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UMA ABORDAGEM DE PROGRAMACAO INTEIRA MISTA PARA O
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O problema de fluxo de poténcia 6timo em redes de corrente alternada (FPO-CA)
estd dentre as ferramentas computacionais necessarias para o suporte a tomada de
decisdo no contexto do planejamento da operacdo e expansdo de sistemas de
distribuicdo. Nesta dissertacdo, emprega-se técnicas de linearizacdo e convexificacdo
para obter uma reformulacdo da versdo ndo-linear do FPO-CA como um problema de
programacdo inteira linear mista (PLIM). A formulacdo proposta: (i) captura o
comportamento ndo-linear do sistema de distribuicdo através de aproximacdo cuja
acurécia pode ser arbitrada pelo usuario; (ii) da suporte a decisfes discretas e continuas;
(iii) é construida com base em varidveis convencionalmente utilizadas para a descricao
do comportamento da rede elétrica, o que resulta em flexibilidade na definicdo de
funcbes objetivo e estende a aplicabilidade da formulacdo proposta a um conjunto
elevado de problemas; e (iv) pode ser tratada por meio de pacotes comerciais para a
solucdo de problemas de programacao inteira mista, podendo-se obter solugbes 6timas
globais. Caracteristicas fisicas especificas de sistemas de distribuicdo sdo extensamente
exploradas para obter-se uma formulagdo PLIM que concilie acuracia e desempenho
computacional. A aplicabilidade e as caracteristicas principais da formulagdo proposta

sdo demonstradas com o auxilio de estudos de caso.
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The alternating current (AC) optimal power flow (ACOPF) is among the
computational tools required to support decision making in distribution system
operations and expansion planning. In this dissertation, linearization and
convexification techniques are employed in order to reformulate the non-linear version
of the ACOPF for distribution systems, and a mixed-integer linear programming
reformulation of this problem is proposed. The proposed formulation: (i) captures the
non-linear behavior of the distribution system with an arbitrarily accurate
approximation, with attention to the AC nature of the distribution system; (ii) supports
both continuous and discrete decisions; (iii) is constructed with basis on conventional
physical variables that describe network behavior, yielding significant flexibility in the
definition of objective functions and extending its applicability to a number of different
problems; and (iv) can be solved to global optimality with the use of widely employed
and commercially available mixed-integer linear optimization solvers. Specific physical
characteristics of distribution systems are extensively explored for achieving a MILP
formulation that conciliates the desired attributes of accuracy and computational
performance. The applicability and the main characteristics of the proposed formulation

are showcased with help of several case studies.
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NOMENCLATURE

The nomenclature presented in the following is used in chapters 2 and 4.

Indices and sets

k;m Indices for buses of the distribution system.

km Index for branches of the distribution system (this is the concise notation
for the ordered pair (k, m), in which the first entry corresponds to the from
bus of a given branch, and the second entry corresponds to the to bus of a
the same branch).

r;s Index for evaluation points and associated variables, used in a number of
different piecewise-linear approximations.

rre Set of indices for evaluation points ¥, ®" and associated variables.

rim Set of indices for evaluation points 7;™* and associated variables.

EY Set of indices for evaluation points 77 and associated variables.

E'Y Set of indices for evaluation points fg_k and associated variables.

nre Set of indices for evaluation points £, and associated variables.

" Set of indices for evaluation points ™ and associated variables.

Y Set of all branches in the distribution system.

Yep Set of circuits that represent candidate reinforcements (candidate current-
carrying facilities).

Yo Set of switchable branches in the system.

Qp Set of all buses in the distribution system.

Qcap Set of buses with candidate capacitors.

Qcrreo Set of buses to which generators with control over the output of active and
reactive power connect.

Qcrro Set of buses to which generators with control only over reactive power
output connect.

Qcurt Set of buses to which curtailable generators connect.

‘QGEN

Set of all buses to which generators (of any type) connect.
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Qicre Set of buses to which loads of the constant-current type connect.
Qrrc Set of buses at the interface of the internal network with the external
network

Q04D Set of all buses to which loads (of any type) connect.
Qp Set of buses directly connected to bus k.
Qnsup Set of all buses to which loads that cannot be shed connect.
QperE Set of buses to which loads of the constant-power type connect.
Qrer Set of voltage reference buses in the system.
Qroor Set of buses chosen as root buses.
Qg1 ack Set of all slack buses in the system.
Qsuep Set of all buses to which loads that can be shed connect.
Qzcre Set of buses to which loads of the constant-impedance type connect.
Parameters

CAPL Cost coefficient associated with the placement of the candidate capacitor
‘ at bus k (in $).

CONST Cost associated with construction of reinforcement represented by circuit
Clem km (in $).

CURT Cost coefficient associated with curtailment of generator at bus k (in
k $/p.u.).

CEN Cost coefficient associated with generation with controllable active
K power output at bus k (in $/p.u.).

IMPORT Cost coefficient associated with imports from the external network, at the
K interface represented as the slack bus k (in $/p.u.).
cLoss Cost coefficient associated with ohmic losses (in $/p.u.).
c HED Cost coefficient associated with load shedding at bus k (in $/p.u.).

SWITCH Cost of switching action (cost of changing the status of the switchable
Clm circuit) associated with circuit km (in $).
dy Nominal value of active power demanded by load at bus k (in p.u.).
d,? Nominal value of reactive power demanded by load at bus k (in p.u.).
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Active power generated by generator at bus k (in p.u.). This is a
gt parameter for all generators in set Qcrgo, and a decision variable for all
generators in set Qcrgpg-
p =5 Lower and upper bounds for active power output of generator at bus k (in
Jic 7 Jie p.u.). Defined only for generators in Qcrgpg.
0o o Lower and upper bounds for reactive power output of generator at bus k
Gic 7 I (in p.u.).
A‘g‘k Evaluation points of real component of slack current of bus k in Q;rpz¢.
Ire, ;j;’ek Lower and upper bounds for the real component of the slack current of
bus k in Q7gc (in p.u.).
_ Lower and upper bounds for magnitude of current flowing through
i+ Liem branch km (in p.u.).

Grel . Gre?2 . Gre3 . Gre4 . G,im,1 ., G,im,2 . G,im,3 . G,im,4
Mk ] Mk y Mk ] Mk ] Mk ] Mk ] Mk ] Mk

Disjunctive constants for the disjunctive constraints employed for

modeling generation curtailment.

D,re,ICTE,1 . 3,D,reICTE,2 . 3sD,re,ICTE,3 . 5 ,D,re,ICTEA . y D,imICTE1 . y,D,imICTE2 .
Mk ] Mk ] Mk ] Mk ) Mk ] Mk ]

D,imICTE,3 . y,D,imICTE,4
Mk ] Mk

Disjunctive constants for the disjunctive constraints employed for

modeling shedding of loads of the constant-current type.

D,re,PCTE,1 . »,D,re,PCTE,2 . 5,D,re,PCTE,3 . 5sD,re,PCTE4 . 5sD,im,PCTE,1 . D,imPCTE,2 .
Mk ) Mk ] Mk ) Mk ] Mk ] Mk ]

D,im,PCTE,3 . 5 sD,im,PCTE 4
M s My,

Disjunctive constants for the disjunctive constraints employed for
modeling shedding of loads of the constant-power type.

D,re,ZCTE,1 . D,re,ZCTE,2 . D,re,ZCTE,3 . D,re,ZCTE 4 . D,im,ZCTE,1 . D,im,ZCTE,2 .
M M M L M- M M

k r Tk L 4 k v Tk !
D,im,ZCTE,3 . D,im,ZCTE 4
Mk m : Mk m

Disjunctive constants for the disjunctive constraints employed for
modeling shedding of loads of the constant-impedance type

IOFI1 . IOFu1l . IOF12 . pqI0OFu2
Mk ’ Mk Mk 1Mk

Disjunctive constants for disjunctive constraints for product
Vi - (1 = py).
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ZOFI1 . ngZOFul . sZOFI2 . ysZOFu2
M ; My ; M ; My

Disjunctive constants for disjunctive constraints for product
tie - (1= pg).
Bls Evaluated values of function Py (V, 155,), for bus k.
Rim Resistance of the branch connecting buses k and m (in p.u.).
R Resistance of constant impedance load at bus k (in p.u.).
vier Evaluation point of real component of voltage at bus k (in p.u.).
V,ém's Evaluation point of imaginary component of voltage at bus k (in p.u.).
Vs Evaluated values of function v, (V,7¢, V™), for bus k (in p.u.).
174 Evaluation points of voltage magnitude of bus k in Q;rpc.
Vi ; Vi Lower and upper bound for magnitude of voltage at bus k (in p.u.).
/4 Fixed voltage magnitude of reference bus k (in p.u.).
wEk Disjunctive constant for Kirchhoff’s Current Law.
Wkl#l,,re,l : WkI:rll,,re,u : Wkl;"'l{,im,l : Wkl;;i,u
Disjunctive constants for Kirchhoff’s Voltage Law.
Xim Reactance of the branch connecting buses k and m (in p.u.).
X} Reactance of constant impedance load at bus k (in p.u.).
zk Impedance of constant impedance load at bus k (in p.u.).
H;Ef Reference angle for reference bus voltage at bus k (in degrees).
Lern Evaluation points of ¢;¢,, for branch km (in p.u.).
s Evaluation points of (i, for branch km (in p.u.).
L Evaluated values of function ¢, for branch km (in p.u.).
I Evaluated values of function V2 (in p.u.?).
i Evaluated value of function n, (Vi¢, Vi™), for bus k (dimensionless).
Ry Evaluated value of function (V¢ V,im), for bus k (dimensionless).
£ Evaluated values of function &, (V¢, V™), for bus k (in 1/p.u.).
ks Ek Lower and upper bounds for the values that &, may assume.
& Evaluated values of function ¢, (V7¢, V™), for bus k (in 1/p.u.).
s ?k Lower and upper bounds for the values that {;, may assume.
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Continuous decision variables

gr Active power generated by generator at bus k (in p.u.), free in signal or
non-negative depending on the upper and lower bounds defined. This is a
decision variable for all generators in Qcrgpg.

g,? Reactive power generated by generator at bus k (in p.u.), free in signal.

135% Real component of current demanded by load connected to bus k (in p.u.),
free in signal.

15’";6 Imaginary component of current demanded by load connected to bus k (in
p.u.), free in signal.

Ig% Real component of current generated by generator connected to bus k (in
p.u.), free in signal.

;}fﬁ Imaginary component of current generated by generator connected to bus k
(in p.u.), free in signal.

Iem Magnitude of current flowing through branch km (in p.u.), non-negative.

Iy Real component of current flowing through the branch connecting buses k
and m, from bus k to bus m (in p.u.), free in signal.

s Imaginary component of current flowing through the branch connecting
buses k and m, from bus k to bus m (in p.u.), free in signal.

1;'{,7( Imaginary component of current demanded by load connected to bus k (in
p.u.), free in signal.

mi” Auxiliary decision variable for modeling the product &, - g% (in p.u.), free
in signal or non-negative depending on the upper and lower bounds defined
for gF.

mi'im Auxiliary decision variable for modeling the product ¢ - g& (in p.u.), free
in signal.

m,f're Auxiliary decision variable for modeling the product ¢, -g,? (in p.u.), free
in signal.

m&m Aucxiliary decision variable for modeling the product & - g (in p.u.), free

in signal.
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P, Auxiliary (continuous) decision variable for approximating the product
Vi - 15%, for all buses k in Qg (in p.u.), free in signal or non-negative
depending on the upper and lower bounds defined.

Vi Magnitude of voltage at bus k (in p.u.), non-negative.

Vi€ Real component of voltage at bus k (in p.u.), non-negative.

yim Imaginary component of voltage at bus k (in p.u.), free in signal.

ay Continuous decision that assumes the value a;, = 1 if and only if p, =1
and t;, = 1; and assumes the value a;, = 0 for all other combinations of the
binary variables p; and 7. Dimensionless and non-negative.

o Weights for constructing piecewise-linear approximation of non-convex,
non-linear function of V; and I;% (dimensionless), non-negative.

yiCTE Auxiliary decision variable for modeling the product V,, - (1 — py) (in p.u.),
non-negative.

yE<TE Auxiliary continuous decision variable for modeling the product uy -
(1 — py) (in p.u.?), non-negative.

Nk Auxiliary decision variable that models a function of the complex voltage
components at bus k (dimensionless), non-negative.

Uem Auxiliary variable that is at least as high as I,,, for branch km (in p.u.),
non-negative.

Ueon Auxiliary variable that is at least as high as the modulus of I;;,, for branch
km (in p.u.), non-negative.

im Aucxiliary variable that is at least as high as the modulus of I:™, for branch
km (in p.u.), non-negative.

K Auxiliary decision variable that models a function of the complex voltage
components at bus k (dimensionless), free in signal.

Ml Weights for constructing piecewise-linear approximation of non-convex,
non-linear functions of V7 and V™ (dimensionless), non-negative.

Ui Auxiliary variable that represents approximation of V%, for k in Qcrg (in
p.u.?), non-negative.

& Auxiliary decision variable that models a function of the complex voltage

components at bus k (in 1/p.u.), non-negative.
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' Auxiliary decision variable that models a function of the complex voltage
components at bus k (in 1/p.u.), free in signal.
Wi Weights for constructing piecewise-linear approximation of ¢,,, for branch

km (dimensionless), non-negative.

Binary decision variables

by ; cp Auxiliary binary decision variables for ensuring that the weights ¢, form
a SOS2.

x5 Vi Aucxiliary binary decision variables for ensuring that the weights 1;° form a
SOSs2.

thm 3 Urm | Auxiliary binary decision variables for ensuring that the weights w, > form
a SOS2.

B Binary decision variable that models the decision to disconnect a bus k
from the system (the generator is disconnected if B, = 0), employed in
connectivity approach (iii).

Pk Binary variable that indicates if load at bus k is shed (p, = 1 indicates that
load is shed).

Okm Binary variable that represents the status of circuit km: if this is a candidate
reinforcement, oy, = 1 indicates that reinforcement is built; if this is a
switchable branch, g, = 1 indicates that branch is switched-on.

Tk Binary variable that indicates if generator at bus k is curtailed (7, =1
indicates that generator is curtailed).

vk Binary variable associated to line km that assumes the value vY,,, = 1 if bus

k is the parent of bus m, and that assumes the value v¥,, = 0 if bus m is the

parent of bus k.
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1 INTRODUCTION

This introductory chapter begins with an exposition of the background and the
motivation for the development of the research that lead to this dissertation. In section
1.2, the technical literature on the research topic is reviewed. The objective and the
technical contributions of this work are presented in section 1.3, and the chapter ends

with a description of the organization of this document.

1.1 Background and motivation

In the course of the last decade, the evolution of business models have either
brought about important challenges to the distribution segment of the electricity
business, or enhanced the criticality of previously existing ones:

Q) Performance-based regulation (or incentive-based regulation) [1]-[5] has
been adopted in several jurisdictions with the objective of incentivizing
operational efficiency and controlling costs perceived by electricity
consumers. Utilities have thus received strong economic incentives to
optimize the expansion of the distribution network and the use of existing
distribution assets, which often resulted in pressure to operate the system
closer to admissible technical limits.

(i) The development of information technology has fundamentally changed
the requirements of retail consumers on the continuity and adequacy of
electricity supply. This has been a motivation for the adoption of
reliability-driven economic incentives for regulated distribution utilities
in many jurisdictions around the globe, strictly binding compliance to
technical performance standards (supply continuity and adequacy) [4]-[5]
with the financial health of distribution utilities.

Also, technological advances associated with the evolution of the electrical
system towards the smart grid have led to growing attention to the use of sensory
information and automation within the distribution system. The deployment of these
technologies is expected not only to facilitate the achievement of operational efficiency
and adequate technical performance, but also to enhance the observability and

controllability of the grid. This enhanced controllability is thought to be a feature that



will help distribution utilities to better integrate distributed generation and storage
within their systems, and allow a more active participation of end-consumers (including
those from the retail segment) in market and system operations [6]-[7].

In order to meet the challenges and achieve the goals listed in the previous
paragraphs, distribution management systems require advanced computational tools
[7]-[8] to support operation decisions with respect both to traditional processes (such as
system reconfiguration or integrated voltage/reactive power control) and to new,
envisioned functions (such as central control of distributed generation). But it is not
only operations planning that drives the growing demand for advanced computational
tools for distribution systems: the need for tools to support expansion planning
decisions has also become more critical, due to the need to coordinate traditional
activities, such as reinforcement to current-carrying facilities and placement of
capacitors and switches, with the goals of asset optimization and accommodation of
distributed generation, among others.

The alternating current (AC) Optimal Power Flow (ACOPF) is among the tools
required for several of the distribution system operations and expansion processes listed
in the previous paragraphs. In the ACOPF problem, one seeks the optimization of a
given objective function (e.g. minimization of generation costs, minimization of costs of
ohmic losses), subject to constraints that represent the physical laws governing power
systems and the operating limits of network equipment. Explicit reference is made here
to the AC nature of the problem, as a reminder that phenomena related to reactive power
and to bus voltage magnitudes are of great relevance to distribution system expansion
and operation [9].

The reader will notice that several of the distribution system expansion and
operation processes listed in the previous paragraphs involve discrete decisions, such as
circuit construction, placement of switches and system reconfiguration. It is obviously
in the interest of distribution engineers that such discrete decisions are modeled within
the ACOPF, in order to take full advantage of the optimization tools. However, due to
the non-linear nature of the ACOPF, factoring discrete decisions into the optimization
approach is a complex task.

As described in section 1.3, this dissertation aims at presenting a formulation for

the ACOPF in distribution systems that is amenable to the incorporation of discrete



decisions, and that may thus be used to support a wide range of applications in

operations and expansion processes.

1.2 Bibliographic review

This section provides the reader with a review of the technical literature on
decision support tools for distribution system operations and expansion planning, with
focus on the ACOPF problem and, particularly, on discrete decisions. As this
dissertation is oriented towards the solution of the ACOPF in distribution systems, the
bibliographic review will emphasize the formulation and solution approach employed
in the references, regardless of whether each reference deals with single-stage or multi-
stage applications, deterministic or stochastic problems, or other specific features that
are more involved with the application than to the formulation and solution of the
ACOPF problem.

Some of the earlier works on support systems involving discrete decisions for
distribution planning and operation, such as [10], consist of computational tools that
basically duplicate ad hoc heuristic analyses conducted by distribution system
engineers. In reference [10], which is oriented towards distribution expansion planning,
the proposed computational tool involves the sequential execution of procedures for:
comparing load forecasts to substation capacity; determining preliminary (discrete)
reinforcements for the relief of overloads, with help of heuristic procedures; checking
the feasibility of the preliminary solutions with help of a simplified load flow program
(the expression is used in [10] without further explanation); and finding solutions that
remove technical infeasibilities, with help of further heuristics.

Solution algorithms based on heuristics have, indeed, been widely used in
distribution system planning. One heuristic technique that has been widely used is the
branch exchange. This technique, particularly employed in distribution system
expansion and reconfiguration problems in which radiality constraints must be enforced,
basically consists of starting from an arbitrary initial solution that complies with the
radiality constraints, and then iteratively choosing a pair of branches to be exchanged —
this meaning that, in each iteration, a branch that does not pertain to the active network
topology is activated, and a branch that pertains to the active topology is deactivated.

The pair of branches to be activated/deactivated is chosen with help of any given metric



that captures the sensitivity of the objective function (e.g., minimization of losses or of
circuit overloading) with respect to changes in the status of branches. The method is
usually based on local sensitivities, meaning that the calculation of the sensitivities is
made considering the network topology verified at the beginning of each iteration. The
iterative process is repeated until no branch exchanges that result in improvements to
the objective function are found. Obviously, the branch exchange heuristic applies to
problems in which the discrete decisions refer to modifications in circuit status
(switched on/off for reconfiguration problems, and constructed/not constructed for
expansion problems).

The authors of [11] make use of a technique such as the one described in the last
paragraph (though not using the name branch exchange), in the context of feeder
reconfiguration for loss reduction, and with local sensitivities basically obtained with
help of the equations of the AC power flow problem, expressed in terms of complex
branch currents and bus voltages. In [11], formulas for the estimating the local
sensitivities with different levels of accuracy are presented.

Reference [12] presents a method for distribution system expansion planning
that relies on local sensitivities — and the term branch exchange is actually used to
describe the proposed method. The local sensitivities used for choosing the set of
branches to be exchanged are calculated with help of linear programming techniques. In
order to allow the use of linear programming techniques, the authors employ a “direct
current power flow calculation” [12] to model distribution network behavior. It is worth
mentioning that the authors initially present a mixed-integer linear programming
formulation of the OPF in distribution systems, based on the direct current power flow
formulation, before characterizing this approach as being excessively demanding to
solve directly, and describing and employing the branch exchange method. The authors
of [12] also employ the branch exchange method in [13], considering in the latter
reference a multi-stage problem.

Heuristic methods based on the calculation of local sensitivities are also applied
to other problems within distribution system expansion and operations planning. As an
example, a method based partially in local sensitivities (which are used within a hybrid

algorithm that combines tabu search with features from other metaheuristics') is

! Metaheuristics will be reviewed further in this section.



employed in [14] for the capacitor placement and sizing problem, in which network
behavior is modeled via non-linear equations. Heuristic methods based on local
sensitivities have also been employed to the problems of coordinated electric vehicle
charging [15] and distributed generation placement and sizing [16], [17].

Heuristic methods based on successively and iteratively performing greedy
searches, and in each iteration making a decision that most improves the value of a
given metric, have been proposed for distribution systems applications, particularly for
the network reconfiguration problems. The branch exchange heuristic is obviously an
example of such methods. Other examples are those presented in [18] and [19]: in both
methods, the solution algorithm is based on initially considering all switches closed and
executing the iterative algorithm, in each iteration opening the switch that results in the
largest improvement of a given metric. The methods employed in [18] and [19] differ
from those reviewed in the previous paragraphs in that the evaluation of the metric is
not based on sensitivity analyses considering the topology at the beginning of each
iteration as fixed, but rather on implicit investigation of the changes in the evaluation
metric that would be obtained after a switching decision would be made. In reference
[18], the evaluation metric is obtained in each iteration via the solution of a modified
ACOPF, with the simplifying assumption that all loads are current sources, and
modeling the closed switches as fully adjustable current sources. After the solution of
this modified ACOPF, the switch that carries the lowest current is selected for opening.
In the approach of reference [19], the chosen metric is the value of overall system losses
after the switching decision, and the choice of the switch to be opened in each iteration
is made via implicit evaluation of all possibilities via the standard Newton method with
second derivatives.

There are also classes of greedy algorithms for distribution system
reconfiguration that include features for partially mitigating the problems of a purely
greedy search. In the algorithm proposed in reference [20], all switches are initially
considered opened, and local sensitivities of the proposed objective function
(incremental losses divided by incremental load served) with respect to branch
switching are used to screen candidates and make the choice of a single switch to be
closed in each iteration. The solution of the full set of AC power flow equations is made
after each closing action in order to ensure feasibility, and the authors propose a

backtracking feature, based on the construction of lists and on ranking, to mitigate the



problems of a purely greedy search. Reference [21] proposes a method that starts with
all switches closed, and then proceeds to screening candidates and preliminarily
determining the switch to be opened by evaluating AC power flow equations. A
heuristic based on the branch exchange technique is used to partially mitigate the short-
sightedness of a purely greedy search.

A number of methods based on representing a switch by a continuous function,
rather than a discrete (on/off) model, have been proposed for the distribution system
reconfiguration problem. Reference [22] proposes a method in which all switches are
initially considered closed, and heuristics are employed to iteratively open switches
until the network is radial. The first step in the heuristic procedure for choosing the
switch to open is an ACOPF in which switches are represented by a linear variable that
may assume any value within the interval [0, 1]. The objective function of this ACOPF
accounts for power losses and branch utilization costs. The optimal value of the
continuous decision variable that represents switches is used for raking candidates, and
posterior heuristics involving evaluation of full power flow equations, now with
discretely modeling (on/off) of the status of short-listed switches, are executed to
support a final decision on the switch to open in each iteration. In [23], switches are
represented via sigmoidal functions, and a non-linear ACOPF is solved in each iteration
of a heuristic that starts with a meshed topology and successively open switches, in
order to achieve a radial topology. The Lagrange multipliers associated with specific
constraints of the ACOPF are used for the ranking of switches to be opened, in the first
steps of the heuristic procedure. Sigmoidal functions have also been used to model
discrete decisions regarding capacitor placement [24], within a heuristic approach which
is similar to that described above. It is worth mentioning that reference [23] treats both
network reconfiguration and capacitor placement decisions.

The attention of the reader is now directed back to methods built upon local
sensitivities. Besides being used in iterative heuristics, local sensitivities have also been
used in methods that utilize classical optimization techniques (mainly linear
programming and mixed-integer linear programming) to solve formulations of the
ACOPF that are characterized by a local linearization around a pre-defined operating
point.

As an example, the authors of [25] present a set of linear equations to solve the

steady-state power flow problem in distribution networks, and propose a linear



programming model for the problem of minimizing losses in a distribution system with
distributed generation. In the proposed formulation, the complex nature of state
variables is taken into account while defining equations for the First and Second
Kirchhoff Laws in rectangular coordinates. As the formulation is expressed in terms of
complex voltages and current flows and injections (as opposed to complex voltages and
power flows and injections), the current demanded by constant-power loads would be
described via non-linear equations. The authors thus employ a representation of
constant-power loads based on local linearization of the relationship among load
currents and bus voltages, with help of approximate multiplicative factors determined
offline (i.e., previously to the solution of the steady state power flow or to the
optimization problem, and not within the problem solution). The solution approach
proposed in [25] does not explicitly deals with discrete decisions variables. Another
example of a method based on local linear approximations used within a linear
programming approach is [26]. Reference [26] presents an expansion planning model
with approximate and simplified modeling of network behavior, in which the voltage
drop across a given branch is approximated as a real quantity, given by the product of
the branch apparent power flow (in MVVA) by a constant calculated offline (i.e., not
within the solution of the optimization model), as a function of an assumed (lagging)
power factor, branch impedance and rated voltage.

Simplified models of network behavior based on local linear approximations are
also used within MILP approaches to the distribution system expansion planning
problem. A number of references employ restrictive approximations regarding the
complex nature of bus voltages and branch currents, while proposing MILP
formulations. In [27], a mixed-integer expansion planning model that encompasses both
the primary and the secondary distribution grids is presented. The authors of [27]
suggest that constraints on voltage drops along sets of branches are explicitly enforced
only for identified critical routes (a critical route being a set of branches that connects
the voltage source to a bus with potential violations of voltage limits). They also suggest
approximating those voltage drops as the product of apparent power flows by a
multiplicative constant calculated offline, with basis on branch parameters and bus
voltages obtained from a load flows solved previously to the optimization algorithm.

MILP approaches that employ other classes of approximations have also been

proposed for distribution system expansion planning problems. For instance, reference



[28] proposes one such model, focusing on switch placement with the objective of
minimizing capital investment and operation costs, with particular emphasis on
interruption costs. Due to the exclusive focus on continuity, only the First Kirchhoff
Law is modeled, with the Second Kirchhoff Law (the voltages law) purposefully not
being incorporated to the model.

References [29] and [30] also present mixed-integer models for distribution
system expansion planning, with particular attention respectively to distributed
generation and to the treatment of reliability. In both of these references, voltage drops
across branches are approximated by the real product of branch currents and branch
impedances (which is a restrictive approximation), and all loads are modeled as fixed
current injections. Modeling loads as fixed current injections may be interpreted as a
linearization around a pre-defined operation point, due to the fact that the actual currents
injections corresponding to constant-power and constant impedance loads vary
according to bus voltages.

It is worth pointing out that simplifications such as representing voltage drops
across branches by the real product of branch currents and branch impedances were also
employed in mixed-integer programming approaches to distribution system expansion
planning dated from the early 1980’s, such as [31]. Other MILP formulations for
distribution system expansion planning problems proposed in the early 1980°s employ
other classes of approximations regarding the network model. For instance, reference
[32] focused exclusively in connectivity and balance of power while representing
network behavior, not accounting for Kirchhoff’s Voltage Law. Other models, such as
[33], placed emphasis on the solution of the distribution expansion planning problem
using pre-calculated, aggregate cost functions — the power-loss envelope curves defined
in [33] —, with little attention to the representation of network behavior.

A number of other mathematical programming approaches, besides linear and
mixed-integer programming methods, have been applied to distribution system
operations and planning problems. References that employ such approaches are
reviewed in the following.

In reference [34], which deals with the problem of service restoration in
unbalanced three-phase distribution systems, the non-linearities associated with the AC
OPF model are accommodated within a mixed-integer non-linear programming

formulation. The authors point out that the solver LINGO [35] (citation obtained from



[34]), which treats mixed-integer non-linear programs with a branch-and-bound
algorithm in which each node of the branch-and-bound tree is evaluated via successive
linear programming, has been used for the solution of the proposed formulation.

Reference [36] also presents a mixed-integer non-linear programming
formulation of the distribution system reconfiguration problem. The proposed
formulation includes binary decisions modeling the connection/disconnection of
capacitors and generating units. The solution approach involves two-stage Benders
decomposition, in which all discrete decisions are treated within the master problem
(which has a quadratic objective function due to the modeling of losses, and includes
some of the linear network constraints), whereas the slave problem ensures feasibility
with respect to (non-linear) network behavior. The master and slave problems are
coupled via linear Benders cuts.

Variable transformations are an important technique employed in references [37]
and [38]. Reference [37] presents a mixed-integer quadratically constrained
programming formulation for the problem of distribution system reconfiguration to
minimize ohmic losses. The exact formulation of [37] is based on defining
nonconventional transformed variables in order to model network behavior. Finally,
reference [38] deals with the problem of distribution network reconfiguration to
minimize ohmic losses, presenting an exact convex second-order cone programming
formulation for this problem, as well as a MILP formulation with polyhedral
approximation of the conic constraints (for which auxiliary nonconventional variables
are defined).

Metaheuristics have also been widely employed as solution approaches to
distribution system operation and planning problems in recent times. The flexibility of
these approaches allows modeling the full set of non-linear equations for the ACOPF,
within several classes of problems. The most common approaches used in recent times
include the methods listed below, used at times in combinations with other heuristics:

Genetic/evolutionary algorithms: examples of references that make use
of this technique include [39]-[50].

Simulated annealing: examples of references that make use of this
technique include [51]-[54].

Tabu search: examples of references that make use of this technique
include [55]-[57].



It should be noted that, for the specific problem of network reconfiguration for
achieving minimal losses in radial distribution systems, a brute-force algorithm based
on exhaustive search have been proposed in [58]. The authors employ graph-theoretic
techniques, based on semi-sparse transformations of a current sensitivity matrix, to
increase the efficiency of the exhaustive search method.

In complement to the previously mentioned references, the reader may find
extensive reviews of distribution system planning models in [59] and [60], including
works that deal with discrete decisions, but that were not treated in this section due to
the similarity with at least one of the listed references.

Having concluded the bibliographic review, the objective and the technical
contributions of this dissertation are presented in the following section.

1.3 Objective and contributions of this dissertation

The objective of this dissertation is to develop a mixed-integer linear
programming (MILP) reformulation of the AC optimal power flow (ACOPF) problem
for distribution systems that:

Q) captures the non-linear behavior of the distribution system with an

arbitrarily accurate approximation;

(i) supports both continuous and discrete decisions, respectively via
continuous and integer decision variables;

(iii) is constructed with basis on conventional physical variables that
describe network behavior (bus voltages, branch currents, bus power
injections, etc.), yielding significant flexibility in defining a number
of possible objective functions for the ACOPF, and extending its
applicability to a number of different problems faced by distribution
system engineers; and

(iv) can be solved to global optimality with the use of widely employed
and commercially available mixed-integer linear optimization solvers.

Furthermore, as most commercially available mixed-integer linear optimization
solvers have options to provide the user with detailed execution reports, including
information on the duality gap displayed on-screen during execution, the user is able to

control the quality of the solutions obtained in the course of the solution of the MILP
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problem, eventually interrupting the optimization algorithm and obtaining an
intermediate solution, for which the value of the duality gap is known (i.e., the quality
of the solution can be controlled), if desired.

Convexification and linearization techniques will be extensively used to develop
the MILP reformulation of the ACOPF problem for distribution systems, and the
particular physical characteristics of the distribution system will be explored while
applying these techniques, with the goal of enhancing its computational efficiency.

The technical contributions of this dissertation relate not only to the novelty of
the proposed MILP reformulation of the ACOPF, but also to the fact that it
simultaneously accounts for all aspects listed at the beginning of this section. The reader
will notice that none of the methods presented in the reviewed references
simultaneously displays the set of attributes (i)-(iv) listed before. The following points
are highlighted:

Despite the fact that many of the methods based on heuristics of
metaheuristics generally lead to high-quality sub-optimal solutions, none
of them present inherent guarantees of convergence to the global optimal
solutions.

Many of the methods based on classical mathematical programming
techniques, particularly those that employ linear programming or mixed-
integer programming, are based on severe and restrictive approximations
of the non-linear behavior of the distribution network.

Some methods based on mathematical programming apply techniques
that are not currently available in the most commonly used commercial-
grade optimization solvers. The possibility to use commercial
optimization solvers is important for industry applications, due to the
guarantee of longevity, maintainability and prevention of obsolescence of
the solver that underlies practical utility applications.

At this point, it is worth mentioning that, in the technical literature, reference has
already been made to the application of the linearization and convexification techniques
used in this dissertation to power system problems. As an example, the authors of [61],
while discussing the appropriateness of MILP reformulation of non-linear problems,
make explicit reference to “network problems with nonlinearities occurring on the

edges such as the design and management of energy networks design”, though not
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providing any formulation of a specific problem. In fact, MILP reformulations have
been proposed for the problem of the ACOPF in transmission systems, employing
exclusively equations that are functions of voltage and power quantities [62]. However,
to the knowledge of the author of this dissertation, no formulation directed to
distribution systems, that employs equations that are functions of voltages and currents
to describe network behavior, and that take specific characteristics of the distribution
network into account in order to achieve adequate trade-offs between accuracy and
computational performance, have been proposed.

The formulation proposed in this dissertation applies both to radial and to
meshed distribution systems (a feature that lacks in many of the approaches listed in the
bibliographic review, notably among those based in greedy heuristics, such as the
branch exchange technique). However, the application of the proposed approach is
currently limited to either three-phase balanced distribution systems or to single-phase

networks.

1.4 Organization of the dissertation

The remainder of this dissertation is organized as follows:
In chapter 2, the non-linear version of the ACOPF problem in
distribution systems is presented. This chapter will begin with a
discussion on the particular characteristics of distribution networks that
are relevant for the formulation and solution of the optimal power flow
problem. Selected applications of the ACOPF in distribution system
operations and expansion planning are also presented.
Convexification and linearization techniques for the reformulation of
non-linear, non-convex problems (such as the ACOPF in distribution
systems with discrete decisions) as mixed-integer linear programs are
presented in chapter 3.
The proposed MILP reformulation of the ACOPF for distribution
systems is presented in details in chapter 4.
The proposed formulation is applied to several case studies in chapter 5.

The analysis of results of these case studies allows showecasing the
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applicability of the proposed formulation and discussing its features and
characteristics.

Conclusions and suggestions for future work are presented in chapter 6.
References are listed at the end of this document.

The input data for the case studies of chapter 5 is presented in Appendix
A (chapter 7).

An alternative MILP reformulation of the ACOPF in distribution systems
is presented in Appendix B (chapter 8).

An alternative method for formulating the constraints through which the
current injections of generators are obtained is presented in Appendix C
(chapter 9).
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2  THE (NON-LINEAR) ACOPF IN DISTRIBUTION
SYSTEM OPERATIONS AND EXPANSION
PLANNING

This chapter begins with the presentation of characteristics of the distribution
system that are relevant for the formulation of the ACOPF problem.

The formulation of the non-linear version of the ACOPF problem for
distribution systems (not vyet including the modeling of discrete decisions?) is then
presented in section 2.2.

The chapter ends with a list of selected applications of the ACOPF to

distribution system expansion and operations planning.

2.1 Relevant characteristics of distribution systems

For the purposes of this dissertation, the distribution system is defined as the set
of current-carrying facilities at rated voltages inferior to 69 kV that either functions as
an isolated system or originates at step-down substations at the interface with the
subtransmission or transmission network. In this definition, the distribution system
includes all electrical power sources, loads and associated control equipment connected
to the buses at rated voltages inferior to 69 kV. This definition is clearly oriented
towards the ACOPF problem and by no means aims at being exhaustive — this is
illustrated by the very fact that the definition does not coincide with that used in
PRODIST [63]°, the grid code for electrical power distribution in Brazil.

The following subsections review particular characteristics of the distribution
system, which are relevant to the formulation of the ACOPF problem (and particularly

to its MILP reformulation, as will be seen in chapter 4).

? The representation of discrete decisions will be dealt with in chapter 4.

* In PRODIST [63], the distribution system is defined as the set of electrical facilities and equipment
owned by a distribution utility and located in its concession area, and may include facilities at voltage
levels equal to and above 69 kV. According to PRODIST, the set of facilities with voltages below 69 kV

would be defined as the union of the medium voltage and the low voltage distribution (sub)systems.
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2.1.1 Shunt susceptance of overhead distribution lines

The first relevant characteristic of distribution systems is that the shunt
susceptance of overhead distribution lines is comparatively lower than that of overhead
transmission lines. This relates mainly to rated voltage levels and to constructive
characteristics of distribution lines.

In fact, it is usual to consider the shunt susceptance of overhead distribution
lines may as negligible in power flow calculations. In this case, circuits are represented
exclusively by their series resistance and reactance — this approximation is considered,
e.g., in [19], [25], [34], [64]-[67], and will also be adopted in this dissertation.

2.1.2 Resistance-to-reactance ratio

Also due to the comparatively lower voltage levels and to constructive
characteristics, the typical resistance-to-reactance (R/X) ratio of overhead distribution
lines is comparatively higher than the typical ratio of transmission and subtransmission
lines.

This has important implications for the power flow analyses in distribution
systems, which will be discussed with help of Figure 2.1.

. Im Im
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[ 4 . - > - >

Ikm Re Ikm Re
(a) (b) (©)

Figure 2.1: Model of a distribution circuit (a); phase diagram considering low R/X ratio;
(c) phase diagram considering high R/X ratio

Part (a) of Figure 2.1 depicts a simple series-impedance model of a fictitious
distribution circuit, in which the line current lags the voltages at the two extremities.
Parts (b) and (c) indicate phase diagrams, with a higher R/X ratio considered for the

circuit of part (c). To facilitate the discussion, the modulus of the branch impedance,
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|Rim + J * Xim|, 1 kept approximately constant while varying the R/X ratio from Figure
2.1.(b) to Figure 2.1.(c).

By comparing the phase diagrams, it becomes clear that a higher R/X ratio
results in a lower angular difference between the complex voltages V,, and V,,,. This
illustrative analysis alludes to the fact that, due to the high R/X ratios, the angular
differences between complex voltages of buses of a distribution network usually do not
display values as high as those from transmission systems.

Figure 2.1 is merely illustrative, and the configuration of the diagrams would
vary if the phase angle difference between the voltage V,, and the line current I, were
modified. One of the factors that affect the phase angle between bus voltages and
branch currents is the power factor of bus injections. At this point, the reader shall keep
in mind that there are usually incentives for customers connected to distribution systems
to keep the power factor of their loads within relatively narrow intervals — e.g., the
Brazilian regulation [68] prescribes that the power factor of loads connected to
distribution systems at all voltage levels below 230 kV shall be kept within the interval
[0.92)agging: 0.921eading]. The fact that load power factors are usually kept close to unitary
values basically contributes to keeping the angular differences among complex voltages
of buses of the distribution network at low values.

Thus, if any given bus within the distribution system or at its frontier (e.g., the
bus that represents the high-voltage side of the step-down transformer at an interface
with the subtransmission or transmission system) is chosen to be the angular reference
bus, and a reference angle of 67¢/ = 0° is attributed to it, the voltage angles of all buses
in the distribution network will usually vary within a narrow interval around zero. The
reader shall keep this in mind, as this fact will be relevant for the presentation of the
MILP reformulation of the ACOPF in distribution systems, in chapter 4.

2.1.3 Radiality constraints and reconfiguration

As of this writing, distribution systems are predominantly operated radially, as
the radial configuration allows that adequate protection coordination can be achieved
even if more economical protection equipment is used — e.g., the protection system may
be built mainly upon fuses, which are not only economical but also comparatively

reliable in interrupting fault currents [6]. There are, however, distribution systems that
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are operated as meshed networks [6], [69]. In fact, meshed operation may be
economical under strict reliability requirements, and it has been argued that, under
specific conditions, it may be adequate to facilitate the penetration of distributed
generation [70].

Many distribution systems that are operated radially are meshed in design — this
meaning that there are switches that may be opened or closed to reconfigure the system
both in response to a disturbance (e.g., allowing the isolation of a fault) or to enhance
operating efficiency (e.g., with respect to ohmic losses) [64]. Evidently, in distribution
systems for which radial operation is required in order to achieve protection

coordination, any reconfiguration of the network shall comply with radiality constraints.

2.1.4 Unbalance between phases

Distribution systems may be subject to unbalanced conditions due to structural
and operational factors [71]. Structural unbalanced relates to aspects such as the
existence of single-phase or two-phase circuits (mainly in secondary systems),
incomplete transposition of three-phase circuits, asymmetrical wiring of transformers,
etc. Operational unbalance is that associated with the uneven distribution of single-
phase and two-phase loads within the network, and to unbalanced three-phase loads
[71]. Unbalanced operation in distribution systems may lead to increased losses, limit
transformer loading and bring additional problems with respect to voltage control [71].

The assessment of the impacts of unbalanced operation in power flow
simulations requires the use of an unbalanced three-phase model, allowing the
representation of different electrical parameters for each phase of the circuits, as well as
permitting the modeling of unbalanced loads. It should be noted, however, that
unbalance between phases in the primary distribution system (medium voltage) is less
significant than that of the secondary distribution system (low voltage), and that, within
the primary distribution system, unbalance is less significant in feeders (usually three-
phase circuits) than laterals [72].

The ACOPF formulation proposed in this dissertation is based on the equivalent
single-phase model for balanced three-phase electrical systems, and does not apply to
unbalanced distribution systems. Its primary applicability is therefore to the primary
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feeder system®. As indicated in section 6, the extension of the proposed MILP
formulation of the ACOPF model to unbalanced three-phase systems is a possible topic

for future work.

2.2 The ACOPF for distribution systems

This section is dedicated to the presentation of the non-linear version of the
ACOPF problem for distribution systems®, with focus on mathematical modeling.

Section 2.2.1 introduces the constraints of the ACOPF, through which the
electrical behavior of the network and of bus injections is modeled. Constraints related
to equipment operating limits are also presented. Objective functions associated with
selected applications of the ACOPF for distribution system operations and expansion
planning are presented in section 2.2.2.

Though discrete decisions are briefly mentioned in the following sections, their
full mathematical formulation is presented only in chapter 4. Nonetheless, the reference
to discrete decisions in this section will allow the reader to notice that the ACOPF for
distribution system operations and expansion planning applications is a non-convex,
mixed-integer non-linear programming problem (MINLP). Techniques for the
reformulation of such problems as mixed-integer linear programs will be presented in
chapter 3.

The nomenclature used in this and other chapters of this dissertation has been

presented at a specific section of this document, before the introductory chapter.

2.2.1 Constraints: modeling electrical behavior and enforcing
operating limits

The formulation presented below is based on expressing complex variables in

rectangular coordinates (real and imaginary components, as opposed to angles and

* It is worth mentioning that, for many of the applications of interest to distribution systems engineers,
analyses restricted to the primary feeder system are sufficient — e.g., switchable elements are usually
restricted to the feeder system, meaning that reconfiguration studies executed with models restricted to
this system will usually lead to satisfactorily accurate results.

® The reader will notice that the formulation presented here is not yet the proposed MILP reformulation of

the ACOPF, which will be presented only in chapter 4.
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magnitudes), and utilizing voltages and currents (as opposed to voltages and power
quantities) to describe Kirchhoft’s laws. The motivation for these modeling choices will

be presented further in this document.

2.2.1.1 Kirchhoff’s Laws

Equations (1) and (2) model Kirchoff’s Current Law for all buses in the

distribution system:

Ig% + Xmeay Liom = Ighk + Xmeay Imk Vk € Qp (1)
1% + Zmeay T = gk + Zmeay Ik Vk € Qp )
where:
k;m Indices for buses of the distribution system;
Qp Set of all buses in the distribution system;
Qy Set of buses directly connected to bus k;
1% Real component of current demanded by load connected to bus k;
If{',i Imaginary component of current demanded by load connected to bus k;
Ig% Real component of current generated by generator connected to bus k;
;,mk Imaginary component of current generated by generator connected to bus k;
Iis, Real component of current flowing through the branch connecting buses k
and m, from bus k to bus m;
s Imaginary component of current flowing through the branch connecting

buses k and m, from bus k to bus m.

The decision variables in equations (1) and (2) are 175, IJ%, 0% Ié””,ﬁ, Is, and

II™ (continuous decision variables, free in signal).
Equations (3) and (4) model Kirchhoff’s Voltage Law for all branches in the

distribution system:

Vlz'e _ VmT'e — II:Ten *Rym — Illcrrnn *Xim Vkm € WY (3)
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where:

km Index for branches of the distribution system;
Y. Set of all branches in the distribution system;
Vi€ Real component of voltage at bus k;

yim Imaginary component of voltage at bus k.

At this point, a few words on the notation employed for in the above definitions
are in order. The set W, is considered to be a set of ordered pairs, and the first and
second entries of each ordered pair correspond to the from and to buses of a branch in
the distribution system. Thus, the element (k, m) of the set W = {(1,2),(1,3) --- (k, m)}
indicates the distribution circuit that connects bus k to bus m. For the sake of
conciseness of notation, we refer to (k, m) simply as km.

The decision variables in equations (3) and (4) that have not yet been identified
are V¢ (continuous, non-negative®) and V™ (continuous, free in signal).

The constraints represented by equations (1) to (4) are linear, and can therefore
be readily represented in linear or mixed-integer linear programs. In fact, the linearity of
the equations that describe Kirchhoff’s laws is one of the reasons for employing a
rectangular formulation for the power flow equations, with basis on voltages and
currents (as opposed to voltages and power quantities) values.

For switchable branches in the off state or for candidate branches (candidates for
distribution system expansion) that have not been constructed, these constraints must be

relaxed. This will be discussed in chapter 4.

2.2.1.2 Generators

As Kirchoff’s laws have been formulated with basis on voltages and currents (as
opposed to voltages and power quantities), it is necessary to obtain the (voltage-

dependent) values of 175 and Iéf’,ﬁ for all generators in the system. This is done with help

of equations (5) and (6):

® For the typical bus voltage angles verified in distribution systems (considering that the angular reference
bus is within the distribution system and that the reference angle is zero), V; ¢ may be characterized as a

non-negative decision variable.
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0% =Sk gk + G -g,? Vk € Qgpy (5)

o =G Ik — &k g7 Vk € Qgen (6)
where:
Qeen Set of all buses to which generators are connected,
gr Active power generated by generator at bus k;
g,? Reactive power generated by generator at bus k;

ki ke Auxiliary decision variables, defined below.

The auxiliary variables &, and , are dependent on the real and imaginary

components of the voltage at bus k, as shown below:

)
Sk = Vkre/( kre2 + V" ) Vk € {Q¢en U Qpcre) (7)

. . 2
Ck = Vlém/(vkre2 + V" ) Vk € {Q¢en U Qpcre) (8)

The decision variables in equations (5) to (8) that have not yet been identified
are &, (continuous, non-negative’) and ¢, (continuous, free in signal). It is assumed that
the reactive power output of all generators in the system is controllable, and g,? is thus a
(continuous) decision variable. Also, if the active power output of the generator at bus k
is controllable, gf is a (continuous) decision variable. Whether gf and g,‘f are non-
negative or free in signal will depend on the bounds defined as inputs for the ACOPF —
for typical applications, g will be non-negative and g,f will be free in signal.

The reader will notice that the constraints specified in equations (7) and (8) are
enforced not only for the buses pertaining to Q.gy, but also for those in the set Qpcrg.
This latter set will be defined in section 2.2.1.3.1.

The non-linear nature of the constraints represented by equations (7) and (8) is

evident.

