99%
3 V + PF 65.70% 2.11% 66.40% 9.24%
4 V + MF + PF 66.34% 2.41% 67.23% 9.73%
5 A 83.58% 1.86% 80.24% 4.94%
6 A + MF 86.56% 2.32% 82.27% 5.81%
7 A + PF 90.71% 2.30% 90.04% 4.02%
8 A + MF + PF 91.78% 2.65% 90.61% 4.40%
9 A + V 83.37% 1.41% 80.88% 3.73%
10 A + V + MF 85.95% 1.96% 82.50% 4.66%
11 A + V + PF 91.22% 1.60% 90.92% 2.90%
12 A + V + MF + PF 92.55% 1.68% 91.74% 3.19%

Table 3.7: System configuration and performance metrics. (Source: [1])

PR Optimal RR Optimal
Average 92.61% 91.92%

Standard Deviation 1.78% 2.87%
AdaBoost Type Gentle Gentle

Iterations 31 33
Past/Future 30 30

SizeofMedianFilter 15 9
Average Recall 91.82% -

Average Precision - 92.59%
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Chapter 4

Feature Selection

4.1 Introduction

The work presented in [1] uses a large set of features to achieve good performance
in the summarization of football games. In this Chapter, the role of each of these
features in discriminating the events of interest is further investigated. The idea is
to find a good classifier with a minimum number of features in order to reduce the
computational complexity of the overall system. In this analysis, we consider the
cross-correlations between all pairs of features and the correlation of each individual
feature with the classifier output.

But at first, with a manual analysis of the database provided by [1], repeated
columns were found in the features set. The samples extracted for the features Comb
Short-time Energy, Comb Short-time Energy Diff and Comb Short-time Energy Diff
Ascending seems to be accidentally repeated as the samples for the features Modi-
fied Comb Short-time Energy, Modified Comb Short-time Energy Diff and Modified
Comb Short-time Energy Diff Ascending respectively. This means these three fea-
tures aren’t been effectively used, because replicated data do not provide useful
information to the system. Then, these three last mentioned features are going to
be removed from the set considering that will not be any loss to the system.

4.2 Feature Cross-correlations

The cross-correlation exposes the linear dependence of each pair of features Xi and
Xj and is a very efficient technique to identify redundant information from a group
of features. This analysis is based on the Pearson’s correlation coefficient defined as

ρXi,Xj
=

E((Xi − µXi
)(Xj − µXj

))
µXi

µXj

, (4.1)
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where µXk
indicates the mean value of feature Xk. A high correlation, in its absolute

value, indicates that the information in both features are very similar. To decorrelate
the features and verify if there is still some relevant information, one may compute
the partial correlation coefficients

ρ′
Xi,Xj

= (ρX2,Y − ρX1,Y ∗ ρX1,X2)√
1 − ρ2

X1,X2

. (4.2)

By estimating the cross-correlation between all features, audio features and video
features shown a very low correlation between each other due to their different
nature. Then, the correlation table is going to be separated in two parts, the video
Table 4.1 and the audio Table 4.3 to simplify the analysis of the Tables. This was
done to the Table of the partial correlation coefficients of the video features 4.2 and
the audio features 4.4 too.

Table 4.1: Video-feature correlations ρ.

Hue PHue ∆ θ ρ V AR(∆) V AR(θ)
Hue 1.00 -0,24 -0,04 -0.03 0.01 0.03 0.05

PHue 1.00 0.15 0.03 0.02 -0.02 -0.01
∆ 1.00 -0.13 0.18 -0.15 -0.04
θ 1.00 0.10 0.29 0.02
ρ 1.00 -0.08 0.15

V AR(∆) 1.00 0.02
V AR(θ) 1.00

Table 4.2: Video-feature partial correlations ρ.

Hue PHue ∆ θ ρ V AR(∆) V AR(θ)
Hue 1.08 0,22 -0,02 0.04 0.00 -0.02 -0.06

PHue 1.14 -0.13 -0.06 0.00 -0.01 -0.01
∆ 1.12 0.13 -0.22 0.09 0.07
θ 1.13 -0.17 -0.32 0.01
ρ 1.10 0.12 -0.17

V AR(∆) 1.13 -0.03
V AR(θ) 1.03

In Table 4.1, one clearly notices how the video correlations tend to be very
low, indicating a low level of redundant information. The same is noticed in the
Table 4.2. On the other hand, when analyzing the audio-feature correlations in Ta-
ble 4.3 and Table 4.4, one immediately observes high values (above 0.80, for instance)
indicating redundant information. In particular, ρST E,CST E, ρST EDiff,CST EDiff and
ρST EDiffA,CST EDiffA reached high correlation in both tables. Using the correla-
tion to the output (as given in Section 4.3) as a criterion for feature selection, we
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Table 4.3: Audio-feature correlations.

Pitch PitchDiff PitchDiffA STE STEDiff STEDiffA CSTE CSTEDiff CSTEDiffA
Pitch 1.00 0.18 -0.12 0.25 0.14 -0.03 0.28 0.15 -0.05

PitchDiff 1.00 -0.22 0.24 0.41 -0.16 0.18 0.37 -0.17
PitchDiffA 1.00 -0.14 -0.09 0.30 -0.09 -0.09 0.32

STE 1.00 0.39 -0.13 0.59 0.42 -0.16
STEDiff 1.00 -0.09 0.32 0.85 -0.08

STEDiffA 1.00 -0.08 -0.09 0.80
CSTE 1.00 0.42 -0.10

CSTEDiff 1.00 -0.09
CSTEDiffA 1.00

Table 4.4: Audio-feature partial correlations.

Pitch PitchDiff PitchDiffA STE STEDiff STEDiffA CSTE CSTEDiff CSTEDiffA
Pitch 1.16 -0.08 0.07 -0.07 0.07 -0.06 -0.22 0.00 -0.02

PitchDiff 1.38 0.16 0.03 -0.31 0.02 0.04 -0.10 0.04
PitchDiffA 1.17 0.03 -0.05 -0.12 -0.01 0.00 -0.24

STE 1.78 -0.21 -0.03 -0.81 -0.07 0.12
STEDiff 3.91 0.03 0.33 -3.12 -0.10

STEDiffA 2.82 -0.01 0.00 -2.21
CSTE 1.70 -0.64 0.01

CSTEDiff 3.94 0.03
CSTEDiffA 2.88

may considered excluding features STEDiffA, CSTE and CSTEDiff from a modified
classifier version.

4.3 Correlation Between Features and Labels

The cross-correlation between the remaining features, after the selection performed
in previous section, and the labels (highlight or non-highlight classes) may also
evaluate the contribution of each feature to the final result of the classification,
as seen in Table 4.5. This analysis, however, only explains the linear dependence
between the given feature and the labels and any non-linear contribution is not
evaluated properly by this metric. In any case, the results of new classifications will
confirm the analysis. The bold features are the already excluded ones.

