AGRUPAMENTO DE SÉRIES TEMPORAIS DE VENTO PARA AVALIAÇÃO DA DISPONIBILIDADE DE GERAÇÃO DE USINAS EÓLICAS

Tatiana Araújo de Souza

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DA COORDENAÇÃO DOS PROGRAMAS DE PÓS-GRADUAÇÃO DE ENGENHARIA DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE MESTRE EM CIÊNCIAS EM ENGENHARIA ELÉTRICA

Aprovada por:	
	Prof. Alexandre Pinto Alves da Silva, Ph.D.
	Prof. Carmen Lucia Tancredo Borges, D.Sc.
	Prof. Marcus Theodor Schilling, D.Sc.
	Prof. Luiz Pereira Calôba, D.Ing.

RIO DE JANEIRO, RJ - BRASIL MARÇO DE 2008

SOUZA, TATIANA ARAÚJO DE

Agrupamento de Séries Temporais de Vento para Avaliação da Disponibilidade de Geração de Usinas Eólicas [Rio de Janeiro] 2008

XXIII, 170 p. 29,7 cm (COPPE/UFRJ, M.Sc., Engenharia Elétrica, 2008)

Dissertação - Universidade Federal do Rio de Janeiro, COPPE

- 1. Confiabilidade de usinas eólicas
- 2. Agrupamento de dados
 - I. COPPE/UFRJ II. Título (Série)

Dedico este trabalho a minha família e ao meu namorado.

AGRADECIMENTOS

A Deus, por ter me dado serenidade e confiança para enfrentar os obstáculos.

Aos Profs. Carmen Lucia Tancredo Borges e Alexandre Pinto Alves da Silva, pela aceitação do convite para a orientação e pelas críticas construtivas ao longo da pesquisa.

A minha família, por sempre ter acreditado na minha capacidade e ter me dado suporte nos momentos mais difíceis.

Ao Thiago, meu namorado, pelo apoio e carinho.

Aos amigos de laboratório que de alguma forma me ajudaram ao longo da pesquisa, em especial Suzana, Waltencir e Helio.

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

AGRUPAMENTO DE SÉRIES TEMPORAIS DE VENTO PARA AVALIAÇÃO DA DISPONIBILIDADE DE GERAÇÃO DE USINAS EÓLICAS

Tatiana Araújo de Souza

Março/2008

Orientadores: Alexandre Pinto Alves da Silva Carmen Lucia Tancredo Borges

Programa: Engenharia Elétrica

Este trabalho se propõe a identificar técnicas para reduzir a quantidade de estados de vento necessários para a modelagem do comportamento do vento, sem que haja perda de representatividade da série original, a fim de diminuir o esforço computacional nos estudos de confiabilidade da geração eólica. A redução dos estados de vento pode ser obtida pelo emprego de técnicas de agrupamento, como K-Means e Fuzzy C-Means. Numa primeira análise, é realizado o agrupamento univariável, ou seja, a série original unidimensional é utilizada como entrada do algoritmo. Numa segunda análise, a série original é dividida em várias sequências de 6 valores e a matriz formada por estas sequências é usada como entrada do algoritmo para que seja feito o agrupamento multivariável. O objetivo da segunda análise é tentar captar a dinâmica do vento num período de 1 hora. São testados vários números de agrupamentos para algumas séries de velocidade do vento coletadas em pontos diferentes do Brasil. Tanto os resultados do agrupamento univariável quanto do multivariável são utilizados no estudo da confiabilidade de usinas eólicas, para as quais são calculados diferentes índices de confiabilidade (IWP, IWE, EAWE, EGWE e WGAF). Os resultados dos índices obtidos a partir das séries agrupadas são comparados aos índices da série original para que seja feita a avaliação da qualidade dos agrupamentos.

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the requirements for the degree of Master of Science (M.Sc.)

WIND TIME SERIES CLUSTERING FOR ESTIMATION OF WIND FARMS GENERATION AVAILABILITY

Tatiana Araújo de Souza

March/2008

Advisors: Alexandre Pinto Alves da Silva Carmen Lucia Tancredo Borges

Department: Electrical Enginnering

This work has the purpose to identify clustering techniques that can reduce the number of states of wind which are necessary for modelling the behavior of the wind, without loosing the representability of the original series, in order to decrease the computational effort in reliability studies of wind farms. The reduction of the states of wind can be obtained by using clustering techniques, such as K-Means and Fuzzy C-Means. First, the univariate clustering is done, which means that the original series is used as input of the algorithm. Second, the original series is divided into subseries, each one containing 6 values, and the matrix formed by these subseries is the input of the algorithm, so that the multivariate clustering can be done. The goal of this clustering is to catch the behaviour of the wind in one hour period. Several numbers of clusterings are tested for some wind time series collected in different places of Brazil. Both the results of univariate and multivariate clusterings are used in wind farms reliability studies, for which different reliability indexes are calculated (IWE, IWP, EAWE, EGWE e WGAF). The results of the reliability indexes for these new series obtained by clustering techniques are compared with original serie's reliability indexes in order to evaluate the quality of these partitions.

Sumário

1	Intr	odução 1
	1.1	Motivação
	1.2	Objetivos
	1.3	Revisão Bibliográfica
	1.4	Contribuições do Trabalho
	1.5	Estrutura
2	Téc	nicas de Agrupamento de Dados 13
	2.1	K-Means (Hard Clustering)
	2.2	Fuzzy C-Means (Soft Clustering)
	2.3	Mapa Auto-Organizável de Kohonen (<i>Hard Clustering</i>)
3	Dis	ponibilidade de Geração de Usinas Eólicas 31
	3.1	Modelagem do comportamento do vento
	3.2	Resumo das etapas restantes do Modelo
		3.2.1 Curva de Duração
	3.3	Cálculo dos índices
4	Inve	estigação do Desempenho das Técnicas de Agrupamento 39
	4.1	Agrupamento Univariável
		4.1.1 K-Means
		4.1.2 Fuzzy C-Means
		4.1.3 Mapa Auto-Organizável de Kohonen
		4.1.4 Avaliação das Técnicas de Agrupamento
	4.2	Agrupamento Multivariável
	4.3	Índices Comparativos