" For the typical bus voltage angles verified in distribution systems (considering that the angular reference
bus is within the distribution system and that the reference angle is zero), &, may be characterized as a

non-negative decision variable.
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2.2.1.3 Loads

Analogously to what has been done for the current injections from generators, it
is necessary to define constraints through which the currents 175 and 15% will be
obtained, for all loads in the system. Those constraints are presented in the following
sections, for constant-power, constant-current and constant-impedance loads. These are
the three basic components of the widely employed static load model known as ZIP
model [73]. For the sake of conciseness of presentation, the equations presented below
consider that the load at any given bus is modeled as purely of the constant-power type,
purely of the constant-current type or purely of the constant-impedance type. Still, the
modification of the equations to account for any affine combination of these types of

loads is trivial.

2.2.1.3.1 Constant-power loads

The currents demanded by constant-power loads are obtained with help of
equations (9) and (10):

178 =& - dip + § - dy Yk € Qperg (9)

ITh =G dff — & d,‘f Vk € Qpcre (10)

where:
Qpcre Set of all buses to which constant-power loads are connected:;

ar Nominal value of active power demanded by load at bus k;

d,‘f Nominal value of reactive power demanded by load at bus k.

The auxiliary variables &, and ), have already been defined through equations
(7) and (8). Constraints (9) and (10) are linear.
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2.2.1.3.2 Constant-current loads

Keeping in mind that constant-current loads are characterized by the linear
variation of the demanded power with respect to bus voltage magnitude [73], the

currents demanded by these loads can be obtained with help of equations (11) and (12):

I35 = Mk - die + 1, - d}? Vk € Qicrg (11)
10 = Ky - dfy =y dy Yk € Qucrg (12)
where:
Qcre Set of all buses to which constant-current loads are connected:;

Nk ; K  Auxiliary decision variables, defined below.

The auxiliary variables n, and k; are dependent on the real and imaginary

components of the voltage at bus k, and defined as:

nk — V,:e/ Vlzez + Vlémz ,V k E QICTE (13)

Kk = Vkim/ Vkrez + Vkimz Vk € Qcre (14)

The decision variables in equations (11) to (14) that have not yet been identified
are 0, (continuous, non-negative®) and «;, (continuous, free in signal).

Constraints (13) and (14) are clearly non-linear.

2.2.1.3.3 Constant-impedance loads

The currents demanded by constant-impedance loads can obtained with help of
the following constraints:

® For the typical bus voltage angles verified in distribution systems (considering that the angular reference
bus is within the distribution system and that the reference angle is zero), n, may be characterized as a

non-negative decision variable.
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l

R o X

I35 =V L+ =5 Vk € Qzcrp (15)
|z |z

jim — yim . Rk _ yre | X keq 16

ak = Vi 7 — Vi z Vi € Qzcrg (16)

|l

Qzcre Set of all buses to which constant-impedance loads are connected;

R Resistance of constant-impedance load at bus k;
Xk Reactance of constant-impedance load at bus k;
VA Impedance of constant-impedance load at bus k.

All decision variables in constraints (15) and (16) have been previously
identified. The reader will notice that (15) and (16) correspond to linear constraints.
At this point, it is worth recalling that the nominal value of the load associated

with constant-impedance loads — i.e., the value of the load at the voltage of (1£0°) p.u.

—is given by:
R} R}
k= < ; 1(3 =—k Vk € Qzcre (17)
|zk| |zl

2.2.1.4 Operating limits

2.2.1.4.1 Bounds on bus voltage magnitudes

Constraints that ensure that bus voltage magnitudes are kept within admissible

limits are presented below:

V, = /V,;ez + Vm? Yk € {Qp\Qppr} (18)

Vi <V <V, Vk € {Qp\Qrgr} (19)
where:
Qrer Set of voltage reference buses in the system;
Vi Magnitude of voltage at bus k;
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Vi Vi Lower and upper bounds for magnitude of voltage at bus k.

The decision variable in equations (18) and (19) that has not yet been identified
is V. (continuous, non-negative).

The operator \ indicates set difference — i.e., A\B = {x € Aand x ¢ B}, where
A and B are sets. The reader will notice that constraints (18) and (19) are not enforced
for the set of voltage reference buses in the distribution system, as discussed in in
section 2.2.1.5.

Constraint (18) is evidently non-linear.

2.2.1.4.2 Bounds on branch currents

At this point, it is important to recall that thermal loading limits of transmission
lines are actually related to current loading, despite the fact that, mainly in applications
of the ACOPF to transmission systems, it is common to represent these thermal loading
constraints approximately as bounds on apparent power flows.

The following constraints ensure that branch current magnitudes are kept within

admissible limits:

hm = JIL82 + 1 Yk €W, (20)

Lem < Tem Vk € ¥, (21)
where:
lem Magnitude of current flowing through branch km;
Lim Upper bound for magnitude of current flowing through branch km.

The decision variable in equations (20) and (21) that has not yet been identified
is I, (continuous, non-negative).

The reader will notice that (20) is a non-linear constraint.
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2.2.1.4.3 Bounds on active and reactive power output of generators

Constraints that ensure that the active and reactive power output of generators
are kept within the admissible ranges are presented below:

i < 9k < 9k Vk € Qcrrpg (22)

gr S 9gp < 9¢ ik € Qgpy (23)
where:

QcrrPo Set of buses to which generators with control over the output of

active and reactive power connect;

% ; g_,’j Lower and upper bounds for active power output of generator at
bus k;

g,‘f ; E Lower and upper bounds for reactive power output of generator at
bus k.

Equations (22) and (23) correspond to linear constraints.

2.2.1.5 Voltage reference buses

If the representation of more than one islanded system in a single ACOPF
problem is required, it is necessary to define one (and only one) angular reference bus
for each island. For this reason, we refer to the definition of voltage reference buses
(plural emphasized), which pertain to the set Qzgr. Obviously, for any specific ACOPF
application that requires the representation of a single electrical island, the cardinality of
the set of reference buses will be |Qggr| = 1.

The real and imaginary components of the complex voltage at the angular

reference bus may be specified with help of the following constraints:

V]‘(re = Vkref ' COSQI:ef ,V k € ‘Q‘REF (24)

V]ém = Vkref ) San;ef ,\7’ k € ‘Q‘REF (25)
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where:

Vkref Fixed voltage magnitude of reference bus, an input parameter for the
ACOPF,

cos6, ; sing] ¢

Cosine and sine of reference angle for reference bus.

As the voltage magnitudes of reference buses are fixed, it is not necessary to
enforce constraints (18) and (19) for them, hence the previous definition of these
constraints.

If, alternatively, the voltage magnitudes at the reference buses are to be
considered decision variables in any specific application, equations (24) and (25) should

be substituted for the following constraints:

V,:e = Vk . COSGI:ef ,V k € QREF (26)

V]ém = Vk - SlTl@;ef ,V k € QREF (27)
where, as previously stated, V;, is a continuous decision variable. In this case, constraint

(19) shall also be enforced for the set of reference buses.
Constraints (24) to (27) are linear.

2.2.1.6 Slack buses and buses without generators and/or loads

The following set of constraints ensures that the load currents of all buses to

which no loads connect are set to zero:
1}1% = IcilT,rIlc =0 Vk € {Qp\Qroap} (28)

where:

Q04D Set of buses to which loads connect, Q;p4p = {Qpcre U Qicre U Qzere}-
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The following set of constraints ensures that the generator currents of all buses

to which no generators connect are set to zero:

g,rlé = 15’,2 =0 Vke {QB\{QGEN U 'QSLACK}} (29)

where:

Qgrack  Setof all slack buses in the system.

The reader will notice that (29) ensures that the generator currents I;’,ﬁ and Ié,mk

may assume any given value for the buses in set Qg; 4cx. It is important to emphasize
that, in the ACOPF problem, it is not necessary that slack buses are defined — an
ACOPF problem without slack buses is potentially feasible whenever the generating
capacity within the system is sufficient to supply its load and cover ohmic losses.
However, for some specific applications, it may be in the interest of the distribution
system engineer to define slack buses, and in these cases Qg; 4cx Will be a nonempty set.

It should also be emphasized that it is not necessary that the sets Qg; 4cx and
Qgrgr coincide — i.e., a slack bus may or may not be a voltage reference bus, and a

voltage reference bus may or may not be a slack bus.

2.2.1.7 Radiality constraints

The formulation of radiality constraints demands the use of binary decision
variables, and will therefore be presented only in chapter 4. For now, it suffices to
indicate that radiality constraints will ensure that each active bus in every island of the
system will be connected to the root bus of that island via one and only one electrical
path, with no loops. The root bus is that from which the radial network originates, and,
for most practical applications, this will be the bus at the interface of the distribution
system with the transmission or subtransmission system.

It is worth recalling that, as stated in section 2.1.3, there are distribution systems
that are operated in a meshed, and not a radial, fashion. The ACOPF formulation
proposed in this dissertation is valid both for meshed and for radial systems — the
difference is that, if radiality is required, a specific set of radiality constraints (that will

be indicated in chapter 4) must be enforced.
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2.2.2 Objective functions for selected distribution system
operations and expansion planning applications

In this section, the mathematical formulation of objective functions associated
with selected applications of the ACOPF for distribution system operations and
expansion planning is presented. The equations of this section are potentially non-linear,
and their MILP reformulation will be presented in chapter 4. Though applications
involving discrete decisions are preliminarily presented here (so that the reader can have
a better comprehension of the full problem to which the linearization and
convexification techniques presented in chapter 3 will be applied), their full
mathematical formulation will be shown only in chapter 4.

Each of the following subsections will begin with the mathematical formulation
of an objective function, such as minimization of generation costs, minimization of
costs of losses, minimization of load shedding costs, etc. These may be also interpreted
as modules of a composite objective function — e.g., a given distribution system
operations planning application may require the simultaneous minimization of losses
and of load shedding costs. An enumeration of practical applications of the presented
objective functions will follow the mathematical formulation in each subsection. This
enumeration aims not at being exhaustive, but only at illustrating the flexibility of the
proposed formulation of the ACOPF problem.

The operations and expansion planning applications presented in this chapter
involve the evaluation of a single operating point of the distribution grid, which
constrains the universe of treatable problems to deterministic, single-stage applications.
It is worth mentioning, however, that both the non-linear formulation presented in this
chapter and the MILP reformulation presented in chapter 4 may be employed in
applications in which more than one operating point is evaluated. Thus, it is
theoretically possible to treat stochastic and multi-stage problems — naturally, at the cost
of augmented computational requirements —, even though this topic is has not yet been

subject to research.
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2.2.2.1 Minimization of costs of load shedding

In case of contingencies or disturbances that affect the distribution network, load
shedding may be adopted as a last-resource remedial action. As of this writing, most
distribution utilities implement load shedding via controlled de-energization of entire
segments of the distribution network, mainly by maneuvering switches in the primary
distribution feeder system. With this implementation, each load in the network will be
either completely de-energized (shed) or will not experience any load shedding at all —
thus, a representation of the discrete nature of the decision to de-energize of each load is
required.
Assuming that the costs of load shedding are proportional to the nominal value
of the loads in the network, the following formulation may be defined:
ZSED = min{Sen, 0 87 df - pi) (30)
where:
zSHED Value of the objective function modeling the (minimization of) load
shedding costs; zSHEP may also be used as a parcel of a composite objective
function;

Q04D Set of all buses to which loads are connected, defined as
Qroap = {Qpcrr U Qicre VU Qzere}

c HED Cost coefficient associated with load shedding at bus k;

Pk Binary decision variable that indicates if load at bus k is shed (p, =1

indicates that load is shed).

This discrete modeling of load shedding demands the modification of some of
the constraints defined in section 2.2.1. As the modification of these constraints
involves the use of discrete decision variables, it will be discussed in details only in
chapter 4.

Future technological advancements may facilitate the widespread employment
of other load shedding mechanisms, including those in which the utility decides on what
parcel of the load to curtail in each bus — i.e., the amount of load shedding in each bus

would be a continuous decision variable. If such mechanisms are to be considered in an
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ACOPF application, d£ should be modeled as a continuous decision variable, and the

following objective function would be employed:
2HPC = min{Yyea, 0 CEED - (d — df)) (31)

where:

zSHDC Value of the objective function modeling the (minimization of) load
shedding costs, considering the case in which df, is modeled as a continuous
decision variable; z5#P¢ may also be used as a parcel of a composite
objective function;

di'ref Reference value (value with no load shedding) of the active load at bus k.

This work will focus on the former formulation of the objective function (zS7EP,
as opposed to zSH#PC)  as it currently corresponds to the more common practice for the
implementation of emergency, last resource load shedding actions. Thus, for all
equations presented in this dissertation, with the exception of equation (31), df is a
parameter (the nominal value of the active load at bus k).

The minimization of load shedding costs may compose the objective function in
a wide range of applications in distribution operations and expansion planning, such as:

Elaborations of contingency plans;

Reliability studies (which would require the evaluation of more than one
operating point);

Comparison of alternatives and estimation of added value of

reinforcements, in the context of system expansion planning.

2.2.2.2 Minimization of costs of curtailment of non-controllable

generation

The distribution utility may not have full control over the output of some of the
distributed generators in its network, either due to these generators being located at the
consumer side of the meter (assuming that there is no centralized dispatch mechanism in
force) or to the fact that they rely on primary energy sources that are essentially non-

controllable, as in the case of solar photovoltaic panels. Depending on specific incentive
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mechanisms for distributed generation prescribed by regulation in each jurisdiction, it
may be in the utility’s interest to minimize the curtailment of the output of these kinds
of generators — e.g., if penalties or monetary compensations are imposed in case
renewable distributed generation is curtailed.

Assuming that the active power output of the distributed generation is not
controllable, and that the only response to short-term violation of operating limits
caused by these generation is their disconnection from the grid®, the objective function
for the minimization of costs of curtailment of non-controllable distributed generation

may be formulated as follows:

ZGCRT

= min {Bye(ocrronocynr) €€ * 9k * Tic) (32)

where:

ZGCRT Value of the objective function modeling the (minimization of) non-
controllable generation curtailment costs; z¢“RT may also be used as a parcel
of a composite objective function;

Qcrro Set of buses to which generators with non-controllable active power output
(reactive power output assumed to be controllable) connect, defined as
Qcrro = Qeen \ Qerrpegs

Qcurt Set of buses to which curtailable generators connect;

cEYRT Cost coefficient associated with curtailment of generator at bus k;

Tk Binary variable that indicates if generator is curtailed (z;, = 1 indicates that

generator is curtailed).

The minimization of the costs of curtailment of non-controllable generation may
compose the objective function for applications such as:
Determination of the maximum penetration of distribution generation;
Distribution system expansion and operations planning under explicit

modeling of generation curtailment costs.

% Alternatively, we may think of the discrete decision to curtail a generator, in the context of medium-
term planning, as an indication of the need to prohibit or postpone its grid connection until future

reinforcements ensure technical feasibility. This will be further explored in section 5.2.2.
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2.2.2.3 Minimization of generation costs

Assuming that generators with non-controllable active power output have null
variable operation costs (or at least null costs perceived by the distribution utility), the
objective function for the minimization of variable generation costs within the

distribution system may be formulated as follows:

2N = min{Seeacrnr €€ - 9E } (33)
where:
zGEN Value of the objective function modeling the (minimization of) variable
generation costs; z¢EN may also be used as a parcel of a composite objective
function;
cFEN Cost coefficient associated with generation with controllable active power

output at bus k.

The minimization of variable generation costs may compose the objective
function for applications such as the economic dispatch of generation resources within

the distribution system.

2.2.2.4  Minimization of costs of power imports

It may be necessary to model the costs associated with power imports from an
external network (the transmission system or even other distribution systems) in a
variety of operations or expansion planning applications. One possible way of doing
that is by modeling power imports as the output of a virtual generator, and employing
the objective function defined in section 2.2.2.3.

Another modeling choice would be to represent the bus at the interface with the
external network as a slack bus which is also a reference bus (implicitly considering
this bus as an idealized voltage source), and to associate costs to the infeed of active
power at this bus. Considering this, and assuming the most general case in which the

reference voltage magnitudes of all buses at the interface with the external network are
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considered as decision variables, the formulation of the objective function for the

minimization of the costs of power imports would be:
z™PR = min{Yxeq,rpe K ORT Vi - (cos6; - oo+ sing,* - I} (34)

where:

Qrrc Set of buses at the interface of the internal network with the external
network, considered to be defined as Q;rrc = Qspack N Qgers

z!MPR Value of the objective function modeling the (minimization of) costs of
power imports from an external network; z'™PR may also be used as a parcel
of a composite objective function;

cIMPORT  Cost coefficient associated with imports from the external network, at the

interface represented as the slack bus k.

It should be kept in mind that, as pointed out in section 2.2.1.5, it is necessary to
define one (and only one) angular reference bus for each island of the distribution

system to be simulated. Thus, for most conceivable practical applications, the voltage
angle of all buses in angle of Q;7r- may be set to 9,:‘“’" = 0°, without loss of generality.

After that, equation (34) may be rewritten as:

ZIMPR _ min{ZkeQnFc CIICMPORT V- 155{} (35)

If, besides all modeling assumptions considered so far, the reference voltage
magnitude of all buses in Q¢ is fixed at any arbitrary value Vkref (an input parameter

of the ACOPF), the last expression may be rewritten as:
4IMPR — min{ZkeQ,TFC CIICMPORT ] Vkref ] I;_“;’( } (36)

The minimization of costs associated with power imports from an external
network may be employed in application as:

Least-cost operations and expansion planning studies;
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Determination of the amount of imports to be contracted at the interface

with external networks.

2.2.2.5 Minimization of costs of ohmic losses

The total ohmic losses within a given distribution system may be calculated
either by summating the losses of each individual circuit, or by determining the
difference between the total active power injected into the distribution network and the
total active power consumed. The latter option is considered for the definition of the

following objective function:

ZLOSS = min{CLOSS ) {ZkE-QITFC I/k‘ref ' I‘g,ek + ZkEQCTRPQ g]€
+ ZkE{QCTRQ\-QCURT} g]I(J + ZkEQCURT g]I: ' (1 - Tk)
_[ZkE{QPCTEnQNSHD} dilz + Zke{QPCTEnQSHED} dII<3 (11— pk)]

_[ZRE{QICTEHQNSHD} Vi - di + ZRE{QICTEn-QSHED} Vi - dll: (11— pk)]

!
Rie_

2
|Z,l(|2 + Z:RE{QZCTEﬁQSHED} Vi

- ZkE{QZCTEnQNSHD} sz ) IZIC}CIZ (1—-p) |}
(37)
where:
zLOSS Value of the objective function modeling the (minimization of) costs of
ohmic losses; z/%55 may also be used as a parcel of a composite objective
function;

cLoss Cost coefficient associated with ohmic losses.

The reader will notice that the first summation at the right portion of equation
(37) corresponds to the power imported from external networks. For the sake of
conciseness of presentation, we consider the case in which the voltages of all buses in
Q;rpc are fixed at (Vkref 40°) p.u. However, the other (more general) cases described in
section 2.2.2.4 may also be considered while formulating this objective function.

Yet, even under consideration of the simplest case for the imports from external

networks, equation (37) is obviously non-linear. Keeping in mind that dZ. is a parameter
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of the ACOPF, it is clear that the non-linearities are associated with the terms V; - py,
V.2 and V3.2 - py.

The cost coefficient ¢SS may be set to unity if the value of the objective
function is to be expressed in MW (or p.u.) rather than in monetary units ($). In fact,
this cost coefficient may be manipulated according to the requirements of the specific
application — e.g., if the evaluated operating point is deemed representative of any given
time interval, the costs coefficient may be determined by the multiplication of the
duration of the interval in hours and the cost of losses in $/MWh. The same
consideration basically applies to all cost coefficients presented so far.

The minimization of (the costs of) ohmic losses may compose the objective
function in a wide range of applications in operations and expansion planning, such as:

Network reconfiguration studies;

Integrated voltage/VVAr control planning;

Planning of network reinforcements (current carrying-facilities);
Capacitor placement and sizing planning;

Planning of placement and control of distributed generation.

2.2.2.6  Minimization of costs of reinforcements to the distribution system

Expansion planning applications require the determination of the optimal set of
reinforcements to the distribution system, usually with focus on new circuits,
substations, and equipment for reactive power support. According to the planning
objectives of a given utility, the objective function of the planning problem may include
different components — one of the most important being the costs of reinforcements.
The objective function for the minimization of the costs of network reinforcements is

indicated below:

ZREIN = min{kaeq;CD ce2NST - grem } (38)

where:
ZREIN Value of the objective function modeling the (minimization of) costs of
reinforcements to the distribution system; zXE'’N may also be used as a parcel

of a composite objective function;
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Yep Set of circuits that represent candidate reinforcements to current-carrying
facilities;

cEONST  Cost associated with construction of reinforcement represented by circuit
km;

Okm Binary variable that represents decision of constructing the reinforcement

represented by km (oy,,, = 1 indicates that reinforcement is built).

At this point, it is worth mentioning that a fictitious candidate circuit may be
used to model either a candidate substation of candidate reactive power support
equipment. For that, it suffices to ensure that the bus corresponding to the candidate
substation/equipment is only included into the network if the fictitious candidate circuit
is built (which can be done by manipulating the equivalent network topology), and set
the value of the impedance of the candidate circuit in order to ensure that its inclusion
will not materially affect the solution of the ACOPF problem. Naturally, the costs
associated with the candidate substation/equipment would be represented via the cSoNST
of the candidate circuit.

Obviously, it is necessary to ensure that the constraints associated with candidate
circuits that are not built are relaxed, in the formulation of the ACOPF. As this requires

discrete decision variables, this matter will be discussed further only in chapter 4.

2.2.2.7 Minimization of costs of capacitor placement

The capacitor placement problem involves determining the optimal location and
sizing of capacitors to be added to the distribution network.

One option to account for the capacitor placement costs while determining the
optimal network expansion plan is to employ the same basic formulation described in
section 2.2.2.6, and then represent the candidate capacitors as a purely reactive (and
capacitive) load at a candidate bus that is connected to the remainder of the system via a
fictitious, low-impedance circuit. In this case, the costs of the candidate capacitors
would be attributed to the candidate, fictitious circuits.

An alternative for factoring capacitor placement costs into the objective function
of an ACOPF is to consider the capacitors as a purely reactive, “curtailable” load, and

then associate the costs of installing the capacitor to the change of status of this reactive
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load from inactive to active. Mathematically, this corresponds to the following objective

function:

zCAPL = min{ZkeﬂcAp et (1 - Pk)} (39)

where:
zCAPL Value of the objective function modeling the (minimization of) capacitor

placement costs; z¢4PL may also be used as a parcel of a composite objective

function;

Qcap Set of buses with candidate capacitors;

cpAPE Cost coefficient associated with the placement of the candidate capacitor
(purely reactive, capacitive load) at bus k;

Pk Binary variable that indicates if the capacitor (purely reactive, capacitive

load) is connected to the system (p, = 0 indicates that capacitor was

installed and is connected to the system).

As previously mentioned, costs of capacitor placement are considered within

distribution system expansion planning applications.

2.2.2.8 Minimization of circuit switching costs

It is not customary to consider switching costs in applications of distribution
system operations and planning — normally, the costs of switching actions are
considered negligible, and the costs considered in studies of system reconfiguration are
those associated with losses, load shedding, etc.

However, the following objective function may be defined for applications in

which switching costs are relevant and must be minimized:

— ; SWITCH SWITCH
Z = min {kaewg‘% Ckm (1= ogm) + kaelpg‘fv” Ckm ' O-km} (40)

where:
pan Set of switchable circuits that were originally active (i.e., switched-on) at the
situation corresponding to the input data for the ACOPF;
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OFF
LIJSW

lIJS w

CSWITCH
km

Okm

Set of switchable circuits that were originally inactive (i.e., switched-off) at
the situation corresponding to the input data for the ACOPF;

Set of all switchable circuits in the system, Wy, = WY U WEFF;

Cost of switching action (cost of changing the status of the switchable
circuit) associated with circuit km;

Binary variable that represent the desired state of the switchable circuit km
(oxm = 1 indicates that it is desired that the circuit is active; oy, =0

indicates that it is desired that the circuit is inactive).
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3 SELECTED TECHNIQUES FOR THE
REFORMULATION OF NON-LINEAR, NON-
CONVEX PROBLEMS AS MIXED-INTEGER
LINEAR PROGRAMS

The ACOPF for distribution system operations and expansion planning
applications described in chapter 2 is a non-convex, mixed-integer non-linear
programming (MINLP) problem. Problems of this class are usually difficult to treat
computationally, and even the continuous relaxation of a non-convex MINLP is a global
optimization problem [74], likely to be NP-hard (non-deterministic polynomial-time
hard) [75].

There are, however, techniques that may be applied to approximate the
nonlinearities of a MINLP, some of which may be employed to achieve approximations
of arbitrary accuracy (i.e., with a level of accuracy arbitrated by the user), and
reformulate the problem as a MILP. Solution algorithms for MILP, which are standard
features in a wide range of commercially available solvers, may then be used to
implicitly treat non-convexities, in a process that involves successively partitioning the
domain of decisions variables.

The main advantages of reformulating MINLP problems as MILPs are well

summarized by Geipler [61], in the excerpt reproduced below:

“The advantage of applying mixed integer linear techniques are that
these methods are nowadays very mature, that is, they are fast, robust,
and are able to solve problems with up to millions of variables. In
addition, these methods have the potential of finding globally optimal

solutions or at least to provide solution guarantees.”

As the excerpt indicates, one practical advantage of reformulating MINLPs as
MILPs refers to the maturity of techniques for solving the latter class of problems. It is
worth emphasizing that such maturity brings about not the only benefits with respect to
computational performance listed in the excerpt, but also advantages associated with the

availability of commercial solvers for mixed-integer linear programs. That is to say,
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there are a number of companies that offer commercial-grade solvers that pertain to
well-established product lines and may be used to solve mixed-integer linear programs.
This is an important advantage from the point of view of industry applications, as it
essentially translates into guarantees of longevity, maintainability and prevention of
obsolescence of the solver that underlies an optimization solution.

The excerpt from reference [61] also mentions another class of benefits from
employing MILP reformulations of MINLPs: the existence of solution guarantees. This
also relates to another practical advantage associated with the use of commercial
solvers: as those solvers usually provide the user with detailed execution reports,
including information on the duality gap displayed on-screen in execution time, the user
is able control the quality of the solutions obtained in the course of the algorithm
execution and may, if desired, interrupt the optimization algorithm, accepting an
intermediate solution for which the value of the duality gap is known (i.e., the quality of
the solution can be controlled).

In the following sections, three convexification and linearization techniques for
the reformulation of MINLPs as MILPs are presented. While presenting the techniques,
some emphasis will be given to how the determination of the parameters for writing
down the equality and inequality constraints may affect the accuracy of the
approximation and the computational efforts associated with the solution of mixed-
integer linear programs — a concept that will be loosely referred to as tightness in this
dissertation.

The nomenclature used in this section applies exclusively to the presentation of
the linearization and convexification techniques. None of the symbols used here should
be interpreted as referring to any of the physical or economic quantities of the ACOPF
formulation (either the non-linear version presented at chapter 2 or the MILP

reformulation presented at chapter 4).

3.1 Disjunctive constraints

In optimization problems involving binary decisions (i.e., decisions of the type
do/don’t), it may be required to represent disjunctions of the feasible region that are
associated with values of binary decision variables [76]. A disjunction appears when,
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according to the value of an auxiliary binary variable (a control variable), one set of
constraints is enforced while another is relaxed.

For instance, assume that, in a given problem, either the constraint
X a]‘-’ +x; < b° is to be enforced when the binary variable d assumes the value d = 0,
or the constraint };; a} X < b! is to be enforced if d = 1. The enforcement of the

former constraint implicates in the relaxation of the latter, and vice-versa. This

disjunction may be modeled with help of the following disjunctive constraints:

Yjal-x—b°<M°-d (41)

where the numerical value of the constants M° and M* must be large enough to ensure
that constraint (41) is relaxed if d = 1 (i.e., that };; aj‘-’ -x; — b° will always be smaller
than or equal to M°), and that constraint (42) is relaxed if d = 0.

If each decision variable x; is known to vary only within the interval
x; < x; < X;, the minimum value of the constants M° and M" that ensures that the

desired constraints are relaxed can be pre-calculated by:

M = max{¥;al-x; —b°} subjectto x;<x <% Vj (43)

M' = max{¥;al -x; —b'} subjectto x;<x <% Vj (44)

Disjunctive constraints may also be employed when more than two disjunctions
of the feasible region need to be modeled.

For instance, consider the case in which only one of N constraints the type
X a}f "X < b, with i € {1--- N}, is to be enforced at a time. A possible approach is to

define N binary control variables d*, with i € {1--- N}, and to write the following set of

equations:
Yjai-xj—b' <M'-(1-d") (45)
Yid' = (46)

42



If, analogously to equations (43) and (44), if each decision variable x; is known
to vary only within the interval x; < x; < x;, the minimum admissible value of each

constant M* can be pre-calculated by:
M' =max{Y;aj-x; —b'}  subjectto x;<x <% Vj (47)

The determination of the constants M‘, which are sometimes called big-M
parameters and which will be referred to disjunctive constants'® in this dissertation, may
be more complex than suggested by the explanation above — there are problems in
which the solution of equation (47) is complex, the determination of the bounds of the
interval x; < x; < x; is not immediate, or for which the other constraints of the problem
may implicitly determine the actual range within which the decision variables may vary
(which may be narrower than that defined simply by bounds informed as input
parameters).

Nonetheless, defining disjunctive constants with the lowest possible absolute
value is desired from the point of view of computational efficiency. This definition of
tight values for the disjunctive constants is important because solution algorithms for
MILPs include an intermediary relaxation step, in which integer decision variables are
allowed to assume any continuous value — i.e., the associated integrality constraint is
relaxed. Generally speaking, the closer the feasible space of this relaxed problem is to
the convex hull of the original mixed-integer linear problem [76], the more
computationally efficient will be the solution of a given mixed-integer linear program.
The values of disjunctive constraints affect the size of the feasible space for the linear
relaxations of the MILP [77]: defining tight disjunctive constraints will result in tighter
linear relaxations — i.e., linear relaxations that are more tightly wrapped around the
convex hull.

A few words on the nature of the procedure describe above are in order before
moving on to section 3.2. The MILP problem obtained after applying disjunctive
constraints to represent disjunctions of the feasible space is not convex. In fact, the

phenomenon that we wish to represent, the disjunction of the feasible space,

19 \We employ the term disjunctive constant in order not to necessarily associate the constants with the

letter “M?”, as other letters, besides “M”, will be also used to denote disjunctive constants in chapter 4.
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corresponds to a non-convexity. However, the MILP formulation obtained by applying
disjunctive constraints is treatable by solution algorithms that inherently treat non-
convexities, by constructing a number of partitions of the feasible region and
successively investigating these partitions, in an ordered fashion. Thus, disjunctive
constraints are not a convexification technique per se, but a reformulation technique that

allows treating non-convexities through algorithms designed to solve MILP problems.

3.2 Special ordered sets of type 2

The concept of ordered sets of decision variables, introduced in [78], may be
used in two main classes of optimization applications:

Q) Special ordered sets of type 1 (SOS1) are those in which no more than
one variable may assume a non-zero value in the final solution of an
optimization problem. Those ordered sets may be used to treat discrete
functions that represent “multiple choice problems”, in which a single
choice must be made among several discrete alternatives.

(i) Special ordered sets of type 2 (SOS2) are those in which no more than
two variables may assume a non-zero value in the final solution of an
optimization problem, and if two variables are non-zero they must be
adjacent (consecutive in their ordering). SOS2 may be used to construct
piecewise-linear approximations of non-convex, non-linear functions,
such that these approximations can be integrated into a mixed-integer
linear program.

The focus of this section will be on SOS2 and, particularly, on their application

in piecewise-linear approximations of non-convex, non-linear functions.

Consider the example of Figure 3.1, which depicts a non-convex, non-linear
function of a single variable, fy.(x), as well as its piecewise-linear approximation,
f(x). As indicated in the figure, the value of the function fy,(x) is calculated at N
different evaluation points £, with i € {1--- N}, thus resulting in N evaluated values f°.
Linear segments are then obtained by constructing affine combinations of consecutive
fE. Such an approximation will be linear within each segment, and therefore treatable
through classical MILP techniques. The reader will notice that it is necessary that the

affine combinations are constructed strictly with basis on consecutive evaluated values
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£t in order to preserve the representativeness of the approximated function with respect
to the original, non-linear one — e.g., it is clear that an affine combination of the
evaluated values f* and f° of Figure 3.1 would result in a linear segment that bears no

resemblance with the original function.

fu(X) f(x) f3
— f(x)

S O T R I

Figure 3.1: Piecewise-linearization f(x) of non-linear functions fy,_(x) and special ordered sets of type 2.

In order to ensure that the segments of the piecewise-linear approximation are
built strictly with basis on affine combinations of consecutive £, the weights associated
with every evaluated value are treated as elements of an ordered set, and constraints are
added to the MILP formulation to guarantee that at most two of the weights will assume
a non-zero value in the final solution of the optimization problem, and any two non-zero
values must be consecutive — i.e., the weights are treated as a SOS2. Naturally, as we
are dealing with affine combinations, the weights must sum up to unity.

It is also necessary to obtain the argument of the approximated function that
corresponds to the function value obtained by the affine combination of fi. The
argument of the approximated function is obtained via an affine combination of the
evaluation points £¢, using the same weights employed for the affine combination of the
evaluated values f'.

In the following, the mathematical formulation corresponding to the procedure
described above is presented. Equation (48) corresponds to the reference row [78] of
this formulation — the constraint by which the value of the argument x is obtained via

the convex combination of the evaluated points £:

YN ARl =x (48)
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In equation (87), the continuous decision variables A%, with i € {1--- N}, are the
weights for the affine combination, and pertain to a SOS2. The constraints for enforcing
the special structure of this ordered set will be presented further in this section.

The approximated value of the function, f, is obtained with help of constraint

(49), which is usually referred to as the function row:

LA fr=f (49)

The following constraint ensures that the weights A* sum up to unity, and is

referred to as the convexity row:

WA= (50)

It is now necessary to define constraints to ensure that the set of weights A, with
i € {1--- N}, form a special ordered set of type 2 — i.e., constraints that impose that no
more than two of those weights may assume non-zero values, and if two weights are
non-zero they must be adjacent. This may be done by introducing N binary decision

variables d*, one for each weight A, and defining the following constraints:

i, dh = (51)
At<at (52)
A <d-t+dt Vie{2-N} (53)

It is worth mentioning that specialized, efficient branching rules have been
proposed for the solution of MILP with SOS2 constraints [78]. These specialized
branching rules for SOS2 constraints are currently standard features in most commercial
grade optimization solvers [75], [79], for the one-dimensional case.

The procedure presented above applies to the approximation of non-convex,
non-linear functions of a single variable. This procedure can be extended for functions
of higher dimension.

If a piecewise-approximation of a non-convex, non-linear function of two

variables, fy.(x,y), is to be constructed, a possible alternative is to determine a grid of
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evaluation points (2%,97/), with i € {1---N*} and j € {1---N”}, and determine the
evaluated values £ = fy,(2,9/) at each point of the grid. Within each region
delimited by four vertices of the grid (the reader will notice that a rectangular grid is
assumed here), the approximation f of the non-linear function will be obtained via an
affine combination of the corresponding evaluated values. The set of weights 1%/
associated with each point (¢, /) is ordered, and constraints must be added to ensure
that no more than four weights may assume non-zero values, and that the weights that
assume non-zero values are adjacent. A possible mathematical formulation for this

procedure is presented below:

Ny /11 [AJ] [y] (54)
SIS AN fii = f (55)
YN SN AW =1 (56)

The following constraints impose the required structure on the set of weights

Ab:
Y d¥i=1 (57)
AY < gxt Vj€E{l-NY} (58)
R L O Vie{2--N*}, vje{l- N} (59)
YN d =1 (60)
AL < g¥? Vie{l-N*} (61)
AW < dyITt 4 gy Vie{1---N*}, vje{2--N”} (62)

where d*!, with i € {1---N*}, and d*/, with j € {1---N”}, are binary decision
variables.

As previously stated, the procedure described above involves the construction of
a rectangular grid of points at which the value of the non-linear function is evaluated.
Procedures for constructing piecewise-linear approximations of non-linear functions of
two variables based on constructing triangular grids of evaluation points (triangulation)

have been proposed in the technical literature [61], [80], there being evidence that their
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computational performance is superior to that of procedures based on rectangular grids.
Yet, such procedures are not considered in this dissertation, and their application to the
ACOPF in distribution systems will be the object of future work.

At this point, a few words on the computational requirements for the piecewise-
linear approximation of non-convex, non-linear functions with SOS2 are in order. The
computational requirements for these approximations grow significantly fast with the
dimensions of the functions to be approximated [61]. Thus, non-convex functions of
three decisions variables are significantly more complex to treat than functions of two
variables, and so on. It is worth mentioning that, as will be seen in chapter 4, the
proposed formulation of the ACOPF requires only that functions of two arguments are
approximated.

Another observation, immediately drawn from the equations presented in this
section, is that the SOS2 approach to dealing with non-convex, non-linear functions of
decision variables involves a trade-off between the desired level of approximation
accuracy and the computational performance. For instance, Figure 3.1 clearly illustrates
that, in arbitrating the number and location of evaluation points £, the user can control
the approximation accuracy. Nevertheless, using more evaluation points leads not only
to increased accuracy, but also to an increased number of integer variables and
constraints, which may lead to increased computational requirements. Obviously, the
optimal trade-off between accuracy and computational performance depends on how
severe the non-linearities of the function being approximated are. The results displayed
in chapter 5 suggest that, for the ACOPF proposed in this dissertation, the
computational requirements necessary to ensure satisfactorily accurate solutions are
manageable.

Naturally, the choice of the points at which the non-linear function is evaluated
directly affects both the accuracy of the piecewise-linear approximation and the
computational requirements for the solution of the MILP. Again referring to the
example of Figure 3.1, it is clear that adding an evaluation point between £* and £°
would increase the number of integer variables without substantially increasing the
quality of the approximation, and that removing the evaluation point £3 would
significant impact the accuracy of the approximation, despite of removing one integer
variable. Thus, the tightness of the formulation is directly affected by the choice of

evaluation points. The reader will notice that the term tightness is used here with a
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slightly different meaning of that of section 3.1, but still in reference to the definition of
parameters that affect accuracy and computational performance.

Before moving on, it is important to mention that using a smaller number of
evaluation points will not necessarily lead to a faster solution of the MILP for all
applications — e.g., if branch-and-bound is being used for the solution of the MILP, it
may be that having more evaluation points leads to a particular pattern of investigation
of the branch-and-bound tree that allows a faster convergence of the duality gap to zero.

3.3 Convex envelopes for bilinear products

Bilinear products are products of two continuous decision variables, such as
x:y. Those products are obviously non-convex and non-linear. A possible approach to
treat bilinear products within linear programming (LP) formulations (and by extension
within MILP formulations) is to substitute them by an auxiliary variable, z, and then
define constraints that are linear functions of x and y and that bound z within a narrow
interval around the true value of x-y.

The most general case of this approach is to define linear constraints that bound
z from below and from above — respectively, a convex underestimator and a concave
overestimator for the bilinear product. A convex under-estimator is a function u(x, y)
such that u(x, y) < x-y for all values that x and y may assume. Analogously, a concave
over-estimator is a function o(x, y) such that o(x, y) > x'y in the domain of interest.
Together, these form the convex envelope for the bilinear product.

The definition of the last paragraph correctly suggests that many different
functions may serve as convex underestimators and concave overestimators. However,
there is obviously interest in defining the tightest possible convex envelope for the
bilinear product. As the auxiliary variable z will be allowed to assume any value in the
interval u(x, y) <z <o(x, y), the maximum potential approximation error will obviously
depend on how tightly the envelope wraps the bilinear product — i.e., on how significant
the differences x-y — u(x, y) and o(x, y) — x:y can be.

The tightest possible convex envelope for bilinear products x'y has been
determined by McCormick [81], and is thus commonly referred to as McCormick’s

envelope. Assuming x bounded within the interval x < x < x and y bounded within
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y <y <Yy, McCormick’s envelope for the auxiliary variable z is defined with help of

the following linear constraints:

zzxy+x-y—x-y (63)
ZZ2xX"y+x'y—x-y (64)
Zsx-ytx-y—x-y (65)
ZSX'y+tx-y—x-y (66)

where equations (63) and (64) correspond to the convex under-estimator and equations
(65) and (66) to the concave over-estimator for x-y.

As previously stated, McCormick’s envelope is the tightest possible convex
envelope for bilinear products. The tightness of McCormick’s envelope for each
application, however, depends on how accurate the upper and lower bounds of the

intervals x < x < xand y <y <y are defined.

In order to understand that, consider that x =y = 1.0 and x =y = 1.5 for a

certain application. Assume, however, that a mistake was inadvertently made while
defining the upper and lower bounds for the variation of x and y, and the lower bounds

for the interval were wrongfully taken as x = y = 0.5. Figure 3.2 indicates the actual

value of the product x-y, as well as the convex underestimator and the concave
overestimator for McCormick’s envelope when both x and y are incorrectly considered
to vary within [0.5, 1.5]. In this case, the absolute value of the approximation error
within the correct domain (i.e., [1.0, 1.5] for x and y) may be as high as 0.25.
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Figure 3.2: Bilinear products and McCormick’s envelope, considering the incorrect lower bound of 0.5 for x
and y: z = x-y (left); overestimator for z (middle); underestimator for z (right).

Consider now that the mistake has been identified and corrected, and that the

correct lower bound x = y = 1.0 has been considered while constructing McCormick’s

envelope for the bilinear product. In this situation, the convex underestimator and the
concave overestimator indicated in Figure 3.3 would be obtained. In order to facilitate
the comparison, the range of the axes of all graphs in Figure 3.3 matches that of Figure
3.2. After a comparison of the figures, it becomes clear that the convex envelope
indicated in Figure 3.3 is much tighter within the domain of interest — i.e., for x and y
varying within [1.0, 1.5] — than that of Figure 3.2. In fact, now the maximum absolute
value of the approximation error within the domain of interest is 0.0625 (a significant

decrease over the 0.25 of the previous paragraph).

Overestimator [-] Underestimator [-]

15 15
1 05 %% x[ !

v [ y [

Figure 3.3: Bilinear products and McCormick’s envelope, consider the correct lower bound of 1.0 for x and y:
z = x-y (left); overestimator for z (middle); underestimator for z (right).
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The previous analysis illustrates the fact that, for any given application, the
accuracy of the approximation obtained by McCormick’s envelope will be dictated by
how tight one is able to define the upper and lower bounds on the values that the
continuous variables may assume. The closer these parameters match the actual interval
in which the continuous decision variables may vary, the better the approximation will
be.

Before moving on to the next chapter, it is worth briefly mentioning that
analytical expressions for convex envelopes for trilinear and quadrilinear terms
(respectively, products of three and four continuous decisions variables) have been
proposed in the technical literature [82], [83]. Those are not employed in the MILP
formulation proposed in this dissertation.
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4  THE MILP REFORMULATION OF THE ACOPF
FOR DISTRIBUTION SYSTEMS

This chapter presents the main technical contribution of this dissertation: the
MILP reformulation of the ACOPF problem for distribution systems, with focus on
operations and expansion planning applications.

In Section 4.1, the main characteristics of the proposed MILP reformulation of
the ACOPF for distribution systems are presented, and the practical advantages
associated with these characteristics are discussed in detail. The mathematical
formulation of the mixed-integer linear program is presented in section 4.2.

While defining the mathematical expressions of section 4.2, reference will be
made to a number of parameters that are needed for the use of the linearization and
convexification techniques defined in chapter 3: (i) the disjunctive constants necessary
for the definition of disjunctive constraints; (ii) the evaluation points and evaluated
values necessary for the definition of piecewise-linear approximations with SOS2; and
(iii) the upper and lower bounds for the continuous variables whose product is modeled
with help of McCormick’s envelope. As seen in chapter 3, the definition of these
parameters affects the accuracy of the approximations and/or the computational
requirements for the solution of the resulting mixed-integer linear program. Section 4.3
will deal with the definition of these parameters, taking advantage of particular
characteristics of the distribution system in order to achieve satisfactory trade-offs
between accuracy and computational performance.

In section 4.4, reference is made to an alternative MILP reformulation of the
ACOPF in distribution systems. This alternative formulation, which is thoroughly
presented in Appendix B (chapter 8), has been investigated as part of the research
activities that led to the present dissertation, but abandoned at early stages due to its
performance being inferior, with respect to accuracy and computational requirements, to

the formulation presented in this fourth chapter.
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4.1 Main characteristics of the proposed formulation

The main characteristics of the proposed MILP reformulation of the ACOPF for
distribution systems are directly related to the advantageous features of the proposed
formulation, which have been already mentioned in the introductory section of this
dissertation, and are reproduced below for the sake of clarity:

Q) The proposed formulation captures the non-linear behavior of the

distribution system with an arbitrarily accurate approximation.

(i) The proposed formulation supports both continuous and discrete
decisions, respectively via continuous and integer decision variables.

(iii) The proposed formulation is constructed with basis on conventional
physical variables that describe network behavior (bus voltages,
branch currents, bus power injections, etc.), yielding significant
flexibility in defining a number of possible objective functions for the
ACOPF, and extending its applicability to a number of different
problems faced by distribution system engineers.

(iv) The proposed formulation can be solved to global optimality with the
use of widely employed and commercially available mixed-integer
linear optimization solvers.

The direct relationship of the abovementioned features to the characteristics of

the proposed formulation will become clear with the discussion of the next subsections.

4.1.1 Rectangular coordinates, current-voltage formulation of
Kirchhoff’s laws

The first relevant characteristic is that the proposed formulation is based on
expressing complex variables in rectangular coordinates (real and imaginary
components, as opposed to angles and magnitudes), and utilizing voltages and currents
(as opposed to voltages and power quantities) to describe Kirchhoff’s laws. As seen in
section 2.2.1.1 of this document, this leads to the linearity of the set of constraints
describing Kirchhoff’s laws. Thus, these linear constraints can be immediately factored

into a MILP problem, without the need to employ any transformation (e.g., linearization
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or convexification) that may result in approximations or demand the use of integer
variables.

As seen in chapter 2, employing rectangular coordinates and describing the
behavior of the network via current-voltage equations brings about some non-linearities
that would not be verified if the power-voltage formulation of network equations were
used: obtaining the current injections corresponding to the power injections of
generators and loads of the constant-power and constant-current types require the use
of non-linear equations. Nonetheless, the linearization and convexification techniques
described in chapter 3 allow dealing with these latter non-linearities efficiently —
partially due to the fact that specific characteristics of the distribution system
(particularly those described in section 2.1.2, which result in the voltage angles of all
buses of typical distribution systems varying within narrow intervals around 87¢/= 0°)
allow conciliating accuracy and computational performance, as we will see later in this
chapter.

It is important to emphasize that, even if the power-voltage description of
Kirchhoff’s laws were to be used, representing loads of the constant-current type would
demand non-linear equations. Besides, loads of the constant-impedance type, which are
described exclusively via linear equations when Kirchhoff’s laws are described with
current-voltage quantities, would require non-linear equations for their description in
case Kirchhoff’s laws were formulated with basis on voltages and power quantities.

One last advantage of using the current-voltage description of Kirchhoff’s laws
is that this facilitates the formulation of constraints representing thermal loading limits
of overhead lines. Such thermal loading limits are associated with maximum admissible
currents (despite the fact that these limits are commonly approximated as limits on
apparent power flows in many applications), and currents are “natural” decision

variables in the proposed formulation.

4.1.2 Use of integer decision variables

As stated in the introductory chapter of this dissertation, there are a number of
applications in distribution systems operations and expansion planning that involve
discrete decisions. The most traditional of these relate to binary decisions on
reinforcements to the network (either build or do not build the reinforcement) and to
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network reconfiguration (a switch is either on or off). Also, depending on the level of
detail of the representation of the network and on the necessity to accurately represent
operation actions of the distribution company, other discrete decisions may need to be
modeled — e.g., the reader will recall that most distribution utilities currently implement
load shedding by de-energizing entire segments of the primary distribution feeder
system If this procedure is to be simulated, the decision to shed any given load at the
distribution system is discrete, as the load is either energized or de-energized.