From these results, one observes that θ, ρ, V AR(∆), and V AR(θ) are the features
with the lowest absolute values for the correlation coefficient, indicating that those
features may also be disregarded. Curiously, all these features are from the video
signal.
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Table 4.5: Cross-correlation between features and system output.

Y
Hue 0.11

PHue -0.18
∆ -0.15
θ 0.03
ρ 0.01

V AR(∆) 0.10
V AR(θ) -0.01

Pitch 0.29
PitchDiff 0.40

PitchDiffA -0.20
STE 0.42

STEDiff 0.41
STEDiffA -0.19

CSTE 0.29
CSTEDiff 0.35
CSTEDiffA -0.21

4.4 Analysis of Feature Relevance

In this section, we evaluate the effect of each remaining feature on the classifier error,
by cross-correlating the feature with the classification error obtained relatively to
the expected output of each sample. Therefore, in this analysis we incorporate the
classifier (in this case, the AdaBoost classifier, used in [1]) into the feature-analysis
loop. The result is expressed in the Table 4.6, where ρ is the correlation to the
output of the classification and ϵ is the correlation to the classification error. The
bold features are the already excluded ones.

Table 4.6: Feature relevance analysis with respect to the classifier output error.

ρo ϵ
Hue 0.11 0.02

PHue 0.17 0.01
∆ 0.15 0.01
θ 0.02 0.00
ρ 0.01 0.01

V AR(∆) 0.10 0.01
V AR(θ) 0.01 0.02

Pitch 0.29 0.07
PitchDiff 0.40 0.06

PitchDiffA 0.20 0.04
STE 0.41 0.06

STEDiff 0.40 0.05
STEDiffA 0.19 0.03

CSTE 0.28 0.03
CSTEDiff 0.34 0.03
CSTEDiffA 0.20 0.06
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The features with the highest correlation to the error is Pitch, PitchDiff, STE,
and CSTEDiffA, and in principle there should be excluded. However Pitch, PitchD-
iff, and STE have significant correlation to the output(ρo), indicating that if this
features were excluded, the system may lose some useful information for the classi-
fier, depreciating the classification results. For that reason, the only feature that can
be excluded from the system is CSTEDiffA, which is the Comb Short-time Energy
Diff Ascending.

4.5 Decimation

For increasing the classifier performance, [1] also investigated the use of past and
future features to classify a given frame. In the end, to maximize the performance, it
was concluded that a window of length 60 (30 from the past and 30 from the future)
provided the best classification results. For a rate of 29.97 frames per second, this
window length corresponds to an interval of 1 second for the past and 1 second for
the future features.

An immediate consequence of this feature gathering is the multiplication in the
number of input features by a factor of 61, many of them most probably with high
correlation to each other. To reduce this information redundancy we may consider
inserting an interval between the frames involved in this feature grouping. In that
case, instead of adding features from every adjacent frame, we consider the features
every K frames, with K ≥ 1.

The classification results when using only 8 remaining features (Hue, PHue, ∆,
Pitch, PitchDiff, PitchDiffA, STE, and STEDiff), instead of the initial 16, and K = 2
(in comparison to the original K = 1) are shown in Table 4.7. These results consider
a complete retraining of the AdaBoost classifier, using the same k-fold strategy as
before.

Table 4.7: Results of simplified classifier using feature selection techniques. Where
the Inputs are the number of input features which are going to be used in the
classifier. It is the multiplication of the number of Features and the number of
Frames.

Features Frames Inputs Precision Rate Recall Rate
16 61 976 92.55% 91.74%
8 61 488 92.30% 91.34%
16 31 496 92.06% 90.94%
8 31 248 92.15% 91.22%

From Table 4.7, one observes how the simplified classifier yields precision and re-
call rates quite similar to the original classifier configuration proposed in [1], despite
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the reduced number of input features (only 248 as opposed to 976).

4.6 Video Dependence

The video features have higher costs to be extracted than the audio features. Then,
it is very important to have a confirmation about the true contribution of the video
features to the overall system. This analysis can be performed extensively by running
the system without those features and analyzing the results. After the feature
selection, there are only 3 remaining video features left: mean hue value, image
percentage for the mean hue value and motion variation vector 3.25. The influence
of these particular features is summarized in Table 4.8.

Table 4.8: Results of the Feature Selection Removing the Video Features

Number of Features Frames Inputs Precision Rate Recall Rate
5 31 155 91.67% 90.54%

Such results indicate a small decrease on the error and recall rates, what may
lead one to think that these features can be removed altogether from the classifier.
However, as we will later discuss, this classifier configuration without any video
feature looses its ability to generalize the results for other narrators not included in
the training database.

4.7 Conclusion

This Chapter discussed some possible simplifications to the original classifier config-
uration proposed in [1]. After the feature selection, 8 out of the original 16 features
were shown to have quite redundant information. Moreover, we considered the case
of sub-sampling information from intermediary frames when aggregating past and
future frames to the classifier inputs. It was verified how these simplifications led
to no significant loss of performance, despite a feature reduction to only about 25%
of the original set. This reduction also opens new doors to alternative classifier
families, in opposition to the AdaBoost group, which is the subject of the following
Chapters.
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Chapter 5

Classifiers

5.1 Introduction

As can be imagined, one of the most important steps in classification of a given
process is the choice of the best classifier for the specific case. There are classifiers
which need more attention before being used, due to their limitation in the number
of input features, like the support vector machine, for example. And there are more
general classifiers, like AdaBoost and Random Forest, which can be used without
much issues about inserting raw data, without any processing or feature selection
since these stages are inherent to the classifier training stage. Of course, the pro-
cessing and feature selection can be used to optimize even those generic classifiers.

According to [31], classifier systems are constituted of five phases: sensing, seg-
mentation, feature extraction, classification, and post processing. The sensing is
when the nature of the event, which is going to be observed, is captured and con-
verted into data. In this case, the video and audio being captured during a football
broadcast. The segmentation is the stage when the sensing content is separated
according to the needs of the classifier. The feature extraction is when the features
that are going to be used for this classifier are extracted from the data segments
previously obtained. The classification phase is when those features are analyzed to
detect to which class each sample belongs. The post processing stage is dedicated
to eventual methods to achieve better classification results.

The main scope of this Chapter is to present the main characteristics of some
o the most important classifier families found in the related literature. We, there-
fore, cover the AdaBoost, random forest and support vector machine classifiers,
highlighting their main advantages and disadvantages.
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5.2 AdaBoost

The so-called Adaptive Boosting (AdaBoost) algorithms constitute an interesting
family of classifiers which allows the combination of a large number of features
with low discriminating ability to generate a strong final classifier [32]. A short
description of the AdaBoost classifier is presented here, whereas the full formulation
can be found in [33].