5	Res	ultado	s s	53
	5.1	Base of	de Dados	53
	5.2	Aplica	ação dos Resultados dos Agrupamentos no Modelo de Confiabilidade	56
		5.2.1	Agrupamento Univariável	57
		5.2.2	Agrupamento Multivariável	85
	5.3	Tempo	o de Simulação	91
		5.3.1	Agrupamento Univariável	92
		5.3.2	Agrupamento Multivariável	98
	5.4	Síntes	e dos Resultados	100
6	Con	clusõe	es e Trabalhos Futuros	103
A	Cur	va da	Turbina 1	106
В	Cen	tróide	s Finais	107
	B.1	Agrup	amento Univariável	107
		B.1.1	Série Nordeste	107
		B.1.2	Série Sudeste	
		B.1.3	Série Sul	112
	B.2	Agrup	pamento Multivariável	115
		B.2.1	Série Nordeste	115
		B.2.2	Série Sudeste	117
		B.2.3	Série Sul	119
\mathbf{C}	Índi	ices de	e Desempenho Obtidos pelo Modelo	122
	C.1	Agrup	pamento Univariável	122
		C.1.1	Série Nordeste	122
		C.1.2	Série Sudeste	129
		C.1.3	Série Sul	136
	C.2	Agrup	pamento Multivariável	142
		C.2.1	Série Nordeste	142
		C.2.2	Série Sudeste	144
		C.2.3	Série Sul	145
D	Índi	ices Co	omparativos 1	147
	D.1	Agrup	pamento Univariável	147
		D 1 1	Relação entre Áreas	1/17

Referê	ncias I	Bibliográficas	166
	D.2.3	Relação entre Índices EGWE	. 164
	D.2.2	Relação entre Índices EAWE	. 164
	D.2.1	Relação entre Áreas	. 163
D.2	Agrup	amento Multivariável	. 163
	D.1.3	Relação entre Índices EGWE	. 155
	D.1.2	Relação entre Indices EAWE	. 154

Lista de Figuras

1.1	Atlas do Potencial Eólico Brasileiro	2
1.2	Diagrama de blocos de um sistema eólico	3
2.1	Representação dos grupos por pontos	17
2.2	Representação dos grupos por uma árvore de decisão ou por expressões	
	lógicas	18
2.3	Exemplo de agrupamento do K-Means	21
2.4	Dados Originais	22
2.5	K-Means(3 Grupos)	22
2.6	Dados Originais	23
2.7	K-Means(3 Grupos)	23
2.8	Dados Originais	23
2.9	K-Means(2 Grupos)	23
2.10	Exemplo de agrupamento do Fuzzy C-Means	24
2.11	Conexões entre o vetor de entrada e os neurônios $\dots \dots \dots$	27
2.12	Distribuição dos 1000 pontos	28
2.13	Mapa de Kohonen Após 10 Épocas	28
2.14	Mapa de Kohonen Após 500 Épocas	28
2.15	Mapa de Kohonen Após 1000 Épocas	28
3.1	Esquema da utilização do Modelo	31
3.2	Cadeia de Markov para o comportamento do vento	33
3.3	Curva de potência de uma turbina	34
3.4	Diagrama de transição entre estados	35
3.5	Exemplo de Curva de Duração para 3 Estados de Vento	36
4.1	Série temporal	40
4.2	Série ordenada dividida em duas subséries com as suas respectivas médias	41
4.3	Série temporal	42

4.4	Série ordenada dividida em dois intervalos com as suas respectivas médias	43
4.5	Série temporal e série agrupada	47
4.6	Série temporal e série agrupada	48
4.7	Série de vento dividida em duas sequências	49
5.1	Série Nordeste	53
5.2	Série Sudeste	54
5.3	Série Sul	54
5.4	Histograma da Série Nordeste	55
5.5	Histograma da Série Sudeste	55
5.6	Histograma da Série Sul	56
5.7	Série Nordeste - Centróides Finais - K-Means inicializada por	
	Ordenação por realizações	58
5.8	Série Nordeste - Centróides Finais - K-Means inicializada por	
	Ordenação por valor	58
5.9	Série Nordeste - Centróides Finais - Fuzzy C-Means	58
5.10	Série Nordeste - Centróides Finais - Ordenação por realizações $\ .\ .\ .\ .$	58
5.11	Série Nordeste - Centróides Finais - Ordenação por valor $\ \ldots \ \ldots \ \ldots$	58
5.12	Série Sudeste - Centróides Finais - K-Means inicializada por Ordenação	
	por realizações	59
5.13	Série Sudeste - Centróides Finais - K-Means inicializada por Ordenação	
	por valor	59
5.14	Série Sudeste - Centróides Finais - Fuzzy C-Means	59
5.15	Série Sudeste - Centróides Finais - Ordenação por realizações	59
5.16	Série Sudeste - Centróides Finais - Ordenação por valor	59
5.17	Série Sul - Centróides Finais - K-Means inicializada por Ordenação por	
	realizações	60
5.18	Série Sul - Centróides Finais - K-Means inicializada por Ordenação por	
	valor	60
5.19	Série Sul - Centróides Finais - Fuzzy C-Means	60
5.20	Série Sul - Centróides Finais - Ordenação por realizações	60
5.21	Série Sul - Centróides Finais - Ordenação por valor	60
5.22	Relações entre Áreas da Série Nordeste - 1 Turbina	62
5.23	Relações entre Áreas da Série Nordeste - 10 Turbinas	62
5.24	Relações entre Áreas da Série Nordeste - 20 Turbinas	63