If classical mathematical programming techniques are to be used for the
formulation and solution of the ACOPF, the representation of discrete decisions such as
those mentioned above require the use of integer decision variables. Notably, binary
decisions (of the type do or don’t) may be formulated by using binary decision variables
(which may only assume the values 0 or 1). Naturally, it is also required to represent
continuous decisions in the ACOPF problem for distribution system, in order to allow
answering questions such as how much to import from an external network, or how
much should the output of a given generator be.

Also, the definition of certain type of constraints may require the use of integer
variables. This is the case of constraints for ensuring network radiality, which will be

defined further in this chapter.

4.1.3 Treatment of non-convexities and non-linearities

The need to model discrete decisions is not the only reason for employing
integer decision variables in the proposed reformulation of the ACOPF problem. As
seen in section 3.2, the piecewise-linear approximation of non-convex, non-linear
functions based on using SOS2 also requires that binary variables are used, in order to
impose a certain structure on ordered sets of decision variables. It is the structure
imposed by binary constraints that allow defining the segments of the piecewise-linear
approximation exclusively as convex combinations of adjacent evaluated values, and it
is the binary variables that contain the information of which segment of the piecewise-
linear approximated function is active at the solution of the optimization problem. The
auxiliary binary decision variables are of uttermost importance: as only one of the linear

segments of the piecewiwe-linear approximation is active at a time, and as a linear
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segment is convex (and obviously linear) by definition, the piecewise-linear
approximation may be factored into a mixed-integer linear program.

Also, the procedure described in section 3.2 may be used to obtain
approximations of arbitrary accuracy — i.e., with a level of accuracy arbitrated by the
user and directly related to the number of segments used to approximate the original
non-convex, non-linear function. Enhanced accuracy comes at the cost of augmented
computational complexity — but the case study results in chapter 5 will show that, for
the problem at hand and when particular characteristics of the distribution system are
correctly taken into account while determining the parameters used to write down the
constraints, satisfactory compromises between accuracy and computational performance
can be achieved. This is partially related to the fact that the approximated functions
have low dimensions (i.e., they are not functions with a large number of arguments) and
are fairly well behaved.

It is worth mentioning that, among the two techniques presented in chapter 3 for
producing approximations of non-convex, non-linear functions, only that based on
piecewise-linear approximations with the use of SOS2 constraints (section 3.2) may
always have its accuracy directly controlled by the user. The accuracy of the
approximation obtained with McCormick’s envelope (section 3.3) for products of two
continuous decision variables x -y is implicitly determined by the lower and upper
bounds on x and y. However, the reader will notice that there are no impediments for
employing a SOS2-based piecewise-linear approximation of products of two continuous
decision variables — thus, if needed, the MILP reformulation of the ACOPF may be
made entirely independent of McCormick’s envelope, which results in the
approximation accuracy always being controlled by the user. In fact, a SOS2-based
reformulation of the bilinear products that appear in the constraints used for obtaining
generator current injections is presented in Appendix C (section 9) of this dissertation,

and used in the case study of section 5.2.3.

4.1.4 Final formulation as a MILP

All of the features mentioned above can be accommodated within a MILP
formulation. This leads to a class of benefits that can hardly be overestimated, and are

associated with the maturity of the techniques and commercial-grade software packages
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dedicated to the solution of mixed-integer linear programs, as extensively described at

the beginning of chapter 3.

4.2 Mathematical formulation

As in chapter 2, the constraints employed for modeling the behavior of the
network and enforcing operating limits will be presented first. This is done in
subsection 4.2.1. Objective functions for selected distribution system operations and

expansion planning applications will be presented in subsection 4.2.2.
4.2.1 Constraints: modeling electrical behavior and enforcing
operating limits

4.2.1.1 Kirchhoff’s Laws

The constraints presented in subsection 2.2.1.1 for modeling Kirchhoff’s Current
Law are entirely linear, and can be factored into a MILP without any modification. For

the sake of clarity, constraints (1) and (2) of subsection 2.2.1.1 are reproduced below:

Ig% + Xmea, lom = Igk + Xmea, Imk Vk€Qg (67)
IT% + Smeay lim = 1% + Smeay, Lk vk € Qp (68)

One of the main reasons for proposing a MILP reformulation of the ACOPF was
to model decisions regarding the change of status of branches of the network: branches
may be active or inactive. For switchable circuits, the states active and inactive
correspond to switched-on or switched-off; for candidate reinforcements for distribution
system expansion, these states correspond to built or not built.

Normally, it is not all branches of the distribution network that can have their
status modified: there may be many existing, non-switchable branches that are always

active. For these circuits, the following constraints model Kirchhoff’s Voltage Law:

VI — Ve = 17% - Ry — 1™+ Xiem Y km € {¥e \ (Yo UWcp}}  (69)
yim _yim =qre . X, 4+ MR, Y km € {¥, \ (Yo UW¥cp}}  (70)

58



The reader will notice that the expressions above are virtually identical to (3)
and (4) of section 2.2.1.1 — the only difference being that (68) and (69) are not defined
for all branches in the system (the set W), but only for non-switchable and non-
candidate branches (i.e., branches in the set {¥¢ \ {Wsyy U Wepl)).

For branches whose status corresponds to a decision variable of the ACOPF
(switchable branches or candidate branches), it is necessary that Kirchhoff’s Voltage
Law is enforced whenever the circuit is active (i.e., whenever oy, = 1), but relaxed
whenever the branch is inactive (i.e., whenever oy, = 0). In order to do that, the

following disjunctive constraints are defined:

Wiem" "+ (1= 1em) < ViE® = Vi€ = T * Riem + T Xiam < Wi+ (1 = )
Y km € {Woyy U Wep} (71)
W™ - (1= Gn) < Vim™ = Vi — I8, Xiom = [~ Riem < W™ + (1 = G

Y km € {Woyy U Wep} (72)

where:
VLrel . o VLre,
ka re : ka reu
Disjunctive constants for Kirchhoff’s Voltage Law (difference among the

real components of terminal bus voltages);

VL,im,l . VLu
ka ' ka

Disjunctive constants for Kirchhoff’s Voltage Law (difference among the

imaginary components of terminal bus voltages).

In section 4.3.1, it is shown how to determine the constants defined above.

Constraints (71) to (72) are not the only disjunctive constraints that need to be
formulated to ensure the correct modeling of inactive branches. Obviously, the real and
imaginary components of the current flowing through inactive branches must be forced
to zero. In order to do that, the following disjunctive constraints are added to the MILP
model:

—Win * Okem < It < Wi * Okem Vk€{Wy UWcp} (73)
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—~Wiir, " Okem < T < Wi * e Vk € {Woyy UWep} (74)
where:
wgk Disjunctive constant for the disjunctive constraints that force the real and

imaginary parts of the current flowing through an inactive branch to zero.

The definition of WL will also be dealt with in section 4.3.1.

4.2.1.2 Generation

At this point, it is adequate to recall the definition of the following sets:

Qeen Set of all buses to which generators connect;

Qcrrpg  Set of buses to which generators with control over the output of active and
reactive power connect;

Qcrro Set of buses to which generators with non-controllable active power output
(but with reactive power output assumed to be controllable) connect;

Qcurt Set of buses to which curtailable generators connect;

Qncrr Set of buses to which non-curtailable generators connect.

It is assumed that, for the distribution system planning applications of interest,
there will be no need to associate costs with the curtailment of generators with
controllable active power output. Therefore, only generators with non-controllabe
power output may be in Qcygr. — i.€., the intersection Qcyrr N Qcrrpg COrresponds to
an empty set.

In the following subsections, the mathematical formulation of the constraints
that model current injections for each type of generator is presented. The formulation of
the following subsections makes use of McCormick’s envelopes. As previously stated, a
formulation that eliminates the need to employ McCormick’s envelopes, and relies
solely on SOS2-based piecewise-linear approximations, is presented in Appendix C

(section 9) of this dissertation.
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4.2.1.2.1 Non-curtailable generators with no control over the active power output

The current injections from generators that pertain to {QCTRQ nQNCRT} are

modeled with help of the following constraints:

ok = Sk ‘gr + m,?’re Vke {'QCTRQ N -QNCRT} (75)
ér,rlé = 0" Gk — mff’m Vke {'QCTRQ N -QNCRT} (76)
where:
m2"e Aucxiliary decision variable for modeling the product j, - g<;
m,‘f’im Auxiliary decision variable for modeling the product & - g,?.

The auxiliary decision variables m?" and m&"™ are free in signal.

The reader will recall that, for generators with no control over the active power
output, gx is a parameter (and not a decision variable).

There are a number of constraints needed for defining the auxiliary decision
variables that appear in equations (76) and (77): &, {x, m>"® and m&"™

The auxiliary variables &, and ¢, will be approached first. As seen in section
2.2.1.2, these auxiliary decision variables represent non-convex, non-linear functions of
Vie and Vi™ — ie., they are both functions of two variables. For the MILP
reformulation of the ACOPF, piecewise-linear approximations of these non-convex,
non-linear functions will be employed. Using the technique based on SOS2 and

described in section 3.2, the following set of equations may be used for the definition of
& and

é—‘r,s
Yrerre Ngerim A * Z’;S = Z] Yk €{Q¢en U Qpcre}  (77)
k
V‘Te,r Vre
Zrerre Zserim A;’S ) [V’:m'sl = |J/Ifm ’v k € {‘Q‘B \QREF} (78)
k k
Zrerre Zserim A;’S =1 ’v k € {‘Q‘B \QREF} (79)

where:
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rre Set of indices for evaluation points ¥, ®” and associated variables;

rim Set of indices for evaluation points 7;™* and associated variables;

v.er Evaluation points of real component of voltage at bus k;

I7kim'5 Evaluation points of imaginary component of voltage at bus k;

£ Evaluated values of function &, (V¢,v;i™), for bus k;

&° Evaluated values of function g, (Vie, V&™), for bus k;

Ml Weights for constructing piecewise-linear approximation of non-convex,

non-linear functions of V¢ and V™.

Section 4.3.2 deals with the definition of the evaluation points and evaluated
values 77", 0™ €75 and {7,

The vector equations (77) and (78) correspond respectively to the function row
and to the reference row for the piecewise-linear approximation, while (79) is the
convexity row.

The reader will notice that equations (78) and (79) are defined for all buses in
the system, except the voltage reference buses. This is due to the fact these same
equations will be used for constructing a piecewise-linear approximation of the square
root function through which the voltage magnitude of each bus is obtained, as described
in subsection 4.2.1.4.1. The reader will recall that the voltage magnitude for the voltage
reference bus is either fixed or it consists of a “natural” decision variable, and therefore
the implicit determination of the bus voltage magnitude at voltage reference buses is not
necessary.

Equation (77) is defined for all buses with generators and all buses with
constant-power loads, as these are the buses for which the auxiliary variables &, and ¢
are defined, as these variables are needed to obtain the current injections corresponding
to power injections.

Having defined (77) to (79), it is necessary to define constraints that ensure that
the weights 1;° form a SOS2:

YrerreX; =1 V k € {Qp \ Qppr} (80)
/1%5 < xi Vs eT™ k€ {Qp\ Qper} (81)
Al < xpt+xp, Vre{lm\{1}},s eT™ k € {Qp \ Qpgr} (82)
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where:

Tr . S
Xi s Vk

Zsel"im yli =1

71 1
A = Vi

Ao <yt + i

Vk €{Qp\ Qrpr}

Vrel™ke{Qp\ Qrgr}

V1 el se{r™\(1}},k € (Qp \ Qpsr}

Auxiliary binary decision variables.

(83)
(84)
(85)

Having dealt with the definition of &, and (g, it is necessary to indicate the

constraints for the definition of m¥%"®

k

and m,‘f’im. As previously stated, these auxiliary

variables are used for approximating the product of continuous decision variables. For

their definition, it is possible either to use piecewise-linear approximations or to employ

McCormick’s envelope.

where:
S ;Ek
Ek , Zk

At this point, an option is made for the latter procedure, and the following
constraints are defined:

Lower and upper bounds for the values that &, may assume;

Lower and upper bounds for the values that ¢;, may assume.

g8 + G
g8 +
g8+
- g8 +
'g£+5k'_
g8+ &
g8 + &

'g;‘f+€k'_

G =%
T =G
'gg_ék'
'Qg_zk'
g,?—ik
gy — %,
90 — &k
ge — &,
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Yk € Qgpn
Yk € Qgpn
Yk € Qgpn
Yk € Qgpn
Yk € Qgpn
Yk € Qgpn
Yk € Qgpy

,Vk € QGEN

(86)
(87)
(88)
(89)
(90)
(91)
(92)

(93)



The lower and upper bounds for g,‘f are inputs for the ACOPF, as they depend
on particular characteristics of each generator. The definition of the lower and upper
bounds for &, and ¢; will be dealt with in section 4.3.3.

The reader will notice that constraints (86) to (93) have been defined for all
generators of the system (i.e., ,Vk € Q;gy), and not only for the generators that pertain
to {Qcrrpg N Querr}. This is due to the fact that all generators in the system are
assumed to have control over their reactive power output, and it is therefore necessary
to determine the approximation of the bilinear products -g,‘f and gk-gg for the
whole set Q¢gy-

It is worth mentioning that, despite the fact that McCormick’s envelopes have
been used for the formulation of the constraints used for obtaining the current injections
from generators in in this section, there are alternative formulations that completely
eliminate the need to employ the convex envelopes. An alternative formulation, based
on treating the generator currents 175 and I2% as functions of three continuous decision
variables — i.e., I7%(Vie,vim, g2) and IM(vie,vim,g?) — and constructing a
piecewise-linear approximation of these functions with help of SOS2, is presented in

Appendix C (section 9.1) of this dissertation.

4.2.1.2.2 Curtailable generators with no control over the active power output

As already discussed in subsection 2.2.2.2, generation curtailment is considered
to be a discrete decision in the proposed formulation: the generator at bus k will be
considered to be either energized (7, = 0) or de-energized (tj, = 1).

Therefore, it is necessary to ensure that, if the generator connected to bus k is
curtailed, its current injections will be forcefully set to zero. In order to do that, the
following set of disjunctive constraints will be defined for generators that pertain to
{QCTRQ N QCURT} (i.e., for curtailable generators with no control over their active power

input):

Grel re . AP Qre Gre?2

Vk € {'QCTRQ N 'QCURT} (94)
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M™% (1—1) SIS < M™% - (1—13.)

Vk € {Qcrro N Qcyrr) (99)
M < 1M — g gk + mdT < M

Vk € {Qcrro N Qcyrr) (96)
M (1 —1) < IR < MP™ - (1 — 1)

Vk € {Qcrro N Qcyrr) 97)

Grel . Gre?2 . Gre3 . Gre4 . G,im,1 ., G,imz2 . G,im,3 . G,im4
Mk ] Mk ] Mk ] Mk ] Mk ] Mk ] Mk [] Mk
Disjunctive constants for the disjunctive constraints employed for modeling

generation curtailment.

The definition of these disjunctive constants will be dealt with in section 4.3.1.
The reader will notice that the constraints needed for determining the value all
auxiliary decision variables that appear in (94) to (97) have already been defined, as

many of the constraints of previous sections have been defined for sets that include

{Qcrro N Qcyrr} as a subset.

4.2.1.2.3 Generators with control over the active power output

Generators with control over the active power output are considered to be non-
curtailable. This assumption is based on the fact that, as these generators can simply set
their output to zero, it is not required to model their curtailment and to attribute a cost to
it.

The current injections from generators that pertain to Qcrzpo are modeled with

help of the following constraints:

oe =mpT +m2re Yk € Qcrpeq (98)
M= P — M2 Yk € Qcrreg (99)
where:
mi're Auxiliary decision variable for modeling the product &, - gr;
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mi'im Auxiliary decision variable for modeling the product ¢ - g=&.

For the generators that pertain to Qcrgpg, gi IS a continuous decision variable.
Thus, products of two decision variables appear once again. These products may be
approximated either by a piecewise-linear function constructed with help of SOS2, or
via McCormick’s envelope. An option is made for the latter procedure, and the

following constraints are defined:

M > g g + 8- gk — - g Yk € ernrg o)
mp"¢ = Ek ‘i + &k -Ei - Ek 'Ei Yk € Qerreg (102)
mi're < Sk ‘i + &k gi — Sk gi Vk € Qcrrpo (102)
M < g+ e gk —E ok 7k € erare (o)
mE™ > G gl 4 G gb — G- gb Yk € Qerppo (104)
mi'im > ?k * ke + i gi - Zk gi Vk € Qcrrpo (105)
mi,im < -gP + G .gl’: — & -gi Vk € Qcrrpo (106)
mi’im = Ek -9k + G Q’I: - Zk Q’I: vk € Qerreq (107)

The auxiliary decision variable m,’:’”’ may be free in signal or non-negative,

depending on the upper and lower bounds defined for gf, whereas mﬁ'im is always free

P,re

in signal. Typically, g5 and m; ™ will be non-negative. The lower and upper bounds
for gf are inputs for the ACOPF, and vary by generator. The constraints needed for
defining all auxiliary decision variables that appear in (100) to (107) have already been

defined.

A discussion similar to that of the end of subsection 4.2.1.2.1 applies here: it is
possible to define an alternative formulation of the constraints used for obtaining the
current injections from generators that control their active power output that completely
eliminates the need to employ McCormick’s envelopes. This formulation is based on
treating the generator currents as functions of four decision variables — i.e.,
1re (vre,vim, g2, gk ) and I (Vie,vi™, g2, gf) — and then constructing piecewise-

linear approximations of these functions, with help of SOS2. By using this alternative

66



formulation and eliminating the need to employ McCormick’s envelopes, the user may
arbitrate the accuracy of the approximation of the generation currents (which is not
possible when McCormick’s envelopes are used). This alternative formulation is
presented in Appendix C (section 9.2). Yet, it should be kept in mind that enhancing the
accuracy of the piecewise-linear approximation by augmenting the number of
evaluation points may result in additional computational requirements. This matter will
be discussed further in 5.2.3 of this dissertation, in which both the formulation
presented above and the formulation that does not employ McCormick’s envelopes are

used in the solution of a case study.

4.2.1.3 Loads

In the following subsections, constant-power, constant-current and constant-
impedance loads are treated separately — these types of loads are those that pertain
respectively to the sets Qpcre, Qicrg and Qgcrg. For each type of load, separate
subsections will deal with loads that cannot be shed and loads that can be shed.

At this point, it is necessary to remember the definition of the following sets:

Qsuep Set of all buses to which loads that can be shed are connected,;

Qnsup Set of all buses to which loads that cannot be shed are connected.

4.2.1.3.1 Constant-power loads that cannot be shed

Equations (9) and (10) of section 2.2.1.3.1 may be used to define the currents
demanded by constant-power loads that cannot be shed. These constraints are

reproduced below, for the sake of clarity:

Ig% = ¢k di + - dQ V k € {Qpcre N Qnsup) (108)

I = G - df — & d;? V k € {Qpcre N Qnsup} (109)

The constraints needed for defining the auxiliary decision variables &, and

have already been defined.
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4.2.1.3.2 Constant-power loads that can be shed

As indicated in subsection 2.2.2.1, load shedding is considered to be a discrete
decision: the load at bus k will be considered to be either energized (p, = 0) or de-
energized (p;, = 1). When the load at bus k is shed, it is obviously necessary to ensure
that the associated currents will be forcefully set to zero.

Thus, the following disjunctive constraints may be used to model loads of the

constant-power type that may be shed:

D,re,PCTE,1 . re P 0 D,re,PCTE,2 .
M, Pr < Igk — Sk dy — G - dig < M Pk

V k € {Qpcre N Qspep) (110)
M}?,re,PCTES (A-p) SIS < MkD,re,PCTEA- (1= pp)
V k € {Qpcre N Qspep) (111)

D,im,PCTE,1 im p Q D,im,PCTE, 2
M “Pr S gk = Sk dy + 8§ dig < My *Pr

V k € {Qpcre N Qsypp} (112)
MPITPETES (1~ p) < [} < MPIPTER (1 p)
V k € {Qpcre N Qsypp} (113)

where:

D,re,PCTE,1 . D,re,PCTE,2 . D,re,PCTE,3 . D,re,PCTE 4
Mk ) Mk ] Mk ) Mk

M}?,im,PCTE,l : M’?,im,PCTE,Z : M}l{),im,PCTEB : M}l{),im,PCTEA
Disjunctive constants for the disjunctive constraints employed for modeling

shedding of loads of the constant-power type.

Section 4.3.1 will deal with the definition of these disjunctive constants.
The constraints needed for defining the auxiliary decision variables &, and {j

have been already defined.

4.2.1.3.3 Constant-current loads that cannot be shed

Equations (11) and (12) of section 2.2.1.3.2 may be used to define the currents
demanded by constant-current loads that cannot be shed. These equations are
reproduced below, with slight modifications regarding the set of buses for which the

constraints are defined:
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Ig% = Mk - df + Ky - d}? Vk € {Qcre 0 Qnsup} (114)

Icilr,rllc =ty die — Ny dl? Vk € {Qicrg N Qusup} (115)

It is necessary to present the constraints needed for the definition of the auxiliary
decision variables n, and kj. As seen in section 2.2.1.3.2, the auxiliary decision
variables 7, and x;, represent non-convex, non-linear functions of V¢ and V™. For the
MILP reformulation of the ACOPF, piecewise-linear approximations of these non-
convex, non-linear functions will be employed. Using the technique based on the
construction of SOS2, the following vector equation may be employed for the definition

of n;, and x:

7S ﬁ;s Nk
Zrerrezserim)lk ) QTS = Kk] Vk € Qicrg (116)
Kk

A Evaluated values of function n, (Vi¢, V™), for bus k;

Ry Evaluated values of function «, (V,/¢, V™), for bus k.

The reader will notice that, at this point, it is only necessary to define the vector
equation corresponding to the function row of the piecewise-linearization, as all other
necessary constraints have already been defined in section 4.2.1.2.1. A simple
verification of the equations presented in section 4.2.1.2.1 will indicate that the sets for
which equations (78) to (85) have been defined already include the set Q;c75.

It is also clear that the constraint corresponding to equation (116) is defined not
only for the loads in {Q;crs N Qnsup ), but to all loads of the current-type.

AT,S ~AT,S

Section 4.3.2 deals with the definition of the evaluated values 7~ and ;.

4.2.1.3.4 Constant-current loads that can be shed

As load shedding is considered to be a discrete decision, the following
disjunctive constraints may be used for modeling loads of the constant-current type that

may be shed:
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MPICTEL. o < re — - dP — - d2 < MPICTER . o,

Vk € {Qicre N Qspep} (117)
MTTES (1 = py) S I56 < MTCTE - (1= py)

Vk € {Qicre N Qspep} (118)
MPICTEL . o < [ e - dP - d2 < MPICTER .

Vk € {Qicre N Qspep} (119)
MPICTES (1 — 5y < [ < MPICTER L (1 — p)

Vk € {Qicre N Qsuep} (120)

where:

D,re ICTE,1 . D,re,ICTE,2 . D,re ICTE,3 . D,re ICTE,4
Mk ] Mk ] Mk ] Mk

M}?,lm,ICTE,l : M]l{),lm,ICTE,Z ;M]?,lm,ICTES ;M]?,lm,ICTEA-
Disjunctive constants for the disjunctive constraints employed for modeling

shedding of loads of the constant-current type.

Section 4.3.1 will deal with the definition of the disjunctive constraints.
The constraints needed for defining the auxiliary decision variables 7, and &
have already been defined.

4.2.1.3.5 Constant-impedance loads that cannot be shed

Equations (15) and (16) of section 2.2.1.3.3 may be used to define the currents
demanded by constant-impedance loads that cannot be shed. These equations are
reproduced below, with slight modifications regarding the set of buses for which the
constraints are defined:

Rl . Xl
Iag = Vi© lzﬁz + V" | zk|2 Yk € {Qzcre N Qnsup} (121)
k k
. . Rl Xl
ak =V IZ}:CIZ — Ve |Z,l<k|2 Vk € {Qzcre N Qnsup} (122)

Equations (121) and (122) are linear and can be readily incorporated to a MILP.

70



4.2.1.3.6 Constant-impedance loads that can be shed

As load shedding is considered to be a discrete decision, the following
disjunctive constraints may be used for modeling loads of the constant-impedance type
that can be shed:

D,ZCTE,1 R i x} D,ZCTE,2
M, 'kaIgsc_VI:e' lkz_ P lkZSMk )
|| ||
Vk € {Qzcre N Qspep} (123)

MPZCTES (1 — p) < 176 < MPZCTEA . (1 — p)

Yk € {Qzcre N Qsppp} (124)
M}l{),ZCTE,l e < I(ilr,?c _ Vkim'% re XT}CZ < M}?,ZCTE,Z_
|z | |z |
Vk € {Qzcrg N Qsppp} (125)
MPRETES (1~ p) < 17k < MPZTES (1~ )
Vk € {Qzcrg N Qsppp} (126)
where:
MkD,re,ZCTE,1 : M’?,re,ZCTE,Z ; MkD,re,ZCTE,3 : MkD,re,ZCTE,4
M}?,im,ZCTE,l : M}l{),im,ZCTE,Z ; M]?,im,ZCTEs : M}?,im,ZCTEA

Disjunctive constants for the disjunctive constraints employed for modeling

shedding of loads of the constant-impedance type.

Section 4.3.1 will deal with the definition of the disjunctive constraints

mentioned above.

4.2.1.4 Operating limits

4.2.1.4.1 Bounds on bus voltage magnitudes

The magnitude of the voltage at bus k is a non-linear, non-convex function of the
real and imaginary components of the voltage at this bus, as indicated in section

2.2.1.4.1. It is thus necessary to obtain an approximation of this decision variable —
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which will be done with help of the technique presented in section 3.2 of this

dissertation. The following equation may be employed for the definition of V;:

Zrerre oerm Ay Vi = Vi Vk € {Q\Opgr) (127)
where:
Ve Evaluated values of function V; (V¢, V™), for bus k.

The equation above corresponds to the function row for the piecewise-linear
approximation. The reader will recall that all other necessary constraints have already
been defined in section 4.2.1.2.1.

After using (127) to obtain an approximation of V, the following constraint may

be used to impose bounds on this variable:

Vi SV <V Vk € {Qp\Qger} (128)

4.2.1.4.2 Bounds on the magnitude of branch currents

Analogously to what has been seen in the previous section, the magnitude of the
current flowing through branch km is a non-linear, non-convex function of its real and
imaginary components. Thus, an approximation of this non-convex, non-linear function
will be required for the MILP reformulation of the ACOPF.

When constructing a piecewise-linear approximation of the bus voltage
magnitude, the fact that there were several other decision variables that were non-
convex, non-linear functions of the real and imaginary components of the bus voltage at
each bus was taken advantage of. Taking that into account, it was only necessary to
define constraints referring to the function row of piecewise-linear approximation
technique described in section 3.2.

This is not the case for the real and imaginary components of the branch currents
— there are no other non-linear functions of these variables.

As the only function of the real and imaginary components of the branch

currents that will need to be approximated is the magnitude of the corresponding
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complex quantity, the fact that the function I, = \/(1,’;,‘;)2 + (152 is symmetric

about the origin can be used for reducing the number of evaluation points needed to
obtain the piecewise-linear approximation.

In order to do that, it is first necessary to define auxiliary variables that will be at
least as high as the modulus of the components I%¢, and I7™. This may be done with

help of the following constraints:

Uem = i Vk € ¥, (129)
U = —Iie, Vk € ¥, (130)
m > im Vk € ¥, (131)
gm o> —m Vk € ¥, (132)
where:
Ueon Auxiliary variable that is at least as high as the modulus of I;;,, for branch
km;
im Aucxiliary variable that is at least as high as the modulus of I/™ for branch
km.

The reader will notice that, given that (£, and (™ are at least as high as the
modulus of I%¢, and I&%, the square root of the sum of the squared values of these
auxiliary variables will always be at least as high as the square root of the sum of the
squared values of the current components. Thus, enforcing bounds on the former square

root will result in the latter being bounded.

It is thus necessary to obtain an approximation of ¢, = J(l € )2 + ((i™)2. This

can be done by building a piecewise-linear approximation of this function, with help of
the technique presented in section 3.2. This piecewise-linear approximation can be
obtained with help of the following equations:

Yrenre Lgenim wI:m fszfn bem vV km e W, (133)
~re,r L
k
Zrel’lre Zsel’lim wl:‘rfl IALm sl l ml vV km e W, (134)
lem lem
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ZTEHTE Zsenim (l),:;il =1 vV km € lPC (135)

where:

nre Set of indices for evaluation points f;:)" and associated variables;

mnm Set of indices for evaluation points ™ and associated variables;

(il Evaluation points of ¢%,, for branch km;

fms Evaluation points of ¢, for branch km;

(i Evaluated values of function ¢, = \/ (re )2 + («imH2, for branch km;

Wi Weights for constructing piecewise-linear approximation of ,,, for branch

km;

Uem Auxiliary variable that is at least as high as I, for branch km.
Section 4.3.2 deals with the definition of the evaluation points and evaluated

values &>, i and &y, .
The following constraints ensure that the variables w,,, form a SOS2:
Yrenre thy = 1 Y km e W, (136)
A <t Vs eNm™ kme W, (137)
s <tk 4 thm Vre{lre\{1}}, s e 1™ km € ¥, (138)
Y emim U = 1 Vkew, (139)
Nt < ub, Vrell™ kme Y, (140)
T Suipt +ufy, Vv ellse {1}, km e w (141)

where:

thm : Urm Auxiliary binary decision variables.
After obtaining an approximation of ¢, the following constraint may be used

for bounding this variable (and indirectly bounding the magnitude of the current
flowing through branch km):
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lem < Tim vV km € ¥, (142)

4.2.1.4.3 Bounds on active and reactive power output of generators

The constraints of section 2.2.1.4.3, reproduced below for the sake of clarity,

may be employed for bounding the active and reactive power output of generators:
i < 9k < 9k Vk € Qcrrpo (143)
g <9¢ < 9y Vk € Qe (144)

4.2.1.5 Voltage reference buses

The constraints of section 2.2.1.5, reproduced below for the sake of clarity, may
be employed for specifying the real and imaginary components of the voltage of buses
pertaining to Qggr. For applications in which the voltage magnitude of these reference

buses is fixed, the following constraints apply:

vie = v - coso]! Yk € Qpgp (145)

vim =y’ - singl Yk € Qppr (146)

For applications in which the magnitude of the voltage at reference buses are

decision variables of the ACOPF, the following constraints apply:

V]Ze = Vk - COSBI:ef ,V k € QREF (147)

Vlém = Vk ' SlnHI:ef ,V k € QREF (148)

Again, it is important to emphasize that, for applications in which the voltage
magnitudes of the buses in Qg are considered decision variables, it is necessary to
enforce the corresponding bounds by using the following constraint:

Ve SV <V Vk € Qppr (149)
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4.2.1.6 Slack buses and buses without generators and/or loads

The constraints of section 2.2.1.6, reproduced below for the sake of clarity, may
be used to ensure that the load/generation currents of buses to which no loads/generators
connect are set to zero. The reader will notice that the generator currents of all buses in

the set Qg; 4cx May assume any given value.

Ig% = cl{?c = Vk€{Qp\Q0ap} (150)
Ig% = 15,7;1( =0 VY k € {Q\{Q¢ey U Qspackd} (151)

4.2.1.7 Radiality constraints

If it is required to ensure that the distribution network is radial, the constraints
presented in this section are to be added to the MILP formulation of the ACOPF for
distribution systems. Reference [38] introduced a formulation of radiality constraints
based on ensuring that the distribution network consists of a spanning tree that
originates from the root node. This approach, which is based on using binary decision
variables to impose a particular structure to the distribution system, can be readily
incorporated to a mixed-integer program and will be used in this dissertation.

In the following subsections, three slightly different approaches for the
formulation of the radiality constraints are presented. The three approaches ensure that
all nodes that are connected to the network are arranged within a radial structure —
however, the approaches differ in the specification of which nodes must be connected to
the network and which can be removed from it. In order to make it clear that the three
approaches differ only with respect to this aspect, they will be referred to as connectivity
approaches to the radiality constraints.

At this point, the reader may want to consider why it is necessary to define more
than one connectivity approach. Depending on specific characteristics of the
distribution system operations or expansion planning application under consideration, it
may be necessary to remove from the network some (or all) of the buses to which loads

that have been shed and/or generators that have been curtailed connect. In previous
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sections of this dissertation, reference has been made to the fact that, as of this writing,
the most common approach to disconnect elements of the distribution system in case of
emergencies is to maneuver switches and de-energize entire segments of the distribution
network. Thus, depending on the application at hand, it may be in the interest of the
distribution system planner to ensure that one load can be disconnected only if all
circuits connected to it are de-energized. For some other applications, this may not be
necessary.

Keeping this in mind, one of the three following connectivity approaches may be
chosen while formulating the radiality constraints:

(1)  For this first approach, all buses of the distribution system, which have
been defined in the input data for the ACOPF, must be connected to the
network at all times — even if the loads and/or generators connected to it
are curtailed.

(i) For the second approach, it is considered that the load and/or generator at
a bus can only be de-energized (shed and curtailed, respectively) if all
circuits that connect to that bus are removed from the network (i.e., all
circuits must have their status changed to inactive).

(iii)  For the third approach, it is considered that the buses to which loads that
are shed and generators that are curtailed, as well as all buses that do
have any potential injections (i.e., those that are not reference or slack
buses and to which no loads or generators connect), may or may not be
disconnected from the network, according to the distribution system
planner decision. Thus, the optimality of the decision is the only criterion
that dictates if these buses will be connected to or disconnected from the
network.

The mathematical formulation corresponding to the three basic connectivity
approaches listed above is presented in the following subsections. In subsection 5.2.1 of
this dissertation, an example of the application of each of these three approaches is
presented.

It is worth pointing out that, despite the fact that the three approaches are
presented in different subsections for the sake of didactics, it is possible to combine
them within a single optimization problem, utilizing different connectivity approaches

for different buses of the distribution system.
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4.2.1.7.1 Connectivity approach (i)

For approach (i), all buses of the distribution system, which have been defined in
the input data for the ACOPF, must be connected to the network at all times.

The formulation of the radiality constraints corresponding to this connectivity
approach corresponds exactly to that proposed in [38]. In order to ensure radiality, it
suffices to determine that every bus in the network has exactly one parent bus, except
for the root bus. Each spanning tree in the distribution system (each islanded, radial
system) originates from a root bus, and none of the root buses have parents. The
following set of constraints may be used to impose this particular structure to the

distribution system:

vk +ul =1 Y km € {$\{Wsyy U Pep}} (152)
'U]Igm + U;;nm = ka ,V km € {LIJSW V) l‘IJCD} (153)
|2 jeweizk Ulj,] + [Zijew,j=rvi] =1 V k € {Qp\Qgroor} (154)
Vi =0 Y km € {¥Y¢|k € Qroor} (155)
vk =0 V km € {¥;|lm € Qroor} (156)
where:
vk, Binary variable associated to line km that assumes the value vf,, = 1 if bus k

is the parent of bus m, and that assumes the value v, = 0 if bus m is the
parent of bus k;
Qroor Set of buses chosen as root buses. The number of root buses must equal the

number of allowed islands in the system.

The reader will notice that equations (152) and (153) ensure that, for every
active branch km, either k is the parent of bus m or m is the parent of bus k. Equation
(154) ensures that every bus in the system, except the root buses, has one and only one
parent. Equations (155) and (156) ensure that, for every branch km that includes one
root bus at one its extremities, the bus that is not the root cannot be a parent bus — i.e.,
the root bus will always be a parent bus if there is an active circuit connected to it [38].
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As pointed out in [38], constraint (153) suffices for ensuring that the variable
o,m Can only assume the values 0 or 1, even if ay,, is defined as a continuous (rather
than a binary) variable. Therefore, whenever this constraint is added to the MILP
formulation of the ACOPF, ay,,, may be defined as a continuous (rather than a binary)
variable. Nonetheless, the reader will recall that the MILP reformulation of the ACOPF
for distribution systems presented in this dissertation may be applied to distribution
systems that are operated in a radial fashion or in a meshed fashion — thus, whenever a
radial operation is not required, constraint (153) will not be part of the MILP problem.
This is the reason why, in previous sections, gy, has always been defined as binary
decision variable. However, as pointed out in this paragraph, whenever the radiality
constraints are added to the model, gy, may be defined as a continuous variable.

It is worth pointing out that it is not required that Qg7 coincide with the set
Qgrpr Or to the set Qg; 4cx- It should be kept in mind that Qg; 4ox May be an empty set
depending on the application, but the cardinality of the set Qzgr must always equal the
number of potentially islanded systems in the network, with one and only one reference
voltage bus defined for every island. Thus, in many applications, it may be in the
interest of the distribution system engineer to define Qgroor = Qgrgr, despite of this not

being compulsory.

4.2.1.7.2 Connectivity approach (ii)

For connectivity approach (ii), it is considered that the load and/or the generator
at a bus can only be de-energized if all circuits that connect to that bus are removed
from the network.

In order to model this condition, it is necessary to modify some of the constraints
proposed in [38]. The modifications proposed in this dissertation will be presented in
the following.

The first two constraints of the previous section, which ensure that every active

branch has one and only one parent bus in its extremities, are not modified:

vk +oult =1 Y km € {$ \{Wsyy U Pep}} (157)

U’kcm + U]T(nm = Ogm ,V km € {lpSW U lpCD} (158)
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However, the constraints that control which buses in the network must have
parents need to be modified. In this dissertation, these will be referred to as parenthood
constraints. The formulation of these constraints for buses with loads that can be shed,

but to which no curtailable generators connect, is indicated below:

[Zije‘l’c,i=k Ul]]] + [Zije‘llc,j=k Uiij] =1 -pr)

V k € {Qspep \Qcurr} (159)
Vkm < (1 — pg) vV km € {lpclk € {'QSHED\'QCURT}} (160)
Viem < (1 — pyg) vV km € {lpclm € {'QSHED\'QCURT}} (161)

Equation (159) ensures that, if a given load is shed (p, = 1), it does not have
any parent; and if the bus is not shed (p;, = 0), it has exactly one parent. Equations
(160) and (161) ensure that buses with loads that have been shed cannot be the parents
of any other buses; but buses with loads that have not been shed may be the parents of
other buses. It is thus clear that a bus with a load that has been shed will not have any
parents and it will not be the parent to any other buses, meaning that this bus will be
disconnected from the network.

A set of analogous constraints are defined for buses that have curtailable
generators, but no loads that can be shed (i.e., buses in {Qcyrr\Qsyep}). The only

difference is that the binary variable that controls generation curtailment is t, and not

Pk:

[Zijelpc,i=k Ul]]] + [Zije‘{’c,j=k Uiij] =1 -1

V k€ {Qcyrr\Qsyep} (162)
vk < (1—1) Vkme {chlk € {'QCURT\'QSHED}} (163)
Viem < (1 —13) Y km € {W¢|m € {Qcyrr\Qsuen}) (164)

It is now necessary to model buses that have loads that can be shed and
generators that can be curtailed (i.e., buses in {Qg¢yrp N Qcyrr}). As any of these
elements may only be de-energized if the bus is entirely removed from the network,
shedding the load necessarily requires curtailing the generator, and vice-versa. Thus, the

following set of constraints may be used:
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Tk = Pk V k € {Qsypp N Qcyrr} (165)

[Zije‘l’c,i=k Ul]]] + [Zije‘llc,j=k Uiij] =1 -px)

V' k € {Qsuep N Qcyrr} (166)
Vkm < (1 — pg) vV km € {lpclk € {Qsupp N 'QCURT}} (167)
Viem < (1 — pyg) vV km € {lpclm € {Qspep N -QCURT}} (168)

The reader will notice that, if the connectivity approach (ii) is employed, for all
buses in {Qsyep N Qcyrr), 1S possible to substitute 7, by p, in every constraint of
section 4.2.1.2.2, dropping the binary variable 7, altogether from the formulation of the
MILP problem. This is not done here, however, for the sake of simplicity.

Now that all buses with loads that can be shed and curtailable generation have
been treated, the parenthood constraints for the remainder of the buses in the network

are presented:

[Zijeweizk Ul],] + [Zijewy =k vij] = 1

v k € {Qp\{Qsugp U Qcurr U Qroorl) (169)

For the formulation above, we consider that the sets Qqyep and Qqygr are
defined in such a way that there are no buses that have either loads that cannot be shed
and curtailable generators, of non-curtailable generators and loads that can be shed.

As in connectivity approach (i), the root buses do not have any parents. Also, the
root buses are necessarily the parents of all nodes directly connected to them through

active circuits, as indicated by the following constraints, whose formulation remains

unchanged:
Vkm =0 Y km € {Wclk € Qroor} (170)
Ui = 0 V km € {¥¢|m € Qroor} (171)
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4.2.1.7.3 Connectivity approach (iii)

For the third connectivity approach, it is considered that the buses to which loads
that are shed and generators that are curtailed, as well as all buses that do have any fixed
or curtailable injections, may or may not be disconnected from the network, according
exclusively to the distribution system planner decision. That is to say, the only criterion
that determines that one of these buses will or will not be connected to the network is
the impact of this decision on the objective function of the optimization problem.

As in approach (ii), the following constraints are exactly equal to those presented
in section 4.2.1.7.1:

'U]Igm + U;;nm = 1 ,V km € {l'pc\{qJSW V) l‘IJCD}} (172)

'U]Igm + U;;nm = ka ,V km € {LIJSW V) l‘IJCD} (173)

Yet, the parenthood constraints must also be modified in approach (iii). The
modifications proposed in this dissertation will be presented in the following. The
following constraints apply to the set of buses to which loads that can be shed connect,

but to which no curtailable generators connect (i.e., buses in {Qsyep \Qcurr)):

Br = (1 — pi) Y k € {Qsppp\Qcurr} (174)
[2ijeweizk Ul]]] + [Zijews j=k Uiij] = Bk V k € {Qsupp\Qcyrr} (175)
Um < Br vV km € {chlk € {'QSHED\'QCURT}} (176)
Viem < PBr vV km € {chlm € {'QSHED\'QCURT}} (177)
where:
Br Binary decision variable that models the decision to disconnect a bus k from

the system: if 8, = 0, the bus is disconnected from the system, if g, = 1,

the bus is connected to the system.

A few words on the logical implications of the constraints defined above are in

order at this point:
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It is clear that, if the load at bus k has not been shed, then 8, = 1. Since
By 1s binary and can only assume the values 0 or 1, 8, = 1 leads to
Bx = 1, meaning that bus k is connected to the system (it will have one
and only one parent, and it may or may not be the parent to other buses).
If the load at bus k has been shed, g, may is entirely free to assume the
values B, =0 or B, = 1. If B, =1, the situation described above is
valid. If 8, = 0, bus k will have no parents and will not be the parent to
any other buses in the network — thus, bus k has been removed from the
network.
From the explanation above, it is clear that, given that the load at bus k has been
shed, the decision to remove or not a bus from the network is dictated only by its impact
on the objective function.

A set of analogous constraints are defined for buses in {Qcyrr\Qsuep }:

Br = (1 — 1) V k € {Qcurr\Qshep} (178)
|2 jeweizk Ulj,] + [Zijew,j=k vi;] = Br YV k € {Qcyrr\Qsuep} (179)
Ukm < B v km € {Wc|k € {Qcyrr\Qsuep)} (180)
Uim < Br v km € {We|m € {Qcyrr\Qsnep )} (181)

For buses that have both loads that can be shed and curtailable generators, the
situation is slightly more complex. A bus in set {Qsyep N Qcyrr} May be only
disconnected from the network if the load has been shed (p, = 1) and the generator has
been curtailed (t;, = 1). In order to check if this condition is met, an auxiliary,
continuous decision variable «a; is introduced to the problem, and the following

constraints apply:

A < Ty V k € {Qspep N Qcyrr) (182)

A < Pk V k € {Qsypp N Qcyrr} (183)

ar = (T +p) — 1 V k € {Qspep N Qcyrr) (184)

a, <1 V k € {Qspep N Qcyrr) (185)
where:
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ay Continuous (non-negative) decision that assumes the value a; =1 if and
only if p, =1 and 7, = 1; and assumes the value a;, = 0 for all other

combinations of the binary variables p; and .

Having defined the auxiliary variable above, the parenthood constraints for the

buses in {Qsyp N Qcyrr} May be formulated as:

B = (1 —ay) Y k € {Qspep N Qcyrr} (186)
[Zije‘l’c,i=k Ul]]] + [Zije‘llc,j=k Uiij] = B YV k € {Qsypp N Qcyrr} (187)
Ukm < B v km € {Wc|k € {Qsppp N Qcurr}}  (188)
Uim < Br Y km € {Wc|m € {Qspgp N Qcyrr}}  (189)

Now, it is necessary to model the fact that every bus to which no injections
connect (i.e., buses that have no loads or generators, and that are not slack buses) and
that are not reference buses can be removed from the network if desired. This is done

with help of the following set of constraints:

[Zijeweizk Ul],] + [Zijews j=k Uiij] = Pk

Y k € {Qp\{Q104p U Qgen U Qspack U Qrer U Qroor}) (190)
Ukm < Br

Vkme {lpclk € {Q\{Q104p U Qi U Qspack U Qggr U 'QROOT}}} (191)
Vkm < Pr

VvV km € {lpclm € {QB\{QLOAD U Qgen U Qspack U Qrer U 'QROOT}}} (192)

Finally, it is necessary to ensure that the buses that do not pertain to any of the
sets defined above are always connected to the network. This is done by defining the

following constraints:

[Zije‘Pc,izk ULJJ] + [Zije‘{lc,j=k Uiij] =1

Vke {{QLOAD U Qgen U Qspack U -QREF}\{{'QSHED N Qcyrr} U QROOT}} (193)
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Finally, the following constraints ensure that the root buses are necessarily the
parents of all nodes directly connected to them:

V km € {Wc|k € Qroor} (194)
V km € {¥¢|m € Qpoor} (195)

Uiem = 0
Vim = 0

4.2.2 Objective functions for selected distribution system
operations and expansion planning applications

In this section, the objective functions presented in section 2.2.2 are revisited. At
this point, the binary variables that represent discrete decisions have already been
presented to the reader, allowing a better comprehension of the mathematical
formulation of the objective functions presented blow, as well as of the MILP
reformulation of the ACOPF as a whole.

The majority of the objective functions presented at section 2.2.2 can be readily
factored into mixed-integer linear problems. Due to that, most of the equations of

section 2.2.2 will be simply reproduced below with no further manipulation.

4.2.2.1 Minimization of costs of load shedding

As discussed in sections 2.2.2.1 and 4.2.1.3, the focus of this dissertation is on
the case in which load shedding is a discrete decision. The following objective function,
first introduced in section 2.2.2.1 and reproduced below for the sake of clarity, can be
directly integrated to the MILP reformulation of the ACOPF:

4.2.2.2 Minimization of curtailment of non-controllable generation

As previously discussed, the power output of generators pertaining to Qcrgq

cannot be controlled — meaning that, for these generators, gt is a parameter of the
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optimization problem. Consequently, the following objective function, first introduced
in section 2.2.2.2 and reproduced below for the sake of clarity, can be directly integrated
to the MILP reformulation of the ACOPF:

zGCRT = min {Zke{QCTRQnQCURT} % gk 'Tk} (197)

4.2.2.3 Minimization of generation costs

The following objective function, first introduced in section 2.2.2.3, can be
directly integrated to the MILP reformulation of the ACOPF:

29N = min{Seearer ©° - 9k } (198)

4.2.2.4 Minimization of costs of power imports

Section 2.2.2.4 has presented three slightly different formulations of the
objective function associated with the problem of minimizing the costs of power
imports from an external network. The two formulations of practical interest correspond
to equations (35) and (36).

The latter of these corresponds to a linear equation that can be incorporated to a
MILP without further manipulation, due to I;% being the only (continuous) decision
variable appearing in equation (36) — all other terms are parameters of the optimization

problem. For the sake of clarity, equation (36) is reproduced below:

2™MPR = min{¥eq,ppe CEMPORT - 7S - e ) (199)
However, the bilinear product of decision variables V, - ;% appears in equation

(35). It is obviously necessary to approximate this product before the inclusion of an
objective function of this type into a mixed-integer linear program. Two alternatives for

obtaining such an approximation are presented in the following subsections.
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4.2.2.41 Approximation via McCormick’s envelope

The first alternative is to substitute the bilinear product by an auxiliary variable

P, and bound this auxiliary variable within the convex envelope for the original

product. This is done by adding the following constraints to the optimization problem:

ZIMPR

A VIV
<l

IA
SIS

Zk .