Consider an ensemble of N training samples, constituted by the pair (xn, yn),
where xn is the d-dimensional matrix of the training features and yn is the vector of
labels belonging to {−1, 1}. Those features and labels (xn, yn) of each sample are
associated with a probability distribution Dt(n), in each t iteration ,for the event
of each sample being classified as label 1. At t = 1, by convention, the distribution
Dt(n) is considered uniform.

After each training iteration, a classifier ht is determined to achieve the best
classification for all samples xn and the classification error is calculated as

et =
∑

m|ht(xm) ̸=yn

Dt(m). (5.1)

This classification error is then employed to adjust the distribution and the classifier
weights according to the relationships

αt = 1
2

ln
(1 − et

et

)
,

Dt+1(n) = Dt(n)e−αtynht(xn)

zi

, (5.2)

where zi is a normalization factor that guarantees that
N∑

m=1
Dt(m) = 1. The classi-

fication is implemented by:

H(xm) = sign
(

T∑
i=0

αihi(xm)
)

, (5.3)

where T is the number of training iterations and sign is the signal operator.
Starting from this concept, three AdaBoost variations later appeared in the

related literature: the real ([32]), gentle ([34]) and modest ([35]), the differences
of which are explained below.
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In the real AdaBoost, the weights for the distribution Dt+1(n) are given by

W+1 =
∑

m|ymht(xm)=+1
Dt(m) , ,

W−1 =
∑

m|ymht(xm)=−1
Dt(m) , ,

αt = 1
2

ln
(

W+1

W−1

)
.. (5.4)

In addition, the classification results are real numbers as |ht(xn)| can be seen as the
classification reliability.

The gentle AdaBoost uses a different weight computation

αt = 1
2

ln
(

W+1 − W−1

W+1 + W−1

)
, (5.5)

which leads to a stronger and more robust classifier.
Finally, the modest AdaBoost, is defined by the updating equations

Dt(m) = (1 − Dt(m))zi ,

W +1 =
∑

m|ymht(xm)=+1
Dt(m) ,

W −1 =
∑

m|ymht(xm)=−1
Dt(m) ,

αt = W+1(1 + W +1) − W−1(1 − W −1) , (5.6)

where zi normalizes the resulting distribution. This AdaBoost version tries to gen-
eralize the classifier strategy, but it can cause some increase in the resulting error.

The most important advantage of the AdaBoost is its strength in complex sys-
tems. Even if it is used with a very high number of inputs, high number of samples
and not normalized variables, it can reach acceptable results, although in some cases
it may take a long time to converge in the training process.

The main disadvantage of the AdaBoost is the fact the samples inserted into the
classifier cannot, at first, carry any temporal relation among them. This becomes
an inconvenient when the process at hand has a strong consistency along time, as
is the case of the football-highlight system of ours. In this case, it is necessary
to create a mechanism which adapts the AdaBoost to that characteristic. As the
AdaBoost allows the usage of many features as necessary, the method used in [1]
consists of inserting the same features of the previous and subsequent frames as
additional features to the present frame.

The AdaBoost implementation considered in [1] and also employed in the present
work was found in the GML AdaBoost Matlab Toolbox [30]. This AdaBoost imple-
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mentation has two main parameters: the depth of the internal tree, which represent
the maximum number of queries that can happen before a leaf is reached and a
result obtained and it was selected as 3 because of its performance, and the number
of training iterations, which means the number of times the weights are going to
be adjusted. The Matlab Toolbox provides all three variations of AdaBoost: Real,
Gentle and Modest.

Finally, as the classifier offers the classification result in a frame-by-frame basis,
it is interesting to apply some level of post-processing (such as a median filter, for
instance) to smooth out the the spurious responses of the classifier along time.

5.3 Random Forest

Decision trees use a series of binary decisions in individual features to perform the
classification task. The random forest approach uses a (sufficiently) large ensemble
of decision trees to add robustness to the overall classification. The ensemble may
be created by bagging [36], which creates each tree using a distinct subset of the
training data. Reference [37] also proposed a random feature choice in constructing
the individual trees. These two approaches can be combined to generate a more
robust forest.

According to [38], a random vector Θk is generated representing the kth tree,
independent of the past random vectors Θ1, ...Θk−1 but with the same distribution,
resulting in classifier h(x, Θk), where x is an input feature vector. A random forest
is a classifier consisting of a collection of decision trees {h(x, Θk), k = 1, ...}, where
the {Θk}, ideally, are independent and identically distributed random vectors and
each tree casts a unit vote for the most popular class at input x.

The implementation of a Random Forest algorithm starts by creating a large
number of decorrelated trees, then creating subsets of the samples to train each
tree. But different of the tree bagging algorithm, the learning algorithm for each
tree also selects a subset of features at random to train each tree, this action creates
a model with low variance.

The square root of the samples are left out of the sample. This oob (out-of-bag)
data is used to get a running unbiased estimate of the classification error as trees
are added to the forest. It is also used to get estimates of variable importance.

After all the trees are trained, each tree with get it own decision for each sample.
The class which receives more votes is the output class.

The random forest is a robust classifier which can deal with a large number of
input features, even hundreds, with a small amount of information, similar to the
AdaBoost approach. When comparing these two classifiers, namely the random
forest and the AdaBoost, in principle the latter has no random elements. However,
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its re-weighting procedure during the training stage tends to emulate the random
principle of the random forest, as conjectured in [38].

The chosen random forest algorithm used in this work is the TreeBagger found
in the Matlab Statistics Toolbox. This algorithm creates an ensemble of bagged
decision trees trained under the original database. The main setup parameter for the
TreeBagger implementation is the total number of trees. In theory a large number
of trees provides stability to the overall classifier. However, an excessive number
of trees may cause overtraining. For this aspect, the TreeBagger command has
a parameter (OOBPred) which indicates the performance improvement associated
with each added tree.

5.4 Support Vector Machine

One of the most used classification and regression techniques for the video summa-
rization problem is the support vector machine (SVM), described by [39]. The SVM
technique separates two classes using hyperplanes (or more complex surfaces) which
are optimal in the sense of maximum distance between them.