5.25	Relações entre Areas da Série Nordeste - 30 Turbinas	63
5.26	Relações entre Áreas da Série Sudeste - 1 Turbina	64
5.27	Relações entre Áreas da Série Sudeste - 10 Turbinas	65
5.28	Relações entre Áreas da Série Sudeste - 20 Turbinas	65
5.29	Relações entre Áreas da Série Sudeste - 30 Turbinas	66
5.30	Curva de duração da Série Sudeste para 3 Estados de Vento Obtidos	
	pela Técnica K-Means inicializada por Ordenação por realizações - 1	
	Turbina	67
5.31	Curva de duração da Série Sudeste para 3 Estados de Vento Obtidos	
	pela Técnica K-Means inicializada por Ordenação por realizações - 10	
	Turbinas	68
5.32	Relações entre Áreas da Série Sul - 1 Turbina	70
5.33	Relações entre Áreas da Série Sul - 10 Turbinas $\ \ldots \ \ldots \ \ldots \ \ldots$	70
5.34	Relações entre Áreas da Série Sul - 20 Turbinas $\ \ldots \ \ldots \ \ldots \ \ldots$	71
5.35	Relações entre Áreas da Série Sul - 30 Turbinas	71
5.36	Relações entre Índices EAWE da Série Nordeste	74
5.37	Relações entre Índices EAWE da Série Sudeste	74
5.38	Relações entre Índices EAWE da Série Sul	75
5.39	Relações entre Índices EGWE da Série Nordeste - 1 Turbina $\ \ldots \ \ldots$	77
5.40	Relações entre Índices EGWE da Série Nordeste - 10 Turbinas	78
5.41	Relações entre Índices EGWE da Série Nordeste - 20 Turbinas	78
5.42	Relações entre Índices EGWE da Série Nordeste - 30 Turbinas	79
5.43	Relações entre Índices EGWE da Série Sudeste - 1 Turbina	80
5.44	Relações entre Índices EGWE da Série Sudeste - 10 Turbinas	80
5.45	Relações entre Índices EGWE da Série Sudeste - 20 Turbinas	81
5.46	Relações entre Índices EGWE da Série Sudeste - 30 Turbinas	81
5.47	Relações entre Índices EGWE da Série Sul - 1 Turbina	82
5.48	Relações entre Índices EGWE da Série Sul - 10 Turbinas	83
5.49	Relações entre Índices EGWE da Série Sul - 20 Turbinas	83
5.50	Relações entre Índices EGWE da Série Sul - 30 Turbinas	84
5.51	Relações entre Áreas da Série Nordeste - Multivariável	86
5.52	Relações entre Áreas da Série Sudeste - Multivariável	86
5.53	Relações entre Áreas da Série Sul - Multivariável	87
5.54	Relações entre Índices EAWE da Série Nordeste - Multivariável	88
5.55	Relações entre Índices EAWE da Série Sudeste - Multivariável	89

5.56	Relações entre Índices	EAWE da Séri	e Sul - Multivariável	 89
5.57	Relações entre Índices	EGWE da Sér	ie Nordeste - Multivariável	 90
5.58	Relações entre Índices	EGWE da Sér	ie Sudeste - Multivariável .	 90
5.59	Relações entre Índices	EGWE da Sér	ie Sul - Multivariável	 91

Lista de Tabelas

4.1	Centróides Finais da Série Nordeste	45
4.2	Somatório das Distâncias Intra-grupos da Série Nordeste	46
4.3	Exemplo de Centróides Finais - 3 Grupos - Agrupamento Multivariável	50
5.1	Dados Estatísticos das Séries de Velocidade do Vento	56
5.2	Dados da Turbina	57
5.3	Taxas da Turbina	57
5.4	Estados de vento e potências de saída da turbina obtidos pela Técnica	
	$\operatorname{K-Means}$ inicializada por Ordenação por realizações para a Série Sudeste	66
5.5	Estados de geração e suas probabilidades obtidos pela Técnica K-Means	
	inicializada por Ordenação por realizações para a Série Sudeste - 1	
	Turbina	67
5.6	Estados de geração e suas probabilidades obtidos pela Técnica K-Means	
	inicializada por Ordenação por realizações para a Série Sudeste - 10	
	Turbinas	68
5.7	Erro Absoluto da Série Nordeste	72
5.8	Erro Absoluto da Série Sudeste	73
5.9	Erro Absoluto da Série Sul	73
5.10	Tempo de Simulação do K-Means inicializado por Ordenação por	
	realizações para a Série Nordeste	93
5.11	Tempo de Simulação do K-Means inicializado por Ordenação por valor	
	para a Série Nordeste	94
5.12	Tempo de Simulação do Fuzzy C-Means para a Série Nordeste	95
5.13	Tempo de Simulação da Ordenação por realizações para a Série Nordeste	96
5.14	Tempo de Simulação da Ordenação por valor para a Série Nordeste	97
5.15	Tempo de Simulação do K-Means para a Série Nordeste - Multivariável	99
5.16	Número de Estados da Série Nordeste - Relação entre Áreas	101
5.17	Número de Estados da Série Nordeste - Relação entre EAWE's	101

5.18	Número de Estados da Série Nordeste - Relação entre EGWE's 101
5.19	Tempo Necessário da Série Nordeste - Relação entre Áreas 102 $$
5.20	Tempo Necessário da Série Nordeste - Relação entre EAWE's 102
5.21	Tempo Necessário da Série Nordeste - Relação entre EGWE's 102
A.1	Curva de potência da turbina
B.1	Centróides Finais da Série Nordeste - 3 Estados de vento
B.2	Dispersão da Série Nordeste - 3 Estados de vento
В.3	Centróides Finais da Série Nordeste - 5 Estados de vento $\ \ldots \ \ldots \ \ldots \ 108$
B.4	Dispersão da Série Nordeste - 5 Estados de vento
B.5	Centróides Finais da Série Nordeste - 7 Estados de vento
B.6	Dispersão da Série Nordeste - 7 Estados de vento
B.7	Centróides Finais da Série Nordeste - 8 Estados de vento
B.8	Dispersão da Série Nordeste - 8 Estados de vento
B.9	Centróides Finais da Série Sudeste - 3 Estados de vento
B.10	Dispersão da Série Sudeste - 3 Estados de vento
B.11	Centróides Finais da Série Sudeste - 5 Estados de vento
B.12	Dispersão da Série Sudeste - 5 Estados de vento
B.13	Centróides Finais da Série Sudeste - 7 Estados de vento
B.14	Dispersão da Série Sudeste - 7 Estados de vento
B.15	Centróides Finais da Série Sudeste - 8 Estados de vento
B.16	Dispersão da Série Sudeste - 8 Estados de vento
B.17	Centróides Finais da Série Sul - 3 Estados de vento
B.18	Dispersão da Série Sul - 3 Estados de vento
B.19	Centróides Finais da Série Sul - 5 Estados de vento
B.20	Dispersão da Série Sul - 5 Estados de vento
B.21	Centróides Finais da Série Sul - 7 Estados de vento
B.22	Dispersão da Série Sul - 7 Estados de vento
B.23	Centróides Finais da Série Sul - 8 Estados de vento
B.24	Dispersão da Série Sul - 8 Estados de vento
B.25	Centróides Finais da Série Nordeste - Multivariável - 3 Estados de vento115
B.26	Dispersão da Série Nordeste - Multivariável - 3 Estados de vento 115
B.27	Centróides Finais da Série Nordeste - Multivariável - 4 Estados de vento115
B.28	Dispersão da Série Nordeste - Multivariável - 4 Estados de vento 115
B 29	Centróides Finais da Série Nordeste - Multivariável - 5 Estados de vento 116