P

re

g,k + Vk
re

gk + Vk
re

g,k + Vk "

re
gk + Vk

Lgh — Vi Igk Vk € Qirpc
—re —_ -re
" Ig,k - Vk " Ig,k ,Vk (S QITFC
-re -re

Ig,k - Zk " Ig,k ,Vk (S QITFC
Lg% — Vi Ik Vk € Qirpc

(200)
(201)
(202)
(203)

Auxiliary (continuous) decision variable for approximating the product

Vi * 155, for all buses k in Q;7pc;

Lower and upper bounds for the voltage magnitude for bus k (as mentioned
in section 4.2.1.5);

Lower and upper bounds for the real component of the slack current of bus k

= min{ZkEQITFC Ck

The definition of

IMPORT . P }

¢ and I

The objective function corresponding to equation (35) may be then rewritten as:
(204)

4 k, the bounds for the real component of the slack

current of bus k in Q;rgc, is related strictly to the necessity of incorporating these

bounds into the constraints of McCormick’s envelope. The definition of these bounds

will be dealt with in section 4.3.2.

4.2.2.4.2 Piecewise-linear approximation with the use of SOS2

If the accuracy of the approximation via McCormick’s envelope is not

considered satisfactory, an SOS2-based piecewise-linear approximation of V; - I;
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be used. The product is substituted by an auxiliary variable P,, and the following

constraints are added to the problem:

Yrerv Dserts P B = V' k € Qrec (205)
YrerY Dserls Pr l"re sl [ V k€ Qrpc (206)
Yrerv Lseplo @y =1 V k€ Qrpc (207)
Yreev by =1 V' k € Qrec (208)
oy < bl Vs €EY9, k€ Qyrpc (209)
o < bt + by Vre{EY\{1}},s € EY9, k € Qrpc (210)
Yiserlo Ck = 1 YV k € Qrpc (211)
ot < ci VreE k€ Wrpc (212)
ot <ci e VreEY,s € {EY\{1}},k € Qrpc (213)

where:

EY Set of indices for evaluation points 17,5 and associated variables;

rm Set of indices for evaluation points I 2k and associated variables;

v Evaluation points of voltage magnitude of bus K in Q;rz¢;

Itc]rﬁés Evaluation points of real component of slack current of bus k in Q;rp¢;

Bls Evaluated values of function Py (V, I75,), for bus k;

o Weights for constructing piecewise-linear approximation of non-convex,

non-linear function of V; and Ig%

by ; ck  Auxiliary binary decision variables.
The objective function corresponding to equation (35) is then rewritten as:

ZIMPR — min{ZkEQITpC CIMPORT P, } (214)
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4.2.2.5 Minimization of costs of ohmic losses

A non-linear objective function corresponding to the problem of minimization of
the cost of losses has been presented in section 2.2.2.5. The non-linearities in equation
(37) are associated with the terms V.2, V.2 - (1 — py) and V- (1 — py), where V,, is a
continuous and pj, a discrete decision variable.

One possible way to deal with these non-linearities is to assume that, for the
range of variation of the magnitude of buses to which loads of the constant-current type
and of the constant-impedance type, it suffices to approximate V, = 1. This would
result in the following approximated objective function, which can be readily

incorporated to a mixed-integer linear program:

,L0SS — min{cﬁoss . {Zke'QITFC V;(ref . ]gﬁc + Zkeﬂcmpg .QII:
+ ZkE{QCTRQ\QCURT} gllz + ZREQCURT gll: ' (1 - Tk)
_[Zke{QPCTEnQNSHD} dllz + ZkG{QpCTEnQSHED} d}{: (11— ,Uk)]

_[ZkE{QICTEnQNSHD} dlf(’ + ZkE{QICTEnQSHED} dllz (1- pk)]

> R
ke{QzcTenQnsuD} |, |2
k

|Z_ + Zke{QZCTEnQSHED}% (1= p)|}} (215)

If this approximation is not considered satisfactory, it is possible to employ a
number of reformulation techniques for approximating the non-linear term V, by an
auxiliary continuous decision variable u;, (some of them allowing approximations of
arbitrary accuracy), and to exactly represent the products u,-(1—p,) and
Vi - (1 — pg). These techniques are presented in the following subsections. The MILP
reformulation of the objective function for the minimization of losses is then

summarized in subsection 4.2.2.5.3.

4.2.25.1 Approximation of V2

There are a number of alternatives for obtaining an approximation of the term
V,.2 that can be employed within a mixed-integer linear program. All of the alternatives

require the substitution of the term V,,* by an auxiliary variable, which will be referred
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to as yy in the following. All alternatives will obviously take advantage of the fact that
Vi, being a bus voltage magnitude, may only assume non-negative values in the interval
Ve <V < V4.

The reader will notice that, as the term V,* appears in equation (37) only in

association to buses with loads of the constant-impedance type, it is only needed to

define u; and any other auxiliary variables or constraints for buses k in Q¢7g.

The first of alternative for approximating V, requires that the auxiliary variable
Uy is bounded within a convex envelope for the V.. Taking into account that Vj, is
bounded within V, <V, <V, the tightest possible convex envelope for V% is defined

with help of the following constraints:

we = (2 Vi) Vie = V2 Vk € Qzcre (216)
— — 2
e =(2-Vy) Vi = Vi Vk € Qzcre (217)
e < (Ve + Vi) Vie = Vi Vie Vk € Qzcre (218)
where:
Uk Auxiliary variable that represents approximation of V2, for k in Qzcrg.

The second alternative would be to build an approximation of the function V%,
around a reference value V2, with basis on the corresponding Taylor series, truncated at

the term of order 1. This would result in the following approximation:

we=WD2+2:V - (e = V) Vk € Qzcrg (219)

where:

144 Reference voltage magnitude around which the approximation of V,,* based

on a truncated Taylor series is constructed.
The reference value V2 may be selected within V, < V2 <V, according to
specific requirements of each application, keeping in mind that the quality of the

approximation decreases as the distance among V,, and V;? increases. Due to the fact that
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voltages at the distribution system are (ideally) kept close to V, =1 p.u., choosing
V2 =1 (and thus obtaining p; = 2V, — 1) may be a reasonable choice (but not the
only one) for several practical applications.

The two alternatives presented so far do not allow the user to arbitrate the
accuracy of the approximation over the entire domain of the function V2 (i.e., over the
entire interval V, < V. < V). A third alternative for approximating V%, which allows
achieving an arbitrary accuracy, is to employ a piecewise-linear approximation using
SOS2, such as that described in section 3.2 of this dissertation.

In order to do that, it is possible to treat V; as a non-linear function of a single
continuous decision variable, V., and to employ equations (48) to (53) to obtain the
corresponding piecewise-linear approximation. This would, however, demand the
definition of additional integer decision variables.

Alternatively, a piecewise-linear approximation that demands no additional
integer decision variables can be constructed taking into account that Vj, is a function of
vre and VIm. Thus, Vi = F[V(VEe, Vim)] = g(Vie, vim) = vie® + vim”.

Taking into account that equations (78) to (85) have already been defined for all
buses in {Qg \ Qrgr} (see section 4.2.1.2.1) and that Qg € {Qp \ Qrer}, it becomes

clear that it is only necessary to define the function row for obtaining a piecewise-linear
approximation of V> = e? 4 V,imz. All other relevant constraints (the reference row,
the convexity row, and the set of constraints that ensure that the weights 2;° form a
SOS2) have already been defined for buses in Qcr5.

Thus, the third alternative for approximating V,2, which involves a piecewise-
linear approximation of this function, requires only the definition of the following set of

constraints:

Yrerre Dserim Ayt i = V' k € Qzcrp (220)

where:

AT,S

J1i Evaluated values of function V,?, calculated at evaluation points

grer fyim,s . TS _ Drer2 "im,sz
(Zgem, vm™) forbus k —i.e., gy = V7" + 7,5
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4.2.2.5.2 Reformulation of Vi-(1 — p) and Vi (1 — p)

Approximating u, ~ V,.> by applying one of the techniques described in the
previous subsection is only the first step to obtaining a reformulation of equation (37)
that may be employed as the objective function of a mixed-integer linear program. It is
also necessary to eliminate the products of decision variables V- (1 —p,) and
V.2 - (1 — pg) — or, better said, V, - (1 — pg) and py, - (1 — py).

Due to p; being a binary decision variable, it is not necessary to construct
approximations of the products Vi -(1—p,) and u,-(1—pg). By introducing
auxiliary decision variables and using disjunctive constraints, the exact values of these
products can be represented in the objective function.

The product V;, - (1 — p,) will be dealt with first. Every occurrence of it in the
objective function is substituted by the auxiliary continuous decision variable i€, and

the following disjunctive constraints are defined:

Mllcoml (I—pp) < VII<CTE S MII<OFu1 (1= p) Vk €{Qicrg NQsypp} (221)

M2 - pp S ViETE = Vi < MPPFY2 - py YV k € {Qicre N Qsupp}  (222)
where:
YICTE Aucxiliary, continuous decision variable for modeling the product

Vi - (1 — py), defined for buses k in {Q;crg N Qspep
MI{’,OFU : M}I{OFul : M}I{OFIZ ;M’ICOFuZ

Disjunctive constants for disjunctive constraints for product V; - (1 — py.).

The definition of the constants MIOF!1, MIOFul MIOFIZ and MIOF“2 will be dealt
with in section 4.3.1.

Analogously to what has been done for V- (1 — p;), every occurrence of the
product u; - (1 — pg) in the objective function should be replaced by the auxiliary
continuous decision variable yZ¢TE. The following disjunctive constraints are then
defined:
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MEOFL - (1= py) < yETE < MEOFU - (1= py)

YV k € {Qzcre N Qspep} (223)

MEOF2 - p < yETE — e < MEOF2 - py, YV k € {Qzcreg N Qsypp} (224)
where:
yZCTE Aucxiliary continuous decision variable for modeling the product

Uy - (1 — py.), defined for buses k in {Qcre N Qspep )i

ZOFI1 . ngZOFul . ngZOFI2 . 3sZOFu2
M ; My ; M ; M

Disjunctive constants for disjunctive constraints for product y, - (1 — py).

The definition of the constants MZ9F"1, MZOFul MEZOFI2 and MZOF“2 will be
dealt with in section 4.3.1. The reader will notice that, as the associated disjunctive
constraints are used for modeling the product u, - (1 — py), the value of the disjunctive

constants will depend on the approximation method employed to obtain p;,.

4.2.2.5.3 Resulting objective function

After employing the approximation techniques listed in subsections 4.2.2.5.1 and
4.2.2.5.2 for treating the non-linear terms V,.2, V.- (1 — py) and V, - (1 — py), the
following reformulation of the objective function for the minimization of the cost of
ohmic losses is obtained:

LOSS Vref LT

— inf~LOSS P
z - mm{ck ) {ZkEQITFC k gﬁc + ZkEQCTRPQ Ik

+ ZkE{QCTRQ\-QCURT} gllz + ZREQCURT g]IC) ’ (1 - Tk)

_[Zke{QPCTEnQNSHD} dllc) + Zke{QPCTEnQSHED} d;’i (1- ,Dk)]

_[ZkE{QICTEnQNSHD} Vi - dllz + Zke{QICTEnQSHED} VIICCTE ) dllz]

l

Rk ZCTE R},
- ZkE{QZCTEnQNSHD}'uk |Zl|2 +2kE{QZCTEnQSHED}yk |Zl|2 }} (225)
k k
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4.2.2.6  Minimization of costs of reinforcements to the distribution system

The following objective function, first introduced in section 2.2.2.6 and
reproduced below for the sake of clarity, can be directly integrated to the MILP
reformulation of the ACOPF:

ZREIN = min{Ymewe, Com " * Okm) (226)

4.2.2.7 Minimization of costs of capacitor placement
The following objective function, first introduced in section 2.2.2.7 and

reproduced below for the sake of clarity, can also be directly integrated to the MILP
reformulation of the ACOPF:

zCAPL = min{ZkeﬂcAP ceAPl - (1 - pp)} (227)

4.2.2.8 Minimization of circuit switching costs

As well as in the two previous subsections, the following equation can be
directly integrated to the MILP reformulation of the ACOPF. This objective function

was first introduced in section 2.2.2.8 and is reproduced below for the sake of clarity.

— i SWITCH SWITCH
Z = min {kaeq,g‘% Ciemn (1 —opm) + kaewg’ﬁf Ciemn . akm} (228)

4.3 Definition of parameters for
linearization/convexification constraints

This section is dedicated to the calculation of the parameters necessary for
employing linearization and convexification techniques to reformulate the ACOPF in

distribution systems as a mixed-integer linear program:
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The definition of the disjunctive constants necessary for the definition
of disjunctive constraints will be the object of section 4.3.1,;

The evaluation points and evaluated values necessary for the
definition of piecewise-linear approximations with SOS2 will be dealt
with in section 4.3.2;

The upper and lower bounds for the continuous variables whose
product is modeled via McCormick’s envelope will be the object of
section 4.3.3.

It is important to explore the particular characteristics of the distribution system
mentioned in section 2.1 (particularly, those of subsection 2.1.2), in order to be able to
define numerical values for the abovementioned parameters that allow conciliating
approximation accuracy and computational performance.

As will be seen in following subsections, many of the parameters of interest will
be defined as a function of quantities related to bus voltages, particularly their real and
imaginary components. Therefore, before moving on to subsections 4.3.1, 4.3.2 and
4.3.3, it is worth dedicating a few paragraphs to understand the intervals within which
these real (V) and imaginary (V™) components may vary — i.e., to characterize the
domain of functions of the type £(V¢, Vi™).

For that, it is first necessary to define an interval within which it is certain that
each of the voltage angles within a typical distribution network may vary. This interval
is denoted as 6y < 6y < 0, V k € Qp.

In section 2.1.2, it has been stated that the voltage angles of all buses in a typical
distribution network vary within a narrow interval around zero (provided that the
reference angle of the reference bus, considered to be within the distribution network or
right at its interface with the transmission system, its set to zero). The physical
reasoning behind this statement has been presented in section 2.1.2 and will not be
repeated here. The adjective narrow, however, does not correspond to a mathematical
definition. A more precise definition would be to say that typical bus voltage angles
within the distribution system vary in intervals such as —5° < 8, < 5°. While the exact

lower and upper bounds vary from system to system, it is safe to say that, due to the
characteristics mentioned in section 2.1.2, || « 90° and |6,| « 90° for all practical

distribution systems — this assumption will be considered for all further definitions and
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mathematical manipulations in this dissertation. Actually, given that the reference angle
has been set to zero and that a reference bus was chosen within the distribution system
or at the interface with the transmission network, defining —90° < 6,, < 90° for any
bus of a distribution network would be too conservative, and in practical distributions
networks intervals such as —5° < 6, < 5° would already suffice to capture the range of
variation of the angles. The reader will notice that, for all case studies taken from the
technical literature and simulated in chapter 5, using —5° < 6, < 5° has been more than

sufficient to capture the interval of variation of the bus voltage angles. It is important to
emphasize that, for the discussion of this chapter, it is not required that |8y | = |6y |. For
all further discussion, it is assumed, however, that 8, < 0 and 6, > 0.

Keeping this in mind, and recalling that bus voltage magnitudes are kept within
the interval Vj, <V, <V (typically, with V, near 0.95 p.u. and V,, near 1.05 p.u.), it is
possible to characterize the domain for functions of the type f(Vie, V™).

First, the maximum and minimum values that V¢ and V™ may assume can be

calculated as:

yremex 7, VkeQy (229)
Vet = Vi - cos[max(| . [.])] vk €0y (230)
pimmax _ . sin(g)) Yk € Qp (231)
yimmin 7, . sin(6,) Yk € Qg (232)

where:

remin . y,re;max
Vk ) Vk

Minimum and maximum values that V,;;¢ may assume;

immin . yyim,max
Vk ) Vk

Minimum and maximum values that V™ may assume;

6, ; 6,  Lower and upper bounds for the voltage angle at bus k (defined as inputs).

Above, reference is made to the definition of the bounds 6, and 6. As
suggested by the subindex k, different bounds may be defined for each bus, if this is
justified or allowed by some previous knowledge the user has on the distribution system
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to be analyzed. If this knowledge is not available or if for any other reason defining

different bounds for different buses is not desired, 6, = 6 and 6, = 6 may be used
indistinctly for all buses. In fact, as the results of chapter 5 will show, for all simulated
case studies considered in this dissertation, it has been sufficient to define bounds as
conservative as —5° < 6, < 5° for all buses.

It is important to emphasize that the bounds 6, and 6, are not directly used for

defining of constraints of the type 6, < 6, < 0. Rather than that, these bounds are
employed for the definition of input parameters such as disjunctive constraints,
evaluation points and evaluated values for piecewise-linear approximations, and
extreme points for McCormick’s envelopes.

The reader will notice that the superindices m™™" and m™%*, instead of the
accents m and m, have been used for characterizing the minimum and maximum values
for V® and V™. As a general notation choice employed in this dissertation, m and ®
are used for characterizing bounds defined as inputs for the ACOPF, whereas m™" and
m™% are used for calculating maximum and minimum values for variables with help of
this input information.

re,min re,;max im,min immax :
Vi Vi Vi and V, being very

Despite of the information on
useful (as will be seen in the next subsections), it does not provide as much insight on
the domain of functions of the type f(V¢, V™) as the reader may want at this point. A
graphic characterization of the domain of these functions is shown in Figure 4.1, for

different ranges of variation of 8, and V.
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- ~10°< 6, <10° and 090p.w.<V, < 1.10p.w.

Vim [pu]

—5°<6,<5° and 095p.u.<V, <1.05p.u

0.9 0.95 1 1.05 11
Vi [pu]

Figure 4.1: Domain for functions of the type f(V}¢, V™), for different ranges of variation of 8, and V.

For Figure 4.1, the interval within which 6, may vary is assumed to be
symmetric about 6, = 0, and the interval within which V,, may vary is assumed to be
symmetric about V, = 1. However, these are not requirements for the concepts
presented in this section.

Having provided the reader with some insight on the domain of functions of the
type f(Vie, Vi™), it is now time deal with the calculation of the parameters necessary to
use linearization and convexification techniques for the reformulation of the ACOPF as

a mixed-integer linear program.

4.3.1 Disjunctive constants

For the reasons exposed in section 3.1, defining tight disjunctive constants may
affect the efficiency of solution techniques for mixed-integer programs. Tight constants
are those that, while allowing the correct representation of disjunctions of the feasible
space, have low numerical modulus (ideally, as low as possible). In this section, it will
be shown how to define tight values for the disjunctive constraints used in the MILP.

4.3.1.1 Kirchhoff’s laws for branches whose status can be altered

Constraints (73) and (74) of section 4.2.1.1 ensure that the real and imaginary

components of the current flowing through an inactive branch are set to zero. Thus, the
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value of the constant W,k must be calculated so that, whenever the branch km is active,

these constraints are relaxed. This can be done by defining:

Wieh = Tim Y km € {(Woyy U Wep} (233)

The definition above may be used independently of any analysis of the topology
and loading conditions of the distribution system to be investigated. It is worth
mentioning that, in theory, a tighter definition may be achieved by the solution of
auxiliary optimization problems, with the objective of maximizing/minimizing the value
of the current components while complying with a set of constraints that basically
corresponds to that of the original problem. Nonetheless, the focus of this work is rather
on the definition of disjunctive constants that may be readily obtained by simple
manipulation of input parameters for the ACOPF — which corresponds to equation
(233).

Equations (71) and (72), also from section 4.2.1.1, ensure that Kirchhoff’s
voltage law is relaxed whenever a branch km is inactive. Given that the real and
imaginary components of the current flowing through that inactive branch will have
been set to zero, it must be ensured that the disjunctive constraints are large enough to
allow the free variation of the real and imaginary components of the terminal buses.

This implicates in the following definition of the disjunctive constraints:

Wokret = (yremm — yremaxy Y km € {Wgy U Wep) (234)

WoLret — (yremax _ yremn) Y km € {Wgy UWep) (235)

Wokimt = (plmmin _ yimmax) Y km € {Wgy U Wep) (236)

WoLimu — (ylmmax _yimmin Y km € {Wgy UWep) (237)
43.1.2 Loads

4.3.1.2.1 Constant-power loads that can be shed

Constraints (110) to (113) of section 4.2.1.3.2 ensure that the real and imaginary
current components associated with a load that has been shed are set to null. The
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definition of the disjunctive constants employed in these constraints will be dealt with in
the following.
First, the following parameters are defined:

ds = |df? +a?” Yk EQop (238)

¢x = atan(dS /d¥) Yk € Qo (239)
where:
d; Nominal apparent power demanded by load connected to bus k;
o Apparent power angle (such that df = dj - cos¢, and d? = dj - sing,) of

load connected to bus k.

The reader will recall that the nominal values of the active and reactive power
demanded by constant-impedance loads are df = RL/|ZL|?> and d? = X}/|ZL|%.
Therefore, equations (238) and (239) apply to the calculation of the parameters d; and
¢, for all types of loads.

These parameters will be employed in algebraic manipulations of the equations
through which the real and imaginary components of loads of the constant-power type

are obtained. Consider the following expressions:

158 = (Ve - df + Vi - d?)/(V)? Y k € Qperg (240)
15 = (V- di = vie - dd)/(Vi)? Y k € Qpere (241)

These equations are obtained by substituting &, and , with the equivalent
expressions in terms of V¢ and V{™. Equations (240) and (241) can be further
manipulated, as indicated in the following.

The expression for I;5 will be dealt with first. For the following manipulation,
the rectangular coordinates will be briefly abandoned, and polar coordinates will be

employed:
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175 = (V. - cosBy, - di - cospy, + Vi - sinby, - dj - singy)/ (Vy,)?
Vk € Qperg (242)

AaS
1% = ](/"; C;’Z‘ - (cosOy - cosy + sinby, - sing,) VYV k € Qpcre (243)
k

The expression inside parentheses obviously corresponds to cos(6; — ¢y ), and

(204) may be rewritten as:

dS
Ig5% = V_: cos(By — ¢y) V' k € Qpcrg (244)

Keeping in mind that ¢, is a fixed parameter, the maximum and minimum

values that 1% may assume are given by:

Iglek,max = dk maxy o 5. { -cos(0y — (],')k)} V k € Qpcrg (245)
KkSVkSVk

Iglelémin = dj - m1n9k<9k<9k{ - cos(0y — ¢k)} Vk € Qpcrg (246)
VisVisVi

where:

Jre ,min Ire ,min
d.k

Minimum and maximum values that /% may assume.

The evaluation of the expressions above is rather simple, but it is important to

notice that, according to the values of 6, 0, and ¢y, cos(6, — ¢;,) may assume
negative values.

However, as mentioned in section 2.1.2, loads in the distribution system are
incentivized to keep their power factor within narrow intervals. For instance, the
Brazilian regulation prescribes incentives for the power factor of these loads to be
bounded within [0.92jagging, 0.92icading], resulting in ¢, bounded within [-38.86°, 38.86°].
With this range of typical values of ¢, and considering that typical bus voltage angles
within the distribution system vary in intervals such as —5° < 6, < 5°, cos(0; — ¢y)

may only assume positive values. Even if the typical range of variation of the power
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factor of distribution system loads were considered to be [0.8jagging, 0.8leading] (&
conservative assumption), the range of values for ¢, would be [-59.20°, 59.20°], with
the implication that cos(6;, — ¢, ) would still be able to assume only positive values for
—-5°< 6, <5°.

Whenever the typical conditions mentioned in the last paragraph hold, resulting
in cos(6, — ¢;) only assuming positive values, the expression for the calculation of the

maximum and minimum values of the real current component may be rewritten as:

S
I5me = E—i -max, .o g, {cos(Ox — ¢i)} V k € Qperg (247)
. s
It = ;—i -mingy o 5 {cos(0x — ¢} Yk € Qpcrg (248)

However, the reader should be careful in using equations (247) and (248) instead
of (245) and (246). For some situations, using (247) and (248) may yield wrong values
for 1;5“* and Igf,;m"” — e.g., when a purely capacitive load (which may be used for
modeling a capacitor bank) is to be represented. This is due to the fact that a purely
capacitive load has a power factor of zero. Obviously, for a purely capacitive load, the

more general equations (245) and (246) must be used to calculate ;5" and Igf,émi”.

im,max im,min .
17 17" will be

Now, the equivalent expressions for calculating and

presented. Below, equation (241) is written in polar coordinates and manipulated:

Ié’?,l( = (Vi - siny - dj - cosdy + Vi - cosy - d; - singy)/(Vy,)?
Yk € Qperg (249)

S
im _ Vidi
kw2

- (sinby, - cos¢y + cosby, - singy,) Vk€Qpcrg (250)

The expression inside parentheses obviously corresponds to sin(6, — ¢,), and

(250) may be rewritten as:
. S
I, = 3_’; - sin(6 — dy) WV k € Qpcrg (251)

With ¢, fixed, the maximum and minimum values of I}'{,?( are then calculated by:
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[ 1 .
Icllr"]?max = d"z . maXkagksgk {V_k . Sln(ek - ¢k)} ,V k € QPCTE (252)

VsVisVg
immin _ 48 . 1 .
It = a3 -ming o 5 {V—k sin(B — i)} VK € Qper (253)
Vi<VisVi

where:

Iim,min . Iim,min
dk ' 'd,k

Minimum and maximum values that I} may assume.

A further simplification of (252) and (253) for typical conditions is not possible,
due to the fact that the sine function is an odd function. The following example

illustrates the impossibility of simplification, even when the typical condition|
—5° < 0, < 5° is considered: if ¢, = 38.86°, the expression for If[’ﬁ'm“" is given by
IV = (d5/Vy) - sin(0y — ¢y ); yet, if ¢, = —38.86°, the expression for 15"
is IT%™ = (d§f /Vy) - sin(68, — ¢y ). The reader will notice that v, is the denominator
in the first case, and V,, is the denominator in the second case.

Having introduced the expressions for I35, [,5™", I7%™ and I73™", the

disjunctive constraints introduced in section 4.2.1.3.2 are now defined:

M}]g,re,PCTE,l = —pjemax Yk € Qperg (254)
MPTeFCTER — _ Igi’mm VY k € Qpcrg (255)
MDTePCTES _ I;f,;mm YV k € Qpcrg (256)
MPTePCTES _ [emax Yk € Qpcrg (257)
M}]g,im,PCTE,l _ _ IcitTc'max Yk € Qperg (258)
Ml?,im,PCTE,z _ IcizTc'min Yk € Qperg (259)
MPImPCTES I;T(’mm V k € Qpcrg (260)
M]l(),im,PCTEA _ I{;r;l(,max Yk € Qperg (261)

103



4.3.1.2.2 Constant-current loads that can be shed

Analogously to what has been done for constant-power loads, the first step to
obtaining the values of the disjunctive constants for constant-current loads is rewriting
the equations that relate the nominal value of the power demanded by the loads to the

actual load currents, substituting 7, and , by the expressions in terms of V¢ and V,™:

Tek = (Vie-df +vim-d?) /v, Yk e Qg (262)
1 = (vim-dE —vie-d2)/vi Yk € Qcre (263)

In the following, the expression for 1% is rewritten in polar coordinates and

manipulated:

I5% = (Vi * cosBy, - di - cospy, + Vi - sinby, - dj, - singy)/Vy,

Vk€Qerg (264)

S
1% = V’;—:"- (cosOy - cosgy + sinby, - singy) Vk € Qcre (265)
135 = di - cos(O — i) Vk € Qcre (266)

Keeping in mind that ¢, is a fixed parameter, the maximum and minimum

values that 1% may assume are given by:

I(;,ekfmax = di . maXQkSgksgk{COS(gk —_ d)k)} ,V k € QICTE (267)

Ig’e,émm — d"g . mingksgksgk{COS(ek - ¢k)} ,V k € QICTE (268)

The reader will notice (267) and (268) are not functions of V. Therefore, no
further simplification is required.

Now, the expression for I is rewritten in polar coordinates and manipulated:

I = (Vi ~sinby - dj; - cospy + Vi - cosOy - dj, * singy) /Vy,
Vk€Qerg (269)
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S

Id L= V’;;:"- (sinBy - cos¢y + cosby, - singy) Vk€Qrg (270)

I7% = dj - sin(6) — d) Vk€Qrg (271)

With ¢, fixed, the maximum and minimum values ofI * may be calculated by:

jimmax _ gs.. max, o g, {50k — ¢} Vk€Qecrg (272)
Iclzr’?min = diz ' minekSekSgk{Sin(gk - ¢)k)} ,V k € QICTE (273)
Having defined the expressions for 175", [,5™", I]%™ and I3™", the

disjunctive constraints introduced in section 4.2.1.3.4 may be defined:

Mllc),re,ICTE,l = —[jEmax Yk € Qcrg
M}?,re,ICTE,Z _ _Igle;émin Y k € Qerg
M}?,re,ICTE,3 _ Iglek.min Y k € Qerg
Mllc),re,ICTEA _ I;elémax Vke€Qcrg
Mllc),im,ICTE,l __ I(ilrglc,max Yk € Qcrg
M}?,im,ICTE,Z _ Iim,min Vke€Qcrg
Ml?,im,ICTm Iér?{mm Vk €Qcrg
M}Ig,im,lCTEA — I(lir,r’l{,max Vke QICTE

4.3.1.2.3 Constant-impedance loads that can be shed

(274)
(275)
(276)
(277)
(278)
(279)
(280)
(281)

Keeping in mind that, for constant-impedance loads, the nominal values of the

demanded active and reactive power are given by df = RL/|ZL|? and d? = X}/|ZL|?,

the expression that relates these nominal values to the actual load currents are given by:

ITek = (V]:e " dllc) + Vlém " dlg) ,V k (S QZCTE

10 = (V- di = vie - d?) YV k € Qzcrg
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The expression for 1;% may be rewritten in polar coordinates and manipulated:

I55% = (Vi +cosBy, - di, - cospy, + Vi - sinby, - dj, - singy,)

Vk€Qrg (284)
175 = Vi - d - (cosOy, - cosy, + sinby, - singy,) Vk€Qre (285)
Ig’ek = Vk . dli . COS(Hk - ¢k) ,V k € QICTE (286)

Keeping in mind that ¢, is a fixed parameter, the maximum and minimum

values that /7% may assume are given by:

Iog"" = di-maxy o g (Vi - cos(6 — ¢i)} Yk € Quere (287)
KkSVkSVk

Ig,ekrmin — d"g . mingksgksgk{Vk " COS(Bk - ¢k)} ,V k E QZCTE (288)
VisVisVy

For loads to which typical conditions apply (i.e., —59.20° < ¢; < 59.20° and
—5° < 6, < 5°, as discussed in section 4.3.1.2.1), cos(8, — ¢y) is only able to assume
positive values. Therefore, whenever these typical conditions apply, the expression for
the calculation of the maximum and minimum values of the real current component may

be written as:

Ig’ek'max — Vk . d,‘g . maXkaeksgk{COS(Hk — d)k)} ,V k € QZCTE (289)
Ig’e,émi” =V-d;- ming, o 5, {cos(6x — $i)} Yk € Querg (290)

As for the case of constant-power loads, the reader should be careful while
employing equations (289) and (290) instead of the more general forms (287) and (288).
For instance, for a capacitor bank modeled as a purely capacity load, it is not possible to
employ (289) and (290) — the more general expressions (287) and (288) must be used.

Now, the expression for I is rewritten in polar coordinates and manipulated:

I7% = (Vi *sinby - dj; - cosdy + Vi - cosOy, - dy - singy,)
k€ Qyerp (291)
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If% = Vi - d - (sinby - cosy + cosb) - singy) Vk €Qzcrg (292)

If% = Vie+ dii - sin(6y — i) k€ Qgerg (293)

With ¢, fixed, the maximum and minimum values of Iéf’,l( may be calculated by:

Ig™ ™ = df maxg _, 5 Vi sin(6 — 1)}V k € Qzerp (294)
VisVsVi

I ™" = diming g g Vi sin(@c— di)} Yk € Quers (295)
VisVisVy

Having defined the expressions for 5™, I;%™", I{%™* and I73™", the

disjunctive constraints introduced in section 4.2.1.3.6 may be defined:

MPTeECTEL — _ [pemax Yk € Qucre (296)
MPTeZETER — _ I;elémin Yk€Qurp (297)
MPTeRCTES _ Iglek'mi" VY k € Querp (298)
MDTeACTES _ 156 VY k € Querg (299)
Mllc),im,ZCTE,l _ _ Itiir'rlgmax Yk € Qzcre (300)
M,?,im,ZCTE,Z _ _ I(izr'rlz,min Yk € Qucre (301)
M,?,im,ZCTEB _ ](iir;lc,min Yk € Qucre (302)
Ml?,im,ZCTEA _ Ig’vllc,max Yk € Qucre (303)

4.3.1.3 Generators

4.3.1.3.1 Curtailable generators with no control over the active power output

In section 4.2.1.2.2, disjunctive constraints have been introduced for modeling
the curtailment of generators with no control over their active power output. This

sections deals with the definition of the associated disjunctive constants.
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The following are the (non-linear) expressions that relate the power output of

generators to the associated current injections:

v = (Ve gf +vim- o)/ (vie? +vim®) Vk€EQrrg (304)
im = (v gf —vie - g/ (Vi +vim?) Vk€Qcrrg (305)

The reader will notice that the previous equations are structurally very similar to
those relating the nominal power and currents of loads of the constant-power type.

However, the fact that the reactive power output of generators, g,‘f , Is a decision variable
that may vary in g¢ < g2 < g¢ introduces additional complexity in the calculation of

the maximum and minimum values that the generation currents may assume. In fact, the
method used in section 4.3.1.2, which involves expressing the power quantities in polar
coordinates, would not facilitate the calculus of the maximum values that the current
components may assume.

One technique that may be used for determining these values is to express only

the voltage quantities in polar coordinates, thus obtaining:

g,ek = (cos@k - gf + sinf, -gg)/Vk V k € Qcrro (306)
o = (sinby - gk — cosby - g¢)/Vi V' k € Qcrre (307)

The maximum and minimum values of the generation currents may be then

obtained by solving the following equations:

remax __ 1 P . Q
Ik =max, .o 5, {V—k (cos@k gy + sinby -gk)} V k € Qcrpo (308)
VksVisVi
gPsai<g,
remin _ . 1 P . Q
Iy = ming _o 5, {V—k (cos@k gy + sinby -gk)} V k € Qcrpo (309)
VsVisVi
9es0R<a;
immax __ 1 . p Q
Ik =max, o <5, {V—k (sm@k gy — cosO, -gk)} V k € Qcrpo (310)
VsVisVi
9es0R<a;
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immin _ _ . 1 . . P . Q

Iyk =ming o 5, {V—k (sm@k Jix — €osOy - g )} Vk € Qcrpo (311)
VisVisVg
9e<9¢<g;

where:

Ire,min . Ire,min . Iim,min . Iim,min
gk gk 1 gk gk

Minimum and maximum values that 75, and 1)} may assume.

Solving the problems above, obtained after the transformation of the voltage
quantities to polar coordinates, is slightly simpler than solving for the maxima and

minima of ;% and Ié,’?( using equations (304) and (305), and considering additional

constraints to ensure that V, < V7% + Vim* <V, and V, < atan(Vi™/Vi€) < V,.

However, if even the solution of (308) to (311) is deemed as problematic for any

immax
I

ok and

and

given reason, the user may resort to rough overestimators of 15"

and 1™ A possible alternative for obtaining such

: re,min
rough underestimators of I 0.

rough underestimators and overestimators is to use the following expression:

jremax _ Iim,max — _Iim,min — _Iim,min 1 \/g;{az + [max(|gg| ’ |§]€|)]2

gk gk gk gk Ty
V k € Qcrro (312)
e re;max jimmax jimmin immin H
After obtaining I, ™, I, Ig; " and I, for all generators in Q¢rrg,

the disjunctive constraints introduced in section 4.2.1.2.2 may be defined:

Mot = —[eme Y k € Qerpg (313)
Mo = = Y k € Qcrro (314)
M7 = e Y k € Qerro (315)
Mt = oM Y k € Qcrre (316)
Mgt = —pemax Y k € Qcrro (317)
Mg = e Y k € Qcrro (318)
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M}f'im’g = ];%'min v k € 'QCTRQ (319)

Mg’im“l' = I;'mk'max ,v k € QCTRQ (320)

4.3.1.4 Terms of the objective function for minimization of losses

A number of disjunctive constraints have been defined in section 4.2.2.5.2 for
the reformulation of the products V- (1 — pi) and Vi - (1 — pi). Those will be dealt with

in the following subsections.

4.3.1.4.1 Reformulation of the product V- (1 — pk)

As indicated below, the value of the disjunctive constants employed in the
reformulation of the product Vi - (1 — px) can be determined exclusively with basis on

inputs for the ACOPF — namely the bounds for voltage magnitudes of the buses in

Qrere N Qsyep-

M]I{OFll — Yk v k € {QICTE N QSHED} (321)
M}I{OFul — Vk Vke {-QICTE N -QSHED} (322)
MIOFI2 — —V, YV k € {Qcre N Qspep} (323)
M,I(OFuZ = -V YV k € {Qcre N Qspep} (324)

4.3.1.4.2 Reformulation of the product u - (1 — px)

As indicated in section 4.2.2.5.1, u, represents an approximation for the term
Vi.%. As the disjunctive constants MZOF1L MZOFuL  \MZOFIZ gnd MEZOFU2 gre used in the
reformulation of the product u; - (1 — p,), the definition of these constants will depend
on the approximation method used to obtain .

In the following, three different definitions of the disjunctive constants are
presented. Each of these is associated with one alternative method for approximating u,

presented in section 4.2.2.5.1.
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4.3.1.4.2.1 Approximation of u via McCormick’s envelope

If u; is approximated via a convex envelope, the following definition applies:

M = (V)? Y k € {Qzcre N Qspep} (325)
MEOF = (V))? Y k € {Qzcre N Qspep} (326)
MO = —(V))? Y k € {Qzcre N Qspep} (327)
M™% = —(Vy)? Y k € {Qzcre N Qspep} (328)

4.3.1.4.3 Approximation of x via truncated Taylor series

If the approximation via truncated Taylor series has been used, the disjunctive

constants should be defined as follows:

MZOF1 = (V)2 + 2V - (Vi — V]2 Yk €{Qucre N Qspept (329)
MZOF¥t = (V)2 4+ 2- V2 - (V) — V) Vk € {Qzcrg N Qsyep} (330)
MZOF12 = —[(V)?%2 +2- V2 - (Vk 0)]2 Vk € {Qzcrg N Qsypp} (331)
MEOFUZ = —[(V2 +2- V2 (Ve = V)12 Yk € {Qzcre N Qspep} (332)

4.3.1.4.4 Term u obtained via piecewise-linear approximation with SOS2

In this case, the disjunctive constraints should be defined as shown below:

2
MO = {max, crre scpim ( prer? lms ¥ Vk€{Qzere N Qsppp} (333)

_ 2
MZOFul — {min,.¢pre jerim ( prer? Vlms )}2 Vk € {Qzcre N Qsypp} (334)

2

ZOF12 _ pre r2 lm s
Mj,

= —{max, crre gcrim ( ¥V k € {Qzcre N Qsypp} (335)

2
M2 = —{min, cpre sepim ( A Vlms )}2 YV k € {Qzcre N Qsppp} (336)
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4.3.2 Evaluation points for piecewise-linearization with SOS2

As indicated in section 3.2, there is a trade-off between approximation accuracy
and computational performance while defining the number of evaluation points for
piecewise-linear approximations of non-convex, non-linear functions, with help of
SOS2.

In this section, we present the choice of the number and location of these
evaluation points which has been used in this dissertation. The set of evaluation points
(and consequently evaluated values) presented here, while not necessarily optimal, led
to the accuracy and computational performance results shown in chapter 5, which are
deemed as satisfactory for an initial investigation.

There are a number of reasons for which the procedure presented here is not
optimal. The first is that, as indicated in section 3.2, the choice of the evaluation points
is based on rectangular partitions of the domain of the non-linear, non-convex functions,
whereas there is evidence (see [61], [80]) that triangular partitions may lead to better
computational performance. Furthermore, the set of evaluation points presented here has
been chosen basically via a trial-and-error procedure, guided by knowledge of the
ACOPF problem and of the shape of the functions to be approximated. Particular
emphasis has been given to defining a set of evaluation points whose convex hull
includes the whole domain of the functions of two arguments — i.e., that any point in the
domain could be achieved by affine combination of evaluation points. But yet, no
techniques that ensure that the choice of points is optimal either with respect to accuracy
(e.g., minimizing the maximum approximation error while keeping the number of points
below a certain threshold) or computational performance (e.g., minimizing the number
of points while keeping the maximum approximation error below a certain threshold)
have been used. The investigation of such techniques is listed among possible topics for
future work.

Now that the reader has been warned of the potentially sub-optimal character of
the procedure employed for the definition of evaluation points, the set of points chosen
for each piecewise-linear approximation introduced in section 4.2 will be presented in

the following subsections.
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4.3.2.1 Evaluation points for functions of V" and V™

Various functions that have V7 and V™ as arguments have been introduced in
the previous sections: &, and {j in sections 4.2.1.2 and 4.2.1.3; 1, and k;, in sections
4.2.1.3.3and 4.2.1.3.4; V,, in section 4.2.1.4.1; and sz in section 4.2.2.5.1.

The definition of the evaluation points for these functions may take advantage of
the fact that, due to physical characteristics of the distribution system (low R/X ratio,
voltage magnitude kept within narrow limits, etc.), the domain of the functions of
interest in the Cartesian coordinate system (Vre, Vkim) has the particular shape indicated
in Figure 4.1. Among the most important characteristics of this domain is that it does

not include the point (V¢ =0,V{™ =0). In fact, it excludes all points for which

\/(V,@”e)z + (Vi™)2 < V. This is an important feature, as some of the functions to be

approximated have either the term (V%)% + (Vi™)2 or its square root in their
denominator, meaning that the approximation of the non-linearities would become
increasingly more demanding as the point (Vkre = 0,V{™ = 0) were approached.

The first alternative to determining the sets of evaluation points {7/¢} and {V;{™}
would be to first define the cardinality of each set and then to distribute the
correspondent number of points evenly within the intervals [V;¢™", V™| (for
{Vre}) and [vmmin, yimmax] (for {7m}), making sure to include evaluation points
corresponding to the extreme values of each interval. This approach is described in

more detail in sections 4.3.2.2 and 4.3.2.3, in which functions of other decision
variables are dealt with. It is worth mentioning that, as the interval [V, y,/mmex
includes negative and positive values, it is recommended that the point 7™ = 0 is
included in {7{™}, as described in detail in section 4.3.2.3.

However, a second possible definition of the evaluation points, which has been
obtained empirically and has led to slightly better results than using equally-spaced
points within the intervals of interest (with respect both to accuracy and computational

performance, for sets of the same cardinality), will be presented below.
The set of evaluation points {V{e} corresponding to this second alternative,

which has cardinality |{I7kre}| = |I'"¢| = 5, is that defined through equation (337):
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{ie} =5 L (G + V) > (337)
Vi - cos[max(|6x|, |6x)]

re,max
\ Vi J

The characteristics of this set of evaluation points will be discussed further in
this section, with help of graphic information. Before that, the set of evaluation points

{V,ﬁm} corresponding to this second approach is presented. This set, whose cardinality is

{7m| = [rim| = 9, is defined by:

( Vkim,min 3
Vi - sin(6)
Vie - [sin(6x) + sin(6x/2)]
Vi - sin(8y/2)
{7im} = 0 s (338)
Vi - sin(6,/2)
Vi - [sin(6) + sin(6,/2)]

N

N R

Vi - sin(6y,)
L Vim,max )
k
It is clear the sets defined above include the extreme values V; *™", V;e™me,

V™ and V™™ This ensures that the convex hull of the set of points {(77¢, 7im))

includes the entire domain of (V7¢, Vi™).

At this point, the reader’s comprehension of the nature of piecewise-linear
approximations of functions of two decision variables may be enhanced with the display
of graphical information. For the following discussion, the definition of the evaluation
points corresponding to equations (337) and (338) has been considered.

The reader is thus invited to first consider Figure 4.2, in which the domain
(vie,vim) is indicated in black, while the set of evaluation points {(7;¢,Vi™)},

obtained by the Cartesian product of the sets {V7¢} and {7/}, is indicated by white
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dots. The intervals 0.95 <V, < 1.05 and —5° < 6, < 5° have been considered for this

and all subsequent figures of section 4.3.2.1.

v™ [pu]

ol
G

O i i I i ! i ___ P
095 096 097 098 099 1 1.01 102 103 104 105
vre [pu]

Figure 4.2: Domain (V}¢,Vi™) and set of evaluation points {(IA/;E, IA/Z")} obtained
by the Cartesian product of the sets defined in equations (300) and (301).

It is clear that, while the convex hull of {(V7¢ 7™} includes the domain

(vre,vim), it does not coincide with it. This is not a problem from the point of view of
the adequacy of the representation of the domain, as other constraints of the MILP
formulation (e.g., V, < Vi < V) will ensure that the (approximate) solution of the
problem lies within the correct domain. However, the non-coincidence of the convex
hull of {(V7¢,7™)} and the domain (V¢ V™) points out to an inefficiency of the
definition of the evaluation points — it is clear that a triangular partition of the feasible
space would potentially reduce the required number of evaluation points.

The following figures allow the graphical evaluation both of the non-linear
functions of (V'¢, V™) and of the corresponding piecewise-linear approximations. In
each of the figures, the non-linear function is shown on the left side and the piecewise-
linear approximation on the right, with white dots indicating the position of the
evaluation points in both graphs. Due to limitations of the plotting procedures, both the
original function and the piecewise-linear approximation are shown for the region
defined by the convex hull of {(77¢, ™)}, and not for the original domain — the reader
should thus keep in mind that other constraints of the MILP will only allow that points

that lie within the original domain are visited.
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Figure 4.3: Depiction of &,: non-linear function (left) and piecewise-linear approximation (right).
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Figure 4.4: Depiction of {;: non-linear function (left) and piecewise-linear approximation (right).
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Figure 4.5: Depiction of V;: non-linear function (left) and piecewise-linear approximation (right).
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Figure 4.6: Depiction of n;.: non-linear function (left) and piecewise-linear approximation (right).
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Figure 4.7: Depiction of k;: non-linear function (left) and piecewise-linear approximation (right).
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Figure 4.8: Depiction of ¥;2: non-linear function (left) and piecewise-linear approximation (right).
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4.3.2.2 Evaluation points for a function of '™ and ™

As indicated in section 4.2.1.4.2, the auxiliary variables (¢, are (™ are at least
as high as the modulus of the branch current components I3¢, and Ii%. Due to that, and

to the fact that each of the current components may assume any value within the interval
[—Tim L), 45, are &% will vary in 0 < (%, < Ijp, and 0 < &% < I,y respectively.

However, the reader will notice that the constraint ¢, < Iz, limits the domain of

interest of the function i, = \/(Lgfn)z + ((im)2.

The set of evaluation points {£}%,} and {&{™.} used in this dissertation corresponds
to an equally-spaced partition of the intervals 0 < 1%, < I;;p and 0 < 1™ < Ty,

Keeping in mind that |T1"¢| = |{i};5,}], {i}s,} can be written as:

ey 7 . (-1 re
(e} = {Tem slrem } (339)

Analogously, the set of evaluation points {7} may be written as:

imy _ [ G
{lkm _{Ikm (lniml_l)

se |nim|} (340)

Figure 4.9"" depicts the function ¢, and its piecewise-linear approximation,
obtained for |117¢| = |1"™| = 5. The corresponding set of evaluation points {(&2,, &™)}

is indicated by white dots.

™ 1n Figure 4.9, it is assumed that I,,,, = 1 p.u. Depending on the apparent power basis considered, this
would be an overly overestimated limit. Figure 4.9 aims merely at providing the reader with insight on the

shape of the non-linear function and its approximation.
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Figure 4.9: Depiction of t,,: non-linear function (left) and piecewise-linear approximation (right) obtained
with || = |I™| = 5. The set of evaluation points {(Z,.,, ;) } is indicated by white dots.

Here, as well as in section 4.3.2.1, the non-coincidence of the convex hull of
{(&ze,, iim )} and the region limited by the constraint i, < I, points out to an
inefficiency of the definition of the evaluation points — for instance, as the point
(88, = L, T = Tim)} Will never be reached, moving it closer to the origin would

presumably enhance the accuracy of the approximation.