One approach to define the separating surfaces is the so-called hard margin’s
method, employed when the classes are linearly detachable [40]. In this case, the
hyperplanes (H+1 and H−1) are such that

wtxn + b >= +1, if yn = +1

wtxn + b <= −1, if yn = −1
, (5.7)

what corresponds to a distance of

l = 2
||w||

. (5.8)

Therefore, to maximize such a distance, one must minimize ||w||, what can be written
as a quadratic problem with linear constraints:

min
x

1
2

||w||2, s.t. yn(wtxn + b) − 1 ≥ 0, ∀(xn, yn) ∈ T. (5.9)

This problem can be reformulated using Lagrange multipliers αn, where n = 1, ..., N ,
as

Lp = 1
2

||w||2 −
N∑

n=1
αn(yn(wtxn + b) − 1) +

N∑
n=1

αn (5.10)

By equating the partial derivatives of Lp with respect to w and b to zero, one gets
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that

w =
N∑

n=1
αnynxn, (5.11)

N∑
n=1

αnyn = 0, (5.12)

which, when plugged into equation (5.10) lead to

Ld =
N∑

i=1
αi − 1

2

N∑
i=1

N∑
j=1

αiαjyiyjxt
ixj, (5.13)

The optimized solution α∗ of the dual problem must satisfy the Karush-Kuhn-Tucker
conditions, which include αi ≥ 0, leading to the general case

αn[yn(wtxn + b) − 1] = 0, ∀n. (5.14)

In this solution, αn > 0 only for the points on the hyperplanes H+1 and H−1 (which
constitute the support vectors). For the other points, the Karush-Kuhn-Tucker
conditions are obeyed only if αn = 0. The remaining rules for the classification are
given by

g(x) = sign
( ∑

i∈SV

yiα
∗
i xt

ix + b∗
)
, (5.15)

b∗ = 1
nSV

∑
i∈SV

( 1
yi

−
∑

i∈SV

yiα
∗
i xt

ixi

)
, (5.16)

where SV is the set of support vectors and nSV is the number of vectors in this set.
As mentioned before, this method can only be applied to linear separable classes.

But most of the times the classes are not linear separable due to noisy samples,
outliers and the non-linear nature of the problem. In such cases, one may employ
the soft-margin SVM, which consists of inserting some non-negative slack variables
ξn in the conditions of equation (5.7), which becomes

wtxn + b >= +1 − ξn, if yn = +1

wtxn + b <= −1 + ξn, if yn = −1
(5.17)

Those additional variables allow some data samples to be between the hyperplanes
if 0 <= ξn <= 1, or even in the region correspondent to the other class (error) if
ξn > 1. Then, reformulating the equations, one gets

min
x

1
2

||w||2 + C
( N∑

n=1
ξn

)
, (5.18)
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where C is an arbitrary parameter. Then,

yn(wtxn + b) − 1 − ξn >= 0, ∀(xn, yn) ∈ T, (5.19)

Lp = 1
2

||w||2 + C
N∑

n=1
ξn −

N∑
n=1

αn(yn(wtxn + b) − 1 − ξn) +
N∑

n=1
µn, (5.20)

where µn is also the Lagrangian multiplier in primal form such that

αn, µn ≥ 0. (5.21)

Hence, the null partial derivatives correspond to

w =
N∑

n=1
αnynxn, (5.22)

N∑
n=1

αnyn = 0, (5.23)

C − αn − µn = 0. (5.24)

Substituting these relationships into the original formulation, one obtains the dual
formulation

Ld =
N∑

i=1
αi − 1

2

N∑
i=1

N∑
j=1

αiαjyiyjxt
ixj, (5.25)

with the constraints 0 < αn < C,

αi(yi(wtxi + b) − 1 + ξi) = 0, µnξn = 0. (5.26)

After finding the α∗ which solves the dual problem, one can use equations (5.22)
and (5.26) to determine w∗ and b∗, respectively.

As in the previous method, the support vectors are such that α∗ ≥ 0. However,
there are now four types of support vectors: if α∗ < C, then ξ∗

n = 0 and the support
vector is over the margin; if α∗ = C, then there are three cases – an error, if ξ∗

n > 1;
the sample is between the margin, if 0 < ξ∗

n ≤ 1; and it is over the margin; if ξ∗
n = 0.

A third SVM method applies when the soft margin still is not enough for the
non-linearly separable classes. In such cases, a non-linear mapping Φ is applied to
the feature space increasing its dimension:

Φ : Rd → H, (5.27)

where H is the new high-dimension feature space. One then applies the soft margin
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approach to the transformed Φ(xn) features, leading to

Ld =
N∑

i=1
αi − 1

2

N∑
i=1

N∑
j=1

αiαjyiyjΦ(xi)tΦ(xj), (5.28)

with
g(x) = sign

( ∑
i∈SV

yiα
∗
i Φ(xi)tΦ(x) + b∗

)
(5.29)

and
b∗ = 1

nSV

∑
i∈SV

( 1
yi

−
∑

i∈SV

yiα
∗
i Φ(xi)tΦ(xj)

)
. (5.30)

In practice, finding a proper non-linear mapping Φ can be a very hard or even
untraceable task. But, in the above equations the data only appears as inner product
of the transformed space. Then, it is enough to know the inner product K(xi, xj) =
Φ(xi)tΦ(xj), commonly referred to as a kernel function, which must sustain the
convex solution of the optimization problem. To guarantee that, the kernel function
must satisfy the Mercer conditions, which claim that K(x, y) = K(y, x) and

∫
K(x, y)f(x)f(y) dxdy ≥ 0, (5.31)

with f(x) such that ∫
f(x2)dx < ∞. (5.32)

The most common kernel functions are the polynomial, sigmoidal, and Gaussian
(also referred to as the radial basis function, RBF), respectively defined as

K(x, y) = (1 + xty)d, (5.33)

K(x, y) = tanh(kxty − δ), (5.34)

K(x, y) = exp
(

− |x − y|2

σ2

)
. (5.35)

Perhaps the main drawback associated with the SVM algorithm is its inherent
high complexity to determine the hypersurfaces in the system training stage. This
is particularly true in the non-linear separation cases, which uses high-dimensional
feature representation. In these cases, the SVM needs to solve a quadratic program-
ming (QP) which increases the system complexity as the number of data samples
and features grow.

The chosen SVM implementation for this work is from the Matlab Statistics Tool-
box. For its basic usage, it requires the matrix (samples vs features) and a vector
with the class labels. By default, it uses the linear kernel function, the Karush-
Kuhn-Tucker violation is 0, the BoxConstraint (C) is equal to 1. The parameter
Kernel Function can be chosen over six different values: linear, quadratic, polyno-
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mial, rbf, mlp, @kfun, where the latter is employed when the user wants to specify
a different function. The Karush-Kuhn-Tucker violation and the BoxConstraint pa-
rameter control the flexibility incorporated into the soft margin and the algorithm
convergence accordingly. The iterative algorithm employed to solve the optimization
problem has three options: quadratic programming, which is the most accurate and
most computationally intensive option, the sequential minimal optimization (SMO)
and the least squares algorithms.

5.5 Neural Network

Artificial Neural Network, also known by just Neural Network, is the concept of
a algorithm based in the way neurons are connects into other neurons by the use
of synapses. Each type of neuron has a response to the pulse that comes from its
synapses. And it synapses have a variable conductibility. By this way, the synapses
have some resistance for each input for the neuron.