B.30	Dispersão da Série Nordeste - Multivariável - 5 Estados de vento 116
B.31	Centróides Finais da Série Nordeste - Multivariável - 6 Estados de vento116
B.32	Dispersão da Série Nordeste - Multivariável - 6 Estados de vento 117
B.33	Centróides Finais da Série Sudeste - Multivariável - 3 Estados de vento 117
B.34	Dispersão da Série Sudeste - Multivariável - 3 Estados de vento \dots 117
B.35	Centróides Finais da Série Sudeste - Multivariável - 4 Estados de vento 117
B.36	Dispersão da Série Sudeste - Multivariável - 4 Estados de vento 118
B.37	Centróides Finais da Série Sudeste - Multivariável - 5 Estados de vento 118
B.38	Dispersão da Série Sudeste - Multivariável - 5 Estados de vento $$ 118
B.39	Centróides Finais da Série Sudeste - Multivariável - 6 Estados de vento 119
B.40	Dispersão da Série Sudeste - Multivariável - 6 Estados de vento 119
B.41	Centróides Finais da Série Sul - Multivariável - 3 Estados de vento 119 $$
B.42	Dispersão da Série Sul - Multivariável - 3 Estados de vento
B.43	Centróides Finais da Série Sul - Multivariável - 4 Estados de vento 120
B.44	Dispersão da Série Sul - Multivariável - 4 Estados de vento
B.45	Centróides Finais da Série Sul - Multivariável - 5 Estados de vento 120
B.46	Dispersão da Série Sul - Multivariável - 5 Estados de vento
B.47	Centróides Finais da Série Sul - Multivariável - 6 Estados de vento 121
B.48	Dispersão da Série Sul - Multivariável - 6 Estados de vento
C.1	Índices de Desempenho da Série Nordeste com 1 Turbina Obtidos pela
0.1	Técnica K-Means inicializada por Ordenação por realizações 122
C_2	Índices de Desempenho da Série Nordeste com 10 Turbinas Obtidos
0.2	pela Técnica K-Means inicializada por Ordenação por realizações 123
C.3	Índices de Desempenho da Série Nordeste com 20 Turbinas Obtidos
0.5	pela Técnica K-Means inicializada por Ordenação por realizações 123
C.4	Índices de Desempenho da Série Nordeste com 30 Turbinas Obtidos
0.4	pela Técnica K-Means inicializada por Ordenação por realizações 123
C.5	Índices de Desempenho da Série Nordeste com 1 Turbina Obtidos pela
0.0	Técnica K-Means inicializada por Ordenação por valor
C.6	Índices de Desempenho da Série Nordeste com 10 Turbinas Obtidos
O.0	pela Técnica K-Means inicializada por Ordenação por valor
C.7	Índices de Desempenho da Série Nordeste com 20 Turbinas Obtidos
O.1	pela Técnica K-Means inicializada por Ordenação por valor
	pera reemea is-means inicianzada por Ordenação por vaior124

C.8	Indices de Desempenho da Série Nordeste com 30 Turbinas Obtidos	
	pela Técnica K-Means inicializada por Ordenação por valor	. 125
C.9	Índices de Desempenho da Série Nordeste com 1 Turbina Obtidos pela	
	Técnica Fuzzy C-Means	. 125
C.10	Índices de Desempenho da Série Nordeste com 10 Turbinas Obtidos	
	pela Técnica Fuzzy C-Means	. 125
C.11	Índices de Desempenho da Série Nordeste com 20 Turbinas Obtidos	
	pela Técnica Fuzzy C-Means	. 126
C.12	Índices de Desempenho da Série Nordeste com 30 Turbinas Obtidos	
	pela Técnica Fuzzy C-Means	. 126
C.13	Índices de Desempenho da Série Nordeste com 1 Turbina Obtidos pela	
	Técnica Ordenação por realizações	. 126
C.14	Índices de Desempenho da Série Nordeste com 10 Turbinas Obtidos	
	pela Técnica Ordenação por realizações	. 127
C.15	Índices de Desempenho da Série Nordeste com 20 Turbinas Obtidos	
	pela Técnica Ordenação por realizações	. 127
C.16	Índices de Desempenho da Série Nordeste com 30 Turbinas Obtidos	
	pela Técnica Ordenação por realizações	. 127
C.17	Índices de Desempenho da Série Nordeste com 1 Turbina Obtidos pela	
	Técnica Ordenação por valor	. 128
C.18	Índices de Desempenho da Série Nordeste com 10 Turbinas Obtidos	
	pela Técnica Ordenação por valor	. 128
C.19	Índices de Desempenho da Série Nordeste com 20 Turbinas Obtidos	
	pela Técnica Ordenação por valor	. 128
C.20	Índices de Desempenho da Série Nordeste com 30 Turbinas Obtidos	
	pela Técnica Ordenação por valor	. 129
C.21	Índices de Desempenho da Série Sudeste com 1 Turbina Obtidos pela	
	Técnica K-Means inicializada por Ordenação por realizações $\ .\ .\ .\ .$. 129
C.22	Índices de Desempenho da Série Sudeste com 10 Turbinas Obtidos pela	
	Técnica K-Means inicializada por Ordenação por realizações $\ .\ .\ .\ .$. 129
C.23	Índices de Desempenho da Série Sudeste com 20 Turbinas Obtidos pela	
	Técnica K-Means inicializada por Ordenação por realizações	. 130
C.24	Índices de Desempenho da Série Sudeste com 30 Turbinas Obtidos pela	
	Técnica K-Means inicializada por Ordenação por realizações	. 130