4.3.2.3 Evaluation points for a function of Vi and Igx*

In section 4.2.2.4.2, the construction of a piecewise-linear approximation of the

bilinear product V; - I7% has been suggested as one of the alternatives for incorporating

it into a MILP.
In the following discussion, reference will be made to the bounds of the decision

variables Vj, and I75%. The bounds for V; (Vi and V) are input parameters for the

ACOPF, and need no further explanation.

Considering only the physical characteristics of the problem of minimization of
imports, it would not be necessary to impose any bounds to the real component of the
slack current I;% —i.e., it may be in the interest of the user to assume that the bus at the
interface with the transmission system is capable of meeting any power import demands

(it is an infinite bus). However, due to the need to reformulate the product V; - I7%, it is

necessary to define the limits of the interval within which I;% may vary. One possible
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way of doing that is to define, with basis on knowledge about the system under analysis,
a (conservative) estimate of the minimum amount of power that will need to be

imported through bus k (which may be negative is exports are also possible), Pk and an

(conservative) estimate of the maximum amount of power to be exported through bus k,

D, As Vy is always non-negative, the bounds on I would then be calculated as:

v [Pe/Vie P <0

Igk = px/Vi Pk =0 Vi€ e o
k k ' Pk =

_ 2./Vi D, <0

I;,ek = {E";vk P >0 YV k€ Qrpc (342)
Pp/ Yk P =

where:

Dk} Dy, Estimates for minimum and maximum power to be imported through bus k.

The set of evaluation points {V,} used in this dissertation corresponds to an
equally-spaced partition of the interval V, <V, < V. Denoting the cardinality of the
set EV by |EV|, the following expression may be used for defining {7, }:

(7 = o + T - 1) - 5

re EV} (343)

The definition of the set of evaluation points {7;5} is somewhat more complex.
If 1% assumes strictly non-negative values or strictly non-positive values, the following

expression may be used:

N —re ( — )
I} =i+ (T - 15%) - 7S

re E’g} (344)

If 175 may assume both negative and positive values, it is important to include
the value zero within the set {I7%}. One possible alternative for defining the set is then

to use n™9 negative evaluation points and n?°° positive evaluation points, and define

the set of evaluation points as:
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(55} =
fs (1-22)

refl ...nneg}} U {0} U {7;1 g

re{l ...npos}} (345)

In this case, the cardinality of {15} is 9 + nP%S + 1.

4.3.3 Bounds for continuous decision variables in bilinear
products

As mentioned in section 3.3, the accuracy of the approximation of bilinear
products via McCormick’s envelope is dictated by how tight one is able to define the
upper and lower bounds of the continuous variables that form the product. Ideally, the
definition of the bounds should correspond to the tightest de facto interval within which
the continuous variables may vary. In this section, it will be shown how to define tight
values for the bounds of variables whose bilinear products are approximated via

McCormick’s envelope, for the proposed MILP reformulation of the ACOPF.

4.3.3.1 Bounds for & e

The auxiliary variables &, and ¢; have appeared in the bilinear products & - g,‘f,

' -g,‘f, &gk and ¢, - gr in section 4.2.1.2. The bounds for the reactive and active
output of the generators are inputs for the ACOPF, but it is still needed to define lower
and upper bounds for the auxiliary variables &, and {j, in order to completely define the
expressions for the correspondent McCormick’s envelopes. The first step for doing that

is expressing &, and j, in polar coordinates:

fk = Vk ) COSGk/VkZ = COSHk/Vk (346)
{k = Vk ' SiTLHk/sz = Sinek/Vk (347)

The determination of the maximum and minimum values of the above

expressions is facilitated by the fact that the voltage magnitude V,, is strictly positive

and bounded within V, <V, <V,, and the voltage angles in typical distribution
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systems assume values within a narrow interval around 0. Considering this, the

following bounds may be defined:

& = cos[max(|6x|, |6x|)]/Vi Vk € Qg (348)
&, =1/V Vk € Qgpy (349)
Gk = sinBy /Vy Vk € Q¢pn (350)
{, = sinb/V Vk € Qepn (351)

4.3.3.2 Bounds for Vi and 44" of a slack bus

In section 4.2.2.4.1, the product Vi -Iz% has been approximated via a

McCormick’s envelope. The bounds for the voltage magnitude are usual inputs and

need not to be discussed, and the procedure for estimating (conservative) bounds for 5

has been discussed in section 4.3.2.3 — see equations (341) and (342).

4.4 An alternative MILP reformulation of the ACOPF in
distribution systems

In the course of the research activities that led to this dissertation, an alternative
MILP reformulation of the ACOPF in distribution systems has been investigated. This
alternative formulation is similar to the one presented above in various aspects, but
differs from it with respect to the construction of piecewise-linear approximations of
non-linear, non-convex functions. In the formulation presented above, each segment of
the piecewise-linear approximation of a non-linear function is a linear function,
obtained by the affine combination of the vertices of the segment. In the alternative
formulation, each segment of the piecewise-linear approximation represents a constant
value, which is taken to be representative of the values that the non-linear function
assumes between the vertices of a partition of its domain. This difference in the
approximation of the non-linear functions requires the rewriting of several constraints of
the ACOPF problem, particularly those that relate power injections at buses with the

corresponding current injections.
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This alternative formulation, which is thoroughly presented in Appendix B
(chapter 8) for the sake of didactics, has been abandoned at early stages of the research
activities due to its performance being inferior, with respect to accuracy and

computational requirements, to the formulation presented in sections 4.1 to 4.3.
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5 CASE STUDIES AND DISCUSSION OF RESULTS

In this chapter, the proposed MILP reformulation of the ACOPF is applied to a
number of case studies. Two classes of case studies are considered:

Those of section 5.1 allow the comparison of the solutions obtained with
the proposed MILP reformulation of the ACOPF with the solutions
obtained by exhaustive search, for the problem of network
reconfiguration for the minimization of losses. While this comparison
does not allow a thorough validation of the proposed formulation, due to
the fact that only a parcel of its features is put into service, it serves the
purpose of benchmarking its accuracy and computational performance.
The case studies of section 5.2 illustrate the flexibility and the range of
application of the MILP reformulation of the ACOPF. Each of the
alternative objective functions (or modules for objective functions)
presented in section 4.2.2 will be used in at least one application, with
the exception of that presented in section 4.2.2.8.

For all applications of the proposed MILP reformulation of the ACOPF
presented in this chapter, the methods described in section 4.3 have been used for
obtaining the disjunctive constants, the bounds for variables in McCormick’s envelope,
and the sets of evaluation points and evaluated values for piecewise-linearizations with
SOS2. The procedures described in subsection 4.3.2 have been employed considering
IT™¢| =5 and || =9 (subsection 4.3.2.1) and [II"¢| = || =75 (subsection
4.3.2.2). Furthermore, the range for the variation of the voltage angles of all buses in the
system was assumed to be —5° < 6, < 5° in all simulations, which is a conservative

definition, as the numerical results will indicate.

5.1 Benchmark of the proposed formulation against an
exhaustive search algorithm

In this section, the proposed MILP reformulation of the ACOPF is employed in
four case studies, all of which involve the problem of network reconfiguration for the

minimization of losses. The solutions obtained with the proposed MILP reformulation
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of the ACOPF will be compared to those obtained by a brute force, exhaustive search
method, with respect to accuracy and computational performance.
The two main reasons for choosing the problem of network reconfiguration for
the analyses of this section are:
If branch switching is the only control action modeled in a network
reconfiguration problem, the problem will involve exclusively binary
decisions. This facilitates the construction of an exhaustive search
algorithm for the solution of the network reconfiguration problem, which
will be necessary for the conducting the benchmarking activity that is the
object of this section. Obviously, exhaustive search methods are
excessively demanding when continuous decisions are taken into
consideration.
The network reconfiguration problem has been extensively dealt with in
the technical literature. Thus, the input data associated with a number of
test systems for network reconfiguration applications can be readily
obtained, facilitating the construction of the case studies of this section.
The fact that network reconfiguration applications involve exclusively binary
decisions prevents the full range of features of the proposed MILP formulation to be put
into service. As mentioned in the introductory chapter of this dissertation, one of the
main advantages of the proposed formulation is its flexibility to simultaneously
represent discrete and continuous decisions. Thus, limiting the case studies of this
section to network reconfiguration applications, while being necessary to allow the use
of exhaustive search methods in manageable time, does not allow the validation of all
features of the proposed formulation. Nonetheless, the comparison of the two solution
methods will serve the purpose of providing insight on the accuracy and computational
performance of the proposed MILP reformulation of the ACOPF, as well as on the on
the adherence of the solutions to those obtained by exhaustive search, for a common
problem in distribution system operations planning.
The four test systems considered in the benchmarking are presented in the
following subsection. In section 5.1.2, the exhaustive search method employed for the
benchmarking analysis is presented, and reference is made to the objective function

used for the mixed-integer linear program. In section 5.1.3, the results of the simulations
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conducted with the proposed MILP reformulation are compared to those obtained via
exhaustive search.

For the network reconfiguration applications listed below, radiality of the
network topology is required, and all buses are always required to be connected to the
network. The objective of the reconfiguration is to minimize the total ohmic losses in

the system. No costs are considered to be associated to switching actions.

5.1.1 Test systems
5.1.1.1 Test system S1

The data for test system S1 has been taken directly from [84].

This is the simplest test system, with 12 buses and 11 branches. All branches in
the system may be switched. The input data for test system S1 is presented in Appendix
A (section 7.1.1).

5.1.1.2 Test system S2

Test system S2 has also been taken from [84]. Slight modifications have been
necessary to adjust the data to the format required by the ACOPF formulation: the
addition of buses to allow the modeling of capacitor banks, and the addition of low-
impedance branches (Rym = 0 p.u. and Xyn = 0.001 p.u.) to connect these buses to the
main system.

Test system S2 has 23 buses and 23 branches, 16 of which may be switched —
the low-impedance branches used to connect the buses modeling capacitor banks are the
only ones that cannot be switched. The input data for test system S2 is presented in
Appendix A (section 7.1.2).

5.1.1.3 Test system S3

The data for test system S3 has been taken from [64].
Test system S3 has 33 buses and 37 circuits, all of which are considered as
switchable in the original reference [64]. The exhaustive search of 2% configurations

could not be handled in manageable time (the brute force algorithm has been interrupted
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after about 72 hours of computation). Therefore, in order to allow this test system to be
treated by the brute force method, the number of switchable circuits has been reduced to
26 — i.e., 11 of the circuits closest to the root node have been considered as non-
switchable.

The input data for this test system is presented in Appendix A (section 7.1.3).

5.1.1.4 Test system S4

The data for test system S4 was adapted from the IEEE 123 Bus radial
Distribution Feeder presented in [85]. The original test system consisted of a three-
phase unbalanced system, with structural and operational unbalance. Several
modifications have been made in order to obtain a three-phase balanced distribution
system with basis on the original data, as the proposed MILP reformulation of the
ACOPF is currently limited to such systems. Despite the fact that the proposed MILP
reformulation of the ACOPF explicitly models loads of the constant-current type (as
case studies presented further in this document will show), these types of loads are not
dealt with by the brute force algorithm employed for the benchmarking activity — thus,
all loads of the constant-current type have been converted to constant-impedance loads.
Voltage regulators were removed from the input data, and additional buses, connected
to the system via low-impedance circuits, were added in order to model capacitor banks.
Also, the total number of switchable branches in the system was increased from the
original 11 to 16, in order to obtain a case with higher dimensions (notably, a higher
number of feasible configurations to be investigated). With these modifications, the
total number of buses and branches in the system is respectively 132 and 134.

A full description of the input data for test system S4 can be found in Appendix
A (section 7.1.4).

5.1.2 Algorithm for exhaustive search and objective function for
MILP approach

5.1.2.1 Brute-force, exhaustive search algorithm

The exhaustive search algorithm employed for the benchmarking analyses of
this section is described in the following:
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(i)

(i)

(iii)

(iv)

For a network with |Wg,,| switchable circuits, there are 2!"*swl possible
network configurations to be investigated.

Each of the 2¥sw! configurations is first checked for connectivity and
radiality. If the configuration is fully connected and radial (i.e., if there is
a single path through which each bus is connected to one and only one
root bus), the configuration is flagged as feasible with respect to
connectivity and radiality.

For all configurations that are feasible with respect to connectivity and
radiality, the backward-forward load flow algorithm [67] is executed to
solve for all complex bus voltages and branch currents in the system. The
stop criterion for the execution of successive backward-forward
iterations is that, from one iteration to another, the maximum variation in
any component of any complex bus voltage does not exceed 10™ p.u.
Another stop criterion is that the number of iterations does not exceed
100 (though this did not happen in any of the simulations). After
convergence, the losses in the system are calculated and stored.

Once all 2/%swl configurations have been treated, all of the
configurations for which the power flow problem has been solved are
ordered, from that with the lowest losses to that with the highest losses.
The one with the lowest losses is re-simulated, and the compliance of the
solution to operational limits is checked. If the solution complies with
operational limits, it is chosen as the optimal solution of the brute-force
search. If not, the procedure is repeated with the next solution of the list,

until a solution that complies with operational limits is found.

5.1.2.2 Obijective function for MILP approach

In section 4.2.2.5, a number of alternative formulations for the objective function

of the losses minimization problem have been presented. At this point, it is important to
indicate which of these has been used for the benchmark of section 5.1, for the network

reconfiguration problem.

As previously mentioned, the only control action considered for the case studies

of this section is the switching of branches. As load shedding decisions are not
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considered here, the products V, - (1 — p;) and V.2 (1 — p,) do not appear in the
objective function. Furthermore, due to the fact that the brute force algorithm against
which the MILP approach will be benchmarked does not treat loads of the constant-
current type, the only loads that appear in the objective function are those of the
constant-power and of the constant-impedance type.

It is necessary to model the dependence of the latter loads with the voltage
magnitude of the buses to which they connect, and for that the approximation
V2 =~ (2-V, — 1) is employed. The reader will recall that this approximation is based
on the truncated Taylor series calculated about the reference value V) = 1. Despite the
fact that a piecewise-linear approximation of this product may be employed to ensure
better control over the approximation accuracy, the results of section 5.1.3 will show
that the truncated Taylor series technique is sufficient to ensure that the switching
decisions taken with help of the MILP reformulation perfectly match those obtained
with the brute force algorithm.

After this introduction, the exact objective function employed for the case

studies of this section is presented:

s ref P
7058 = mln{ZkEQITFC Ve 7 5(?( - [ZkEQPCTE dj +

<]

|k

ZkEQZCTE(Z ' Vk - 1) '

The reader will notice that no specific costs have been assigned to losses, and
therefore all results will be given in p.u. (for the tables of section 5.1.3, these will be
converted to MW). The connectivity approach for the formulation of radiality
constraints presented in section 4.2.1.7.1, approach (i), has been used for all case

studies in this section.

5.1.3 Case study results

The main results of all case studies are summarized in Table 5.1.
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Table 5.1. Case study results: benchmark of MILP formulation against exhaustive search

Switching decisions

UESETRE. EXEOIOT D (status of switchable branches)
= <
3|5 o : S .
g2 8| E | u 5 | Comment
pDlB|2Z] g © o Switched-on 2
B2 %’ % o @ branches S S
= £
S|E2| 2| 5| 2 z <
= s
(1000-5), (5-4), (4-3) switchng
S1| 12 1111 14] 169] a8%| (32 (1) (1-100), (101-102) | decisions
ay| b : (102-103), (103-104), o
(104-105),(105-2000) o B
(1-4). (45). (46) 67), [ ig100 | awitehing
s2| 23| 23| 5287 10.03] -81% | 3:8) B9). (0-12). 313), 1 g 113" | Gecisions
1e)| °* : (13-14), (13-15), (15-16), : :
(510, (10-1) (7-16) in MILP
: and BF
(5-6), (7-8), (9-10), (7-20),
(10-11), (11-12), (12-13), | (6-7), Identical
- (14-15), (15-16), (16-17) | (8-9), switching
S3| 33 (26) 65668 | 626.0 | -99% | (20-21), (5-25), (25-26), (13-14), decisions
(26-27), (27-28), (28-29) | (31-32), | inMILP
(29-30), (30-31), (8-14), | (24-28) and BF
(11-21), (17-32)
(42-44), (54-94), (25-44), .
(13-152), (60-160), (23-25) sl\(/jv?{]ctr:(l:ﬁ:g
134 (61-610), (97-197), : cf
S4 1132 651.1| 688.9| 5.8% (86-87) decisions
(16) (250-251), (450-451), (18.135) | inMILP
(151-300), (300-350), and BE
(150-149), (33-149)

The computer used for all simulations is a Dell Vostro 3300 with the processor
Intel® Core™ i5, with 2.26 GHz and 3.8 GB of usable RAM, and using Windows 7®

as the operational system. The brute force algorithm has been coded and executed in
Matlab® Version 7.10 64 bit. The MILP reformulation of the ACOPF has been coded
and executed with FICO Xpress Mosel ® Version 3.2.2, with help of the graphical
interface FICO Xpress-IVE ® Version 1.22.02, 64 bit.
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As indicated in Table 5.1, identical switching decisions have been obtained with
the MILP reformulation of the ACOPF and with the brute-force, exhaustive search
algorithm, for all case studies. This effectively means that, if the optimal decisions
obtained with both methods were implemented, the same ohmic losses in distribution
network would be obtained — indicating that the actual value of the objective function
obtained with the MILP formulation and the brute-force algorithm is identical, for all
case studies.

Keeping in mind what has been discussed in the last paragraph, it is also worth
comparing the numerical value of the objective function obtained by the MILP
reformulation (i.e., the approximated numerical value corresponding to the solution of
the mixed-integer program, and not the actual value that would be obtained by
implementing the solution) to the numerical value of the objective function
corresponding to the solution of the brute-force algorithm. This will provide the reader
with insight on the accuracy of the approximations that are inherent to the MILP
reformulation. The comparison of these values is shown in Table 5.2.

Table 5.2. Case study results: comparison of approximated numerical value corresponding to the
solution of the mixed-integer program (MILP) to the numerical value of the objective function
corresponding to the solution of the brute-force (BF)

Test system Numerical value of total losses at optimal solution [MW]
Number Number of
ID branches Brute force (BF) | MILP reform. | (MILP-BF)/BF [%]
of buses .
(switchable)
S1 12 11 (11) 0.3297 0.3270 -0.8%
S2 23 23 (16) 0.4748 0.4814 1.4%
S3 33 37 (26) 0.1396 0.1458 4%
S4 132 134 (16) 0.0426 0.0452 6%

The results of Table 5.1 and Table 5.2 indicate that, even when the
approximation of V2 via the truncated Taylor series is used in the objective function,
the results of the proposed MILP reformulation of the ACOPF closely match those
obtained with the exhaustive search. The numerical value of the total losses obtained
with the MILP reformulation differs slightly from that obtained with the brute force
method, and the absolute value of this difference increases as the dimensions of the
system increases. Systems S2 and S4 have loads of the constant-impedance type. Yet,
the existence of loads of the constant-impedance type does not seem to be the most
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preponderant factor for explaining the difference in the total losses obtained with the
two methods — which is explained by the voltage magnitudes at all buses being close to
1.0 p.u. (the reference point for the approximation of V,? via the truncated Taylor
series).

For test system S1, the computational performance of the brute force algorithm
Is superior to that of the MILP reformulation, which is explained by the small
dimensions of the system and by the fact that, due to the particular topology of this
system (it basically corresponds to 12 buses sequentially and linearly aligned, as
indicated by the data in Appendix A), very few of the topologies are feasible with
respect to connectivity and have their power flow simulated. For test system S4, the
computational performance of the exhaustive search method has been slightly superior
to that of the MILP reformulation (5.8%). For the other systems, the computational
performance of the MILP reformulation of the ACOPF has been superior to that of the
brute force method. For test system S3, the system with the highest number of possible
network configurations (2°°), the solution time with the MILP reformulation of the
ACOPF was only 0.95% that of the brute force method. However, as the number of
buses and branches increases and the number of possible configurations decreases from
test system S3 to test system S4, the computational performance of the two methods
become comparable — and, in fact, the brute force algorithm has a slightly better
performance than the MILP reformulation. While analyzing this last result, the reader
should keep in mind that, if continuous decisions were to be included in the case
studies, the brute force algorithm could simply not be used, while the MILP
reformulation would still apply.

For tests systems S1, S2 and S3, a further benchmark of the optimal solution
obtained with the proposed MILP reformulation of the ACOPF for distribution systems
can be made. The value of the ohmic losses obtained by evaluating the optimal solution
obtained by the proposed formulation with a backward-forward load flow*? (BFLF) is
compared with the value of the optimal solution reported in the original references [84]
(for test systems S1 and S2) and [64] (for test system S3). The original references have

employed heuristics (variations of the branch-exchange heuristic presented in section

12 This is the actual value of the system losses that would be obtained when the distribution syste4m

engineer implements the decision taken with support of the MILP formulation.
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1.2, though this name is not actually used by the authors) for the solution of the network

reconfiguration problem for the minimization of losses (except for the very simple

system S1, for which an exhaustive search has been implicitly conducted in [84]). The

results of the comparison are indicated in Table 5.3, from which is clear that the ohmic

losses corresponding to the solution obtained with the proposed MILP formulation are

inferior to those corresponding to the solution informed in the original references for
test systems S2 (by 3.67%) and S3 (by 5.22%).

Table 5.3. Case study results: benchmark of optimal solution against solution informed in

original references [84] (for test systems S1 and S2) and [64] (for test system S3)

Optimal solution obtained with

Optimal solution reported in original

MILP formulation reference 3
£ | Switching decisions Switching decisions .
[<5]
2 | (status of switchable 'I;:tglp:ions;zels (status of switchable Z?tglptlio:za;s %
(7]
3 branches) solution branches) solution 2
= (evaluated (evaluated E‘
Switched-off branches | WIth BFLF) | switched-off branches | With BFLF) o
[MW] [MW]
S1|(101-102) 0.3297 | (101-102) 0.3297 0%
S2 | (8-10), (9-11), (7-16) 0.4748 | (8-10), (5-11), (7-16) 0.4922|3.67%

(31-32), (24-28)

(27,28), (30,31)

Before moving on to the next section, it is worth providing the reader with

insight on the actual intervals within which the voltage angles throughout the system

have varied, for all simulated systems. The range of variation of voltage angles within

the systems S1 to S4 is indicated in Table 5.4. From the table, it is clear that considering

—5° < 6, < 5°is a conservative modeling choice for all case studies.

Table 5.4. Case study results: range of variation of voltage angles across the systems S1 to S4.

Test Range of variation of voltage
system angle; across the system [°]
Min Max
S1 -1.24 0.00
S2 -1.65 0.00
S3 -1.02 0.60
S4 -2.11 0.00
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5.2 lustration of selected applications

In this section, five case studies, corresponding to different applications of the
proposed MILP reformulation of the ACOPF, will be presented. Each of the alternative
objective functions (or modules for objective functions) presented in section 4.2.2, with
the exception of that presented in section 4.2.2.8, will be used in at least one

application.

5.2.1 Application Al: emergency load shedding plan

For application Al, it is considered that the distribution operation planner wishes
to construct an emergency load shedding plan for a severe contingency within the
network of its utility. For that, it is necessary to determine which loads should be shed
and which circuits should be maneuvered in the event of a specific, severe contingency,
in order to minimize the combined costs of load shedding and ohmic losses.

The distribution system considered for this application, referred to as S5, was
built upon the data previously defined for test system S3. However, in order to better
reflect the actual conditions with which distribution system operators are faced, only a
limited subset of branches is considered to be switchable. Furthermore, it is necessary to
represent the severe contingency for which the load shedding plan is to be built. Thus,
two branches relatively close to the step-down substation at the interface with the
transmission system are removed from the data — the branches (5-6) and (5-25) from the
original data for S3).

Also, the bus voltage magnitude limits, which in section 5.1.1.3 had been set to
0.90 p.u. <V}, < 1.10 p.u. to ensure the feasibility of the problem (the reader will
recall that no load shedding actions were allowed for the analyses of section 5.1), are
now set to 0.95 p.u. <V, < 1.05 p. u., for all buses.

The distribution system operator is assumed to be able to shed 50% of the loads
in the network — i.e., 16 loads have been randomly selected and marked as eligible for
load shedding. The load shedding costs coefficients c;" %P vary within the interval
[900 $/MW, 1200 $/MW], as shown in Appendix A. For the construction of the input

data, the identification of the buses with loads that can be shed and the associated cost

134



coefficients were randomly sampled. The cost coefficient for ohmic losses equals
100 $/MW.

The input data for system S5, used for application Al, are presented in detail in
Appendix A (section 7.2.1). A schematic diagram of system S5 is shown in Figure 5.1.
In this figure, the branches under contingency are not represented.

Figure 5.1: Schematic diagram of system S5. Switchable branches are indicated with a square.
Adapted from [49].

The following objective function is employed for the minimization of the costs
of load shedding and ohmic losses:

ZSHED & LOSSES SHED dP
k

= min{ZREQSHED Ck

LOSS ref gre
+ ¢k {ZREQITFC Vk gk

" Pk

_[ZRG{QPCTENQNSHD} dllz + ZkE{QPCTEnQSHED} di (1- pk)]}} (353)

In the following three subsections, we present the results of the application of

the proposed MILP reformulation under consideration of each of the three connectivity
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approaches presented in subsection 4.2.1.7. As mentioned in section 4.2.1.7, the three
approaches differ among themselves with respect to the necessity (or possibility) of
entirely removing from the network a bus whose load has been shed.

5.2.1.1 Simulation considering connectivity approach (i)

In this subsection, the connectivity approach presented in section 4.2.1.7.1 is
considered while determining the emergency load shedding plan for system S5. The
reader will recall that, in this approach, is considered that all buses of the distribution
system must be connected to the network at all times.

The optimal emergency load shedding plan, obtained by the solution of the
corresponding mixed-integer linear program, is summarized in Table 5.5. With help of
Figure 5.1, it is easily understood that, after the maneuvering decisions are taken into
account, the buses with the lowest voltage magnitudes are located at the extremities of
the feeder. Among the curtailable loads located near these buses, those with the lowest
value of ciEP are shed in order to achieve compliance to the admissible range of bus

voltage magnitudes.
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Table 5.5. Case study results: application Al, emergency load shedding plan, approach (i).

Switching
decisions
Objective function Shed loads (status of
switchable
branches)

Information on bus
voltage magnitude

Test system
Execution time [s]

Objective function [$]
Load shedding costs [$]
Active power [MW]
Connected to bus
Cost coefficient of load
shedding [$/MW]
Switched-on
branches
Switched-off branches
Buses with lowest voltage
magnitude in system
(magnitude [p.u.])
Buses with highest
voltage magnitude in
system (magnitude [p.u.])

Costs of ohmic losses [$]

(6,7),
(7, 20),
0.06 {15 |950 |(8, 14),
(11, 21), 1000
(8-9),
(16, 17), 17 (0.951),
(13-14), (1.00), |242.9
27, 28 32 (0.951
&91 30;: (17-32) (0.951) 2 (0.997)
0.2 (29 (900 |(30,31),
(31, 32),
(24, 28)

S5 |248.0 [237.0 |11.0

The operation point corresponding to the optimal solution indicated in Table 5.5
has been used as the input data for a backward-forward load flow [67] simulation, for
system S5. The stop criterion for the execution of successive backward-forward
iterations is that the maximum variation in any component of any complex bus voltage
does not exceed 10™ p.u. from one iteration to another. The losses obtained by the
backward-forward load flow simulation are 0.22% lower than those obtained with the
MILP reformulation of the ACOPF. Furthermore, it is relevant to to quantify the
approximation errors of the bus voltages. Table 5.6 also indicates the results obtained by
the backward-forward load flow, as well as the relative error between the voltages
obtained by the MILP problem and the backward-forward load flow. It is clear that the
approximation errors range from 0.00005% to 0.0006% for voltage magnitudes and
from -1.13% to -0.04% for bus angles (excluding the reference voltage bus). At this
point, the reader is reminded that, as the branch impedance is known for every branch
in the system, the branch currents can be readily calculated when the information of

the bus voltage magnitudes is at hand — i.e., the complex bus voltages are the state
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variables of the system. Due to that, an option is made not to construct a table similar to

Table 5.6 for branch currents.

Table 5.6. Bus voltages: solution of MILP ACOPF (MILP), simulation with backward-forward load flow

(BFLF) and comparison of relative error, given by (MILP-BFLF)/BFLF.

Voltage magnitude [p.u.] Voltage angle [°]
b (MILP- (MILP-
D BFLF MILP BFLF) BFLF MILP BFLF)
/BFLF [%] /BFLF [%]
1000| 1.00000| 1.00000 - 0.00000| 0.00000 -

1| 0.99743| 0.99743| 0.00005% | -0.00168| -0.00166 -1.1270%

2| 0.98955| 0.98955 0.0002% | -0.00648| -0.00642 -0.8441%

3| 0.98885| 0.98884 0.0002% | -0.00544| -0.00538 -1.0227%

4] 0.98850| 0.98849 0.0002% | -0.00698| -0.00693 -0.7902%

5| 0.98810| 0.98809 0.0003% | -0.01652| -0.01646 -0.3106%

6| 0.95875| 0.95875 0.0001% | -0.75173| -0.75121 -0.0692%

7| 0.95983| 0.95983 0.0001% | -0.76110| -0.76060 -0.0665%

8| 0.95757| 0.95757 0.0000% | -0.80262| -0.80209 -0.0658%

9| 0.96144| 0.96144 0.0003% | -0.66929| -0.66881 -0.0713%
10| 0.96153| 0.96152 0.0003% | -0.66930| -0.66882 -0.0713%
11| 0.96182| 0.96182 0.0004% | -0.67151| -0.67104 -0.0703%
12| 0.95924| 0.95923 0.0003% | -0.68663| -0.68613 -0.0732%
13| 0.95844| 0.95844 0.0004% | -0.70305| -0.70253 -0.0728%
14| 0.95390| 0.95390 0.0001%| -0.91218| -0.91161 -0.0629%
15| 0.95295| 0.95295 0.0001% | -0.92668| -0.92610 -0.0625%
16| 0.95100| 0.95100 0.0002% | -0.99801| -0.99740 -0.0611%
17| 0.95042| 0.95042 0.0002% | -1.00687| -1.00625 -0.0611%
18| 0.99530| 0.99530 0.0001% | -0.04075| -0.04071 -0.1076%
19| 0.97734| 0.97734 0.0002% | -0.34219| -0.34192 -0.0797%
20| 0.97237| 0.97237 0.0002% | -0.46978| -0.46944 -0.0722%
21| 0.96891| 0.96891 0.0003% | -0.56019| -0.55981 -0.0680%
22| 0.98312| 0.98311 0.0003% | -0.06009| -0.06000 -0.1353%
23| 0.97055| 0.97054 0.0005% | -0.22200| -0.22187 -0.0581%
24| 0.96136| 0.96136 0.0005% | -0.33918| -0.33901 -0.0493%
25| 0.95532| 0.95532 0.0005% | -0.46205| -0.46185 -0.0428%
26| 0.95546| 0.95545 0.0005% | -0.46143| -0.46123 -0.0428%
27| 0.95659| 0.95659 0.0005% | -0.43832| -0.43813 -0.0436%
28| 0.95786| 0.95785 0.0006% | -0.41108| -0.41089 -0.0450%
29| 0.95611| 0.95610 0.0005% | -0.41169| -0.41150 -0.0451%
30| 0.95209| 0.95209 0.0004% | -0.49015| -0.48994 -0.0422%
31| 0.95121| 0.95121 0.0004% | -0.51156| -0.51135 -0.0415%
32| 0.95094| 0.95094 0.0003% | -0.51874| -0.51853 -0.0413%
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5.2.1.2 Simulation considering connectivity approach (ii)

In connectivity approach (ii), which has been presented in section 4.2.1.7.2, it is
considered that the load and/or generator at a bus can only be de-energized if all circuits
that connect to that bus are removed from the network. Removing a bus from the
network requires that all circuits connected to that bus are deactivated (switched-off).

The optimal emergency load shedding plan obtained by the solution of the
corresponding mixed-integer linear program which has been formulated considering the

second approach to connectivity requirements is summarized in Table 5.7.

Table 5.7. Case study results: application A1, emergency load shedding plan, approach (ii).

Switching decisions | Information on
Objective function Shed loads (status of switchable bus voltage
branches) magnitude
= & o] S )
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From Table 5.7, it is clear that considering that a load can only be shed if its bus
is removed from the network leads to an emergency load shedding plan with higher
costs than that of subsection 5.2.1.1. The reader will notice that it is now not possible to
shed the loads at buses 15 and 29 (shedding these two buses corresponds to the optimal
solution obtained in subsection 5.2.1.1).

Analogously to what has been done in subsection 5.2.1.1, the operation point
corresponding to the optimal solution indicated in Table 5.7 has been used as the input

data for a backward-forward load flow [67] simulation. The losses obtained by the
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backward-forward load flow simulation are 0.17% lower than those obtained with the
MILP reformulation of the ACOPF. Analogously to what was done in section
subsection 5.2.1.1, it is relevant to quantify the approximation errors of bus voltages.
The results of this comparison are shown in Table 5.8. It is clear that the approximation
errors range from 0.00003% to 0.0008% for voltage magnitudes (excluding the
reference voltage bus) and from -0.24% to +0.31% for bus angles.

Table 5.8. Bus voltages: solution of MILP ACOPF (MILP), simulation with backward-forward load flow

(BFLF) and comparison of relative error, given by (MILP-BFLF)/BFLF.

Voltage magnitude [p.u.] Voltage angle [°]

hik (MILP- (MILP-

D BFLF MILP BFLF) BFLF MILP BFLF)
/BFLF [%] /BFLF [%]

1000| 1.00000| 1.00000 |- 0.00000| 0.00000 | -

1| 0.99747| 0.99747| 0.00003% | 0.01471| 0.01474 0.2250%
2| 0.98965| 0.98965 0.0002% | 0.09952| 0.09966 0.1392%
3| 0.98894| 0.98894 0.0003% | 0.10056| 0.10070 0.1403%
4] 0.98859| 0.98859 0.0003% | 0.09901| 0.09915 0.1422%
5| 0.98819| 0.98819 0.0002% | 0.08948| 0.08962 0.1540%
6| 0.96019| 0.96018 0.0005% | -0.72006| -0.71951 -0.0756%
7] 0.96126| 0.96126 0.0006% | -0.72940| -0.72887 -0.0724%
8| 0.95931| 0.95931 0.0005% | -0.77023| -0.76968 -0.0719%
9| 0.96220| 0.96219 0.0006% | -0.64557| -0.64508 -0.0767%
10| 0.96228| 0.96228 0.0006% | -0.64559| -0.64509 -0.0764%
11| 0.96258| 0.96257 0.0006% | -0.64779| -0.64731 -0.0754%
12| 0.95999| 0.95999 0.0007% | -0.66289| -0.66237 -0.0786%
13| 0.95920| 0.95920 0.0006% | -0.67928| -0.67875 -0.0781%
14| 0.95631| 0.95630 0.0005% | -0.87156| -0.87096 -0.0687%
15| 0.95558| 0.95558 0.0005% | -0.88546| -0.88485 -0.0687%
16| 0.95485| 0.95485 0.0004% | -0.91581| -0.91519 -0.0677%
18| 0.99540| 0.99540 0.0001% | -0.02385| -0.02379 -0.2437%
19| 0.97793| 0.97793 0.0003% | -0.32131| -0.32102 -0.0909%
20| 0.97312| 0.97311 0.0005% | -0.44637| -0.44602 -0.0798%
21| 0.96966| 0.96965 0.0006% | -0.53665| -0.53625 -0.0741%
22| 0.98308| 0.98307 0.0004% | 0.13544| 0.13567 0.1708%
23| 0.97000| 0.96999 0.0007% | 0.16305| 0.16346 0.2565%
24| 0.96032| 0.96031 0.0007% | 0.23882| 0.23942 0.2506%
25| 0.95372| 0.95371 0.0007% | 0.23425| 0.23498 0.3091%
26| 0.95386| 0.95385 0.0008% | 0.23487| 0.23559 0.3076%
27| 0.95499| 0.95499 0.0007%| 0.25806| 0.25877 0.2725%
28| 0.95626| 0.95625 0.0007%| 0.28539| 0.28607 0.2383%
29| 0.95458| 0.95458 0.0006% | 0.38439| 0.38511 0.1858%
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5.2.1.3 Simulation considering connectivity approach (iii)

The third approach to connectivity requirements has been presented in section
4.2.1.7.3. In this approach, it is considered that the buses to which loads that are shed
and generators that are curtailed, as well as all buses that do have any fixed or
curtailable injections, may or may not be disconnected from the network, according to
the impacts of their connection or disconnection on the objective function.

For system S5, approach (iii) leads to exactly the same results as approach (i). It
is worth mentioning that, despite of the third approach having led to the same results as
the first for this particular system, the results obtained with both approaches may differ

for other applications and systems.

5.2.2 Application A2: generation curtailment at light loading
hours

For this second application, the distribution system expansion planner is
assumed to have a list of requests for the connection of renewable generators to the
distribution system, and must determine which of those requests to accept and which to
decline, so that the maximum amount of renewable generation can be connected to the
system while ensuring adequate technical conditions — i.e., compliance with bus voltage
and branch current magnitude limits. This problem is equivalent to minimizing the
curtailment of generators with non-controllable active power output (the curtailed
generators are those whose connection request will not be met), with the curtailment
cost coefficient set to unity for all generators.

As well as in the previous section, the data for the distribution system considered
for this application, referred to as S6, have also been obtained by modification of the
input data for test system S3. It assumed here that the most critical condition for the
evaluation of the connection of the renewable generators is at night, when the voltage
magnitude at the interface with the transmission system is high, the load within the
distribution network is low, and the generation is high due to the dynamics of the non-
controllable primary energy resources. The modifications made for obtaining system S6
will reflect this assumption. These modifications are listed in the following:
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(i)

(i)
(iii)

(iv)

(V)

(vi)

(vii)

Only 11 of the 37 branches in the system are considered to be
switchable;

The load at all buses is reduced to 30% of their original value;

The voltage magnitude of the bus at the interface with the
transmission system is considered to be of 1.05 p. u.;

The admissible range for the voltage magnitude of all buses in the
system is sett0 0.95 p.u. < V,, < 1.05 p.u,;

Candidate renewable generators are assigned to 20 of the 33 buses in
the system.

The active power output of each of these generators has been
randomly sampled from the interval [50 kW, 150 kW] (considering an
uniform probability distribution).

It is assumed that each generator can control its power factor within
the range [0.98agging, 0.98cading] (considering the installed active power
capacity). In reality, this is a very narrow power factor for many
common distributed generation technologies. Nonetheless, this narrow
power factor is assumed to make the analysis scenario somewhat more

complex.

In this application, the “generation curtailment” decision does not refer to the

actual physical disconnection of the generation from the system, but rather to the denial

of a connection request. Due to that, the first approach to connectivity requirements,

which has been presented in subsection 4.2.1.7.1, will be considered. In fact, this first

approach will be considered for all applications presented in the following subsections,

except for that of subsection 5.2.4.

The input data for system S6, used for application A2, are presented in detail in

Appendix A (section 7.2.2). A schematic diagram of system S5 is shown in Figure 5.2,
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Figure 5.2: Schematic diagram of system S6. Switchable branches are indicated with a square.
Adapted from [49].

The objective function used in this application corresponds exactly to equation
(197) of section 4.2.2.
The set of answers to connection requests that result in the highest amount of

renewable generation connected to system S6 are indicated in Table 5.9.
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Table 5.9. Case study results: application A2, generation curtailment at light loading hours.

L . Switching decisions
Objec_tlve Answer to connection requests from (status of switchable
function renewable generators
branches) _
w S Connection Connection not o o =
5| = authorized authorized £ £ =
v c = — — = c =]
# 852 | 3 E 2 8| £ g 5
2 8§25 = e) = e = = 5
Saas = s | %2 - S 3
€23 3 3 3 S8 2 2 %
Eas o 3 o o9 = < L
' o O [<&] c <3 & = 'g *(-'_J
S 2 = 5 = £ S =
S < © < 8 > @
90 2 58 6
89 3 100 18
62 7 168 21
138 8
68 9
88 11
12 (8-9)! _
CR— @2, |13
S6 | 326 69 19 (8-14) " | (5-25), 1602.84
146 22 (11-21), (7-20),
123 23 (17-32) (24-28)
153 25
126 28
85 29
94 30
89 31
114 32

Due to the high voltage at the bus at the interface with the transmission system,
the light loading conditions and the fact that the generators may only vary their power
factor within a very limited range, the voltage profile within the network of system S6 is
very high. In fact, it is the need to prevent voltages above 1.05 p.u. that leads to the
curtailment (i.e., denial of the connection request) of the three generators indicated in
Table 5.9.

The bus voltages corresponding to the optimal solution of the MILP
reformulation of the ACOPF are indicated in Table 5.10. In order to quantify the
approximation errors of the bus voltage magnitudes, the operating point corresponding
to the optimal solution of the MILP problem has been used as input data for a
simulation using the backward-forward load flow algorithm [67] (i.e., the network
topology and all bus injections, including the active power absorbed by generators,

which have been modeled as fixed values, were used as input data and the system has
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been simply simulated). The stop criterion for the execution of successive backward-
forward iterations is that the maximum variation in any component of any complex bus
voltage does not exceed 10 p.u. from one iteration to another. Table 5.10 also indicates
the results obtained by the backward-forward load flow, as well as the relative error
between the voltages obtained by the MILP problem and the backward-forward load
flow. The approximation errors range from 0.0002% to 0.0022% (excluding the
reference voltage bus, for which the voltage magnitude is fixed in application A2) for
voltage magnitudes, and from 2:10° (for bus 11) to 0.02% for bus angles (also

excluding the reference voltage bus).

Table 5.10: Bus voltage magnitude profile: solution of MILP ACOPF (MILP), simulation with backward-
forward load flow (BFLF) and comparison of relative error, given by (MILP-BFLF)/BFLF.

Voltage magnitude [p.u.] Voltage angle [°]
b (MILP- (MILP-
D BFLF MILP BFLF) BFLF MILP BFLF)
IBFLF [%] IBFLF [%]
1000| 1.05000| 1.05000 |- 0.00000| 0.00000 | -
1| 1.04999| 1.04999| 0.00038% | 0.03986| 0.03986 0.0016%
2| 1.04955| 1.04955 0.0005% | 0.08979| 0.08978 0.0069%
3| 1.04936| 1.04936 0.0004% | 0.09752| 0.09752 0.0072%
4| 1.04909| 1.04909 0.0005% | 0.09704| 0.09704 0.0071%
5| 1.04856| 1.04856 0.0003% | 0.08871| 0.08870 0.0077%
6| 1.04839| 1.04839 0.0004% | 0.07846| 0.07845 0.0091%
7| 1.04775| 1.04774 0.0008% | 2.50050| 2.50053 0.0014%
8| 1.04793| 1.04791 0.0015% | 2.48559| 2.48563 0.0015%
9| 1.04733| 1.04731 0.0014% | 2.18062| 2.18063 0.0006%
10| 1.04692| 1.04691 0.0009% | 2.13257| 2.13257 0.0002%
11| 1.04619| 1.04618 0.0006% | 2.04040| 2.04040 0.0000%
12| 1.04596| 1.04595 0.0005% | 2.06733| 2.06733 0.0001%
13| 1.04574| 1.04573 0.0007% | 2.06319| 2.06320 0.0004%
14| 1.04671| 1.04669 0.0018% | 3.03329| 3.03336 0.0022%
15| 1.04693| 1.04692 0.0010% | 3.21596| 3.21604 0.0025%
16| 1.04496| 1.04495 0.0011% | 3.59062| 3.59072 0.0028%
17| 1.04502| 1.04501 0.0012% | 3.76136| 3.76148 0.0032%
18| 1.04982| 1.04982 0.0002% | 0.10678| 0.10678 0.0003%
19| 1.04908| 1.04907 0.0007%| 0.71314| 0.71313 0.0002%
20| 1.04840| 1.04839 0.0006% | 0.88890| 0.88889 0.0003%
21| 1.04697| 1.04697 0.0003% | 1.21826| 1.21825 0.0009%
22| 1.04918| 1.04918 0.0002% | 0.11662| 0.11661 0.0107%
23| 1.04788| 1.04787 0.0005% | 0.12922| 0.12920 0.0152%
24| 1.04695| 1.04695 0.0002% | 0.11795| 0.11793 0.0171%
25| 1.04492| 1.04490 0.0016% | 4.34433| 4.34450 0.0038%
26| 1.04472| 1.04470 0.0021% | 4.33435| 4.33452 0.0038%
27| 1.04424| 1.04422 0.0018% | 4.28260| 4.28276 0.0038%
28| 1.04398| 1.04396 0.0021% | 4.24614| 4.24631 0.0039%
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\oltage magnitude [p.u.] Voltage angle [°]
hia (MILP- (MILP-
o BFLF MILP BFLF) BFLF MILP BFLF)
IBFLF [%] IBFLF [%]

29| 1.04356| 1.04354 0.0022% | 4.21362| 4.21379 0.0041%
30| 1.04403| 1.04401 0.0017%| 4.05139| 4.05153 0.0033%
31| 1.04427| 1.04425 0.0020% | 3.98601| 3.98614 0.0033%
32| 1.04491| 1.04489 0.0016% | 3.89300| 3.89312 0.0031%

5.2.3 Application A3: minimization of the sum of variable
generation costs and costs of power imports

For this third application, it is assumed that the distribution system operator

wishes to minimize the total costs related to supplying active power to the distribution

system, including the variable costs of generators whose active power output can be

controlled and the costs of power imports.

The distribution system considered for this third application, referred to as S7,

was also obtained by modifying the input data for test system S3. The following

modifications have been made to obtain S7:

()
(i)
(iii)

(iv)

(V)

Only 11 of the 37 branches in the system are considered to be
switchable;

The load at all buses are increased to 110% of their original value;
The voltage at the interface with the transmission system is assumed
to be of 1.025 p.u. and the admissible range for the voltage magnitude
of all buses in the system is set to 0.95 p.u. <V, < 1.05 p.u;;

It is assumed that there are four generations with controllable active
power output in the system. Those generators are assumed to be
connected to buses 7, 14, 17 and 29. The installed capacity of the
generator connected to bus 7 is of 500 kW, and all other generators
have an installed capacity of 300 kW. Each generator able to control
its power factor within the range [0.95pgging, 1] (considering the
installed active power capacity).

The unitary production costs for the generators connected to buses 7,
14, 17 and 29 are respectively of 110 $/MWh, 118 $/MWh,
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118 $/MWh and 145 $/MWh. The costs of imports from the external
network are of 115 $/MWh.

(vi) A period of one hour is considered, so that the conversion from MWh

to MW is immediate.

The input data for system S7, used for application A3, are presented in detail in
Appendix A (section 7.2.3). The network topology of S7 is identical to that indicated in
Figure 5.2.

The following objective function is employed for the minimization of the sum of

variable generation costs and costs of power imports:

GEN &IMPORT

re
7 GEN IMPORT A f . re}

= min{ZkEQCTRPQ i’ - gk + Lkeqrpc Ck 9.k
(354)
Two distinct groups of simulations will be executed for system S7. For the first
group of simulations, whose results are indicated in subsection 5.2.3.1, it is required that
the system is operated in a radial fashion (i.e., the radiality constraints are enforced). For
the second group of simulations, whose results are indicated in subsection 5.2.3.2, the
system may be operated in a meshed fashion if this is the optimal configuration (i.e., the
radiality constraints are not enforced).

5.2.3.1 Radiality enforced

For the simulations of this section, it has been considered that the distribution
system S7 must be operated in a radial fashion — i.e., radiality constraints are enforced
while solving the problem of minimization of supply costs.

For the first simulation, the formulation of the constraints for obtaining the
generator currents that was presented in section 4.2.1.2 has been used. The reader will
recall that this formulation makes use of McCormick’s envelopes for modeling bilinear
products — and for that reason we identify this formulation as formulation with

McCormick’s envelopes. The corresponding results are shown in Table 5.11.

147



Table 5.11. Case study results: application A3 with radiality enforced, minimization of the sum of

variable generation costs and costs of power imports, formulation with McCormick’s envelopes.