The algorithm of Neural Network works the same way, it threats the neuron like
a activation function, it means, each neuron has a transfer function for the input
value it receives. And the synapses also have their resistance, but in the form of a
weight for each input.

The neurons are divided into layers. The first is the input layer, responsible for
connect the input samples to the mesh. The mesh might have many middle layers
as it needs, but usually one middle layer are enough, and they are called hidden
layer. And the last layer is called output layer, because it receives the responses of
the neurons of the hidden layer and send the combined values to one specific output
class. It means, the number of neurons in the input layer are defined by the number
of input features of the system. Also the number of neurons in the output layer are
defined by the number of output classes.

The figure 5.1 shows a neural network composed by two input features and a
single decision class.

The training algorithm is how the weights of the synapses are calculated, and it
works as the following:

First step is to propagate the sample to the output, in that way save the values
of the output of each neuron and call it as v0l

i, where i is the number of neuron in
each l layer. The output of each class is ỹi. The derivative of each function used in
the neurons also must be calculated and named vl

i. The weight of each synapse is
called wl

ij, where i is the source neuron of the synapse, j is the destination neuron
and the l is the layer of the source neuron.

Then, the back propagation must be done to correct the weights of the synapses.
Collect the error of each class using 5.36.
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Figure 5.1: Examples of a neural network

ϵi = yi − ỹi (5.36)

Propagate it back through each neuron using 5.37, this value is the error in the
input of the neuron. It must be propagated back to the input features through each
layer.

δl
i = vl

iϵi (5.37)

After the error reached the input of the features, the weights of each synapses
must be corrected by the equation 5.38, where α is an arbitrary value for step of the
gradient.

∆wij
l = 2α

1
P

P∑
p=1

vjδi|p (5.38)

The Neural Network algorithm can be very used for generic problems, it can
use many input features and many input samples and still reach good convergence.
There are varieties of configuration, number of layers, types of activation functions
that can be used in the problem. The implementation chosen for this problem is the
MATLAB Neural Network Toolbox, because of it high efficiency and configuration
options.

5.6 Conclusion

This Chapter provided a brief introduction of the three types of algorithms used
for the classification of football highlights. Generally speaking, the AdaBoost and
random forest are simpler classifiers and more robust to hard conditions of train-
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ing. But the support vector machine has a more refined method of training, which
may not even converge in hard data conditions. When properly implemented, how-
ever, the SVM constitutes a powerful classification tool for very sophisticated data
patterns.
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Chapter 6

Experiments

6.1 Introduction

This Chapter presents the performance comparison of some classifier types and the
best feature configuration.

The Table with the features enumeration is going to be repeated in Table 6.1 for
convenience. Because many features are going to be cited by their abbreviations in
this Chapter.

Table 6.1: Low-level audio and video features employed in reference [1], repeated
for convenience.

Label Parameters Abbreviation Feature Type
1 Hue Mean 3.18 Hue Dominant Color Video
2 Percent of pixels associated to Hue PHue Dominant Color Video
3 ∆ 3.25 ∆ Camera Movement Video
4 θ 3.26 θ Camera Movement Video
5 ρ Peak of correlation ρ Camera Movement Video
6 V AR(∆) V AR(∆) Camera Movement Video
7 V AR(θ) V AR(θ) Camera Movement Video
8 Pitch 3.2 Pitch Pitch Estimation Audio
9 Pitch Diff 3.5 PitchDiff Pitch Estimation Audio
10 Pitch Diff Ascending 3.7 PitchDiffA Pitch Estimation Audio
11 Short-time Energy 3.3 STE Energy Audio
12 Short-time Energy Diff 3.5 STEDiff Energy Audio
13 Short-time Energy Diff Ascending 3.7 STEDiffA Energy Audio
14 Comb Short-time Energy 3.4 CSTE Energy Audio
15 Comb Short-time Energy Diff 3.5 CSTEDiff Energy Audio
16 Comb Short-time Energy Diff Ascending 3.7 CSTEDiffA Energy Audio

The script of the experiments is going to follow the order below:

• Evaluation of the selected features of the Chapter 4 using AdaBoost;

• Experiment different decimation values using AdaBoost;
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• Calculate the operating curve for the best configuration of AdaBoost;

• Test the parameters for configuration of the Random Forest classifier;

• Experiment of a new method for feature selection and comparison of results
of Chapter 4;

• Evaluation of the selected features of the Chapter 4 using Random Forest;

• Experiment different decimation values using Random Forest;

• Test the parameters for configuration of the Support Vector Machine and it
value for this work.

• Evaluation of the selected features of the Chapter 4 using Neural Network;

6.2 AdaBoost and Features

The AdaBoost results reported in [1] were summarized in Section 3.4. In short,
the experiments using automatic validation indicated a best performance of about
92.55% of Precision Rate and 91.74% of Recall Rate for the gentle AdaBoost, using
30 training iterations and an output median filter of size 10.

The initial experiment compares the AdaBoost performance with distinct feature
combinations, following the analysis provided in Chapter 4. Results in this case are
summarized in Table 6.2 were obtained using the cross-validation with 7 folds. In
Table 6.2, Video (Hue to V AR(θ)) and Audio (Pitch to CSTEDiffA) refer to the
whole groups of video and audio features, respectively, from Table 3.1. Analogously,
Sel Video (Hue, PHue, ∆) and Sel Audio (Pitch, PitchDiff, PitchDiffA, STE, STE-
Diff) are the respective groups of video and audio features after the feature selection
process. All Sel combines the Sel Video and Sel Audio sets. In addition, PF refers
to the case where 30 frames before and 30 frames after are added to the group of
input features and PF Sel is the case that uses only 15 frames before and 15 frames
after as additional features. MF is Median Filter of size 10, because it gives the
best results as studied in [1]. The column Inputs describes the total of features at
the input of the classifier calculated in the form: (2 ∗ PF + 1) ∗ Features. All the
results in the Table were achieved using the best configuration of AdaBoost used in
Chapter 3 described above.

From the results shown in Table 6.2, the main conclusion is that the performance
loss is not significant after the feature selection. It can be proved comparing the
result of the All Sel + PF Sel to the ALL + PF, where the configuration with the
selected features achieved almost the same Precision and Recall Rates, with only a
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Table 6.2: AdaBoost results using different sets of input features.