C.25	Indices de Desempenho da Série Sudeste com 1 Turbina Obtidos pela	
	Técnica K-Means inicializada por Ordenação por valor $\ \ldots \ \ldots \ \ldots$. 130
C.26	Índices de Desempenho da Série Sudeste com 10 Turbinas Obtidos pela	
	Técnica K-Means inicializada por Ordenação por valor $\ \ldots \ \ldots \ \ldots$. 131
C.27	Índices de Desempenho da Série Sudeste com 20 Turbinas Obtidos pela	
	Técnica K-Means inicializada por Ordenação por valor $\ \ldots \ \ldots \ \ldots$. 131
C.28	Índices de Desempenho da Série Sudeste com 30 Turbinas Obtidos pela	
	Técnica K-Means inicializada por Ordenação por valor $\ \ldots \ \ldots \ \ldots$. 131
C.29	Índices de Desempenho da Série Sudeste com 1 Turbina Obtidos pela	
	Técnica Fuzzy C-Means	. 132
C.30	Índices de Desempenho da Série Sudeste com 10 Turbinas Obtidos pela	
	Técnica Fuzzy C-Means	. 132
C.31	Índices de Desempenho da Série Sudeste com 20 Turbinas Obtidos pela	
	Técnica Fuzzy C-Means	. 132
C.32	Índices de Desempenho da Série Sudeste com 30 Turbinas Obtidos pela	
	Técnica Fuzzy C-Means	. 133
C.33	Índices de Desempenho da Série Sudeste com 1 Turbina Obtidos pela	
	Técnica Ordenação por realizações	. 133
C.34	Índices de Desempenho da Série Sudeste com 10 Turbinas Obtidos pela	
	Técnica Ordenação por realizações	. 133
C.35	Índices de Desempenho da Série Sudeste com 20 Turbinas Obtidos pela	
	Técnica Ordenação por realizações	. 134
C.36	Índices de Desempenho da Série Sudeste com 30 Turbinas Obtidos pela	
	Técnica Ordenação por realizações	. 134
C.37	Índices de Desempenho da Série Sudeste com 1 Turbina Obtidos pela	
	Técnica Ordenação por valor	. 134
C.38	Índices de Desempenho da Série Sudeste com 10 Turbinas Obtidos pela	
	Técnica Ordenação por valor	. 135
C.39	Índices de Desempenho da Série Sudeste com 20 Turbinas Obtidos pela	
	Técnica Ordenação por valor	. 135
C.40	Índices de Desempenho da Série Sudeste com 30 Turbinas Obtidos pela	
	Técnica Ordenação por valor	. 135
C.41	Índices de Desempenho da Série Sul com 1 Turbina Obtidos pela	
	Técnica K-Means inicializada por Ordenação por realizações	. 136

C.42	Indices de Desempenho da Série Sul com 10 Turbinas Obtidos	pela	
	Técnica K-Means inicializada por Ordenação por realizações $$. 136
C.43	Índices de Desempenho da Série Sul com 20 Turbinas Obtidos	pela	
	Técnica K-Means inicializada por Ordenação por realizações $$. 136
C.44	Índices de Desempenho da Série Sul com 30 Turbinas Obtidos	pela	
	Técnica K-Means inicializada por Ordenação por realizações $$. 137
C.45	Índices de Desempenho da Série Sul com 1 Turbina Obtidos	pela	
	Técnica K-Means inicializada por Ordenação por valor $\ \ldots \ \ldots$. 137
C.46	Índices de Desempenho da Série Sul com 10 Turbinas Obtidos	pela	
	Técnica K-Means inicializada por Ordenação por valor $\ \ldots \ \ldots$. 137
C.47	Índices de Desempenho da Série Sul com 20 Turbinas Obtidos	pela	
	Técnica K-Means inicializada por Ordenação por valor $\ \ . \ \ . \ \ .$. 138
C.48	Índices de Desempenho da Série Sul com 30 Turbinas Obtidos	pela	
	Técnica K-Means inicializada por Ordenação por valor $\ \ . \ \ . \ \ .$. 138
C.49	Índices de Desempenho da Série Sul com 1 Turbina Obtidos	pela	
	Técnica Fuzzy C-Means		. 138
C.50	Índices de Desempenho da Série Sul com 10 Turbinas Obtidos	pela	
	Técnica Fuzzy C-Means		. 139
C.51	Índices de Desempenho da Série Sul com 20 Turbinas Obtidos	pela	
	Técnica Fuzzy C-Means		. 139
C.52	Índices de Desempenho da Série Sul com 30 Turbinas Obtidos	pela	
	Técnica Fuzzy C-Means		. 139
C.53	Índices de Desempenho da Série Sul com 1 Turbina Obtidos	pela	
	Técnica Ordenação por realizações		. 140
C.54	Índices de Desempenho da Série Sul com 10 Turbinas Obtidos	pela	
	Técnica Ordenação por realizações		. 140
C.55	Índices de Desempenho da Série Sul com 20 Turbinas Obtidos	pela	
	Técnica Ordenação por realizações		. 140
C.56	Índices de Desempenho da Série Sul com 30 Turbinas Obtidos	pela	
	Técnica Ordenação por realizações		. 141
C.57	Índices de Desempenho da Série Sul com 1 Turbina Obtidos	pela	
	Técnica Ordenação por valor		. 141
C.58	Índices de Desempenho da Série Sul com 10 Turbinas Obtidos	pela	
	Técnica Ordenação por valor		. 141