VEHEASEE TR Switching decisions
i SR PE L W'th'?] etil\l;g:ﬁutlon (status of switchable branches) _
§1 21 &8 |9 T |8_]3 £
2| & | B 7 ~ |g%|23 =
Z| 3 55 S 5 §§ S . . S
21 5 The £ = ©% | g | Switched-on Switched-off | 5
Fle | 22 | 2| 2 | 258 branches branches g
2| 8° | < | 2 |88t 0
2 | S 5| < |5 |©
O a
02065 ﬁg 131 (5-25), (8-14), | (6-7), (8-9),
S7 |476.5 103.9|372.6 0'215 118 17 (27-28), (31-32), | (7-20), (13-14), | 45.3
' 0 1451 29 (11-21), (17-32) |(24-28)

It is clear that the location of the generators within the network influences the
dispatch decisions, mainly due to the avoidance of ohmic losses — this being the main
reason for the generators at buses 14 and 17 having a non-zero dispatch, despite the fact
that their unitary production costs (118 $/MW) is superior to the unitary costs of power
imports (115 $/MW).

With the results of the first simulation at hand, a second simulation has been
conducted. For this second simulation, the formulation of the constraints for obtaining
the generator currents presented in Appendix C (section 9.2) has been used. The reader
will recall that this formulation completely eliminates the need to employ McCormick’s
envelopes, as the generator currents 176 and I are treated as non-linear functions of
four decision variables — i.e., I7% (Vye,Vi™, g¢, g% ) and 1T (Ve vim, g2, g%) — and
piecewise-linear approximations of these functions are constructed with help of SOS2.
For the construction of these piecewise-linear functions, the cardinality of the sets T?
and TP (see section 9.2) has been defined as |T?| = |TP| = 5, with the evaluation
points distributed equally within the allowable range for the active and reactive power
outputs. The formulation used in the second simulation is identified as formulation with
piecewise-linear approximations in the tables of this section. The results obtained when

using this formulation are shown in Table 5.12.
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Table 5.12. Case study results: application A3 with radiality enforced, minimization of the sum of

variable generation costs and costs of power imports, formulation with piecewise-linear approximations.

VEHEASEE TR Switching decisions
i SR PE L W'th'?] etil\l;g:ﬁutlon (status of switchable branches) —
§| 2| & |2 | £ |83 E
2| 8 | ® G < | 8% |2 =
2| B w |5 5 |35 |2 . : S
2| 5 o'~ | =] =2 S5 | g | Switched-on Switched-off | 5
o L2 |£ S ~2 |3 ranches ranches o
| 8° |& 2 | s8|¢€ i
S| & 3 5 |£°|8
) > a < -]
o> M0 T (525), (8-14), | (67), (8°9)
S7 |479.1 118.3|360.8 0.296 118 17 (27-28), (31-32), | (7-20), (13-14), | 811
ST Las [ ag] (11°21), (17-32) | (24-28)

It is clear that the network topology (switching decisions) obtained with both
formulations is equal.

By comparing the results of Table 5.11 and Table 5.12, it may seem at first that
the solution obtained with the formulation with McCormick’s envelopes (Table 5.11) is
better than that obtained with the formulation with piecewise-linear approximations
(Table 5.12), due to the numerical value of the objective function of the former being
inferior to that of the latter. However, the approximations of generator currents in the
first formulation are presumably less accurate than that of the second formulation,
which may indicate that, if the distribution system operator were to implement the
generation dispatch of both formulations, the actual power supply costs associated with
the first solution (g7 = 0.5 MW, gi* =0.2 MW, gi’7 = 0.215 MW, g2° = 0 MW,
with the remainder of the power requirements supplied by power imports) could be
higher than those of the second solution (g7 = 0.5 MW, gi* =0.241 MW, gi” =
0.296 MW, g2° = 0 MW, with the remainder of the power requirements supplied by
power imports).

In order to investigate the hypothesis presented in the last paragraph, both
solutions have been used as inputs for a backward-forward power flow simulation [67]:
the decisions regarding the network topology (switching decisions) and generation
dispatch (active power output of generators connected to buses 7, 14, 17 and 29) have
been used as fixed input data, and the amount of power imports corresponding to each

solution (formulation with McCormick’s envelopes and formulation with piecewise-
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linear approximations) have been obtained by the solution of the backward-forward
power flow. With these results at hand, the value of the actual system operation costs
can be calculated. Furthermore, the value of the actual system operating costs obtained
by the procedure described above have been compared to that corresponding to the
solution of a non-linear AC optimal power flow problem (NL-ACOPF), obtained with
help of the software OptFlow [87]. This NL-ACOPF software does not support discrete
decisions, and therefore the network topology corresponding to the switching decisions
specified in the previous tables has been considered as fixed.

The system operating costs obtained with help of the procedure described in the
two previous paragraph, for the three situations (simulations of the actual system
operation costs associated with the solution obtained by the MILP formulation with
McCormick’s envelopes and with the solution obtained by the MILP formulation with
piecewise-linear approximations, as well as the system operation costs obtained with
the NL-ACOPF), are indicated in Table 5.13.

Table 5.13. Comparison of solutions for application A3, with radiality enforced: simulation of actual system
operation costs associated with the solutions obtained by the MILP formulation with McCormick’s envelopes
and by the MILP formulation with piecewise-linear approximations, as well as the operating costs obtained
with the NL-ACOPF with the network topology considered as fixed.

Simulation of solutions obtained
by the MILP formulation, with Solution
ltem backward-forward load flow with

Formulation with | Formulation with | NL-ACOPF
McCormick’s piecewise-linear | (benchmark)

envelopes approximations
Active | Generator at bus 7 0.500 0.500 0.500
power | Generator at bus 14 0.212 0.241 0.288
output | Generator at bus 17 0.226 0.296 0.299
[MW] | Generator at bus 29 0 0 0
Power imports [MW] 3.29 3.15 3.09
Actual system operation costs [$] 485.2 480.3 479.3

The results of Table 5.13 indicate that the actual system operation costs obtained
with the formulation with piecewise-linear approximations are inferior to those obtained
with the formulation with McCormick’s envelopes. In fact, the system operation costs
obtained with the formulation with piecewise-linear approximations are only 0.21%
higher than those associated with the benchmark solution (that obtained with the NL-
ACOPF, considering the network topology as fixed). It is also evident that the
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generation dispatch decisions obtained with the formulation with piecewise-linear
approximations are closer to these obtained with the benchmark solution. The reader
should notice, however, that the execution time for the formulation with piecewise-
linear approximations (811 s) is considerably higher than the execution time for the
formulation with McCormick’s envelopes (45.3 s). Thus, the trade-off between

approximation accuracy and computational performance becomes evident.

5.2.3.2 Meshed operation allowed

For the simulations of this section, it has been considered that the distribution
system S7 may be operated either radially or in a meshed fashion — i.e., radiality
constraints are not enforced while solving the problem.

For the first simulation, the formulation of the constraints for obtaining the
generator currents that was presented in section 4.2.1.2 has been used (formulation with

McCormick’s envelopes). The corresponding results are shown in Table 5.17.

Table 5.14. Case study results: application A3 with meshed operation allowed, minimization of the sum of

variable generation costs and costs of power imports, formulation with McCormick’s envelopes.

ML S L Switching decisions
Obijective function | within distribution ng
(status of switchable branches) —
network 2
% @
sl 2|8 |8 | £ |83 z
2| 8 |2&8|E g |85 |2 . . S
2| 5 |85 |2 3= S5 13 Switched-on Switched-off | 5
Fl e |eg|E=] 8 | 2518 branches branches o
£ |8°|8 S | 88|¢ -
8 % % "5' £ 05 S
g > a < D o
05| 110| 7](6-7),(5-25), (8-14),
0.16 118] 14| (7-20),(27-28), ) ]
S7 |4745| 9513794 —oe—1eT 7 (31-32) (11-21), (8-9), (13-14) [152.0
0| 145| 29|(17-32),(24-28)

The first noticeable result is that, now that the radiality constraints have been
relaxed, the optimal network configuration corresponds to a meshed one.

With the results of the first simulation at hand, a second simulation has been
conducted. For this second simulation, the formulation of the constraints for obtaining

the generator currents presented in Appendix C (section 9.2) has been used, with
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|T?| = |TP| = 5. This second formulation is identified as formulation with piecewise-
linear approximations in the following tables. The results obtained when using this

formulation are shown in Table 5.15.

Table 5.15. Case study results: application A3 with meshed operation allowed, minimization of the sum of

variable generation costs and costs of power imports, formulation with piecewise-linear approximations.

VI ot A Switching decisions
Objective function | within distribution (status of switchable branches)
network —
5218 |5 5 |58_|¢2 =
o o = D X~ p= o =
> £ |E_| 8| = |82 |2 : =
z| 2 |28 2 | 8 |82 |2 Switched-| S
2| &€ |22 8 3 5 &, | 8 | Switched-on branches off 3
S 58| E o |2g|d branches | %
5 | - | 2 | 88]|¢< t
2 |3 | & |E°|8
o > 3 < )
@) a
05| 110 7](6-7),(5-25), (8-14),
0.300| 1181 14|(7-20),(13-14), (27-28), | o
S71478.1(125.8|352.3 0.300 118 17| (31-32),(11-21), (8-9) 1414.3
0 145 | 29 | (17-32),(24-28)

The reader will notice that the network topology of the solution obtained with
the formulation with piecewise-linear approximations (Table 5.15) differs from that
corresponding to the solution obtained with the formulation with McCormick’s
envelopes (Table 5.17). The network topology indicated in Table 5.15 is also a meshed
one.

Again, by comparing the results of Table 5.17 and Table 5.15, it may seem at
first that the solution obtained with the formulation with McCormick’s envelopes (Table
5.17) is better than that obtained with the formulation with piecewise-linear
approximations (Table 5.15), due to the value of the objective function of the former
being inferior to that of the latter. However, the approximations of generator currents in
the first formulation are presumably less accurate than that of the second formulation,
which may indicate that, if the distribution system operator were to implement the
generation dispatch of both simulations, the actual power supply costs associated with
the first solution could be higher than those of the second solution. In order to verify if
this is in fact the case, the optimal decisions of both simulations (network topology and

active power output of generators) will be used as fixed inputs for simulations of the
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power flow in the distribution system. Due to the fact that both topologies are now
meshed, it is no longer possible to use a backward-forward power flow algorithm for
the simulations. Thus, both operating points will be simulated with help of the
NL-ACOPF software OptFlow [87]. For these simulations, the active and reactive
power output of all generators in the network are considered as fixed, and the ACOPF is
thus employed simply to obtain the solution corresponding to the operating point
described by the input data — which is made to obtain the amount of active power
imported from the external system (the active power infeed at the slack bus). With these
results at hand, the value of the actual system operation costs have been calculated,
analogously to what has been done in subsection 5.2.3.1.

As in subsection 5.2.3.1, the operation costs obtained by the procedure described
in the previous paragraph are compared to those corresponding to the optimal solution
of a NL-ACOPF, also obtained with help of the software OptFlow [87]. Now, the
network topologies corresponding to the switching decisions registered in Table 5.17
and Table 5.15 are used as fixed inputs for NL-ACOPF simulations, through which the
optimal generator dispatch is determined (i.e., the active power outputs are now
decision variables of the NL-ACOPF). The costs corresponding to the optimal decisions
obtained with the NL-ACOPF will be used to benchmark the actual system operation
costs obtained by the procedure described in the previous paragraph.

The results of the procedure described in the two previous paragraphs are
indicated in Table 5.16.

Table 5.16. Comparison of solutions for application A3 with meshed operation allowed: simulation of actual
system operation costs associated with the solutions obtained by the MILP formulation with McCormick’s
envelopes and by the MILP formulation with piecewise-linear approximations, as well as the operating costs

obtained with the NL-ACOPF, with the corresponding network topologies considered as fixed.

Simulation of Solution Simulation of Solution
solution obtained with solution obtained with
bythe MILP 1 acopr | DYIEMILP 1) Acopr
ltem formulation, with (considering formulation, with (considering
NL-ACOPF NL-ACOPF

Formulation with IS Formulation with LS
McCormick’s et i piecewise-linear ool o
Table 5.14) S Table 5.15)

envelopes approximations

Active | Gen. at bus 7 0.500 0.500 0.500 0.500
power | Gen. at bus 14 0.161 0.296 0.300 0.300
output | Gen. at bus 17 0.179 0.300 0.300 0.300
[MW] | Gen. at bus 29 0 0 0 0
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Simulation of Solution Simulation of Solution
solution obtained with soLutiohn obtained with
by the MILP y the MILP
ltem formulation, with g:;ngdcglzz formulation, with El: Ic;n:dcecr)ﬁz
NL-ACOPF NL-ACOPF
Formulation with B Formulation with BB
McCormick’s ol piecewise-linear ool o
Table 5.14) o Table 5.15)
envelopes approximations
Power imports [MW] 3.31 3.08 3.06 3.06
Actual system op. costs [$] 475.7 479.5 477.7 477.7

The results of Table 5.16 indicate that the actual system operation costs obtained
with the formulation with piecewise-linear approximations are lower than those
obtained with the formulation with McCormick’s envelopes. In fact, the generation
dispatch obtained with the formulation with piecewise-linear approximations is
identical to that obtained with the benchmark method (NL-ACOPF considering the
network topology as fixed). The reader should notice that the execution time for the
formulation with piecewise-linear approximations (1414.3 s) is considerably higher
than the execution time for the formulation with McCormick’s envelopes (152.0 s).

5.2.4 Application A4: minimum-cost expansion plan

For this application A4, it is assumed that the user wishes to determine the
distribution system expansion plan, involving capacitor placement, reinforcements to
circuits and a possible new step-down substation, such that the sum of investments costs
and costs of ohmic losses is minimized.

The distribution system considered for this third application, referred to as S8, is
based on the input data for test system S3. The following modifications have been made
to obtain S8:

Q) The 37 branches of the original system are considered as existing

circuits, and 11 of these consist of switches;

(i) The load at all buses are increased to 125% of their original value;

(i) The voltage at the interface with the transmission system is assumed

to be of 1.0 p.u. and the admissible range for the voltage magnitude of
all buses in the system is set to 0.95 p.u. < V,, < 1.05 p. u.;
(iv) The following are defined as candidates for system expansion:

A new distribution substation;
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Circuits connecting the low-voltage bus of the new distribution
substation to the existing buses 13 and 15;

Circuits between the following existing buses (8-13), (9-21), (15-
26) and (15-30);

Capacitors connected to the existing buses 5, 11 and 31 (modeled
as purely capacitive loads at the auxiliary buses 805, 811 and 831,
which are connected to the existing buses via low-voltage
fictitious circuits).

The network topology of S8 indicated in Figure 5.3.

2000

Figure 5.3: Schematic diagram of system S8. Switchable branches are indicated with a square,
candidate facilities are marked in red. Adapted from [49].

It is assumed that the system operating point evaluated by the user is
representative of a year, and that the optimal expansion plan is that which minimizes the

sum of the annualized investment costs of the facilities and the costs of losses within a
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year. The costs of losses are obtained simply by multiplying the losses in MW by
8760 hours (typical duration of a year), and then multiplying the result by the cost
coefficient of 125 $/MWh. Table 5.17 indicates the annualized investment costs of each

candidate facility.

Table 5.17. Annualized invest costs of candidate facilities.

Annualized
ID Candidate Representation investment
costs [$]
g | Step-down substationand | 5 it (2000-200) 48,000

associated transformer

Circuit between low voltage
2 | bus of new substation and Circuit (200-13) 7,800
existing bus 13

Circuit between low voltage
3 | bus of new substation and Circuit (200-15) 7,200
existing bus 15

Circuit between existing

4 | buses 8 and 13 Circuit (8-13) 9,000
Circuit between existing .

5 | buses 9 and 21 Circuit (9-21) 8,400
Circuit between existing -

6 | buses 15 and 26 Circuit (15-26) 12,000

7 Circuit between existing Circuit (15-30) 11,000

buses 15 and 30

Purely reactive

8 | Capacitor at bus 5 load at bus 805 9,000
. Purely reactive

9 | Capacitor at bus 11 load at bus 811 9,000

10 | Capacitor at bus 29 Purely reactive 9,000

load at bus 829

The complete input data for system S8 are presented in detail in Appendix A
(section 7.2.4).

The connectivity approach used in this application is that described in section
4.2.1.7.3 — approach (iii). This approach is employed to ensure that, if the new
substation is not built, the choice to build bus 200 (to which no loads or generators
connect, and that is not a slack bus) is taken solely based on the impacts of this decision
on the objective function.

The following objective function is employed for the minimization of the sum of

investments costs and costs of ohmic losses:
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(355)

The optimal solution to the problem is summarized in Table 5.18 and Figure 5.4.

Table 5.18. Case study results: application A4, minimization of the sum of

of investments costs and costs of ohmic losses.

Reinforcements

Switching decisions

= Obijective function to distribution (status of switchable %
£ system branches) E
> c
40‘3) Objective Al‘gsr:ézl Annualized Annualized | Switched- Switched-off £
& | function investment | ID | investment on 3
costs branches o
[$] [$] costs [$] costs [$] | branches X
1 48,000 (5.25) (6-7), (8-9),
2 [7,800 o [(8-14), (13-14),
S8 188,568 | 114,568 74,000 3 [7.200 5172_2)2) (27-28), (31-32), 134.6
7 111,000 (11-21), (24-28)
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2000

Figure 5.4: Optimal distribution system expansion plan, application A4, system S8. Adapted from [49].

The bus voltages corresponding to the optimal solution of the MILP
reformulation of the ACOPF (the system topology shown in Figure 5.4) are indicated in
Table 5.19. In order to quantify the approximation errors of the bus voltage magnitudes,
the operating point corresponding to the optimal solution of the MILP problem has been
used as input data for a simulation using the backward-forward load flow algorithm
[67], analogously to what has been done in section 5.2.2 to quantify the approximation
errors of bus voltages. The results of this comparison are shown in Table 5.19. The
approximation errors range from 0.00005% to 0.0017% for voltage magnitudes and

from -0.71% to 0.40% for bus voltage angles (excluding the reference voltage bus).
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Table 5.19: Bus voltage magnitude profile: solution of MILP ACOPF (MILP), simulation with backward-
forward load flow (BFLF) and comparison of relative error, given by (MILP-BFLF)/BFLF.

1+ Voltage magnitude [p.u.] Voltage angle [°]

[7p]

o BFLF MILP (I\//IEI;IIEiFBF’/I;]F) BFLF MILP ('\//IEI;IIEiFB[E/Io_]F)

1000| 1.00000| 1.00000 - 0.00000| 0.00000 -
1| 0.99785| 0.99785 0.00009% | -0.00274 | -0.00272 -0.7050%
2| 0.98983| 0.98982 0.0006% | -0.01202 | -0.01195 -0.6040%
3| 0.98759| 0.98758 0.0007% | -0.01453 | -0.01445 -0.5773%
4| 0.98573| 0.98572 0.0008% | -0.02046 | -0.02037 -0.4570%
5| 0.98180| 0.98179 0.0011% | -0.09219 | -0.09210 -0.0893%
6| 0.98101| 0.98100 0.0011% | -0.14092 | -0.14086 -0.0439%
7| 0.97953| 0.97952 0.0013% | -0.37633 | -0.37610 -0.0612%
8| 0.97892| 0.97891 0.0013% | -0.38742 | -0.38719 -0.0618%
9| 0.99147| 0.99147 0.0003% | -0.08112 | -0.08109 -0.0449%
10| 0.99157| 0.99157 0.0003% | -0.08114 | -0.08110 -0.0439%
11| 0.99193| 0.99193 0.0003% | -0.08374 | -0.08370 -0.0384%
12| 0.99461| 0.99461 0.0002% | -0.05392 | -0.05390 -0.0419%
13| 0.99624| 0.99624 0.0002% | -0.01083 | -0.01081 -0.2295%
14| 0.99030| 0.99029 0.0005% | 0.03043| 0.03055 0.4003%
15| 0.99069| 0.99069 0.0004% | 0.04193| 0.04205 0.3012%
16| 0.98719| 0.98718 0.0006% | -0.06437 | -0.06428 -0.1449%
17| 0.98596| 0.98595 0.0007% | -0.07701 | -0.07692 -0.1223%
18| 0.99669| 0.99669 0.0002% | -0.02570 | -0.02567 -0.1172%
19| 0.98778| 0.98777 0.0007% | -0.18765 | -0.18752 -0.0726%
20| 0.98558| 0.98558 0.0008% | -0.24672 | -0.24657 -0.0629%
21| 0.98478| 0.98477 0.0009% | -0.27250 | -0.27235 -0.0583%
22| 0.98537| 0.98536 0.0009% | -0.05019 | -0.05010 -0.1803%
23| 0.97706| 0.97705 0.0013% | -0.15993 | -0.15983 -0.0663%
24| 0.97292| 0.97290 0.0017% | -0.21411 | -0.21400 -0.0545%
25| 0.98145| 0.98144 0.0011% | -0.09423 | -0.09414 -0.0885%
26| 0.98113| 0.98112 0.0011% | -0.09635 | -0.09626 -0.0876%
27| 0.98047| 0.98046 0.0012% | -0.11253 | -0.11245 -0.0711%
28| 0.97142| 0.97141 0.0014% | 0.31344| 0.31402 0.1838%
29| 0.97206| 0.97205 0.0014% | 0.31131| 0.31188 0.1808%
30| 0.97974| 0.97973 0.0010% | 0.14960| 0.14993 0.2221%
31| 0.97893| 0.97892 0.0010% | 0.12866| 0.12898 0.2513%
32| 0.98556| 0.98555 0.0008% | -0.08161 | -0.08152 -0.1155%

2000| 1.00000| 1.00000 - 0.00000| 0.00000 -

200 | 0.99860| 0.99860 0.00005% | 0.01333| 0.01335 0.1546%

5.2.5 Application A5: voltage control at distribution substation to
minimize active power requirements

So far, all of the objective functions (or modules for objective functions)
presented in section 4.2.2 have been used in at least one application — except for the
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application of circuit switching costs (section 4.2.2.8), which is essentially analogous to
the minimization of the costs of construction of new circuits, as costs are associated
with the modification of the status of a given circuit.

This section 5.2.5 deals with an application that was not directly mentioned in
section 4.2.2, due to its very particular nature. It is assumed that the country in which
the distribution system is located is experiencing problems with the security of energy
supply, and having difficulties in meeting the total energy demand. Among the
measurements under consideration for reducing the demand for electrical energy in this
fictitious country is the operation of distribution systems at voltage magnitudes lower
than the usual admissible range, in order to forcefully reduce the overall active power
requirements. The operations planner of a given distribution utility is thus required to
execute a study to indicate the optimal setpoint of the voltage magnitude at the interface
of its system with the transmission network, such that the overall power requirements of
its system will be minimized.

It is assumed that the lower bound of the usual admissible range for the voltage
magnitudes at all buses in the system, 0.95 p.u., is to be substituted by 0.8 p.u. — with
the value of 0.8 p.u. assumed to be the lowest possible voltage at which is ensured that
no damage is inflicted to any equipment (distribution facilities or consumer’s loads).

It is worth mentioning that minimizing the overall power requirements does not
necessarily mean operating at the lowest possible voltage, mainly due to the fact that the
magnitude of the current demanded by loads of the constant-power type will increase as
voltage decreases, leading to an increase in the ohmic losses within the distribution
system. Thus, the actual optimal operating voltage will depend on the nature, location
and magnitude of the loads in the distribution system.

The distribution system considered for this fifth application, referred to as S9, is
obtained by the modification of the input data for test system S3. The following
modifications have been made to obtain S9:

Q) Only 11 of the 37 branches in the system are considered to be
switchable;
(i) The voltage magnitude at the interface with the transmission system is

assumed to be fully controllable.
(iii) The admissible range for the voltage magnitude of all buses in the

systemissetto 0.8 p.u.< V, < 1.05p.u.;
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(iv) All loads in the original system S3 were of the constant-power type. In
system S9, it is assumed that, from the 32 loads within the distribution
system, 11 are of the constant-power type, 7 of the constant-current
type, and 14 of the constant-impedance type. The nominal power
associated with each of the load types is respectively of 1.19 MW,
0.71 MW and 1.815 MW - i.e., the percentage of the loads of the
contrant-power, constant-current and constant-impedance type are of
32%, 19% and 49% of the total load in S9.

The input data for system S9, used for application A5, are presented in detail in
Appendix A (section 7.2.5). The network topology of S9 is identical to that indicated in
Figure 5.2.

As there are no generators in system S9, minimizing the overall power
requirements equals minimizing the total power imports at the interface with the
transmission system. Thus, one of the alternative formulations for the objective function
of section 4.2.2.4 may be used, with the cost coefficient c/MPORT set to unity.
Obviously, as the voltage magnitude at the interface with the transmission system is a

decision variable in the problem, it is necessary to approximate the product Vj - Ig%.

For that, a piecewise-linear approximation with the use of SOS2, which has been
presented in section 4.2.2.4.2, will be used. The procedure for the determination of the
evaluation points and evaluation values corresponds to that indicated in section 4.3.2.3,
with p, = 0 MW, p, =5 MW, E” = 5and E’ = 11.

The objective function employed for application A5 is:

z™PR = min{Yreq,rpc Pi} (356)

The optimal solution for this problem is summarized in Table 5.20.
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Table 5.20. Case study results: application A5, minimization of system power requirements.

Switching decisions
(status of switchable branches)

Switched-on Switched-off
branches branches

Test system
System power
requirements [MW]
(objective function)
Optimal voltage
at the interface
with transmission
system [p.u.]
Execution time [s]

(5-25), (7-20), | (6-7), (13-14),
S9 |3.113 0.8528 (8-14), (11-21), |(8-9), (27-28) |16.53
(17-32), (24-28) | (31-32)

Figure 5.5 indicates the voltage profile across the distribution network at the

optimal solution of the MILP problem.

0.8247

0.8033

0.8180

0.8006

Figure 5.5: Voltage magnitude profile at the optimal solution. Buses with loads of the constant-power,
constant-current and constant-impedance type are marked in red, green, and blue. Adapted from [49].

Auxiliary analyses have been executed for system S9, considering situations in
which all loads were considered to be of the constant-power, constant-current and

constant-impedance type. Obviously, the solutions obtained for these three cases differ
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from that obtained when a combination of the three types of loads is considered — the
solutions differ with respect to the optimal voltage magnitude at the interface with the
transmission system, the optimal configuration of the distribution network and the value
of the objective function. For the cases in which all loads are considered to be of the
constant-power, constant-current and constant-impedance type, the optimal voltage
magnitudes at bus 1000 (the interface with the transmission system) is respectively of
1.050 p.u., 0.8804 p.u. and 0.8450 p.u., and the associated power requirements of the
distribution system are of 3.848 MW, 3.272 MW and 2.564 MW.

Before closing this section, it is worth considering one last auxiliary analysis for
application A5. For this last auxiliary analysis, it is considered that system S9 has
exactly the same composition of loads indicated in Appendix A — i.e., the composition
presented in item (iv) at the beginning of this section. However, it is now considered
that there are three switchable capacitors in the system, connected to buses 5, 11 and 31.
Each of these switchable capacitors has a nominal rating of 200 kVAr and is modeled as
a purely reactive load of the constant-impedance type at fictitious buses connected to
the main network through low-impedance branches. This representation is virtually
identical to that of the candidate capacitors of application A4, the difference being that
no costs are associated with changing the status of the capacitors from active to inactive
for the current analysis.

It is expected that the presence of switchable capacitors within the distribution
network allows a better control over the voltage profile and reduces the losses by
providing local reactive power resources, thus allowing a further decrease in the total
active power requirements of the distribution system.

This modified version of system S9, with the addition of the abovementioned
switchable capacitors, has been used for the problem of minimization of total power
requirements via control of the bus voltage magnitude at the reference bus. The results
of this auxiliary analysis, considering the modified version of S9, are summarized in
Table 5.21. All capacitors are switched-on in the optimal solution of the problem,
allowing that the voltage at the interface with the transmission system to be slightly
reduced, and also slightly reducing the total power requirements of the distribution

system (a reduction of 0.5%).
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Table 5.21. Case study results: application A5, minimization of system power requirements, with modified

system S9 (inclusion of switchable capacitors with nominal rating of 200 KVAr at buses 5, 11 and 31).

o= | = Switching decisions —_
- o £ g : Status of =
228 |22 : : @
S, S | Ea? Status of switchable branches switchable =
Test S £ = S883 capacitors =
system | EE€2 55882 Buseswith | 5
228 |ESE Switched-on | Switched-off | .00 | 3
%) §€ 8'§ § branches branches capacitors 35
S9 with (5-25), (7-20), |(6-7), (13-14),
switchable |3.099 0.8503 (8-14), (11-21), |(8-9), (27-28) |5,11,31 96.83
capacitors (17-32), (24-28) | (31-32)

Figure 5.6 indicates the voltage profile across the distribution network for the
modified version of system S9 (with the inclusion of switchable capacitors).

0.8252

0.8038

0.8206

0.8002

Figure 5.6: Voltage magnitude profile at the optimal solution, for modified system (with capacitors added).
Buses with loads of the constant-power, constant-current and constant-impedance type are marked
in red, green, and blue. Adapted from [49].

A comparison of the bus voltage profile of the solutions indicated in this section
5.2.5 with the bus voltages obtained by simulations with a backward-forward load flow
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algorithm is not made at this point, due to the fact that the currently available backward-

forward load flow algorithm does not support loads of the constant-current type.
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6 CONCLUSIONS

In this dissertation, a MILP reformulation of the ACOPF problem for
distribution systems, which allows the incorporation of discrete decisions associated
with several distribution system operations and expansion planning applications, has
been proposed.

The proposed formulation is based on expressing Kirchhoff’s laws as a function
of complex voltages and currents in rectangular coordinates — as opposed to employing
a formulation based on polar coordinates and using voltages and power quantities. This
modeling choice allows that particular characteristics of the distribution system are
taken advantage of while formulating the problem, with the goal of conciliating
accuracy and computational performance.

The choice of reformulating the ACOPF problem as MILP allows the prompt
modeling of many of the discrete decisions with which distribution system operations
and expansion planners are faced, such as the maneuvering of switches for network
reconfiguration and the construction of facilities for system expansion. The fact that the
proposed formulation simultaneously supports discrete and continuous decisions widens
its applicability to a wide range of distribution system operations and expansion
planning problems — and some of these have been illustrated with help of the case
studies of chapter 5.

Other practical advantage of reformulating the ACOPF as a MILP is that the
solution techniques for mixed-integer linear programs are notably mature, allowing the
treatment of large-scale optimization problems with robustness and speed. These
techniques are readily available in a number of commercial-grade solvers. The
possibility of using commercial solvers is an attractive feature for industry applications,
as it essentially translates into guarantees of longevity, maintainability and prevention
of obsolescence of the solver that underlies a decision support system.

The linearization and convexification techniques presented in chapter 3 have
been employed to reformulate the original non-convex, non-linear ACOPF problem as a
mixed-integer linear program. With the exception of the approximation of bilinear
products with McCormick’s envelope, which have been employed to reformulate the

products of decision variables within the equations for the current injections of
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generators, the proposed linearization and convexification techniques allow the user to
obtain approximations of arbitrary accuracy — i.e., the user is able control the accuracy
of these approximations while formulating the problem. In this dissertation, reference
has been made to the possibility of employing piecewise-linear approximations based
on SOS2 to reformulate products of decision variables — and in fact this technique has
been employed in the equations of subsection 4.3.1.4.4. The technique has also been
employed for reformulating the bilinear products found in the constraints for generator
current injections, in the alternative formulation presented in Appendix C (chapter 9),
which have been used in the case study of subsection 5.2.3. Employing this technique in
fact allows the user to control the accuracy of all approximations used in the
reformulation of the ACOPF for distribution systems.

The use of these linearization and convexification techniques requires the
definition of the following input parameters: disjunctive constants for the definition of
disjunctive constraints, evaluation points and evaluated values for the definition of
piecewise-linear approximations with SOS2, and upper and lower bounds for the
continuous variables whose product is modeled via McCormick’s envelope. In this
dissertation, particular characteristics of the distribution system (mainly the fact that bus
voltage angles vary within narrow intervals around the reference angle, due to the high
R/X ratios and the typical power factors of loads within the system) have been explored
to obtain a tight definition of the abovementioned parameters. This means that the
parameters are defined in such a way that allows the correct representation of the
problem, while seeking a satisfactory trade-off between approximation accuracy and
computational performance.

In chapter 5, the proposed MILP reformulation of the ACOPF has been
benchmarked against a brute-force, exhaustive search solution method, for the problem
of network reconfiguration with the goal of minimizing ohmic losses. The problem of
network reconfiguration has been chosen because it involves exclusively binary
decisions. While this was necessary to allow a construction of a brute force algorithm
against which the MILP reformulation could be benchmarked, it is worth mentioning
that many of the features of the proposed formulation are not put into service while
solving the network reconfiguration problems of section 5.1. For instance, one relevant

feature of the proposed MILP formulation is that it is able to support discrete and
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continuous decisions, and this feature is clearly not thoroughly explored in the network
reconfiguration problems of section 5.1.

For all four test systems used in the benchmarking process mentioned above, the
optimal network configuration obtained with the proposed MILP reformulation of the
ACOPF perfectly matched that obtained with the brute-force method, meaning that the
same switching decisions have been made with both methods. This effectively means
that, if the optimal decisions obtained with both methods were implemented, the same
ohmic losses in distribution network would be obtained — indicating that the actual
value of the objective function obtained with the MILP formulation and the brute-force
algorithm is identical, for all case studies.

The approximated numerical value of the objective function obtained with the
MILP reformulation (i.e., the approximated numerical value corresponding to the
solution of the mixed-integer program, and not the actual value that would be obtained
by implementing the solution) is also similar to that obtained with the exhaustive search
method. In fact, the relative differences between the numerical value of the optimal
ohmic losses obtained with the MILP reformulation and with the exhaustive search
method varied from —0.8% for the system with 11 branches to 6% for the system with
134 branches.

For systems with intermediate dimensions and a comparatively larger number of
switches, the performance of the proposed MILP reformulation has been superior to that
of the exhaustive search method — e.g., for system S3, in which there are 2% possible
network configurations to be analyzed, the solution time with the MILP reformulation
was only 0.95% of the solution time with the brute force method. However, for larger
systems with a comparatively smaller number of switches, the brute force method has
outperformed the MILP reformulation — e.g., for system S4, with 134 branches and 2*°
possible network configurations, the exhaustive search method has been 5.8% faster
than the MILP reformulation in finding the optimal decision. While analyzing this last
result, the reader should keep in mind that, if the problem under consideration in the
benchmarking analyses required the support to continuous decisions, the brute force
algorithm could simply not be used, while the MILP reformulation would still apply.

A number of possible applications of the proposed MILP reformulation of the
ACOPF problem have been illustrated by the case studies of section 5.2. The case

studies of this section referred to the minimization of costs of load shedding, generation
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curtailment, variable costs of generation, costs of power imports and costs of
reinforcements to the distribution system. This list does not aim at being exhaustive
with respect to the possible applications of the proposed formulation, but solely at
indicating its flexibility. Selected numerical results of these case studies have also been
benchmarked against results obtained by simulating the solution of the mixed-integer
program with a backward-forward load flow method, and the comparison also pointed
to a satisfactory accuracy of the proposed MILP reformulation. All case studies have
been built upon test systems obtained by modification of the data originally proposed in
[64] (a system with 33 buses and 37 branches), with slight modifications in the number
of elements in the network for certain applications. The execution times for the case
studies of section 5.2 ranged from 11.03 s to 1602.8 s. The latter execution time has
been obtained for an application with 11 switchable circuits and 20 curtailable
generators — totalizing 2*! possible combinations of these binary variables, which model
operations planning decisions.

The results of the case studies of chapter 5 suggest that the proposed MILP
reformulation of the ACOPF for distribution systems meets the goals of accurately
capturing the non-linear behavior of the original problem and leading to solutions of
good quality, while being flexible enough to support a wide range of applications. It is
worth mentioning that the MILP reformulation of the ACOPF has been coded and
executed with FICO Xpress Mosel ® Version 3.2.2 —a commercial-grade solver, which
brings about the practical advantages mentioned at the beginning of this chapter. The
solution times obtained for the applications may be classified as satisfactory, though
there seems to be room for improvement — as indicated in the first paragraph of the

following section.

6.1 Suggested topics for future work

Techniques for improving the computational performance of the proposed MILP
reformulation of the ACOPF are among the suggested topics for future work. The
reader will recall that the piecewise-linear approximations of functions of two variables
employed in the current formulation are based in arranging the set of evaluation points
at the vertices of a rectangular grid, which is superimposed to the function domain. It is

likely that the procedures for the construction of piecewise-linear approximations based
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on constructing triangular grids of evaluation points will lead to enhanced
computational performance, as suggested in [61], [80]. Other possible approaches to be
investigated, eventually in combination with the one described above, include: (a) using
the technique described in [86] to reduce the number of binary variables necessary to
implement SOS2-based piecewise linear approximations'®; and (b) employing
linearization and convexification techniques other than those described in this
dissertation. In general terms, techniques that ensure that the choice of evaluation points
is optimal either with respect to accuracy (e.g., minimizing the maximum
approximation error while keeping the number of points below a certain threshold) or
computational performance (e.g., minimizing the number of points while keeping the
maximum approximation error below a certain threshold) are suggested as topics for
future work.

The improvement of the computational is an important research topic also in
order to allow the practical use of the proposed formulation in problems in which
multiple operating conditions have to be evaluated — e.g., in stochastic and multi-stage
problems.

The expansion of the proposed MILP reformulation of the ACOPF problem to
unbalanced three-phase distribution systems may also be an interesting topic for future
work, taking into account that phase unbalance is an important phenomenon in many
real distribution systems. Future work may also include modeling of other equipment

relevant for distribution systems, such as voltage regulators.

13 Reference [86] basically suggests using a special encoding procedure for the definition intervals of the

piecewise linear function, allowing the use of a logarithmic number of binary variables.
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7 APPENDIX A: INPUT DATA FOR CASE
STUDIES

The input data for the case studies of chapter 5 are presented in the following
subsections, in tabular form. The apparent power base for all quantities expressed in per
unit (p.u.) is 100 MVA. The nomenclature presented in chapters 2 and 4 is used for

ensuring a succinct presentation of data.
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7.1 Input data for distribution systems used in section 5.1

7.1.1 Test system S1

Table 7.1. Bus data: test system S1

Reference | Nominal Nominal b ey =l Lower Upper
. ound for | bound for
BUs # Sets to wh_lch bus voltgge vqlue of vaIue_ of voltage voltage bound for | bound for
pertain magnitude | active load reactive magnitude | magnitude voltage voltage
[p.u.] [MW] load [MW] [0.u] [o.] angle [°] angle [°]
1000 Qs acks Qrer, Qroot 1 0 0 0.95 1.05 -5 5
5 Qpcte 2 0.6 0.95 1.05 -5 5
4 Qpcre 3 1.3 0.95 1.05 -5 5
3 Qpcte 2 0.5 0.95 1.05 -5 5
2 Qpcte 1.5 0.3 0.95 1.05 -5 5
1 Qpcte 0.5 0.1 0.95 1.05 -5 5
101 Qpcte 1 0.2 0.95 1.05 -5 5
102 Qpcre 1.5 0.2 0.95 1.05 -5 5
103 Qpcre 2.5 0.6 0.95 1.05 -5 5
104 Qpcte 3 0.4 0.95 1.05 -5 5
105 Qpcte 2.5 0.9 0.95 1.05 -5 5
2000 Qsiack, Qrer, Lroot 1 0 0 0.95 1.05 -5 5
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Table 7.2. Branch data: test system S1

FROM | TO Set(s) towhich | _Branch EEET pandluen
bus bUs branch pertain resistance | reactance admissible
[p.u.] [p.u.] current [p.u.]

1000 5 Yow 0.075 0.1 0.25
5 4 Yow 0.08 0.11 0.25
4 3 Yaw 0.09 0.12 0.25
3 2 Yow 0.04 0.04 0.25
2 1 Yow 0.03 0.03 0.25
1 101 Yow 0.04 0.01 0.25
101 102 Yow 0.1 0.1 0.25
102 103 Ysw 0.11 0.11 0.25
103 104 Yow 0.09 0.12 0.25
104 105 Yow 0.055 0.11 0.25
105 2000 Yow 0.1 0.1 0.25
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7.1.2 Test system S2

Table 7.3. Bus data: test system S2

Reference | Nominal Nominal b Ll e Lower Upper
ound for | bound for
Bus # | Set(s) to which bus pertain voltgge vglue o vaIue_ i voltage voltage JIE e | |SEUGe. 1o
magnitude | active load reactive magnitude | magnitude voltage voltage
[p.u] [MW] load [MW] [0.1.] [0.1.] angle [°] angle [°]
1 Qsiack> Qrer, QrooT 1 0 0 0.95 1.05 -5 5
2 Qs ack, Qrer, QrooT 1 0 0 0.95 1.05 -5 5
3 Qsiack, Qrer, QrooTt 1 0 0 0.95 1.05 -5 5
4 Qpcte 2 1.6 0.95 1.05 -5 5
5 Qpcte 3 15 0.95 1.05 -5 5
105 Qzcte 0 -1.1 0.95 1.05 -5 5
6 Qpcte 2 0.8 0.95 1.05 -5 5
106 Qzcte 0 -1.2 0.95 1.05 -5 5
7 Qpcte 15 1.2 0.95 1.05 -5 5
8 Qpcte 4 2.7 0.95 1.05 -5 5
9 Qpcre 5 3 0.95 1.05 -5 5
109 Qzcte 0 -1.2 0.95 1.05 -5 5
10 QpctE 1 0.9 0.95 1.05 -5 5
11 QpctE 0.6 0.1 0.95 1.05 -5 5
111 Qzcre 0 -0.6 0.95 1.05 -5 5
12 Qpcte 4.5 2 0.95 1.05 -5 5
112 Qzcte 0 -3.7 0.95 1.05 -5 5
13 QpctE 1 0.9 0.95 1.05 -5 5
14 Qpcte 1 0.7 0.95 1.05 -5 5
114 Qzcte 0 -1.8 0.95 1.05 -5 5
15 Qpcte 1 0.9 0.95 1.05 -5 5
16 QpctE 2.4 1 0.95 1.05 -5 5
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Reference | Nominal Nominal b O S Lower Upper
ound for | bound for
Bus # | Set(s) to which bus pertain voltgge vglue o value_ 2 voltage voltage Jourelielr |- {eoliv o
magnitude | active load reactive magnitude | magnitude voltage voltage
[p.u.] [MW] load [MW] [0.u] [0.u] angle [°] angle [°]
116 Qzcte 0 -1.8 0.95 1.05 -5 5
Table 7.4. Branch data: test system S2
Maximum
FROM TO Set(s) to which reBsir:tr;?\r(l:e r;:?[ggge admissible
bus bus branch pertain current
[p.u] [p.u]
[p.u.]
1 4 Ysw 0.075 0.1 0.35
4 5 Ysw 0.08 0.11 0.35
4 6 Ysw 0.09 0.18 0.35
6 7 Ysw 0.04 0.04 0.35
2 8 Wsw 0.11 0.11 0.35
8 9 Ysw 0.08 0.11 0.35
8 10 Ysw 0.11 0.11 0.35
9 11 Ysw 0.11 0.11 0.35
9 12 Wsw 0.08 0.11 0.35
3 13 Ysw 0.11 0.11 0.35
13 14 Ysw 0.09 0.12 0.35
13 15 Ysw 0.08 0.11 0.35
15 16 Wsw 0.04 0.04 0.35
5 11 Ysw 0.04 0.04 0.35
10 14 Ysw 0.04 0.04 0.35
7 16 Ysw 0.09 0.12 0.35
5 105 {Wc\Wsw} 0 0.001 0.05
6 106 {Pc\Psw} 0 0.001 0.05
9 109 {Pc\Wsw} 0 0.001 0.05

184



Maximum

FROM TO Set(s) to which B_ranch Branch admissible
bus bus branch pertain TCEIEIENES | l{EESS current
[p.u.] [p.u] [o.U]
11 111 {Pc\WPsw} 0 0.001 0.05
12 112 {Y\¥Psw} 0 0.001 0.05
14 114 {Y\Psw} 0 0.001 0.05
16 116 {Wc\Wsw} 0 0.001 0.05
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7.1.3 Test system S3

Table 7.5. Bus data: test system S3

Reference | Nominal Nominal b Ll =l Lower Upper
ound for | bound for
Bus# | Set(s) to which bus pertain voltgge vglue of value_ et voltage voltage SUEUES || |Saie) ey
magnitude | active load reactive magnitude | magnitude voltage voltage
[p.u] [MW] load [MW] [0.1.] [0.U.] angle [°] angle [°]
1000 Qsiack, Qrer, LrooT 1 0 0 0.90 1.10 -5 5
1 Qpcre 0.1 0.06 0.90 1.10 -5 5
2 QpctE 0.09 0.04 0.90 1.10 -5 5
3 Qpcte 0.12 0.08 0.90 1.10 -5 5
4 Qpcre 0.06 0.03 0.90 1.10 -5 5
5 Qpcte 0.06 0.02 0.90 1.10 -5 5
6 Qpcre 0.2 0.1 0.90 1.10 -5 5
7 Qpcte 0.2 0.1 0.90 1.10 -5 5
8 Qpcte 0.06 0.02 0.90 1.10 -5 5
9 Qpcre 0.06 0.02 0.90 1.10 -5 5
10 Qpcre 0.045 0.03 0.90 1.10 -5 5
11 Qpcte 0.06 0.035 0.90 1.10 -5 5
12 Qpcte 0.06 0.035 0.90 1.10 -5 5
13 Qpcte 0.12 0.08 0.90 1.10 -5 5
14 Qpcre 0.06 0.01 0.90 1.10 -5 5
15 Qpcre 0.06 0.02 0.90 1.10 -5 5
16 Qpcte 0.06 0.02 0.90 1.10 -5 5
17 Qpcre 0.09 0.04 0.90 1.10 -5 5
18 Qpcre 0.09 0.04 0.90 1.10 -5 5
19 Qpcre 0.09 0.04 0.90 1.10 -5 5
20 Qpcre 0.09 0.04 0.90 1.10 -5 5
21 Qpcre 0.09 0.04 0.90 1.10 -5 5
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Reference | Nominal Nominal b ey N Lower Upper
ound for | bound for
Bus # | Set(s) to which bus pertain voltgge vglue o value_ o voltage voltage O 07| L] 0
magnitude | active load reactive magnitude | magnitude voltage voltage
[p.u.] [MW] load [MW] [0.u] [o.u] angle [°] angle [°]
22 Qpcte 0.09 0.05 0.90 1.10 -5 5
23 Qpcte 0.42 0.2 0.90 1.10 -5 5
24 Qpcre 0.42 0.2 0.90 1.10 -5 5
25 Qpcre 0.06 0.025 0.90 1.10 -5 5
26 QpctE 0.06 0.025 0.90 1.10 -5 5
27 Qpcte 0.06 0.02 0.90 1.10 -5 5
28 Qpcte 0.12 0.07 0.90 1.10 -5 5
29 Qpcre 0.2 0.6 0.90 1.10 -5 5
30 Qpcre 0.15 0.07 0.90 1.10 -5 5
31 QpctE 0.21 0.1 0.90 1.10 -5 5
32 Qpcte 0.06 0.04 0.90 1.10 -5 5
Table 7.6. Branch data: test system S3
Maximum
FROM TO Set(s) to which B_ranch SIS admissible
bus bus branch pertain resistance | - reactance current
[p.u] [p.u] o.]