Features PR PR std RR RR std Time(s) Inputs
Video + MF 61.91% 2.45% 64.75% 11.99% 477 7
Audio + MF 86.56% 2.32% 82.27% 5.81% 616 9

All + MF 85.95% 1.96% 82.50% 4.66% 832 16
Sel Video + MF 61.15% 3.46% 65.75% 10.74% 360 3
Sel Audio + MF 86.37% 2.16% 81.23% 5.26% 474 5

All Sel + MF 85.21% 1.83% 82.02% 4.27% 608 8
Video + PF + MF 66.34% 2.41% 67.23% 9.73% 12183 427
Audio + PF + MF 91.78% 2.65% 90.61% 4.40% 19710 549
ALL + PF + MF 92.55% 1.68% 91.74% 3.19% 32918 976

Sel Video + PF + MF 65.22% 2.52% 67.71% 8.31% 6545 183
Sel Audio + PF + MF 91.93% 2.57% 90.85% 3.70% 11619 305

All Sel + PF + MF 92.30% 1.55% 91.34% 2.90% 18102 488
Video + PF Sel + MF 65.61% 2.45% 66.06% 10.45% 6438 217
Audio + PF Sel + MF 91.71% 2.58% 90.54% 4.37% 11899 279
ALL + PF Sel + MF 92.06% 1.79% 90.94% 2.97% 19170 496

Sel Video + PF Sel + MF 65.56% 2.25% 67.70% 8.81% 3461 93
Sel Audio + PF Sel + MF 91.67% 2.56% 90.54% 3.79% 6842 155

All Sel + PF Sel + MF 92.15% 1.79% 91.22% 2.94% 10621 248

small decrease in comparison to the original configuration employed in [1]. But the
training time was more than 3 times faster.

Another experiment evaluated the influence of the time decimation factor for
the past and future features used as additional inputs to the classifier, as discussed
in Section 4.5. In this case, the maximum interval of 30 past or future frames is
kept fixed and only the decimation factor is changed. Then, a decimation factor
of 15 frames will mean that the present frame, the 15th and the 30th frames from
both the past and the future are fed to the classifier, leasing to a total of 40 in-
put features as only the 8 selected feature types are considered in this experiment.
Results for several decimation factor are depicted in Figure 6.1. The curves of the
Figure 6.1 oscillate but in general the precision rate and the recall rate decreases as
the decimation factor increases.

Results in Figure 6.1 indicate that a good performance (just above 90% in both
the Precision Rate and Recall Rate) is already reached with a decimation factor of
30, corresponding to only 24 features used by the classifier. As the decimation factor
decreases, more features are added to the classifier, whose performance oscillated
between 89% and 92%, reaching its peak with a decimator factor of 4. Depending
on the application, if there are more flexible conditions, where some loss can be
accepted, the decimation factor of 30 could be used. It would cause a reduction to
24 inputs features at the classifier. A reduction of 48 times the initial set of features,
proposed by [1].

The different operating points of the classifier can lead to different pairs of recall
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Figure 6.1: AdaBoost Decimation Fator.

rate and precision rate. With this information, each application can choose the best
operating point for the classifier, for the constraints of the problem. For example,
if a 99% recall rate is needed in the system, it can be achieved by decreasing the
precision rate to about 80%. The 6.2 shows the curve of AdaBoost classifier ((1-
Recall Rate) x Precision Rate) configured with the following parameters: 30 training
iterations, 15 past and future samples, Gentle algorithm, median filter size 10.
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Figure 6.2: Operating points of AdaBoost.
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6.3 Random Forest

The TreeBagger function in Matlab implements the Random Forest classifier allow-
ing one to specify the total number of trees. The parameter OOBPred is used to
evaluate the effect of each additional tree, as shown in Figure 6.3. In this scenario,
one sees no clear effect after about 60 trees, because classification error doesn’t
fall significantly anymore, as can be seen in the Figure 6.3. Incorporating a safety
margin to that lower limit, we have chosen to employ 100 trees in all subsequent
random-forest experiments. The figure was generated using the TreeBagger with the
the whole set of 16 features and 30 past and future frames, because it would guar-
antee the minimum trees for the maximum number of features. For lower numbers
of features the minimum number of trees will be enough as well.

Figure 6.3: Effect of each additional tree (up to 200) in the overall performance of
the random forest classifier.

Figure 6.4 shows the performance contribution of each of the 16 original features
through the parameter OOBVarImp during the classifier training. This analysis
shows feature Pitch (see Table 6.1) as the most important feature of the whole set,
with PitchDiff, PHue, Hue, ∆ and STE coming in sequence. All these features were
also selected by the analysis performed in Chapter 4. The two next features pointed
in figure 6.4 are the V AR(θ) and ρ. However, these features were excluded in the
Chapter 4. Instead, in the Chapter 4 the features PitchDiffA and STEDiff were
selected. Then the differences of both selection relies over the selection of V AR(θ)
and ρ instead PitchDiffA and STEDiff.

Following the feature-importance analysis shown in figure 6.4, the random forest
classifier was retrained using the best 8 features. The performance of the random
forest classifier with the above selected features was tested using a kfold proce-
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Figure 6.4: Feature selection for the random forest classifier according to the OOB-
VarImp parameter of the TreeBagger Matlab command.

dure, leading to an average Precision Rate of 91.01% and an average Recall Rate of
90.77% for the testing dataset. The corresponding standard deviations were 3.07%
and 3.30% for the Precision Rate and Recall Rate, respectively. When using the
features selected in Chapter 4, the cross-validation results were a Precision Rate of
92.14% and a Recall Rate of 92.17% with standard deviations of 2.26% and 3.55%,
respectively. This indicates that the TreeBagger feature selection provides good re-
sults, although the feature selection performed in Chapter 4 seems to yield slightly
better results.

After all this initial tuning, the performance of the random forest classifier was
assessed in the same conditions as the AdaBoost classifier in Section 6.2, leading to
the results shown in Table 6.3 which follows the same nomenclature as Table 6.2.
In general, one notices quite similar results achieved by both the AdaBoost and
Random Forest classifier, with a slightly better Precision Rate of the former and a
slightly better Recall Rate for the latter.

The decimation-factor experiment was also performed for the random forest,
leading to the results shown in Figure 6.5. The curves of the Figure 6.5 are more
stable than the curves of the Figure 6.1. But the Precision Rate decreases faster
than the Recall Rate, as the decimation factor increases.

48



Table 6.3: Random forest results using different sets of input features.