C.59	Indices de Desempenho da Série Sul com 20 Turbinas Obtidos pela	
	Técnica Ordenação por valor	. 142
C.60	Índices de Desempenho da Série Sul com 30 Turbinas Obtidos pela	
	Técnica Ordenação por valor	. 142
C.61	Índices de Desempenho da Série Nordeste com 1 Turbina Obtidos pela	
	Técnica K-Means - Multivariável	. 142
C.62	Índices de Desempenho da Série Nordeste com 10 Turbinas Obtidos	
	pela Técnica K-Means - Multivariável	. 143
C.63	Índices de Desempenho da Série Nordeste com 20 Turbinas Obtidos	
	pela Técnica K-Means - Multivariável	. 143
C.64	Índices de Desempenho da Série Nordeste com 30 Turbinas Obtidos	
	pela Técnica K-Means - Multivariável	. 143
C.65	Índices de Desempenho da Série Sudeste com 1 Turbina Obtidos pela	
	Técnica K-Means - Multivariável	. 144
C.66	Índices de Desempenho da Série Sudeste com 10 Turbinas Obtidos pela	
	Técnica K-Means - Multivariável	. 144
C.67	Índices de Desempenho da Série Sudeste com 20 Turbinas Obtidos pela	
	Técnica K-Means - Multivariável	. 144
C.68	Índices de Desempenho da Série Sudeste com 30 Turbinas Obtidos pela	
	Técnica K-Means - Multivariável	. 145
C.69	Índices de Desempenho da Série Sul com 1 Turbina Obtidos pela	
	Técnica K-Means - Multivariável	. 145
C.70	Índices de Desempenho da Série Sul com 10 Turbinas Obtidos pela	
	Técnica K-Means - Multivariável	. 145
C.71	Índices de Desempenho da Série Sul com 20 Turbinas Obtidos pela	
	Técnica K-Means - Multivariável	. 146
C.72	Índices de Desempenho da Série Sul com 30 Turbinas Obtidos pela	
	Técnica K-Means - Multivariável	. 146
D.1	Relações entre Áreas da Série Nordeste Obtidas pela Técnica K-Means	
	inicializada por Ordenação por realizações	. 147
D.2	Relações entre Áreas da Série Nordeste Obtidas pela Técnica K-Means	
	inicializada por Ordenação por valor	. 148
D.3	Relações entre Áreas da Série Nordeste Obtidas pela Técnica Fuzzy	
	C-Means	. 148

D.4	Relações entre Areas da Série Nordeste Obtidas pela Técnica
	Ordenação por realizações
D.5	Relações entre Áreas da Série Nordeste Obtidas pela Técnica
	Ordenação por valor
D.6	Relações entre Áreas da Série Sudeste Obtidas pela Técnica K-Means
	inicializada por Ordenação por realizações
D.7	Relações entre Áreas da Série Sudeste Obtidas pela Técnica K-Means
	inicializada por Ordenação por valor $\ \ldots \ $
D.8	Relações entre Áreas da Série Sudeste Obtidas pela Técnica Fuzzy C-
	Means
D.9	Relações entre Áreas da Série Sudeste Obtidas pela Técnica Ordenação
	por realizações
D.10	Relações entre Áreas da Série Sudeste Obtidas pela Técnica Ordenação
	por valor
D.11	Relações entre Áreas da Série Sul Obtidas pela Técnica K-Means
	inicializada por Ordenação por realizações
D.12	Relações entre Áreas da Série Sul Obtidas pela Técnica K-Means
	inicializada por Ordenação por valor $\ \ldots \ \ldots \ \ldots \ \ldots \ 155$
D.13	Relações entre Áreas da Série Sul Obtidas pela Técnica Fuzzy C-Means 153
D.14	Relações entre Áreas da Série Sul Obtidas pela Técnica Ordenação por
	realizações
D.15	Relações entre Áreas da Série Sul Obtidas pela Técnica Ordenação por
	valor
D.16	Relações entre Índices EAWE da Série Nordeste
D.17	Relações entre Índices EAWE da Série Sudeste
D.18	Relações entre Índices EAWE da Série Sul $\ \ldots \ \ldots \ \ldots \ \ldots \ 155$
D.19	Relações entre Índices EGWE da Série Nordeste Obtidas pela Técnica
	K-Means inicializada por Ordenação por realizações
D.20	Relações entre Índices EGWE da Série Nordeste Obtidas pela Técnica
	K-Means inicializada por Ordenação por valor
D.21	Relações entre Índices EGWE da Série Nordeste Obtidas pela Técnica
	Fuzzy C-Means
D.22	Relações entre Índices EGWE da Série Nordeste Obtidas pela Técnica
	Ordenação por realizações

D.23 Relações entre Indices EGWE da Série Nordeste Obtidas pela Técnica	1
Ordenação por Valor	. 157
$\mathrm{D.24}$ Relações entre Índices EGWE da Série Sudeste Obtidas pe la Técnica	
K-Means inicializada por Ordenação por realizações	. 158
$\mathrm{D.25}$ Relações entre Índices EGWE da Série Sudeste Obtidas pe la Técnica	ı
K-Means inicializada por Ordenação por valor	. 158
D.26 Relações entre Índices EGWE da Série Sudeste Obtidas pela Técnica	ı
Fuzzy C-Means	. 159
D.27 Relações entre Índices EGWE da Série Sudeste Obtidas pela Técnica	ı
Ordenação por realizações	. 159
$\mathrm{D.28}$ Relações entre Índices EGWE da Série Sudeste Obtidas pe la Técnica	
Ordenação por Valor	. 160
D.29 Relações entre Índices EGWE da Série Sul Obtidas pela Técnica K-	
Means inicializada por Ordenação por realizações	. 160
D.30 Relações entre Índices EGWE da Série Sul Obtidas pela Técnica K-	
Means inicializada por Ordenação por valor	. 161
$\mathrm{D.31}$ Relações entre Índices EGWE da Série Sul Obtidas pe la Técnica Fuzzy	
C-Means	. 161
$\mathrm{D.32}$ Relações entre Índices EGWE da Série Sul Obtidas pela Técnica	
Ordenação por realizações	. 162
$\mathrm{D.33}\;\mathrm{Relações}$ entre Índices EGWE da Série Sul Obtidas pela Técnica	
Ordenação por Valor	. 162
D.34 Relações entre Áreas da Série Nordeste Obtidas pela Técnica K-Means	
- Multivariável	. 163
D.35 Relações entre Áreas da Série Sudeste Obtidas pela Técnica K-Means	
- Multivariável	. 163
D.36 Relações entre Áreas da Série Sul Obtidas pela Técnica K-Means -	
Multivariável	. 163
D.37 Relações entre Índices EAWE Obtidas pela Técnica K-Means -	
Multivariável	. 164
D.38 Relações entre Índices EGWE da Série Nordeste Obtidas pela Técnica	
K-Means - Multivariável	
D.39 Relações entre Índices EGWE da Série Sudeste Obtidas pela Técnica	ı
K-Means - Multivariável	164

D.40	Relações	entre	Índices	EG	WE	da	Série	Sul	Obtida	as j	pela	Τė	écn	ica	K	
	Means - 1	Multiv	ariável .													. 165

Capítulo 1

Introdução

1.1 Motivação

No atual cenário do setor elétrico, onde a necessidade de atendimento a um rápido crescimento da demanda mundial por eletricidade esbarra nos impactos ambientais provocados pelas formas de geração convencionais, as fontes renováveis de energia se apresentam como uma forma alternativa de suprir a demanda sem causar poluição ambiental. Como exemplo de fonte renovável de energia tem-se a energia eólica, que se constitui numa alternativa para atender diversos níveis de demanda. As pequenas centrais podem suprir pequenas localidades distantes da rede. As grandes centrais têm potencial para atender a uma parcela significativa do Sistema Interligado Nacional (SIN) com importantes ganhos: contribuição para a redução da emissão de poluentes atmosféricos pelas usinas térmicas, diminuição da necessidade de construção de grandes reservatórios e redução do risco gerado pela sazonalidade hidrológica (ANEEL, 2005).