1000 1 {Wc\Wsw} 0.05753 0.02932 0.05

1 2 {Wc\Wsw} 0.3076 0.15667 0.05

2 3 {Wc\Psw} 0.22836 0.1163 0.05

3 4 {(P\Wsn} 0.23778 |0.1211 0.05

4 5 {Wc\Wsw} 0.51099 0.44112 0.05

5 6 Ysw 0.1168 0.38608 0.05

6 7 Ysw 0.44386 0.14668 0.05

7 8 Wsw 0.64264 0.4617 0.05

8 9 Wsw 0.65138 0.4617 0.05
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Branch

Branch

Maximum

FROM TO Set(s) to which . admissible
bus bus branch pertain resistance | - reactance current
[p-u] [p-u.] [o.U]
9 10 Wsw 0.12266 0.04056 0.05
10 11 Wsw 0.2336 0.07724 0.05
11 12 Wsw 0.91592 0.72063 0.05
12 13 Ysw 0.33792 0.4448 0.05
13 14 Ysw 0.36874 0.32818 0.05
14 15 Ysw 0.46564 0.34004 0.05
15 16 Wsw 0.80424 1.07378 0.05
16 17 Wsw 0.45671 0.35813 0.05
1 18 {Wc\Wsw} 0.10232 0.09764 0.05
18 19 {Wc\Wsw} 0.93851 0.84567 0.05
19 20 {Wc\Wsw} 0.2555 0.29849 0.05
20 21 Wsw 0.4423 0.58481 0.05
2 22 {WPc\Wsw} 0.28152 0.19236 0.05
22 23 {Wc\Wsw} 0.56028 0.44243 0.05
23 24 {Pc\Psu} 0.55904 0.43743 0.05
5 25 Wsw 0.12666 0.06451 0.05
25 26 Wsw 0.17732 0.09028 0.05
26 27 Wsw 0.66074 0.58256 0.05
27 28 Wsw 0.50176 0.43712 0.05
28 29 Wsw 0.31664 0.16128 0.05
29 30 Wsw 0.60795 0.60084 0.05
30 31 Wsw 0.19373 0.2258 0.05
31 32 Wsw 0.21276 0.33081 0.05
7 20 Yow 1.24785 1.24785 0.05
8 14 Wsw 1.24785 1.24785 0.05
11 21 Wsw 1.24785 1.24785 0.05
17 32 Wsw 0.31196 0.31196 0.05
24 28 Wsw 0.31196 0.31196 0.05

188



7.1.4 Test system S4

Table 7.7. Bus data: test system S4

Reference | Nominal Nominal b Ll =l Lower Upper
ound for | bound for
Bus# | Set(s) to which bus pertain voltgge vglue o value_ o voltage voltage JENE 7 ZOUE oy
magnitude | active load reactive magnitude | magnitude voltage voltage
[p.u] [MW] load [MW] [0.1.] [0.U.] angle [°] angle [°]
150 Qsiack, Qrer, LrooT 1 0 0 0.95 1.05 -5 5
1 Qpcre 0.04 0.02 0.95 1.05 -5 5
2 QpctE 0.02 0.01 0.95 1.05 -5 5
3 Qp 0 0 0.95 1.05 -5 5
4 Qpcre 0.04 0.02 0.95 1.05 -5 5
5 Qzcre 0.02 0.01 0.95 1.05 -5 5
6 Qzcre 0.04 0.02 0.95 1.05 -5 5
7 QpctE 0.02 0.01 0.95 1.05 -5 5
8 Qp 0 0 0.95 1.05 -5 5
9 Qpcre 0.04 0.02 0.95 1.05 -5 5
10 Qzcre 0.02 0.01 0.95 1.05 -5 5
11 QzctE 0.04 0.02 0.95 1.05 -5 5
12 Qpcte 0.02 0.01 0.95 1.05 -5 5
13 Qp 0 0 0.95 1.05 -5 5
14 Qp 0 0 0.95 1.05 -5 5
15 Qp 0 0 0.95 1.05 -5 5
16 Qpcte 0.04 0.02 0.95 1.05 -5 5
17 Qpcre 0.02 0.01 0.95 1.05 -5 5
18 Qp 0 0 0.95 1.05 -5 5
19 Qpcre 0.04 0.02 0.95 1.05 -5 5
20 Qzcre 0.04 0.02 0.95 1.05 -5 5
21 Qp 0 0 0.95 1.05 -5 5
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Reference | Nominal Nominal b ey N Lower Upper
ound for | bound for
Bus # | Set(s) to which bus pertain voltgge vglue o value_ o voltage voltage O 07| L] 0
magnitude | active load reactive magnitude | magnitude voltage voltage
[p.u.] [MW] load [MW] [0.u] [o.u] angle [°] angle [°]
22 Qzcte 0.04 0.02 0.95 1.05 -5 5
23 Qp 0 0 0.95 1.05 -5 5
24 Qpcre 0.04 0.02 0.95 1.05 -5 5
25 Qp 0 0 0.95 1.05 -5 5
26 Qp 0 0 0.95 1.05 -5 5
27 Qp 0 0 0.95 1.05 -5 5
28 Qzcte 0.04 0.02 0.95 1.05 -5 5
29 Qzcte 0.04 0.02 0.95 1.05 -5 5
30 Qpcre 0.04 0.02 0.95 1.05 -5 5
31 QpctE 0.02 0.01 0.95 1.05 -5 5
32 Qpcte 0.02 0.01 0.95 1.05 -5 5
33 Qzcte 0.04 0.02 0.95 1.05 -5 5
34 Qzcre 0.04 0.02 0.95 1.05 -5 5
35 Qpcre 0.04 0.02 0.95 1.05 -5 5
36 Qp 0 0 0.95 1.05 -5 5
37 Qzcte 0.04 0.02 0.95 1.05 -5 5
38 Qzcte 0.02 0.01 0.95 1.05 -5 5
39 Qpcre 0.02 0.01 0.95 1.05 -5 5
40 Qp 0 0 0.95 1.05 -5 5
41 Qpcte 0.02 0.01 0.95 1.05 -5 5
42 Qpcte 0.02 0.01 0.95 1.05 -5 5
43 Qzcre 0.04 0.02 0.95 1.05 -5 5
44 Qp 0 0 0.95 1.05 -5 5
45 Qzc1E 0.02 0.01 0.95 1.05 -5 5
46 Qpcte 0.02 0.01 0.95 1.05 -5 5
47 Qzcre 0.035 0.025 0.95 1.05 -5 5
48 Qzcre 0.07 0.05 0.95 1.05 -5 5

190



Reference | Nominal Nominal b ey N Lower Upper
ound for | bound for
Bus # | Set(s) to which bus pertain voltgge vglue o value_ o voltage voltage O 07| L] 0
magnitude | active load reactive magnitude | magnitude voltage voltage
[p.u.] [MW] load [MW] [0.u] [o.u] angle [°] angle [°]
49 Qpcre 0.0466667 |0.0316667 |0.95 1.05 -5 5
50 Qpcte 0.04 0.02 0.95 1.05 -5 5
51 Qpcre 0.02 0.01 0.95 1.05 -5 5
52 Qpcre 0.04 0.02 0.95 1.05 -5 5
53 QpctE 0.04 0.02 0.95 1.05 -5 5
54 Qp 0 0 0.95 1.05 -5 5
55 Qzcte 0.02 0.01 0.95 1.05 -5 5
56 Qpcre 0.02 0.01 0.95 1.05 -5 5
57 Qp 0 0 0.95 1.05 -5 5
58 QzctE 0.02 0.01 0.95 1.05 -5 5
59 Qpcte 0.02 0.01 0.95 1.05 -5 5
60 Qpcre 0.02 0.01 0.95 1.05 -5 5
61 Qp 0 0 0.95 1.05 -5 5
62 Qzcre 0.04 0.02 0.95 1.05 -5 5
63 Qpcte 0.04 0.02 0.95 1.05 -5 5
64 Qzcte 0.075 0.035 0.95 1.05 -5 5
65 Qzcte 0.0466667 |0.0333333 |0.95 1.05 -5 5
66 Qpcre 0.075 0.035 0.95 1.05 -5 5
67 Qp 0 0 0.95 1.05 -5 5
68 Qpcte 0.02 0.01 0.95 1.05 -5 5
69 Qpcte 0.04 0.02 0.95 1.05 -5 5
70 Qpcre 0.02 0.01 0.95 1.05 -5 5
71 Qpcre 0.04 0.02 0.95 1.05 -5 5
72 Qp 0 0 0.95 1.05 -5 5
73 Qpcte 0.04 0.02 0.95 1.05 -5 5
74 Qzcre 0.04 0.02 0.95 1.05 -5 5
75 Qpcre 0.04 0.02 0.95 1.05 -5 5
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Reference | Nominal Nominal b ey N Lower Upper
ound for | bound for
Bus # | Set(s) to which bus pertain voltgge vglue o value_ o voltage voltage O 07| L] 0
magnitude | active load reactive magnitude | magnitude voltage voltage
[p.u.] [MW] load [MW] [0.u] [o.u] angle [°] angle [°]
76 Qzcte 0.0816667 |0.06 0.95 1.05 -5 5
77 Qpcte 0.04 0.02 0.95 1.05 -5 5
78 Qp 0 0 0.95 1.05 -5 5
79 Qzcre 0.04 0.02 0.95 1.05 -5 5
80 QpctE 0.04 0.02 0.95 1.05 -5 5
81 Qp 0 0 0.95 1.05 -5 5
82 Qpcte 0.04 0.02 0.95 1.05 -5 5
83 Qpcre 0.02 0.01 0.95 1.05 -5 5
84 Qpcre 0.02 0.01 0.95 1.05 -5 5
85 QpctE 0.04 0.02 0.95 1.05 -5 5
86 Qpcte 0.02 0.01 0.95 1.05 -5 5
87 Qpcre 0.04 0.02 0.95 1.05 -5 5
88 Qpcre 0.04 0.02 0.95 1.05 -5 5
89 Qp 0 0 0.95 1.05 -5 5
90 QzctE 0.04 0.02 0.95 1.05 -5 5
91 Qp 0 0 0.95 1.05 -5 5
92 Qpcre 0.04 0.02 0.95 1.05 -5 5
93 Qp 0 0 0.95 1.05 -5 5
94 Qpcte 0.04 0.02 0.95 1.05 -5 5
95 Qpcte 0.02 0.01 0.95 1.05 -5 5
96 Qpcte 0.02 0.01 0.95 1.05 -5 5
97 Qp 0 0 0.95 1.05 -5 5
98 Qpcre 0.04 0.02 0.95 1.05 -5 5
99 Qpcre 0.04 0.02 0.95 1.05 -5 5
100 QzctE 0.04 0.02 0.95 1.05 -5 5
101 Qp 0 0 0.95 1.05 -5 5
102 Qpcre 0.02 0.01 0.95 1.05 -5 5
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Reference | Nominal Nominal b ey N Lower Upper
ound for | bound for
Bus # | Set(s) to which bus pertain voltgge vglue o value_ o voltage voltage O 07| L] 0
magnitude | active load reactive magnitude | magnitude voltage voltage
[p.u.] [MW] load [MW] [0.u] [o.u] angle [°] angle [°]
103 Qpcre 0.04 0.02 0.95 1.05 -5 5
104 Qpcte 0.04 0.02 0.95 1.05 -5 5
105 Qp 0 0 0.95 1.05 -5 5
106 Qpcre 0.04 0.02 0.95 1.05 -5 5
107 QpctE 0.04 0.02 0.95 1.05 -5 5
108 Qp 0 0 0.95 1.05 -5 5
109 Qpcte 0.04 0.02 0.95 1.05 -5 5
110 Qp 0 0 0.95 1.05 -5 5
111 Qpcre 0.02 0.01 0.95 1.05 -5 5
112 QzctE 0.02 0.01 0.95 1.05 -5 5
113 Qzcte 0.04 0.02 0.95 1.05 -5 5
114 Qpcre 0.02 0.01 0.95 1.05 -5 5
135 Qp 0 0 0.95 1.05 -5 5
149 Qp 0 0 0.95 1.05 -5 5
151 Qp 0 0 0.95 1.05 -5 5
152 Qp 0 0 0.95 1.05 -5 5
160 Qp 0 0 0.95 1.05 -5 5
197 Qp 0 0 0.95 1.05 -5 5
250 Qp 0 0 0.95 1.05 -5 5
251 Qp 0 0 0.95 1.05 -5 5
300 Qp 0 0 0.95 1.05 -5 5
350 Qp 0 0 0.95 1.05 -5 5
450 Qp 0 0 0.95 1.05 -5 5
451 Qp 0 0 0.95 1.05 -5 5
610 Qp 0 0 0.95 1.05 -5 5
883 Qzcre 0 -0.2 0.95 1.05 -5 5
888 Qzcte 0 -0.05 0.95 1.05 -5 5
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Reference | Nominal Nominal b O N Lower Upper
ound for | bound for
Bus # | Set(s) to which bus pertain voltgge vglue o value_ o voltage voltage O 07| L] 0
magnitude | active load reactive magnitude | magnitude voltage voltage
[p.u.] [MW] load [MW] [0.u] [o.u] angle [°] angle [°]
890 Qzcre 0 -0.05 0.95 1.05 -5 5
892 Qzcre 0 -0.05 0.95 1.05 -5 5
Table 7.8. Branch data: test system S4
Maximum
FROM TO Set(s) to which B_ranch S admissible
bus bus branch pertain resistance | - reactance current
[p.u] [p.u] [0.u.]
1 2 {Wc\Wsw} 0.08486 0.08603 0.05
1 3 {Wc\Wsw} 0.12122 0.12289 0.05
1 7 {Wc\Wsw} 0.10049 0.20587 0.05
3 4 {Pc\Psw} 0.09698 0.09831 0.05
3 5 {Wc\Wsw} 0.15759 0.15976 0.05
5 6 {Wc\Wsw} 0.12122 0.12289 0.05
7 8 {Wc\Psw} 0.06699 0.13725 0.05
8 12 {Pc\Psu} 0.1091 0.1106 0.05
8 9 {Pc\Psw} 0.1091 0.1106 0.05
8 13 {Wc\Wsw} 0.10049 0.20587 0.05
9 14 {Wc\Wsw} 0.20608 0.20892 0.05
13 34 {Wc\Psw} 0.07273 0.07374 0.05
13 18 {Pc\Psu} 0.27634 0.56614 0.05
14 11 {Wc\Wsw} 0.12122 0.12289 0.05
14 10 {Wc\Wsw} 0.12122 0.12289 0.05
15 16 {Wc\Wsw} 0.18184 0.18434 0.05
15 17 {(P\Wsn} 0.16971  [0.17205 0.05
18 19 {Pc\Psw} 0.12122 0.12289 0.05
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Branch

Branch

Maximum

FROM TO Set(s) to which . admissible
bus bus branch pertain resistance | - reactance current
[p-u] [p-u.] [o.U]
18 21 {Wc\Wsw} 0.10049 0.20587 0.05
19 20 {Pc\WPsw} 0.15759 0.15976 0.05
21 22 {Pc\WPsw} 0.25457 0.25808 0.05
21 23 {Wc\Wsw} 0.08374 0.17156 0.05
23 24 {Wc\Wsw} 0.26669 0.27037 0.05
23 25 Ysw 0.09211 0.18871 0.05
25 26 {Wc\Wsw} 0.09775 0.22449 0.05
25 28 {WPc\Wsw} 0.06699 0.13725 0.05
26 27 {Wc\Wsw} 0.07681 0.17638 0.05
26 31 {Wc\Wsw} 0.1091 0.1106 0.05
27 33 {Wc\Wsw} 0.24245 0.24579 0.05
28 29 {WPc\Wsw} 0.10049 0.20587 0.05
29 30 {WPc\Wsw} 0.11724 0.24018 0.05
30 250 {Pc\WPsw} 0.06699 0.13725 0.05
31 32 {Wc\Psw} 0.14547 0.14747 0.05
34 15 {Wc\Wsw} 0.04849 0.04916 0.05
35 36 {Wc\Wsw} 0.18154 0.41691 0.05
35 40 {Pc\Psw} 0.08374 0.17156 0.05
36 37 {Wc\Psw} 0.14547 0.14747 0.05
36 38 {Pc\Psw} 0.12122 0.12289 0.05
38 39 {Wc\Wsw} 0.15759 0.15976 0.05
40 41 {Wc\Wsw} 0.15759 0.15976 0.05
40 42 {Wc\Psw} 0.08374 0.17156 0.05
42 43 {Pc\Psw} 0.24245 0.24579 0.05
42 44 Wsw 0.06699 0.13725 0.05
44 45 {Wc\Wsw} 0.09698 0.09831 0.05
44 47 {Wc\Wsw} 0.08374 0.17156 0.05
45 46 {Pc\Psw} 0.14547 0.14747 0.05
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Branch

Branch

Maximum

FROM TO Set(s) to which . admissible
bus bus branch pertain resistance | - reactance current
[p-u] [p-u.] [o.U]
47 48 {Wc\Wsw} 0.05024 0.10293 0.05
47 49 {Pc\WPsw} 0.08374 0.17156 0.05
49 50 {Pc\WPsw} 0.08374 0.17156 0.05
50 51 {Pc\Wsw} 0.08374 0.17156 0.05
52 53 {Wc\Wsw} 0.06699 0.13725 0.05
53 54 {Pc\Wsw} 0.04187 0.08578 0.05
54 55 {Wc\Wsw} 0.09211 0.18871 0.05
54 57 {WPc\Wsw} 0.11724 0.24018 0.05
55 56 {Pc\Psw} 0.09211 0.18871 0.05
57 58 {Wc\Wsw} 0.12122 0.12289 0.05
57 60 {Wc\Wsw} 0.25122 0.51467 0.05
58 59 {WPc\Wsw} 0.12122 0.12289 0.05
60 61 {WPc\Wsw} 0.18423 0.37743 0.05
60 62 {Pc\WPsw} 0.2775 0.13221 0.05
62 63 {Pc\Psw} 0.19425 0.09255 0.05
63 64 {Wc\Wsw} 0.3885 0.1851 0.05
64 65 {Wc\Wsw} 0.47175 0.22476 0.05
65 66 {Pc\Psw} 0.36075 0.17188 0.05
67 68 {Pc\Psw} 0.09698 0.09831 0.05
67 72 {Pc\Psu} 0.09211 0.18871 0.05
67 97 {Wc\Wsw} 0.08374 0.17156 0.05
68 69 {Wc\Wsw} 0.13335 0.13518 0.05
69 70 {Pc\Psw} 0.15759 0.15976 0.05
70 71 {Pc\Psw} 0.13335 0.13518 0.05
72 73 {Wc\Wsw} 0.13335 0.13518 0.05
72 76 {Wc\Wsw} 0.06699 0.13725 0.05
73 74 {Wc\Wsw} 0.16971 0.17205 0.05
74 75 {Pc\Psw} 0.19396 0.19663 0.05
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Branch

Branch

Maximum

FROM TO Set(s) to which . admissible
bus bus branch pertain resistance | - reactance current
[p-u] [p-u.] [o.U]
76 77 {Wc\Wsw} 0.13399 0.27449 0.05
76 86 {Pc\WPsw} 0.23447 0.48036 0.05
77 78 {Pc\WPsw} 0.0335 0.06862 0.05
78 79 {Wc\Wsw} 0.07537 0.1544 0.05
78 80 {Wc\Wsw} 0.15911 0.32596 0.05
80 81 {Pc\Wsw} 0.15911 0.32596 0.05
81 82 {Wc\Wsw} 0.08374 0.17156 0.05
81 84 {WPc\Wsw} 0.32731 0.33181 0.05
82 83 {Wc\Wsw} 0.08374 0.17156 0.05
84 85 {Wc\Wsw} 0.23033 0.2335 0.05
86 87 Wsw 0.15073 0.3088 0.05
87 88 {WPc\Wsw} 0.08486 0.08603 0.05
87 89 {WPc\Wsw} 0.09211 0.18871 0.05
89 90 {Pc\Psw} 0.1091 0.1106 0.05
89 91 {Pc\Psw} 0.07537 0.1544 0.05
91 92 {Wc\Wsw} 0.14547 0.14747 0.05
91 93 {Wc\Wsw} 0.07537 0.1544 0.05
93 94 {Pc\Psw} 0.13335 0.13518 0.05
93 95 {Pc\Psw} 0.10049 0.20587 0.05
95 96 {Pc\Psw} 0.09698 0.09831 0.05
97 98 {Wc\Wsw} 0.09211 0.18871 0.05
98 99 {Wc\Wsw} 0.18423 0.37743 0.05
99 100 {Pc\Psw} 0.10049 0.20587 0.05
100 450 {Pc\Psw} 0.26797 0.54899 0.05
101 102 {Wc\Wsw} 0.1091 0.1106 0.05
101 105 {Wc\Wsw} 0.09211 0.18871 0.05
102 103 {Wc\Wsw} 0.15759 0.15976 0.05
103 104 {Pc\Psw} 0.33943 0.3441 0.05
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Branch

Branch

Maximum

FROM TO Set(s) to which resistance | reactance admissible
bus bus branch pertain current
[p-u] [p-u.] [o.U]
105 106 {Wc\Wsw} 0.1091 0.1106 0.05
105 108 {Pc\WPsw} 0.10886 0.22303 0.05
106 107 {Pc\WPsw} 0.27882 0.28265 0.05
108 109 {Wc\Wsw} 0.2182 0.22121 0.05
108 300 {Wc\Wsw} 0.33496 0.68623 0.05
109 110 {Wc\Wsw} 0.14547 0.14747 0.05
110 111 {Wc\Wsw} 0.27882 0.28265 0.05
110 112 {WPc\Wsw} 0.06061 0.06145 0.05
112 113 {Wc\Wsw} 0.25457 0.25808 0.05
113 114 {Wc\Wsw} 0.15759 0.15976 0.05
135 35 {Wc\Wsw} 0.12561 0.25734 0.05
149 1 {WPc\Wsw} 0.13399 0.27449 0.05
152 52 {WPc\Wsw} 0.13399 0.27449 0.05
160 67 {Wc\Wsw} 0.11724 0.24018 0.05
197 101 {Pc\Psu} 0.08374 0.17156 0.05
13 152 Wsw 0 0.001 0.05
18 135 Wsw 0 0.001 0.05
60 160 Wsw 0 0.001 0.05
61 610 Wsw 0 0.001 0.05
97 197 Wsw 0 0.001 0.05
250 251 Wsw 0 0.001 0.05
450 451 Wsw 0 0.001 0.05
54 94 Wsw 0 0.001 0.05
151 300 Wsw 0 0.001 0.05
300 350 Wsw 0 0.001 0.05
150 149 Wsw 0.001 0.008 0.05
83 883 {Wc\Wsw} 0 0.001 0.05
88 888 {Pc\Psw} 0 0.001 0.05

198



Maximum

FROM TO Set(s) to which B_ranch Branch admissible
bus bus branch pertain TCEIEIENES | l{EESS current
[p.u.] [p.u] [o.U]
90 890 {Wc\Psw} 0 0.001 0.05
92 892 {Y\¥Psw} 0 0.001 0.05
33 149 Pew 0 0.001 0.05
25 44 Ysw 0 0.001 0.05
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7.2 Input data for distribution systems used in section 5.2

7.2.1 Test system S5

Table 7.9. Bus data: test system S5

R . . Cost Lower Upper
eference | Nominal Nominal L Lower Upper
: coefficient | bound for | bound for
Bus # Set(s) to Wr_nch bus voltgge vzzllue of value_ of for load voltage voltage bound for | bound for
pertain magnitude | active load reactive . . - voltage voltage
[o.u] [MW] load [MW] shedding | magnitude | magnitude angle [] angle []
o [$/MW] [p.u] [p.u]
1000 Qsiacks Qrer, Qroort 1 0 0 0.95 1.05 -5 5
1 QpctE 0.1 0.06 0.95 1.05 -5 5
2 Qpcre, QshED 0.09 0.04 1200 0.95 1.05 -5 5
3 Qpcre, QshED 0.12 0.08 1200 0.95 1.05 -5 5
4 Qpcte 0.06 0.03 0.95 1.05 -5 5
5 Qpcre 0.06 0.02 0.95 1.05 -5 5
6 Qpcre, Qshep 0.2 0.1 900 0.95 1.05 -5 5
7 QpctE 0.2 0.1 0.95 1.05 -5 5
8 Qpcte 0.06 0.02 0.95 1.05 -5 5
9 Qpcte, QsHED 0.06 0.02 1100 0.95 1.05 -5 5
10 Qpcre 0.045 0.03 0.95 1.05 -5 5
11 QpctE 0.06 0.035 0.95 1.05 -5 5
12 Qpcre, Qshep 0.06 0.035 1100 0.95 1.05 -5 5
13 Qpcte 0.12 0.08 0.95 1.05 -5 5
14 Qpcte 0.06 0.01 0.95 1.05 -5 5
15 Qpcre, Qshep 0.06 0.02 950 0.95 1.05 -5 5
16 QpctE 0.06 0.02 0.95 1.05 -5 5
17 Qpcre, Qshep 0.09 0.04 1150 0.95 1.05 -5 5
18 Qpcte 0.09 0.04 0.95 1.05 -5 5
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R : : Cost Lower Upper
eference | Nominal Nominal - Lower Upper
. coefficient | bound for | bound for
Bus # Set(s) to wr_nch bus voltgge vqlue of value_ of for load voltage voltage bound for | bound for
pertain magnitude | active load reactive . ; - voltage voltage
[0.1.] [IMW] load [MW] shedding | magnitude | magnitude angle [] angle []
- [$/MW] [p.u] [p.u]
19 Qpcte, QsHED 0.09 0.04 950 0.95 1.05 -5 5
20 Qpcte 0.09 0.04 0.95 1.05 -5 5
21 Qpcte, QsHeD 0.09 0.04 1100 0.95 1.05 -5 5
22 Qpcte 0.09 0.05 0.95 1.05 -5 5
23 Qpcte, QsheD 0.42 0.2 1100 0.95 1.05 -5 5
24 QpcTE 0.42 0.2 0.95 1.05 -5 5
25 QpctE 0.06 0.025 0.95 1.05 -5 5
26 Qpcte, QsHed 0.06 0.025 900 0.95 1.05 -5 5
27 Qpcte, Qsped 0.06 0.02 1200 0.95 1.05 -5 5
28 QpctE 0.12 0.07 0.95 1.05 -5 5
29 Qpcte, QsheD 0.2 0.6 900 0.95 1.05 -5 5
30 Qpcte, QsHed 0.15 0.07 950 0.95 1.05 -5 5
31 Qpcte, Qsped 0.21 0.1 1050 0.95 1.05 -5 5
32 Qpcte, Qsped 0.06 0.04 1100 0.95 1.05 -5 5
Table 7.10. Branch data: test system S5
Maximum
FROM TO Set(s) to which reBsirstr;(r:\r(]:e r;::é}[g?\rge admissible
bus bus branch pertain current
[p.u.] [p.u.] [0.0.]

1000 1 {Pc\Psw} 0.05753 0.02932 0.05

1 2 {Wc\Wsw} 0.3076 0.15667 0.05

2 3 {Wc\Wsw} 0.22836 0.1163 0.05

3 4 {Wc\Wsw} 0.23778 0.1211 0.05

4 5 {(Po\Wsu} 0.51099 [0.44112 0.05

6 7 Wsw 0.44386 0.14668 0.05
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Branch

Branch

Maximum

FROM TO Set(s) to which . admissible
bus bus branch pertain resistance | - reactance current
[p-u] [p-u.] [o.U]
7 8 {Wc\Wsw} 0.64264 0.4617 0.05
8 9 Wsw 0.65138 0.4617 0.05
9 10 {Pc\WPsw} 0.12266 0.04056 0.05
10 11 {Wc\Wsw} 0.2336 0.07724 0.05
11 12 {Wc\Wsw} 0.91592 0.72063 0.05
12 13 {Wc\Wsw} 0.33792 0.4448 0.05
13 14 Wsw 0.36874 0.32818 0.05
14 15 {WPc\Wsw} 0.46564 0.34004 0.05
15 16 {Wc\Wsw} 0.80424 1.07378 0.05
16 17 Ysw 0.45671 0.35813 0.05
1 18 {Wc\Wsw} 0.10232 0.09764 0.05
18 19 {WPc\Wsw} 0.93851 0.84567 0.05
19 20 {WPc\Wsw} 0.2555 0.29849 0.05
20 21 {Wc\Wsw} 0.4423 0.58481 0.05
2 22 {Pc\Psu} 0.28152 0.19236 0.05
22 23 {Wc\Wsw} 0.56028 0.44243 0.05
23 24 {Wc\Wsw} 0.55904 0.43743 0.05
25 26 {Wc\Psw} 0.17732 0.09028 0.05
26 27 {Pc\Psu} 0.66074 0.58256 0.05
27 28 Wsw 0.50176 0.43712 0.05
28 29 {Wc\Wsw} 0.31664 0.16128 0.05
29 30 {Wc\Wsw} 0.60795 0.60084 0.05
30 31 Wsw 0.19373 0.2258 0.05
31 32 Wsw 0.21276 0.33081 0.05
7 20 Wsw 1.24785 1.24785 0.05
8 14 Wsw 1.24785 1.24785 0.05
11 21 Wsw 1.24785 1.24785 0.05
17 32 Wsw 0.31196 0.31196 0.05
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Branch

Branch

Maximum

FROM TO Set(s) to which resistance | reactance admissible
bus bus branch pertain current
[p-u] [p-u.] [o.U]
24 28 Ysw 0.31196 0.31196 0.05
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7.2.2 Test system S6

Table 7.11. Bus data: test system S6

. . . Lower Upper Lower | Upper
Reference NEIGEL || (ol (F|x_ed) bound for bourr)l% for LIVl N bound bcf)upnd
Set(s) to which voltage valu_e i vaIue_ o CEE reactive reactive JEMTE ET | (9BUTal oy for for
Bus # b . . active | reactive power voltage voltage
us pertain magnitude . power power : : voltage | voltage
[0.u.] load load generation generation | generation magnitude | magnitude angle | angle
I LA L R LY I e v B X I TR B B e
Qsiack, Qrer,

1000 Oroort 1.05 0 0 0.95 1.05 -5 5
1 QpctE 0.03 0.018 0.95 1.05 -5 5
2 Qpcte, Qcurt 0.027 0.012 0.09 -0.018 -0.018 0.95 1.05 -5 5
3 Qpcte, Qcurt 0.036 0.024 0.089 -0.018 -0.018 0.95 1.05 -5 5
4 QpcTE 0.018 0.009 0.95 1.05 -5 5
5 QpctE 0.018 0.006 0.95 1.05 -5 5
6 Qpcte, Qcurt 0.06 0.03 0.058 -0.012 -0.012 0.95 1.05 -5 5
7 Qpcte, Qcurt 0.06 0.03 0.062 -0.013 -0.013 0.95 1.05 -5 5
8 Qpcte, Qcurt 0.018 0.006 0.138 -0.028 -0.028 0.95 1.05 -5 5
9 Qpcte, Qcurt 0.018 0.006 0.068 -0.014 -0.014 0.95 1.05 -5 5
10 QpctE 0.0135 |0.009 0.95 1.05 -5 5
11 Qpcte, Qcurt 0.018 0.0105 |0.088 -0.018 -0.018 0.95 1.05 -5 5
12 Qpcte, Qcurt 0.018 0.0105 |0.065 -0.013 -0.013 0.95 1.05 -5 5
13 QpctE 0.036 0.024 0.95 1.05 -5 5
14 QpctE 0.018 0.003 0.95 1.05 -5 5
15 Qpcte, Qcurt 0.018 0.006 0.075 -0.015 -0.015 0.95 1.05 -5 5
16 Qpcte 0.018 0.006 0.95 1.05 -5 5
17 Qpcte 0.027 0.012 0.95 1.05 -5 5
18 Qpcte, Qcurt 0.027 0.012 0.1 -0.02 -0.02 0.95 1.05 -5 5
19 Qpcte, Qcurt 0.027 0.012 0.069 -0.014 -0.014 0.95 1.05 -5 5
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. . . Lower Upper Lower | Upper
Reference NOMIGEL | el (F|x_ed) bound for | bound for O S bound | bound
. value of | value of active . . bound for | bound for
Set(s) to which voltage . . reactive reactive for for
Bus # . - active | reactive power voltage voltage
bus pertain magnitude load load . power power itd itd voltage | voltage
[p.u.] I\(/Jla I\(/Jla genl\e/lratlon generation | generation magnitude | magnitude angle | angle
[MW] | [MW] [MW] [MVAr] | [MVAI] [p.u.] [p.u] ] ]
20 Qpcte 0.027 0.012 0.95 1.05 -5 5
21 Qpcte, Qcurt 0.027 0.012 0.168 -0.034 -0.034 0.95 1.05 -5 5
22 Qpcte, Qcurt 0.027 0.015 0.146 -0.03 -0.03 0.95 1.05 -5 5
23 Qpcte, Qcurt 0.126 0.06 0.123 -0.025 -0.025 0.95 1.05 -5 5
24 QpcTE 0.126 0.06 0.95 1.05 -5 5
25 Qpcte, Qcurt 0.018 0.0075 |0.153 -0.031 -0.031 0.95 1.05 -5 5
26 Qpcte 0.018 0.0075 0.95 1.05 -5 5
27 Qpcte 0.018 0.006 0.95 1.05 -5 5
28 Qpcte, Qcurt 0.036 0.021 0.126 -0.026 -0.026 0.95 1.05 -5 5
29 Qpcte, Qcurt 0.06 0.18 0.085 -0.017 -0.017 0.95 1.05 -5 5
30 Qpcte, Qcurt 0.045 0.021 0.094 -0.019 -0.019 0.95 1.05 -5 5
31 Qpcte, Qcurt 0.063 0.03 0.089 -0.018 -0.018 0.95 1.05 -5 5
32 Qpcte, Qcurt 0.018 0.012 0.114 -0.023 -0.023 0.95 1.05 -5 5
Table 7.12. Branch data: test system S6
Maximum
FROM TO Set(s) to which B_ranch EUEIE admissible
- resistance | reactance
bus bus branch pertain current
[p.u] [p.u] o.1]
1000 1 {Pc\Psu} 0.05753 0.02932 0.05
1 2 {Wc\Wsw} 0.3076 0.15667 0.05
2 3 {Wc\Wsw} 0.22836 0.1163 0.05
3 4 {Pc\Psw} 0.23778 0.1211 0.05
4 5 {(Wo\Wsu} 0.51099  [0.44112 0.05
5 6 Wsw 0.1168 0.38608 0.05
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Branch

Branch

Maximum

FROM TO Set(s) to which . admissible
bus bus branch pertain resistance | - reactance current
[p-u] [p-u.] [o.U]
6 7 {Pc\WPsw} 0.44386 0.14668 0.05
7 8 Wsw 0.64264 0.4617 0.05
8 9 {Pc\WPsw} 0.65138 0.4617 0.05
9 10 {Pc\Wsw} 0.12266 0.04056 0.05
10 11 {Wc\Wsw} 0.2336 0.07724 0.05
11 12 {Wc\Wsw} 0.91592 0.72063 0.05
12 13 Wsw 0.33792 0.4448 0.05
13 14 {WPc\Wsw} 0.36874 0.32818 0.05
14 15 {Wc\Wsw} 0.46564 0.34004 0.05
15 16 {Wc\Wsw} 0.80424 1.07378 0.05
16 17 {Wc\Wsw} 0.45671 0.35813 0.05
1 18 {WPc\Wsw} 0.10232 0.09764 0.05
18 19 {WPc\Wsw} 0.93851 0.84567 0.05
19 20 {Wc\Wsw} 0.2555 0.29849 0.05
20 21 {Pc\Psu} 0.4423 0.58481 0.05
2 22 {Wc\Wsw} 0.28152 0.19236 0.05
22 23 {Wc\Wsw} 0.56028 0.44243 0.05
23 24 {Wc\Psw} 0.55904 0.43743 0.05
5 25 {Pc\Psw} 0.12666 0.06451 0.05
25 26 Wsw 0.17732 0.09028 0.05
26 27 {Wc\Wsw} 0.66074 0.58256 0.05
27 28 {Wc\Wsw} 0.50176 0.43712 0.05
28 29 {Pc\Psw} 0.31664 0.16128 0.05
29 30 Wsw 0.60795 0.60084 0.05
30 31 Wsw 0.19373 0.2258 0.05
31 32 Wsw 0.21276 0.33081 0.05
7 20 Wsw 1.24785 1.24785 0.05
8 14 Yow 1.24785 1.24785 0.05
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. Branch Branch Max_lm_um
FROM TO Set(s) to which resistance | reactance admissible
bus bus branch pertain current
[p-u] [p-u.] [o.U]
11 21 Ysw 1.24785 1.24785 0.05
17 32 Wsw 0.31196 0.31196 0.05
24 28 Wsw 0.31196 0.31196 0.05
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7.2.3 Test system S7

Table 7.13. Bus data: test system S7

. - Lower Upper Lower Upper Lower | Upper
L) Reference NI (Nohul el bound for bouﬁgl for | bound for bourr)l% for | Variable O S bound bcf)upnd
Bus to voltage valu_e o value_ il active active reactive | reactive |generation SBIE] e | BT 75 for for
# SR magnitude active | reactive ower ower ower ower costs WolltEE WolltEE voltage | voltage
bus g load load POWel powel POWE POWE magnitude | magnitude g g
pertain [p.u.] [IMW] [IMW] generation | generation | generation | generation | [$/MW] [D.1.] [D.1.] angle | angle
[MW] [MW] | [MVAI] | [MVAI] [°] [°]
Qs acks
Qrer,
1000 | Qroor |1.025 0 0 0.95 1.05 -5 5
1 Qpcte 0.11 0.066 0.95 1.05 -5 5
2 Qpcte 0.099 0.044 0.95 1.05 -5 5
3 QpctE 0.132 0.088 0.95 1.05 -5 5
4 QpcTE 0.066 0.033 0.95 1.05 -5 5
5 Qpcte 0.066 0.022 0.95 1.05 -5 5
6 Qpcte 0.22 0.11 0.95 1.05 -5 5
QpcrE,
7 Qctrro 0.22 0.11 0 0.5 0 0.1643 110 0.95 1.05 -5 5
8 Qpcte 0.066 0.022 0.95 1.05 -5 5
9 Qpcte 0.066 0.022 0.95 1.05 -5 5
10 | Qpcre 0.0495 ]0.033 0.95 1.05 -5 5
11 | Qpcre 0.066 0.0385 0.95 1.05 -5 5
12 | Qpcre 0.066 0.0385 0.95 1.05 -5 5
13 | Qpcre 0.132 0.088 0.95 1.05 -5 5
Qpcre,
14 | Qcrreg 0.066 0.011 0 0.3 0 0.0986 118 0.95 1.05 -5 5
15 | Qpcre 0.066 0.022 0.95 1.05 -5 5
16 | Qpcre 0.066 0.022 0.95 1.05 -5 5
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. . Lower Upper Lower Upper Lower | Upper
S Reference NoriEl | sl bound for | bound for | bound for | bound for | Variable O] Slpipel bound | bound
to value of | value of . . - - . bound for | bound for
Bus - voltage - . active active reactive | reactive |generation for for
which : active | reactive voltage voltage
# magnitude power power power power costs - - voltage | voltage
bus load load : . . ; magnitude | magnitude
—— [p.u.] [IMW] [IMW] generation | generation | generation | generation | [$/MW] [0.0.] [0.0.] angle | angle
P [MW] | [MW] | [MVAT] | [MVAT] PH PH (1 | [
Qpcre,
17 | Qctreo 0.099 0.044 0 0.3 0 0.0986 118 0.95 1.05 -5 5
18 | Qpcre 0.099 0.044 0.95 1.05 -5 5
19 | Qpcre 0.099 0.044 0.95 1.05 -5 5
20 | Qpcre 0.099 0.044 0.95 1.05 -5 5
21 | Qpcre 0.099 0.044 0.95 1.05 -5 5
22 | Qpcre 0.099 0.055 0.95 1.05 -5 5
23 | Qpcre 0.462 0.22 0.95 1.05 -5 5
24 | Qpcre 0.462 0.22 0.95 1.05 -5 5
25 | Qpcre 0.066 0.0275 0.95 1.05 -5 5
26 | Qpcre 0.066 0.0275 0.95 1.05 -5 5
27 | Qpcre 0.066 0.022 0.95 1.05 -5 5
28 | Qpcre 0.132 0.077 0.95 1.05 -5 5
Qpcre,
29 | Qcrreo 0.22 0.66 0 0.3 0 0.0986 145 0.95 1.05 -5 5
30 | Qpcre 0.165 0.077 0.95 1.05 -5 5
31 | Qpcre 0.231 0.11 0.95 1.05 -5 5
32 | Qpcre 0.066 0.044 0.95 1.05 -5 5
Table 7.14. Branch data: test system S7
Maximum
FROM | TO | Set(s)towhich | Branch | Branch i uccible
- resistance | reactance
bus bus branch pertain current
[p.u] [p.u] o.]
1000 1| Ysw 0.05753 0.02932 0.05
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Branch

Branch

Maximum

FROM TO Set(s) to which . admissible
bus bus branch pertain resistance | - reactance current
[p-u] [p-u.] [o.U]
1 2| {Pc\Wsw} 0.3076 0.15667 0.05
2 3| {Yc\Psw} 0.22836 0.1163 0.05
3 41 {¥c\Psw} 0.23778 0.1211 0.05
4 S| {¥c\Wsu} 0.51099 0.44112 0.05
5 6| Ysw 0.1168 0.38608 0.05
6 7| {¥Yc\Psw} 0.44386 0.14668 0.05
7 8| Wsw 0.64264 0.4617 0.05
8 9| {VYc\Ysw} 0.65138 0.4617 0.05
9 10 | {¥c\Ysw} 0.12266 0.04056 0.05
10 11| {Pc\Wsw} 0.2336 0.07724 0.05
11 12| {Vc\Wsw} 0.91592 0.72063 0.05
12 13| Ysw 0.33792 0.4448 0.05
13 14| {¥Yc\Ysw} 0.36874 0.32818 0.05
14 15 | {Wc\Wsw} 0.46564 0.34004 0.05
15 16 | {¥c\Vsw} 0.80424 1.07378 0.05
16 17 | {¥c\Ysw} 0.45671 0.35813 0.05
1 18| {Vc\Wsw} 0.10232 0.09764 0.05
18 19| {Wc\Wsw} 0.93851 0.84567 0.05
19 20 | {¥c\Wsw} 0.2555 0.29849 0.05
20 21 [ {¥c\Ysw} 0.4423 0.58481 0.05
2 22 | {Wc\Wsw} 0.28152 0.19236 0.05
22 23| {WPc\Wsw} 0.56028 0.44243 0.05
23 24 | {¥c\Ysw} 0.55904 0.43743 0.05
5 25| {Pc\Wsw} 0.12666 0.06451 0.05
25 26 | Psw 0.17732 0.09028 0.05
26 27 | {¥Wc\Wsw} 0.66074 0.58256 0.05
27 28 | {¥Wc\Wsw} 0.50176 0.43712 0.05
28 29 [ {¥c\Ysw} 0.31664 0.16128 0.05
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Branch

Branch

Maximum

FROM TO Set(s) to which resistance | reactance admissible
bus bus branch pertain current
[p-u] [p-u.] [o.U]

29 30 | Wsw 0.60795 0.60084 0.05

30 31 | Wsw 0.19373 0.2258 0.05

31 32 | Wsw 0.21276 0.33081 0.05

7 20 | Wsw 1.24785 1.24785 0.05

8 14 | Wsw 1.24785 1.24785 0.05

11 21| Wsw 1.24785 1.24785 0.05

17 32 [ {¥c\Wsw} 0.31196 0.31196 0.05

24 28 | {Pc\Wsw} 0.31196 0.31196 0.05

211



7.2.4 Test system S8

Table 7.15. Bus data: test system S8

. . Annualized Lower Upper
Reference | Nominal Nominal Lower Upper
: cost of bound for | bound for
Bus # Set(s) to Wr_uch bus voltgge vglue of value_ of candidate voltage voltage bound for | bound for
pertain magnitude | active load reactive . - td voltage voltage
[0.u.] [MW] load [MW] capacitor | magnitude | magnitude angle [°] angle []
[$] [p.u.] [p.u.]
1000 QSLACK; QREF: QROOT 1 095 105 '5 5
1 Qpcte 0.125 0.075 0.95 1.05 -5 5
2 QpcTE 0.1125 0.05 0.95 1.05 -5 5
3 QpcTE 0.15 0.1 0.95 1.05 -5 5
4 Qpcte 0.075 0.0375 0.95 1.05 -5 5
5 Qpcte 0.075 0.025 0.95 1.05 -5 5
6 Qpcte 0.25 0.125 0.95 1.05 -5 5
7 QpcTE 0.25 0.125 0.95 1.05 -5 5
8 QpctE 0.075 0.025 0.95 1.05 -5 5
9 Qpcte 0.075 0.025 0.95 1.05 -5 5
10 Qpcte 0.05625 0.0375 0.95 1.05 -5 5
11 QpcTE 0.075 0.04375 0.95 1.05 -5 5
12 QpctE 0.075 0.04375 0.95 1.05 -5 5
13 QpcTE 0.15 0.1 0.95 1.05 -5 5
14 Qpcte 0.075 0.0125 0.95 1.05 -5 5
15 Qpcte 0.075 0.025 0.95 1.05 -5 5
16 QpctE 0.075 0.025 0.95 1.05 -5 5
17 QpctE 0.1125 0.05 0.95 1.05 -5 5
18 Qpcte 0.1125 0.05 0.95 1.05 -5 5
19 Qpcte 0.1125 0.05 0.95 1.05 -5 5
20 Qpcte 0.1125 0.05 0.95 1.05 -5 5
21 QpctE 0.1125 0.05 0.95 1.05 -5 5
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. . Annualized Lower Upper
Reference | Nominal Nominal Lower Upper
. cost of bound for | bound for
Bus # Set(s) to wr_nch bus voltgge vglue of value_ of candidate voltage voltage bound for | bound for
pertain magnitude | active load reactive . - . voltage voltage
[D.u.] [MW] load [MW] capacitor | magnitude | magnitude angle [] angle [°]
[$] [p.u.] [p.u.]
22 Qpcte 0.1125 0.0625 0.95 1.05 -5 5
23 Qpcte 0.525 0.25 0.95 1.05 -5 5
24 Qpcte 0.525 0.25 0.95 1.05 -5 5
25 Qpcte 0.075 0.03125 0.95 1.05 -5 5
26 QpcTE 0.075 0.03125 0.95 1.05 -5 5
27 QpctE 0.075 0.025 0.95 1.05 -5 5
28 QpcTE 0.15 0.0875 0.95 1.05 -5 5
29 Qpcte 0.25 0.75 0.95 1.05 -5 5
30 Qpcte 0.1875 0.0875 0.95 1.05 -5 5
31 QpcTE 0.2625 0.125 0.95 1.05 -5 5
32 QpctE 0.075 0.05 0.95 1.05 -5 5
2000 QSLACK; QREF: QROOT 1 095 105 '5 5
200 Qpcte 0.95 1.05 -5 5
805 Qzcte, Qcap 0 -0.2 9000 0.95 1.05 -5 5
811 Qzcte, Qcap 0 -0.2 9000 0.95 1.05 -5 5
831 Qzcte, Qcap 0 -0.2 9000 0.95 1.05 -5 5
Table 7.16. Branch data: test system S8
Maximum | Annualized
FROM TO . . B.r el STl admissible cost of
bUS bUS Set(s) to which branch pertain | resistance | reactance current candidate
[p-u] [p-u] ou] | facility [$]

1000 1 {WYM{WYswU¥cp}} 0.05753 0.02932 0.05

1 2 {WYM{WYswU¥cp}} 0.3076 0.15667 0.04

2 3 {WY\M{WYswU¥cp}} 0.22836 0.1163 0.04

3 4 {W\M{WYswU¥cp}} 0.23778 0.1211 0.04
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Branch Branch Max_im_um Annualized
FROM TO . . . admissible cost of
bus bus Set(s) to which branch pertain | resistance | reactance current candidate
[p-u] [p.u] ou] | facility [$]
4 5 {P\MPswU¥cp}} 0.51099 0.44112 0.035
5 6 (WM PswU¥Pcn}} 0.1168 0.38608 0.035
6 7 Yow 0.44386 0.14668 0.035
7 8 (P \MPswU¥Pcn}} 0.64264  |0.4617 0.035
8 9 Yow 0.65138 0.4617 0.035
9 10 {PM{¥YswU¥cp}} 0.12266 0.04056 0.03
10 11 {P\MWPswU¥cp}} 0.2336 0.07724 0.03
11 12 {PMPswU¥cp}} 0.91592 0.72063 0.03
12 13 {PMPswU¥cp}} 0.33792 0.4448 0.03
13 14 Pow 0.36874 0.32818 0.03
14 15 {PM{WYswU¥cp}} 0.46564 0.34004 0.03
15 16 {PM{¥YswU¥cp}} 0.80424 1.07378 0.03
16 17 {PMWPswU¥cp}} 0.45671 0.35813 0.03
1 18 {P\MWswU¥cp}} 0.10232 0.09764 0.04
18 19 {WYM{WYswU¥cp}} 0.93851 0.84567 0.04
19 20 {WYM{WswU¥cp}} 0.2555 0.29849 0.04
20 21 (P \MPswU¥cp}} 0.4423 0.58481 0.035
2 22 {P\M{WswU¥cp}} 0.28152 0.19236 0.04
22 23 (P \MWPswU¥cn}} 0.56028 0.44243 0.04
23 24 {PMWswU¥cp}} 0.55904 0.43743 0.035
5 25 Yow 0.12666 0.06451 0.035
25 26 {WYM{¥YswU¥cp}} 0.17732 0.09028 0.035
26 27 {P\M{WswU¥cp}} 0.66074 0.58256 0.035
27 28 Yo 0.50176 0.43712 0.035
28 29 {P\M{PswU¥cp}} 0.31664 0.16128 0.035
29 30 {W\M{¥YswU¥cp}} 0.60795 0.60084 0.035
30 31 {W\M{¥YswU¥cp}} 0.19373 0.2258 0.03

214



Branch Branch Max_im_um Annualized
FROM TO . . . admissible cost of
bus bus Set(s) to which branch pertain | resistance | reactance current candidate
[p.u] [p.u] o
[p.u.] facility [$]
31 32 Ysw 0.21276 0.33081 0.03
7 20 Yow 1.24785 1.24785 0.035
8 14 Yo 1.24785 1.24785 0.035
11 21 Ysw 1.24785 1.24785 0.03
17 32 Ysw 0.31196 0.31196 0.03
24 28 Ysw 0.31196 0.31196 0.035
2000 200 Yoo 0.05292 0.03226 0.05 48000
200 13 Yoo 0.36593 0.30952 0.04 7800
200 15 Yoo 0.33778 0.28571 0.04 7200
13 8 Yoo 0.42223 0.35713 0.04 9000
9 21 Yoo 0.54748 0.4742 0.035 8400
15 26 Yoo 0.56297 0.47618 0.04 12000
15 30 Yoo 0.60125 0.52856 0.05 11000
5 805 Yo 0 0.001 0.05
11 811 Yow 0 0.001 0.05
31 831 Ysw 0 0.001 0.05
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7.2.5 Test system S9

Table 7.17. Bus data: test system S9

Nomi . Lower Upper
ominal | Nominal b Lower Upper
. ound for | bound for
Bus # Set(s) to wr_nch bus vglue of vaIue_ of voltage voltage bound for | bound for
pertain active load | reactive magnitude | magnitude voltage voltage
[MW] |load [MW] [0.1.] [0.1.] angle [°] | angle[°]
1000 Qs ack, £2Rer, £rooT 0.8 1.05 -5 5
1 Qzcte 0.1 0.06 0.8 1.05 -5 5
2 Qicte 0.09 0.04 0.8 1.05 -5 5
3 QzcTe 0.12 0.08 0.8 1.05 -5 5
4 Qzcte 0.06 0.03 0.8 1.05 -5 5
5 QpcTE 0.06 0.02 0.8 1.05 -5 5
6 QpcTe 0.2 0.1 0.8 1.05 -5 5
7 QzcTe 0.2 0.1 0.8 1.05 -5 5
8 Qzcte 0.06 0.02 0.8 1.05 -5 5
9 QpcTe 0.06 0.02 0.8 1.05 -5 5
10 QzcTe 0.045 0.03 0.8 1.05 -5 5
11 Qicte 0.06 0.035 0.8 1.05 -5 5
12 QpcTe 0.06 0.035 0.8 1.05 -5 5
13 Qzcte 0.12 0.08 0.8 1.05 -5 5
14 QpcTe 0.06 0.01 0.8 1.05 -5 5
15 QpcTe 0.06 0.02 0.8 1.05 -5 5
16 QpcTe 0.06 0.02 0.8 1.05 -5 5
17 Qicte 0.09 0.04 0.8 1.05 -5 5
18 Qzcte 0.09 0.04 0.8 1.05 -5 5
19 QpcTE 0.09 0.04 0.8 1.05 -5 5
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Nominal | Nominal bcbor:léilefgr bollJJE][c)iefror Lower Upper
Bus # Set(s) to Which bus vglue of value_ of voltage voltage bound for | bound for
pertain active load | reactive magnitude | magnitude voltage voltage
[MW] | load [MW] [0.1.] [0.1.] angle [°] | angle [°]
20 Qzcte 0.09 0.04 0.8 1.05 -5 5
21 Qzcte 0.09 0.04 0.8 1.05 -5 5
22 Qzcte 0.09 0.05 0.8 1.05 -5 5
23 QpcTe 0.42 0.2 0.8 1.05 -5 5
24 QzcTe 0.42 0.2 0.8 1.05 -5 5
25 QpcTe 0.06 0.025 0.8 1.05 -5 5
26 Qicte 0.06 0.025 0.8 1.05 -5 5
27 Qicte 0.06 0.02 0.8 1.05 -5 5
28 QzcTe 0.12 0.07 0.8 1.05 -5 5
29 Qicte 0.2 0.6 0.8 1.05 -5 5
30 Qicte 0.15 0.07 0.8 1.05 -5 5
31 QzcTe 0.21 0.1 0.8 1.05 -5 5
32 QpcTe 0.06 0.04 0.8 1.05 -5 5
Table 7.18. Branch data: test system S9
Maximum
FROM | TO | Set(s)towhich | Branch | Branch -\, iccible
bus bus branch pertain resistance | reactance current
[p-u.] [p-u.] [D.1.]