Features PR PR std RR RR std Time(s) Inputs
Video + MF 66.10% 13.77% 70.58% 15.26% 16086 7
Audio + MF 88.50% 5.05% 85.75% 7.74% 18382 9

All + MF 87.85% 5.43% 86.61% 6.75% 20592 16
Sel Video + MF 64.34% 14.56% 69.95% 14.21% 7925 3
Sel Audio + MF 88.13% 5.16% 83.95% 7.73% 9370 5

All Sel + MF 86.37% 5.95% 85.34% 6.70% 10348 8
Video + PF + MF 69.85% 12.31% 72.95% 14.08% 35934 427
Audio + PF + MF 93.09% 3.62% 92.42% 5.65% 41269 549

All + PF + MF 92.83% 3.69% 93.37% 4.68% 73622 976
Sel Video + PF + MF 68.29% 13.14% 72.80% 13.58% 22303 183
Sel Audio + PF + MF 93.24% 3.70% 92.35% 5.48% 27008 305

All Sel + PF + MF 92.89% 3.60% 93.05% 4.37% 45907 488
Video + PF Sel + MF 69.80% 12.32% 73.17% 14.41% 52890 217
Audio + PF Sel + MF 93.09% 3.64% 92.37% 5.66% 72831 279

All + PF Sel + MF 92.85% 3.75% 93.46% 4.71% 35353 496
Sel Video + PF Sel + MF 68.58% 13.01% 72.80% 13.66% 19319 93
Sel Audio + PF Sel + MF 93.18% 3.72% 92.26% 5.44% 41518 155

All Sel + PF Sel + MF 93.02% 3.53% 93.05% 4.46% 73456 248
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Figure 6.5: Random Forest Decimation Fator.
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6.4 Support Vector Machine

The support vector machine (SVM) is also a family of strong classifiers in the
machine-learning field. In our problem, however, which deals with large number
of input features (particularly when we consider the past and future samples as
well), the SVM approach may present convergence problems in its training stage.

Using the Matlab implementation, the autoscale parameter was set to True to
force a feature normalization that leads to zero-mean unitary-variance inputs. The
kernelcachelimits was set as high as the resources support, which was about 50000;
we also considered several setups for the boxconstraint, kernel_function, kktviolation-
level, method parameters to optimize the overall classifier performance, as discussed
below. However, even for the simplest configuration, with the linear kernel function,
the simulation took several hours to evaluate a single game fold. More complex
setups required more that a day to be trained without any convergence. Also, even
in configurations where the algorithm converges as shown in Table 6.4, depending
on the random initialization the classification diverges to a single class and the same
configuration needs to be repeated over and over again. Because of it, the evalua-
tion of configurations was a very hard task to be performed. Results of all different
configurations are given in Table 6.4, which also shows the attempted setups that
did not converge after a week.

Table 6.4: SVM results using different sets of input features.

Features Inputs Kernel Function Error Recall
All Sel 8 Linear 81.43% 77.41%
All Sel 8 Quadratic 84.10% 77.09%
All Sel 8 Polynomial 84.30% 81.73%
All Sel 8 RBF no convergence no convergence

All Features 16 Linear no convergence no convergence
All Features 16 Quadratic no convergence no convergence
All Features 16 Polynomial no convergence no convergence
All Features 16 RBF no convergence no convergence

All Sel + PF Sel 248 Linear no convergence no convergence
All Sel + PF Sel 248 Quadratic no convergence no convergence
All Sel + PF Sel 248 Polynomial no convergence no convergence
All Sel + PF Sel 248 RBF no convergence no convergence

The best result without using past and future frames was using the polynomial
kernel function. Even in this case, however, the result was inferior than the ones
for the other tested classifiers in the same configuration, besides the fact that the
training process took much longer than for any other tested classifier.
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6.5 Neural Network

The Neural Network is the last classifier experimented in this master thesis. Usually,
Neural Network are very generic classifier. It can be adapted to many uses with good
performance and simplicity. But there are some parameters that need to be configure
to each conditions.

The main configuration is the network itself. The number of hidden layers and
the number of neurons for each layer must be set. Rarely a problem is going to need
a network with more than one hidden layer. Even though, a two hidden layer was
experimented in this project, but the results weren’t satisfactory. Mostly because
as the number of layer grows, harder becomes the convergence of the algorithm.

The best configuration of the number of neurons on each layer was with 10
neurons in the hidden layer, because for higher values the precision rate and the
recall rate grows very slowly and the memory resources and time spent grows very
fast, turning the classification unfeasible with high number of inputs. The input
layer was set as the same number of inputs in the classifier. And also, it was set
one neuron in the output layer because there are only one class to be trained in this
system.

Another important parameter is the activation function. As this problem is using
the neural network for classification and not for regression, the best activation func-
tion is the tansig for the hidden layer and the output layer. The back-propagation
method used was trainlm because its fast training step. The learning function ap-
plied was the learngdm and mse as performance function.

The table 6.5 shows the results for the best configuration of the neural network
applied for the database.

The results obtained with Neural Networks were almost as good as the ones
obtained with AdaBoost and Random Forest. Decreasing about 2% and 3% the
Precision Rate and Recall Rate, respectively, comparing to the others. But the
memory resources were also a important matter, because it makes necessary to use
much memory resources to reach good results with a short training time spent,
reaching almost 27GB of the RAM of the equipment.

6.6 Summarization

To evaluate the system under real conditions, the best performance configuration
was tested over the entire matches. Using the entire matches, the number of high-
lights are much lower than the number of non-highlight moments. This fact causes a
decrease of the Precision Rate, but now the Summarization Rate can be calculated.
The Table 6.6 show all the matches including two matches with the untrained nar-
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Table 6.5: Neural Network results using different sets of input features.

Features PR PR std RR RR std Time(s) Inputs
Video + MF 6719% 1347% 6591% 1710% 2530 7
Audio + MF 8847% 502% 8471% 807% 2712 9

All + MF 8684% 616% 8592% 795% 4011 16
Sel Video + MF 6632% 1393% 6697% 1642% 3867 3
Sel Audio + MF 8613% 770% 8408% 897% 1325 5

All Sel + MF 8700% 559% 8316% 819% 1831 8
Video + PF + MF 7128% 1011% 6877% 1302% 13768 427
Audio + PF + MF 9082% 490% 8902% 771% 19234 549
ALL + PF + MF 8905% 668% 8692% 941% 72250 976

Sel Video + PF + MF 7061% 1207% 6932% 1431% 7117 183
Sel Audio + PF + MF 9135% 455% 8968% 733% 18660 305

All Sel + PF + MF 9102% 462% 8923% 769% 43643 488
Video + PF Sel + MF 7074% 1202% 6962% 1487% 10133 217
Audio + PF Sel + MF 9107% 452% 8991% 641% 10903 279
ALL + PF Sel + MF 8963% 620% 8951% 787% 22881 496

Sel Video + PF Sel + MF 7043% 1212% 7032% 1423% 5540 93
Sel Audio + PF Sel + MF 9142% 452% 8996% 742% 5856 155

All Sel + PF Sel + MF 9120% 429% 9026% 652% 11051 248

rator(matches 7 and 28). The Summarization Rate is represented in the Table 6.6
by SR(Time) (which provides the values in [minutes:seconds] and SR(%) (which
provides the result in percent).

The conclusion of the Table 6.6 is that the Recall Rate still is very high and the
Summarization Rate is great. In the average the reduction is almost 8 times. With
this results, the need of manual intervention is at least 7 times less. It means, one
person can handle 7 matches at once.