Um estudo elaborado pela European Wind Energy Association (EWEA) e pelo Greenpeace concluiu que a energia eólica tem capacidade para fornecer 10% da demanda mundial no ano 2020. Isto implica em um crescimento médio anual da potência eólica instalada de 30% entre 2004 e 2010, e 20% entre 2010 e 2020. Em muitos países, a energia eólica já é competitiva economicamente com o combustível fóssil e com a energia nuclear, considerando os custos ambientais (ALDABÓ, 2002).

A potência mundial instalada de geração eólica é da ordem de 75.000 MW, sendo que, no Brasil, o PROINFA (Programa de Incentivo às Fontes Alternativas de Energia Elétrica) prevê a implantação de 1.423 MW (54 empreendimentos) até dezembro de 2008. Hoje, a potência instalada de energia eólica no Brasil é de 237 MW, o que

corresponde a 0,2% da capacidade instalada. O Plano Nacional de Energia 2030 indica uma inserção, até este ano, de 5.000 MW de energia eólica. Além disso, já foi comprovada a existência de um potencial de 143 GW para utilização da energia eólica neste país(PORTO, 2007).

Em 2001, após três anos de desenvolvimento de um sistema de software de modelagem numérica dos ventos de superfície, conhecido como MesoMap, foi criado o Atlas do Potencial Eólico Brasileiro (AMARANTE et al., 2001), mostrado na Figura (1.1). O sistema utilizou uma base de dados de um período compreendido entre 1983 e 1999 para simular a dinâmica atmosférica dos regimes de vento e variáveis meteorológicas correlatas.

Figura 1.1: Atlas do Potencial Eólico Brasileiro

O potencial regional brasileiro está distribuído da seguinte forma (PORTO, 2007):

- Região Nordeste: faixa litorânea do Maranhão, Piauí, Rio Grande do Norte e Ceará, chapadas e off shore
- Região Sudeste: norte fluminense, Espírito Santo e elevações em São Paulo

• Região Sul: regiões litorâneas

• Região Norte: faixa litorânea do Amapá e Pará

• Região Centro-Oeste: áreas de fronteira com o Paraguai

Os principais componentes de um sistema eólico autônomo são: rotor, transmissão, controle, conversor e sistema de armazenamento (REIS, SILVEIRA, 2000). O esquema de um sistema eólico autônomo é mostrado na Figura (1.2), onde o conjunto denominado aerogerador (turbina eólica) engloba o rotor (e hélices), a transmissão, o sistema de controle e o conversor de energia mecânica em elétrica, que é o gerador propriamente dito.

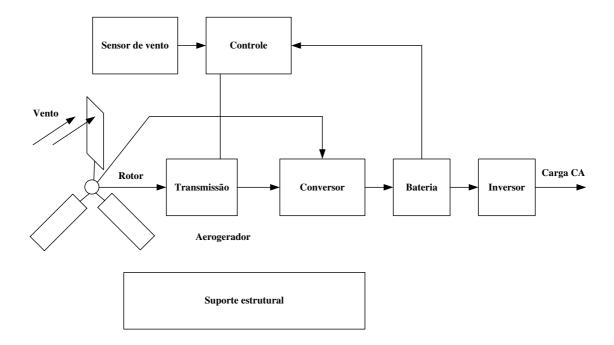


Figura 1.2: Diagrama de blocos de um sistema eólico

O rotor é o componente destinado a captar a energia cinética dos ventos para convertê-la em energia mecânica no eixo. Pode-se ter um rotor de eixo horizontal (rotor hélice, rotor multipá, rotor holandês etc.) ou rotor de eixo vertical (rotor Savonius, rotor Darrieus, etc.).

A transmissão é o mecanismo que transfere a energia mecânica do eixo do rotor ao eixo do conversor (gerador). A mais eficiente e amplamente utilizada é a transmissão por engrenagens, que tem como finalidade multiplicar a velocidade angular com o intuito de melhor aproveitar as características do gerador.

O conversor (gerador) é o componente que tem a finalidade de converter a energia mecânica do eixo em energia elétrica. Para aplicações isoladas, costuma-se usar um gerador síncrono associado a um retificador, obtendo-se tensão em corrente contínua. Neste caso, pode-se usar um sistema de armazenamento em baterias.

O sistema de controle é constituído por uma série de sensores (sensor de vento, rotação do rotor, carga da bateria, etc.) que irão fornecer dados que permitirão o funcionamento harmônico e seguro de todo o sistema com o melhor aproveitamento possível do vento.

O suporte estrutural é formado principalmente pela torre e pela gávea giratória. O sistema de armazenamento da energia é formado pelas baterias, que têm como finalidade armazenar energia nas horas em que a potência disponível for maior que a necessária para ser utilizada quando a situação for inversa.

Para se verificar a viabilidade da implantação de uma usina eólica numa determinada região é necessário avaliar o seu potencial gerador. As medições da velocidade do vento na região em questão são fundamentais para o cálculo da estimativa de energia que pode ser gerada, pois as turbinas eólicas geram a partir de uma determinada velocidade de vento mínima até uma velocidade máxima de segurança.

Para o estudo da confiabilidade da geração baseada em energia eólica, devem ser considerados os estados de operação da(s) turbina(s) eólica(s) (falha e operação) bem como os estados de velocidade do vento. De posse das taxas de falha e de reparo da(s) turbina(s) e do número de turbinas da usina, é possível montar a matriz de transição entre estados da(s) turbina(s). Através da série de medições da velocidade do vento, pode-se calcular a frequência e a probabilidade de ocorrência de cada estado de velocidade de vento, que são necessárias para a montagem da matriz de transição entre estados de vento. As duas matrizes de transição são usadas para formar uma outra matriz de transição de estados. Devido à grande variedade de valores de estados de vento, esta matriz toma proporções gigantescas, tornando os cálculos demasiadamente demorados (LEITE et al., 2006).