1000 1] {¥Yc\Wsw} 0.05753 0.02932 0.05

1 2| {Yc\Wsw} 0.3076 0.15667 0.05

2 3| {Wc\Wsw} 0.22836 0.1163 0.05

3 41 {Pc\Psw} 0.23778 0.1211 0.05
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Maximum

FROM | TO | Set(s)towhich | Branch | Branch - icsible
bus bus branch pertain resistance | reactance current
[p.u.] [p.u.] [D.1.]
4 5 {Wc\Wsw} 0.51099 0.44112 0.05
5 6| {¥c\Vsw} 0.1168 0.38608 0.05
6 7| Wsw 0.44386 0.14668 0.05
7 8| {Wc\Wsw} 0.64264 0.4617 0.05
8 9| Wsw 0.65138 0.4617 0.05
9 10| {Wc\Wsw} 0.12266 0.04056 0.05
10 11| {Wc\Wsw} 0.2336 0.07724 0.05
11 12 | {Wc\Wsw} 0.91592 0.72063 0.05
12 13| {Wc\Wsw} 0.33792 0.4448 0.05
13 14| Wsw 0.36874 0.32818 0.05
14 15| {Wc\Wsw} 0.46564 0.34004 0.05
15 16 | {Wc\Wsw} 0.80424 1.07378 0.05
16 17 | {Wc\Wsw} 0.45671 0.35813 0.05
1 18 | {Wc\Wsw} 0.10232 0.09764 0.05
18 19| {Wc\Wsw} 0.93851 0.84567 0.05
19 20 | {¥c\Wsw} 0.2555 0.29849 0.05
20 21 | {Yc\Wsw} 0.4423 0.58481 0.05
2 22| {¥Yc\Wsw} 0.28152 0.19236 0.05
22 23 | {Yc\Wsw} 0.56028 0.44243 0.05
23 24| {¥Yc\Wsw} 0.55904 0.43743 0.05
5 25 | Wsw 0.12666 0.06451 0.05
25 26 | {Pc\Wsw} 0.17732 0.09028 0.05
26 27 | {Yc\Wsw} 0.66074 0.58256 0.05
27 28 | Ysw 0.50176 0.43712 0.05
28 29 | {Wc\Wsw} 0.31664 0.16128 0.05
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Maximum

FROM TO Set(s) to which relzir;r;%k(];e r;ﬁgﬁge admissible
bus bus branch pertain current
[p.u.] [p.u.] [D.1.]

29 30| {¥c\Wsw} 0.60795 0.60084 0.05

30 31| {Pc\Wsw} 0.19373 0.2258 0.05

31 32 | Wsw 0.21276 0.33081 0.05

7 20 | Wsw 1.24785 1.24785 0.05

8 14| Wsw 1.24785 1.24785 0.05

11 21 | Wsw 1.24785 1.24785 0.05

17 32 | Wsw 0.31196 0.31196 0.05

24 28 | Wsw 0.31196 0.31196 0.05
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8 APPENDIX B: AN ALTERNATIVE MILP
REFORMULATION OF THE ACOPF IN
DISTRIBUTION SYSTEMS

In the course of the research activities that led to the present dissertation, an
alternative MILP reformulation of the ACOPF in distribution systems has been
investigated. This alternative formulation has been abandoned at early stages of the
research activities due to its performance being inferior, with respect to accuracy and
computational requirements, to the formulation presented in sections 4.1 to 4.3 of this
document. For the sake of didactics, the alternative formulation is thoroughly presented
below. The nomenclature used for the presentation of the alternative formulation is

consistent with that used in chapter 4, except when otherwise noted.

8.1 Main differences with respect to the formulation
presented in chapter 4

The alternative MILP reformulation of the ACOPF in distribution systems is
similar to that presented in chapter 4 in various aspects, but differs from it mainly with
respect to the construction of piecewise-linear approximations of non-linear, non-
convex functions. Each and every segment of the piecewise-linear approximations of
non-linear functions in the formulation presented in chapter 4 is obtained by affine
combinations of its vertices. In the alternative formulation, each segment of the
piecewise-linear approximation consists of a constant value, which is deemed as
representative of the values that the non-linear function assumes between the vertices of
a partition of its domain. Figure 8.1 provides the reader with insight about the
differences among the piecewise-linearization with affine combinations of the vertices
and the piecewise-linearization considering constant values of the non-linear function.
From this figure, it is clear that the piecewise piecewise-linearization obtained by
considering constant values of the function within a partition of its domain has the
approximate shape of a staircase. For that reason, we will refer to this as a staircase-

shaped piecewise-linear approximation — or simply SSPL approximation.
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Figure 8.1: Non-linear function fy_(x) (a); piecewise-linearization f(x) via affine combination of
vertices (b); piecewise-linearization f(x) considering constant values within the vertices of a
partition of the domain (SSPL approximation) (c).

Figure 8.1 also points to a difference in the nomenclature used for defining the
piecewise-linear approximations. In previous chapters of this dissertation we referred to
the values f¢ — f* to £ in part (b) of Figure 8.1 — as evaluated values (the vertices of
the linear segments). The SSPL approximation defined in this chapter no longer makes
use of affine combinations of evaluated values, but rather employs constant values
through which the function fy.(X) is represented within the partition of the domain.
These constant values will be referred to as representative values in this chapter, and
will be denoted by f7. As indicated in Figure 8.1, the representative value £/ is a single
value chosen within the interval fy,(2/) < f7 < fy (&/%1), where fy,(x) is the non-
linear function to be approximated.

This difference in the approximation of the non-linear functions requires the
rewriting of several constraints of the ACOPF problem presented in chapter 4 — notably,
those that relate power injections at buses with the correspondent current injections. By
inspection of the constraints presented in this chapter 8, the reader will notice that the
approximation of non-linear functions by constant values allows that the very nature of
the functions being approximated changes: some of the functions for which piecewise-
linear approximation were used in chapter 4 (such as &, and ;) need no longer to be
approximated, as the (linear) constraints in which these functions were used are
rewritten with a different arrangement of the decision variables. Particularly, as shown
in section 8.2, the alternative MILP reformulation requires only the approximation of
non-linear functions of a single decision variable in order to obtain the current injections

demanded by constant-power loads and generators.
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8.2 Mathematical formulation

Analogously to section 4.2, this section begins with the presentation of the
constraints employed for modeling the behavior of the network and enforcing operating
limits (subsection 8.2.1). For the constraints that do not demand any modification with
respect to the formulation presented in chapter 4, we will simply make direct reference
to the associated equations of section 4.2.1.

Objective functions for selected distribution system operations and expansion
planning applications will be dealt with in subsection 8.2.2.

8.2.1 Constraints: modeling electrical behavior and enforcing
operating limits

8.2.1.1 Kirchhoff’s Laws

The alternative formulation requires no modifications to the constraints
presented in subsection 4.2.1.1. Thus, those constraints may be promptly incorporated
to the alternative MILP reformulation of the ACOPF in distribution systems.

8.2.1.2 Operating limits

8.2.1.2.1 Bounds on bus voltage magnitudes

The magnitude of the voltage at bus k, V, is a non-linear, non-convex function
of the real and imaginary components of the voltage at this bus. Analogously, the
squared value of the bus voltage magnitude, V,2, is also a non-linear, non-convex
function of the associated real and imaginary components. As V;,, may only assume non-
negative values, and as the square function is strictly monotonically increasing in the
non-negative domain, bounding V,* within the interval (V)2 <V, < (V,)? equals
bounding V, within the interval V, <V, <V,. This fact will be explored in the
alternative MILP reformulation of the ACOPF for distribution systems — as the term V.2

will be used for the formulation of other constraints of the alternative MILP
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formulation, a choice is made to use a constraint analogous to (V)% < Vi, < (V)2 to
bound the bus voltage magnitudes.

In order to do that, the non-linear term V,,® will be substituted by an auxiliary
continuous decision variable, p,. It is thus needed to approximate the following non-

linear function:

te = (Vi) + (Vkim)z Vk € {Qp \ Qger} (357)

It is clear that the non-linear function presented above is separable, and may be

rewritten as:

e = UL + uim Vk € {Qp \ Qggr} (358)

upe = (Vre)? Vk € {Qp \ Qggr} (359)
, N2

pim = (Vi) Vk € {Qp \ Qggr} (360)

where:

pre ; ui™ - Auxiliary, continuous decision variables.

Thus, instead of approximating the non-linear function of two decision variables
expressed by equation (357), it is only required to separately approximate each of the
functions of a single variable expressed by equations (359) and (360), and to summate
them to obtain u,, as indicated in equation (358).

The approximation of the function ;¢ = (V;¢)? will be dealt with first. A SSPL
approximation will be used for the reformulation of this function. The first step for
using a SSPL approximation is to discover which partition of the domain (which
partition comprised within two consecutive vertices that correspond to evaluation
points) corresponds to the value of the decision variable V;° (the argument of the non-

linear function) at a given solution. In order to do that, the following constraints are

employed:
Yrerre i V6T = Ve V k€ {Qp\ Qrpr} (361)
Yrerre )T =1 Vk € {Qp\ Qrpr} (362)
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YrerreXg =1 Vk € {Qp\ Qrgr} (363)

N2t < xjt Yk € {Qp \ Qpgr) (364)
B2 < a7t + xg, Vre{l™\{1}},k € {Qz \ Qrer}  (365)
where:
rre Set of indices for evaluation points ;" and associated variables;
ver Evaluation points of real component of voltage at bus k;
y Ml Weights used for expressing the value of the argument V¢ as an affine

combination of the evaluation points;

xj, Auxiliary binary decision variable.

The reader will notice that the previous equations are very similar to those used
in chapter 4 to ensure that the set of weights 1;° corresponds to a SOS2. Whenever
these equations are enforced, it is possible to use the information of the auxiliary

variables xj, to check in which partition of the domain the variable V€ is:

If x, = 1, with r € {T™ \ {|T"¢|}}, V© is within the partition defined by
the interval 7" < v7e < /o™,

[rrel _ re _ rell®|
Ifx, '=1,thenVy® =1V, :

By using the information of the partition of the domain within which the
argument V[ is located, it is possible to employ the following disjunctive constraints to

construct a SSPL approximation of the function u},¢ = (V€)%

M;{‘,re,l . (1 _ x;{«) < 'uze _ ﬁ;e,r < M}:,re,u . (1 _ X,Z)
Vre {Fre \{(T"¢| = 1), |Fre|}}, k € {Qp \ Qrgr} (366)

Marr-Diedl (1 0D _ x}|{rf€|) < e — el o

M]E|rre|—1),re,u . (1 _ x’(cll"re|—1) —_ x’LFTel) Vke{Qp\Qrer} (367)

where:

rrel . r,reu
Mk 3 Mk
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Disjunctive constants. These parameters need to be defined only for
re{Te\{Ire}}};

Al Representative values of the function ui¢ = (V7¢)?, deemed as
representative of the interval (7, °")? < uk® < (7/®"*")2. These parameters

need to be defined only for r € {I'¢ \ {|T"¢|}}.

Due to the specific characteristics of the distribution system, the decision
variable V¢ may only assume positive values for all buses in the system. Keeping this
in mind, it is possible to define the following tight values for the disjunctive constants

employed above:

My = et — et Yre{lTe\{IT™}}, k € {Qp \ Qrer} (368)

Mot = g e v e (T (e} k € {Qp \ Qrer}  (369)

Now, the approximation of the function ™ = (V™)? is dealt with. A SSPL
approximation will also be constructed for this function. Analogously to what has been
done above, it is first necessary to discover which partition of the domain corresponds
to the value of the decision variable V™ (the argument of the non-linear function). This

is done with help of the following constraints:

Yserim ’ﬁcm's ) 17'kim's = Iém V k € {Qp \ Qggr} (370)
Y erim A = Yk € {Qp \ Qggr} (371)
YserimYg =1 V k € {Qp \ Qpgr} (372)
)l;.cm'l < Vi V k € {Qp \ Qggr} (373)
B <yt v Vs €M\ (1)} k € (0 \ Qper)  (374)

where:

rim Set of indices for evaluation points 7™* and associated variables;

I7kim's Evaluation points of imaginary component of voltage at bus k;

Aims Weights for expressing the value of the argument V™ as an affine

combination of the evaluation points;
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Vi Auxiliary, binary decision variable.

It is possible to use the information of the auxiliary variables y; to check in

which partition of the domain the variable V™ is:

If yie =1, with s € {Fim \ {|Fim|}}’ Viim is within the partition defined
by the interval V™5 < yim < pims+i,
T ~im,| T

Ify, '=1thenVi" =7

With this information at hand, it is possible to use the following disjunctive

constraints to construct a SSPL approximation of the function ui™ = (Vi™)2:

M;,im,l . (1 _ yl}g) < ‘uli(m _ ’ali(m,s < M;,im.u . (1 — y;)

Vs e {rm\{(Irm] = 1), e} k € (Qp \ Qggr) (375)
M’g|1"im|_1),im,l ) (1 _ yIE|Fim|_1) _ y){rim|) - ‘u,i(m B /jli(m’(lrim|_1) <

Fim— im, Fim_ Fim
p{Tme (1P I vk e 0\ Q) (376)

where:

M;,im,l : M;,im,u
Disjunctive constants. These parameters need to be defined only for
s e {rm\ {rm{}};

s Representative values of the function wpi™ = (Vi™)2, deemed as
representative of the interval (7™%)% < @™ < (™12, These

parameters need to be defined only for s € {Fim \ {|Fim|}}.

Keeping in mind that the decision variable V™ may assume negative and
positive values (and also the value zero), but that the function (V;i™)2? may only assume
non-negative values, it is possible to define the following tight values for the disjunctive

constants:
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MEmL = o — gims VsE {Fim \ {|Fim|}},k € {Qp \ Qrer}  (377)

simu _ ~im,1 ~lm(|rlm| 1) ~im,s
M = max {P‘k » My } K

Vs e {rm\{Irm(}}, k € {Qp \ Qrer}  (378)

Finally, having obtained the values of uL¢ and ui™, bounds on bus voltage

magnitudes can be enforced with help of the following set of constraints:

V) < upf + lllicm < (Vk)z Vk € {Qp \ Qrer) (379)

8.2.1.2.2 Bounds on the magnitude of branch currents

In section 4.2.1.4.2 of chapter 4, bounds on branch current magnitudes have
been indirectly enforced by imposing bounds on the square root of the sum of the
squared values of the decision variables (2, and (i™  which have been defined so as to
be at least as high as 172, and IF™  respectively.

For the alternative MILP reformulation of the ACOPF in distribution systems, it
is possible to defined an auxiliary decision variable, @y, such that @, = (txm)?. As
L.m May only assume non-negative values, and as the square function is strictly

monotonically increasing in the non-negative domain, ensuring that @y, < (Ixm)? is

the same as ensuring that tx,,, < .

Also, it is possible to define @y, as:

D = Ohe, + @i Vkm € ¥, (380)
o, = (1:5,)? Vkm € ¥, (381)
@l = (Iim)? Vkm € ¥, (382)

It is clear that both w%¢, and w/™ are non-linear functions of a single variable.
Thus, for the alternative formulation presented in this chapter, it is possible to construct

SSPL approximations of these two functions, by writing equations analogous to those
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indicated in section 8.2.1.2.1. For the sake of conciseness, these equations, which are

entirely analogous to the ones employed in section 8.2.1.2.1 to approximate
re = (Vre)? and " = (V,ﬁm)z, will not be presented here.
After obtaining the SSPL approximations of @w¢, and @™, the branch current

magnitude is bounded with help of the following set of constraints:

wkm + wkm < (Ikm)z ,Vkm € l'pc (383)

8.2.1.2.3 Bounds on active and reactive power output of generators

The alternative formulation requires no modifications to the constraints
presented in subsection 4.2.1.4.3, which may thus be promptly incorporated to the

alternative MILP reformulation of the ACOPF in distribution systems.

8.2.1.3 Loads

8.2.1.3.1 Constant-power loads that cannot be shed

Before presenting the linearized equations to be incorporated to the alternative
MILP reformulation of the ACOPF for distribution systems, it is worth presenting an
alternative formulation of the corresponding non-linear equations, in order to provide
the reader with a better comprehension of the reformulation procedure employed here.
In the following, equations (9) and (10) of section 2.2.1.3.1 are rewritten, with the

substitution of the auxiliary variables &, and ¢, by the corresponding functions of V]

and V;i™:

Iag = (Vkre ~dj; + Vlém ) dl(g)/(Vkre2 + Vlémz) Vk € Qpcr (384)

Ik = (V™ -di —vie - d}({))/(vkreZ + Vlémz) Vi € Qpcrg (385)

By substituting (V7®)? = k¢ and (V{™)% = ui™ in the above equations and
manipulating the expressions algebraically, we obtain the following, still non-linear,

equations:

228



105 uie + 155 - ™ = Ve - di + V™ - d Vk € Qpcrg (386)
10 - 8 + I ™ = V™ - dip — Ve - dy Vk € Qpcrp (387)

re,re re,im __

The products of decision variables f;,"" = Ig% - i’ far = lak: pim,
d”,'j T =% - uke and f”" = 1im . uim need to be reformulated before the equations
above can be incorporated into the alternative MILP formulation. For the reformulation
of these products, we may take advantage of the fact that the variables u%® and ui™
assume only values in a discretized values, which correspond to the representative
values of the SSPL approximation described in section 8.2.1.2.1. Thus, the products
above may be interpreted as products of a continuous variable (the current component)
by a constant (the value assumed by u%¢ or ui™). However, it is important to notice that
this may assume different representative values (the representative values of the SSPL
approximation for uL¢ and ui™, as described in section 8.2.1.2.1), depending on the
partition of the domain in which the variables V¢ and V™ are. Clearly, we have once

again disjunctions (partitions) of the decision space.

re,re
’

Thus, the following set of disjunctive constraints may be used to define f; .

re,im im,re im,im,
ak o Jfax and fi

B,:'re're'l ( xk) < fre ,re —I _ﬂ]:e,r < B;{ﬂ,re,re,u . (1 _ x;)

Vre {Fre \ {T7¢ = 1), |Fre|}}' k € {Qpcre \ Qsnep} (388)
B’£|Fre|—1),re,re,z _ (1 B x]E|[‘Te|_1) B x]|(l—~re|) < freve _pre e arre-n)
R (R x,L”e') ¥ k € {Qpcre \ Osuep} (389)
Blf,re,im,l A—yD) < fI° im _ pre 'ﬁlicm's < B;,re,im,u A=y
VSsE {Fim \{(Jrm =1), |Fim|}}, k € {Qpcre \ Qsuep} (390)
B}E|rim|—1),re,im,l ) (1 _ yl£|1“im|—1) y’|€ ‘m|) < froim i _ﬁ’i(mr(|1""m|—1) <
Blglriml_l)'re'imll ' (1 - ylg|rim|—1) J’;lcrlm|) Yk € {Qpcre \ Qsuep} (391)
B}:,im,re,l (A=) < flm e _pim . grer < B}:,im,re,u (1=
VreE {Fre \ {(rre| = 1), |Fre|}}' k € {Qpcre \ Qsuep} (392)
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(Ir'é|-1),im,re,l (Jrrée|-1) |T7e| Lm re ~re,([T"¢|-1)

B}E|Fre|—1),im,re,u . (1 _ x}({l["rel—l) —_ x}|{[‘re|) ,V k (S {‘Q‘PCTE \‘Q‘SHED} (393)
Blg,im,im,l . (1 _ yli) < flm im Lm . 'a’i(m,s < B].:,re,im,u . (1 — y}i)

Vs e {rm\{(|rm| - 1), [} k € (Qpcrs \ Qsusn) (394)

l—-im -1 " " ,l Fim -1 Fim l"lm 1
B}El |-1),im,im '(1_3’}9 | )_yllc |)< im,im I 'l'llm(l |- )

rim|_1),im,im,1 rim|—1 rim
B,E' [=1).m,im -(1—y,5| =) y,lc l) Yk € {Qpcre \ Qspep} (395)

where:

rrerel . pryrereu . psreiml . psreimu . pr.imrel . pr,imreu . ps,imiml . ps,imimu
B, ;4 , By , By ;4 : 4 B B

Disjunctive constants.

rere . gre,im . gimre . pim,im
d,k v Jdk v Jdk v Jd k

Auxiliary, continuous variables used for approximating the products

imre __ yim

rere __ re, im .

ar = lax s ar =gk ui, ak —lak Hk and
imim _ jim , i

ak —lak Mk -

The definition of the disjunctive constants introduced above will not be dealt

re,re

with here, for the sake of conciseness. Having defined the auxiliary variables f; ",

dr,i"m, mre  and fax imim the constraints through which the current injections from

constant-power loads that cannot be shed are related to the associated power injections

may be written as:

re "+ fre m Vkre ) dlI: + Vkim ) dff Vk € {'QPCTE \ QSHED} (396)

lm "+ flm = =V . dllc) - V}:e ) d,‘f Vk € {'QPCTE \‘QSHED} (397)

8.2.1.3.2 Constant-power loads that can be shed

As indicated in chapter 4, load shedding is considered to be a discrete decision:

the load at bus k will be considered to be either energized (p, = 0) or de-energized
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(px = 1). When the load at bus k is shed, it is obviously necessary to ensure that the
current components 134 and I5% will be forcefully set to zero.

In order to do that and still be able to use constraints similar to these employed
in section 8.2.1.3.1 in the alternative formulation, the auxiliary variables 1] and I/,
which correspond to the values of the load currents “before load shedding is taken into
account”, are defined. Also, disjunctive constraints that ensure that I35 = Ij; and
IT% = 1% when py = 0, but that 74 = 0 and 1% = 0 when p;, = 1, will be introduced
to the alternative MILP formulation. Before doing that it is necessary to deal with the
definition of the auxiliary variables I7}; and I

In order to define the auxiliary variables I7; and Ilk, a procedure similar to that

employed in section 8.2.1.3.1 for the definition of /% and I will be used. That is to

re, re re,im im,re

say, for each k € {Qpcrg N Qsypp}, the auxiliary variables fik e 0 fuke and

im,im

1k will be defined. These auxiliary decision variables will be used to approximate

rere ., re reim __ imre _ imim __
=115 fe " = e w e =1 wd and fin " =

re,re

the products f;

Ilm pi™ _ analogously to what has been done for the products far = =1Ia% i

re,im im,re

TR =105 w T = 1% - wifand f‘mlm: If% - ul™ in equations (388) to

re, re re,im

(395). The constraints used for the definition of the auxiliary variables f; Lk
ImTe and fl‘m ™ will not be written here, as they are absolutely analogous to equations
(388) to (395).
Then, the following constraints will implicitly relate the values of I/ and /77

the power injections of constant-power loads that can be shed:

DT fRET = Ve AR + V- d? Vk € {Qpcre N Qsupp}  (398)
e 4 fEI =y df — Ve d? Vk € {Qpcre N Qppp}  (399)
where:
rere . gcreim . pimyre . gim,im
Lk Jik ' Jik Lk

Auxiliary, continuous decision variables used for approximating the products
rere __ re,im __ imre __ im,im __
e =l e =1k TS Lk = If% - up® and foe =

Ilk llk .
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Finally, the following disjunctive constraints ensure that I35 =I/; and

1% = 1% when p, = 0, but that I35, = 0 and I;; = 0 when p; = 1:

D;re,PCTE,1 re _ yre — pyDrePCTE?
M Pre = lgj — I < My Pk

k kS Lk =
YV k € {Qpcre N Qsppp} (400)
MPTEPCTES L (1 _ ) < 17, < MPTEFCTES (1 _
YV k € {Qpcre N Qsppp} (401)
M}l{),im,PCTE,l o I 178 < Mlzc),im,PCTE,z i
YV k € {Qpcre N Qgpep} (402)
MPAPTER | (1 _ ) < 1l < MPAPTER (1 p,)
YV k € {Qpcre N Qgpep} (403)
where:
MPTePCTEL ; yyDirePCTER . DTePCTES o yDrePCTES
M}?,im,PCTE,l : M}l{),im,PCTE,Z ; M}?,im,PCTE,B : M}?,im,PCTEA

Disjunctive constants, whose definition will not be dealt with here, for the

sake of conciseness.

8.2.1.3.3 Constant-current loads that cannot be shed

The investigation of the alternative MILP reformulation presented in this chapter
has been interrupted before the treatment of loads of the constant-current type, and
therefore no definition of constraints for obtaining the current injections corresponding

to these types of loads is currently available.

8.2.1.3.4 Constant-current loads that can be shed
The investigation of the alternative MILP reformulation presented in this chapter
has been interrupted before the treatment of loads of the constant-current type, and

therefore no definition of constraints for obtaining the current injections corresponding

to these types of loads is currently available.
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8.2.1.3.5 Constant-impedance loads that cannot be shed

The alternative formulation requires no modifications to the constraints
presented in subsection 4.2.1.3.5, which may thus be promptly incorporated to the
alternative MILP reformulation of the ACOPF in distribution systems.

8.2.1.3.6 Constant-impedance loads that can be shed
The alternative formulation requires no modifications to the constraints

presented in subsection 4.2.1.3.6, which may thus be promptly incorporated to the
alternative MILP reformulation of the ACOPF in distribution systems.

8.2.1.4 Generation

8.2.1.4.1 Non-curtailable generators with no control over the active power output

Similarly to what has been done for loads, the first step for obtaining the
constraints that will be used in the alternative MILP reformulation of the ACOPF is to
rewrite the original, non-linear equations that relate the current injections with the active

and reactive power output of generators, substituting the auxiliary variables &, and {

by the corresponding functions of V¢ and V,™:

ve = (Vi gf +vim- g2)/ Vit +vim®) k€ Qgpy (404)

ok = (v )/( Vet + ) Vk € Qgpy (405)

By substituting (V7®)? = k¢ and (V™))% = ui™ in the above equations and

manipulating the expressions algebraically, we obtain the following, still non-linear

equations:
IS i + g5 wt =i g + vim 'gff Vk € Qgpy (406)
Ilk Hi +Ilk IThi kim'gllc)_Vkre'g;? Vk € Qgpy (407)
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The products of decision variables fgri'rezlg“;c-u;e, fgri'lmzlgﬁc-u,im,

fyeme = Iim - ure and £ = Il - ui™ need to be reformulated before the previous
equations can be incorporated into the alternative MILP formulation. For the
reformulation of these products, it suffices to define constraints analogous to those
represented by equations (388) to (395). Then, the following constraints will implicitly
relate the values of IS and I’k to the power injections of constant-power loads that can
be shed:

foi™ + I = Vi - gk + Vim - g¢ Yk € {Qcrpe \ Qcurr)  (408)

fTe + fm = vim gf — Ve - g¢ Yk € {Qcrro \ Qcurr}  (409)

The reader will notice that equations (408) and (409) are still nonlinear, due to
the products of decision variables* V™ - g,f and V7€ -g,‘f. In order to reformulate these
equations and allow their incorporation to the alternative MILP formulation of the
ACOPF for distribution systems, these products are substituted respectively by the

Q,re 1Q,im

auxiliary decision variables m';"~ and m';”™, and the equations (408) and (409) are

reformulated as:

fgr,i're + fgr,i'im =Vi®-gr + m’g’re Vk € {'QCTRQ \ Qcyrr}  (410)
fgl,?re + f;}?'lm =Vim- gk — m’;‘f’”” Vk € {'QCTRQ \'QCURT} (411)

where:
rere . gre,im . gimre . cim,im
fg,k ' fg,k ' fg,k ’ fg,k

Auxiliary, continuous variables used for approximating the products

rere __ re,im __ i imre _ i
for = gk 1’ for =g fox =gk’ and
imim _ yim , ,,im
fg,k - Ig,k nuk .
m'?™  Auxiliary decision variable for modeling the product V™ - g?;
1Q,im T ‘o : ; re Q
m'y Auxiliary decision variable for modeling the product V© - g;.

¥t is important to keep in mind that, for generators in {QCTRQ \ QCURT}, the active power output is a

parameter of the optimization problem.
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Finally, it is necessary to define the linear constraints through which the

auxiliary variables m'®" and m'?""™ are bounded within the convex envelopes (more

precisely, McCormick’s envelopes) of the original products:

m'¥Te > . 6@y pim. g,? — pmmin 'g,? Vk € Qgpy (412)
MR 2 YT g2 L yim g — VI GR Yk € Qgpy (413)
mTe S VI gl Vg~ VTG Yk E Qe (414)
m/2Te < Ymmex. 6@ yim. g0 _ymmar. g0 k€ Qg (415)
m'g‘im > premn. gg + Vi€ 'QI? — premn 'gg Vk € Qgpy (416)
mP 2 Ve gl 4 Ve gl — Vi gl Yk € Qapy  (417)
m'T Syt g8 L yre. gl et gl Yk € Qg (418)
m'g‘im <y eme -gg + Vi€ 'QI? —ppemex 'gg Vk € Qgpy (419)

8.2.1.4.2 Curtailable generators with no control over the active power output

As indicated in chapter 4, generation curtailment is considered to be a discrete
decision in the proposed formulation: the generator at bus k will be considered to be
either energized (t, = 0) or de-energized (7, = 1). Therefore, it is necessary to ensure
that, if the generator connected to bus k is curtailed, I75 and 1) will be forcefully set to

ZEro.

In order to do that, the auxiliary variables 175 and )%, which correspond to the
values of the generator currents “before generation curtailment is taken into account”,

are defined. Also, disjunctive constraints that ensure that ;5 = 5 and IJ% = I

when 7, = 0, but that I35 = 0 and Ié’_’}c = 0 when 1, = 1, will be incorporated to the
alternative MILP formulation. Before doing that, it is necessary to deal with the

initi ili i re im
definition of the auxiliary variables I, and ;7.
This is done by defining the auxiliary variables £]5"¢, f7 o™, £, and £,

and utilizing equations analogous to (388) to (395) to ensure that these auxiliary
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variables correspond, respectively, to approximations of the products I,% - u;°,

L% pim, ;,'7( uit and Ilk pi™. After that, the following equations are defined:

fre s fre am — - gr + m'Q e Vk € {Qcrre N Qcyrr}  (420)
f”” e f”” m — cgb —m'dT Vk € {Qcrrg N Qcurr}  (421)
Q,re

where the auxiliary decision variables m';"" and m’Q ™ have already been defined
— see equations (412) to (419).

Finally, the following disjunctive constraints ensure that I;% = % and

g,k
= I when 7, = 0, but that 5, = 0 and I = 0 when 7, = 1:
MO T S 1T — I8 < MPT? 1y,
Vk € {Qcrre N Qcurr) (422)

M™% (1 =) SIS < M™% - (1 —13)

Vk € {Qcrro N Qcyrr) (423)
MO 1 < I~ 14 < MO,

Vk € {Qcrro N Qcyrr) (424)
Mg (L= 1) < Ik < Mg (1= 1)

Vk € {Qcrro N Qcyrr) (425)

where:

M}g,re,l : MG,Te,Z ;MG,re,B ; MG,re,4 ; MG,im,l : MG,im,Z : MG,im,3 .MG,im,4

Disjunctive constants, whose definition will not be dealt with here, for the

sake of conciseness.

8.2.1.4.3 Generators with control over the active power output

In order to model these generators, it suffices to define the auxiliary variables
for' € fgr,i'im fok imre and fok fm,im and use equations analogous to (388) to (395) to ensure

that these auxiliary variables correspond, respectively, to approximations of the

236



products 175 - uk®, 155 - ui™, 1% - uie and I - ui™. After that, the following equations

g
are defined:

g

re,re re,im __ P,re Q,re
A e U Yk € Qcrrpg (427)
where the auxiliary variables m'%"® and m'®'™ have already been defined, and:

m'bre Auxiliary decision variable for modeling the product V¢ - gF;
m",:'im Auxiliary decision variable for modeling the product V™ - g¥.

The following constraints are then employed to bound the auxiliary decision

variables m”,:'re and m”,:'im within the convex envelope of the original products:
m'pTe = VT gl + Ve - g — Vo™ gf Yk € Qcrrpg  (428)
m'pTe > Ve gk yvre g —viemer . g, ik € Qcrppe  (429)
m'pTe S VIOt gk y e g, — Vo™t go Yk € Qcrrpg (430)
mpTe S VIO g + V- gf — Vo™ g Vk € Qcrrpg (431)
m'p = VI gR e gR = VT g Yk € Qcrrpg  (432)
m/pm > yImma . gk g yim . gP — yimmex. g Yk € Qcrrpg (433)
m/pim < yImmin . gk g yim g — yimmin . g7 Yk € Qcrppe (434)
m'p T S VI g L VI gf — VT gl Yk € Qcrrpg  (435)

8.2.1.5 Voltage reference buses
The alternative formulation requires no modifications to the constraints

(145)-(148) presented in subsection 4.2.1.5, which may thus be promptly incorporated
to the alternative MILP reformulation of the ACOPF in distribution systems.
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8.2.1.6 Slack buses and buses without generators and/or loads

The alternative formulation requires no modifications to the constraints
presented in subsection 4.2.1.6, which may thus be promptly incorporated to the

alternative MILP reformulation of the ACOPF in distribution systems.

8.2.1.7 Radiality constraints

The alternative formulation requires no modifications to the constraints
presented in subsection 4.2.1.7, which may thus be promptly incorporated to the

alternative MILP reformulation of the ACOPF in distribution systems.

8.2.2 Objective functions for selected distribution system
operations and expansion planning applications

8.2.2.1 Minimization of costs of load shedding

The alternative formulation requires no modifications to the objective function
presented in subsection 4.2.2.1, which can therefore be promptly employed with the

alternative MILP reformulation of the ACOPF in distribution systems.

8.2.2.2 Minimization of curtailment of non-controllable generation

The alternative formulation requires no modifications to the objective function
presented in subsection 4.2.2.2, which can therefore be promptly employed with the

alternative MILP reformulation of the ACOPF in distribution systems.

8.2.2.3 Minimization of generation costs
The alternative formulation requires no modifications to the objective function

presented in subsection 4.2.2.3, which can therefore be promptly employed with the

alternative MILP reformulation of the ACOPF in distribution systems.

238



8.2.2.4 Minimization of costs of power imports

If the magnitudes of the bus voltages at the buses at the interface with the

external system, Vkref V k € Q;rpc, are parameters of the optimization problem,
equation (199) of section 4.2.2.4 may be promptly used in the alternative MILP
reformulation of the ACOPF for distribution systems.

However, if this voltage magnitude is to be considered as a decision variable, it
would be required to obtain approximations of the decision variables V, V k € Q7pc,
before modeling the objective function related to the minimization of the costs of power
imports. The reader will notice that, in the alternative MILP formulation presented in
this chapter, the bounds on bus voltage magnitudes were enforced via the constraint
(V)? < ul? + ui™ < (V)? — see equation (358) of section 8.2.1.2.1. Thus, no
approximation of the bus voltage magnitudes, V,, has yet been defined for the
alternative MILP reformulation. The investigation of the alternative MILP
reformulation presented in this chapter has been interrupted before any approximations
for V, were defined, and therefore no formulation of the objective function of
minimization of the costs of power imports has been defined for the case in which the
voltage magnitude at the interfaces with the external system are considered as decision

variables.

8.2.2.5 Minimization of costs of ohmic losses

In section 4.2.2.5, two alternative formulations of the objective function for the
problem of minimization of ohmic losses have been defined.

The formulation of the objective function corresponding to equation (215) may
be modified for its use with the alternative MILP reformulation of the ACOPF, as
follows:

It is necessary to recall that the investigation of the alternative MILP
reformulation presented in this chapter has been interrupted before
constant-current loads had been treated. Therefore, it is necessary to
remove the terms that relate to loads of the constant-current type from
equation (215).

239



Also, the formulation of the objective function corresponding to equation (225)
may be modified for its use within the alternative MILP reformulation of the ACOPF,
as follows:

First, it is necessary to remove the terms that relate to loads of the
constant-current type from equation (225), as the investigation of the
alternative MILP reformulation presented in this chapter has been
interrupted before these loads had been treated.

Then, it is necessary to recall the approximation p, = pké + ui™ = V.
has already been defined for the alternative MILP reformulation
presented in this chapter. This term, which is employed in several
equations of section 4.2.2.5, will be readily available when the
alternative MILP reformulation is used.

8.2.2.6  Minimization of costs of reinforcements to the distribution system

The alternative formulation requires no modifications to the objective function
presented in subsection 4.2.2.6, which can therefore be promptly employed with the
alternative MILP reformulation of the ACOPF in distribution systems.

8.2.2.7 Minimization of costs of capacitor placement

The alternative formulation requires no modifications to the objective function
presented in subsection 4.2.2.7, which can therefore be promptly employed with the
alternative MILP reformulation of the ACOPF in distribution systems.

8.2.2.8 Minimization of circuit switching costs
The alternative formulation requires no modifications to the objective function

presented in subsection 4.2.2.8, which can therefore be promptly employed with the
alternative MILP reformulation of the ACOPF in distribution systems.
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9 APPENDIX C: PIECEWISE-LINEAR
APPROXIMATIONS OF GENERATOR
CURRENTS

Constraints used for obtaining the currents injected into the network by
generators have been presented in section 4.2.1.2 of this dissertation. The constraints
presented in section 4.2.1.2 employ McCormick’s envelopes to reformulate (and
approximate) products of two decision variables. As discussed in previous sections of
this dissertation, it is not possible to achieve an arbitrarily accurate approximation of
bilinear products when McCormick’s envelopes are used — the approximation accuracy
is implicitly dictated by the bounds on the continuous variables that form the products.

However, it is possible to employ alternative formulations of the constraints
used for obtaining the generator currents, completely eliminating the need to employ
McCormick’s envelopes. This alternative formulation is based in constructing
piecewise-linear approximations of the generator currents with help of SOS2. This
allows the user to arbitrate the accuracy of the approximation of the generation currents
while determining the number and location of the evaluation points. However, it should
be kept in mind that enhancing the accuracy of the piecewise-linear approximation by
augmenting the number of evaluation points may result in additional computational
requirements.

The alternative formulation for the constraints used for obtaining the generator
currents are presented in the following sections. Section 9.1 deals with the generators
with no control over their active power output, whereas generators that do control their

active power output are treated in section 9.2.

9.1 Generators with no control over the active power
output

The formulation presented below is based on treating the generator currents
I7¢ and I as functions of three decision variables — i.e., I7%(Vye,Vim, g?2) and

;’,ﬁ(vre, v, g,‘f) — and then constructing piecewise-linear approximations of these
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functions with help of SOS2. In order to better understand why the currents of
generators with no control over the active power output may be treated as functions of
three (continuous) decision variables, the reader may refer to the following equations,
which correspond to equations (75) and (76) of section 4.2.1.2.1:

ve = (Vie - gf +vim - g)/ (Ve + Vi) Wk € {(Qcrrg N Qwcer) (436)

= (vim - gk = vie - g)/ (ViR + Vi) Wk € {(Qcrrg N Qcrr) (437)

It is clear that, as g% is a fixed value (a parameter) for generators that do not
control their active power output, I7¢ and IZs are functions of three decision variables.
In the following, the constraints used for constructing piecewise-linear approximations

of these functions are presented:

'ire,r,s,i r(?(
i k 9,
Yrerre Lserim Niete 0 f?m,r,s,i] = [Iiml V k € {Qcrro N Qncrr)  (438)
"9,k gk
e e
Yrerre Lserim Miete O v = | Vke {-QCTRQ n QNCRT} (439)
AQ,i Q
[ Gk 9k
Yrerre Lserim Niete 0 =1 Vke€ {'QCTRQ N QNCRT} (440)
where:
T¢ Set of indices for evaluation points g,?"’ and associated variables;
g,‘f’i Evaluation points of reactive power output of generator at bus k;
7St Evaluated values of function 176 (Vi®, V™, g2), for bus k;

It Evaluated values of function IZ7% (Vir®, Vi, g2), for bus k;

1,5,0

Ok Weights for constructing piecewise-linear approximation of non-convex,

non-linear functions.

Zrepre dl; == 1 ,V k € {‘Q‘CTRQ N QNCRT} (441)

ot < di} Vs €T i €Tk € {Qcrpg N Uncrr) (442)
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Q,C“ <di; ' +d1

Vre{l™\{1}},s eT"™,i €T k € {Qcrro N Uncrr} (443)
Yoepimd2; =1 Y k € {Qcrro N Qycrr} (444)
ot < d2} V1 EeT™,i €Tk € {Qcrrg N Uncrr) (445)
o™t < d2it + d2y,

Vrerse{rm™(1}},i € T%k € {Qcrrg N Qycrr) (446)
Yiered3i =1 Y k € {Qcrro N Qncrr} (447)
ot < d3} V1 el sel™k e {Qcrre N Uvcrr} (448)

op* < d37t + d3j,
Vrerlmsel™ie{TO\{1}},k € {Qcrro N Uncrr} (449)

where d1%, d25 and d3}, are auxiliary binary decision variables.

9.2 Generators with control over the active power output

The formulation presented below is based on treating the generator currents
I7¢ and I'™ as functions of four decision variables — i.e., I7% (Vi Vi™, g2, g%) and
(V’”e, vim, gk, gF) — and then constructing piecewise-linear approximations of these

functions with help of SOS2. In order to better understand why the currents of
generators with control over the active power output are treated as functions of four
decision variables, the reader may refer to the following equations, which correspond to
equations (98) and (99) of section 4.2.1.2.3:

ve = (Vi gf +vim - g2)/(Vie? + Vim*) k€ Qcrarg (450)

o = (W™ -gQ)/(Vie? + Vim*) VK € Qerreg (451)

In the following, the constraints used for constructing piecewise-linear

approximations of I;% and I ”?( are presented:
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2irerre Lserim Liet0 ZJETP 0

Zrerre Zser‘lm ZleTQ ZJETP O

Yirerre Lserim MieT@ Z}ETP O

r,S5,0,j
k

r,S5,0,j

L Ik
L 1

"‘TeTSlj

"lmTSl]] [ l VkE€ QCTRPQ

—V’:er k _l

im,s
Vk

~Q,i
Ik

AP]J

|V,§m|
= [ Q } ,V ke QCTRPQ
P

Ik

,V k € QCTRPQ

where:

T? Set of indices for evaluation points g,’: 7 and associated variables;

g,’:’j Evaluation points of active power output of generator at bus k;

5rs Evaluated values of function 176 (Vie, V™, g2, gk ). for bus k;

I Evaluated values of function I k(V vim g2, gk), for bus k;

o Weights for constructing piecewise-linear approximation of non-convex,

non-linear functions.

Serre d1], = 1

1,5,i,j 1
o S dly

,V k E QCTRPQ
Vsel™ieT?jeTr ke Qerppo
o> < d17 + d1;

Vre{l™\{1}},s eT™ i e T j € T", k € Qcrrpg
ZSEFim dzlsc =1

r,1,i,j 1
o =d2

Y k € Qcrrpg
Vrel™,ieTejeT k€ Qcrrpg
o < d2gt + d2;,

Vrerlres
DieTO d3;'< =1

oy < a3

e {rm(1}},i € T € T, k € Qerreg
,V k € QCTRPQ
Vrel™sel™jeTP k€ Qcrrpg
op " < d3i7t + d3},
Vrelmsel™ie{TO\{1}},j € T",k € Qcrrpg

ZjETP d4‘i = 1 ,V k € QCTRPQ
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(452)

(453)

(454)

(455)
(456)

(457)
(458)

(459)

(460)
(461)
(462)

(463)
(464)



ot < dal Y1 eT™ s el™jeT’ k€ Qcrppg (465)
o < dal™ + da)

Vrelmsel™ieT?je{TP\{13}k € Qcrrpg (466)

where d1%, d25, d3% and d4%, are auxiliary binary decision variables.
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