6.7 Conclusion

This Chapter presented the highlight-detection results achieved by three different
classifier families. In such analysis, we considered the use of several feature sets
as classifier inputs, reducing the number of features from the original 16 employed
in [1] to only 8, without any noticeable performance degradation. The use of past
and future frames was also investigated, leading to a decrease in the number of total
input frames, which correspond to a higher value of the time decimation factor.

The experiments confirm the methods for feature selection applied in Chapter 4
were successful. It was verified that the AdaBoost, Random Forest and Neural
Network classifiers achieved quite similar results, what can be explained by the
close relationship between the two intrinsic principles of these two classifier families.
In addition, the performance of the SVM classifier was assessed leading to much
poorer results in comparison to the AdaBoost, Random Forest and Neural Network
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Table 6.6: Summarization results using best configuration of Randon Forest.

Match PR RR SR(time) SR(%)
1 16.04% 100.00% 13:16 14.12%
2 12.45% 100.00% 14:30 15.43%
3 12.81% 100.00% 10:55 11.62%
4 13.96% 100.00% 13:53 14.77%
5 9.09% 100.00% 18:14 19.39%
6 13.71% 100.00% 12:18 13.09%
7 9.31% 86.51% 11:16 11.98%
8 14.22% 96.53% 11:10 11.88%
9 29.13% 100.00% 4:00 4.26%
10 17.53% 100.00% 13:54 14.79%
11 26.64% 100.00% 3:11 3.38%
12 15.40% 100.00% 12:26 13.23%
13 18.35% 100.00% 10:54 11.59%
14 8.29% 87.81% 7:57 8.45%
15 20.02% 100.00% 7:50 8.33%
16 17.36% 100.00% 12:58 13.80%
17 31.85% 100.00% 3:52 4.11%
18 10.16% 100.00% 14:32 15.46%
19 16.98% 100.00% 9:19 9.92%
20 15.84% 100.00% 12:47 13.60%
21 15.23% 94.32% 11:44 12.49%
22 19.38% 100.00% 12:35 13.38%
23 8.24% 97.51% 20:54 22.24%
24 20.61% 100.00% 8:26 8.97%
25 10.00% 100.00% 10:28 11.13%
26 7.78% 98.84% 17:21 18.46%
27 5.16% 100.00% 21:54 23.29%
28 9.76% 100.00% 16:50 17.91%
29 16.29% 100.00% 10:01 10.65%
30 8.30% 100.00% 21:28 22.83%

Average 14.99% 98.71% 12:21 13.15%

cases, probably due to the large number of features and data being considered in
the experiments.
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Chapter 7

Conclusion

The main goal of this master thesis was to improve and optimize the football
highlight-detection system developed in [1]. Such investigation included a feature-
selection analysis and the test of different classification families of algorithms.

The first step in this direction was to perform a wide research in the related lit-
erature of video annotation, in particular for sport events, as given in Chapter 2. In
such survey, it was observed that most current works deal with the semantic anno-
tation of the whole video, and not only to the highlight detection, which is the focus
of our work. In general, in the semantic analysis, the event of interest is identified
a prior using simple rule-of-thumb methods such as replay or slow-motion track or
inserted graphic interpretation, such as the ones used to indicate yellow/red cards,
scored goals, player substitutions etc. Such simple methods, however, are quite
production-dependent, indicating the need of more general algorithms to perform
the highlight detection in a robust manner.

In Chapter 3, a summary was presented for the work developed in [1], which is the
starting point of the practical developments implemented in this dissertation. The
description included all the features extracted by the previous method, the annotated
database, and the results achieved by the original system. Such review facilitates
comparison of the techniques proposed here with the original ones, providing a self-
contained characteristic to the present dissertation.

As seen in Chapter 3, the original highlight-detection system employed a total
of 16 distinct types of features. The system also combines the information from the
present video/audio frame with the features from the previous 30 and subsequent
30 frames, leading to a total of 16 × 61 = 976 inputs for each frame. Chapter 4
then describes a feature-importance analysis which indicated that only 8 out of
the original 16 features carry most of the underlying information for the highlight
detection process. The techniques used were based on the cross-correlation between
any 2 features and between any feature with the desired classifier output. An initial
study on the possible decimation (by, at first, only a rate of 2) of the past and future
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frames indicated that such additional information could also be greatly removed.
Thank to all these experiments, it was concluded that 8 × 31 = 248 could provide
the same performance as the original system, at a much lower computational effort.

Chapter 5 provided a brief introduction to the families of algorithms included in
our analysis, namely the AdaBoost, the Random Forest, the Support Vector Machine
and Neural Network. The basic theory of these methods was given along with their
main characteristics and setup configuration (in Matlab).

Chapter 6 presents the experimental results achieved by the proposed system
variations, considering different types of feature sets (as discussed in Chapter 4)
and classifier families (as discussed in Chapter 5). In the latter analysis, the in-
fluences of some parameters were also investigated. Table 7.1 summarizes the re-
sults achieved in the present work and allow one to compare them with the results
from [1]. The [1] configuration was with the whole set of 16 features, using the
samples of 61 frames and the Gentle AdaBoost classifier. The best configuration of
this work was concluded to be with the 8 selected features, using the samples of 31
frames and the TreeBagger algorithm for Random Forest. Both were achieved from
a cross-validation method. From such analysis, it is safe to conclude that the fea-
ture selection performed here allowed a great simplification of the system complexity
without deteriorating the system performance.

Table 7.1: Performance comparison of simplified and original ( [1]) systems.

Works Features Precision Rate(%) Recall Rate(%)
Number Average Standard Deviation Average Standard Deviation

Vasconcelos [1] 976 92.55 1.68 91.74 3.19
This Work 248 93.02 3.53 93.05 4.46

The Chapter 6 also could conclude that if the system could accept more flexible
results with some few losses in the Precision Rate and the Recall Rate, the configu-
ration with the decimator factor of 30 would have a reduction of 40 times the initial
number of input features at the classifier.

7.1 Future Works

Despite the improvements achieved in our development, the current highlight-
detection system may still benefit from additional

• Adaptation from low-level features to mid-level features. Aiming more seman-
tic meaning of the problem. It might simplify the task of the final classifier.
Also it can be used classify the semantic each event;
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• New semantic features, like detection of the penalty box. The penalty box is
a good example because every goal attempt needs to have the camera pointed
to the penalty box, this feature could efficiently decrease the false positives
and generate a higher summarization of the match;

• Segmentation of the events. Because it could simplify the treatment of the
past and future samples. Using this concept the samples of the past and the
future could be earlier joined into a single value per feature. Reducing the
complexity of the classifier.

Most importantly, perhaps the main contribution of the present work is to un-
derstand the behavior of some standard machine-learning techniques in the problem
of football automatic highlight detection, and open new venues for further investi-
gations on the subject.
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