1.2 Objetivos

O presente trabalho se propõe a identificar técnicas de agrupamento para reduzir a quantidade de estados de vento necessários para a modelagem do comportamento do vento, sem que haja perda de representatividade da série original, a fim de diminuir o esforço computacional nos estudos de confiabilidade. LEITE (2005) já utilizou uma técnica de agrupamento para diminuir o número de estados de vento de uma série. Neste trabalho, são exploradas outras técnicas de agrupamento além de alguns refinamentos na técnica utilizada por LEITE (2005), com o intuito de aprimorar a representação de uma série original por uma série agrupada.

Os resultados dos agrupamentos são utilizados no estudo da confiabilidade de usinas eólicas, para as quais são calculados diferentes índices de confiabilidade. A idéia é estabelecer uma relação entre o número de estados de vento existentes numa série e o número reduzido de estados pelo qual ela deve ser representada, de modo a preservar as características estocásticas originais com um desempenho computacional aceitável.

1.3 Revisão Bibliográfica

COROTIS et al. (1978) exploraram distribuições de probabilidade que melhor representassem o comportamento do vento e da potência eólica. Os histogramas de velocidade do vento foram comparados com as distribuições Qui-quadrado e de Weibull e as distribuições derivadas destas foram comparadas aos histogramas de potência eólica. As distribuições de Weibull e sua derivada apresentaram as melhores aproximações para os histogramas de vento e de potência eólica, respectivamente.

THOMANN, BARFIELD (1988) avaliaram a autocorrelação dos valores de velocidade de vento de seis séries, em intervalos de trinta e dois minutos e de aproximadamente oitenta e cinco horas, utilizando velocidades médias por minuto e a cada dez minutos, respectivamente. A base de dados deste artigo é formada por séries de velocidade de vento coletadas num período de um ano. Também foi avaliada a autocorrelação das potências de saída das turbinas eólicas para os mesmos intervalos, utilizando-se as potências médias por minuto e a cada dez minutos. Foram observadas grandes autocorrelações entre as velocidades médias no intervalo de trinta e dois minutos, enquanto as autocorrelações entre as potências médias diminuíram mais rápido. Nos intervalos de aproximadamente oitenta e cinco horas coletados nas estações do Outono, Primavera e Inverno, as autocorrelações das velocidades médias atingiram um valor igual a zero num espaço de tempo de vinte a trinta horas enquanto no Verão foi observada a existência de um ciclo diário. As autocorrelações das potências médias se comportaram de forma similar às autocorrelações das velocidades médias nos intervalos de aproximadamente oitenta e cinco horas de todas as estações

do ano.

No trabalho desenvolvido por SINGH, KIM (1988), foi proposta a divisão do sistema elétrico em vários subsistemas, de modo que todas as usinas convencionais formassem um único subsistema, cabendo às usinas não-convencionais os subsistemas Através de uma técnica de agrupamento denominada FASTCLUS, os estados de geração das unidades não-convencionais são agrupados e utilizados para calcular alguns índices de confiabilidade. O algoritmo do FASTCLUS consiste em selecionar os k primeiros dados da série que se deseja agrupar, formada por m dados, para serem usados como centróides iniciais, depois os (m-k) dados restantes são associados ao centróide mais próximo. Quando todos os (m-k) dados tiverem sido associados, os valores dos k centróides são recalculados e todos os dados da série são associados ao centróide mais próximo. A convergência do método é atingida quando os centróides não mudam mais de posição. Mais adiante, poderá se observar que a técnica FASTCLUS é igual a outra técnica de agrupamento, que será descrita no Capítulo 3 e recebe o nome de K-Means. Também será possível perceber que há outras formas de escolher os centróides iniciais que proporcionarão melhores agrupamentos do que a seleção dos k primeiros dados de uma série.

BILLINTON et al. (1996) apresentaram uma técnica de simulação de Monte Carlo Sequencial para sistemas que possuem fontes não-convencionais de energia. O método se baseia numa simulação horária da operação de um sistema, considerando as autocorrelações e características flutuantes da velocidade do vento e as taxas de falha das fontes convencionais. As velocidades horárias do vento são geradas por modelos auto-regressivos e de média móvel (ARMA) e a potência eólica para cada velocidade pode ser obtida através de uma relação não-linear entre a potência e a velocidade. As séries de vento simuladas foram comparadas com séries reais e foi possível concluir que as séries simuladas reproduzem muito bem as autocorrelações horárias do vento, suas características sazonais e diárias.

JAIN et al. (1999) elaboraram um survey sobre agrupamento de dados, onde são abordados aspectos como: medida de similaridade entre os dados, seleção e extração de variáveis e a forma de representação dos grupos encontrados. Este survey apresenta uma taxonomia das técnicas de agrupamento, onde as mesmas são divididas em dois grupos: métodos hierárquicos e métodos particionais. Os métodos hierárquicos realizam uma série de partições dos dados no formato de um dendograma, tendo como base um critério de similaridade. Os métodos particionais realizam somente uma partição dos dados e tem como objetivo a minimização das distâncias dentro dos

grupos. As técnicas são descritas através de seus algoritmos, vantagens e desvantagens e da complexidade computacional. A segmentação de imagens, o reconhecimento de objetos e caracteres, a recuperação de informações (muito usada pelas bibliotecas de universidades para facilitar o acesso a livros, jornais e outros documentos) e a mineração de dados são mostrados como exemplos de aplicação das técnicas. As informações contidas neste survey foram de suma importância para a pesquisa da dissertação, pois forneceram uma visão geral das técnicas de agrupamento.

RAMONI et al. (2002) propuseram um método Bayesiano para agrupar séries temporais, onde a informação do número de grupos desejado não é necessária. A partir de um conjunto de séries, o método transforma cada série em uma cadeia de Markov, através das frequências e probabilidades de transição entre os estados. O objetivo é encontrar a partição de cadeias de Markov que apresente a maior probabilidade a posteriori, a qual é expressa pelo produto da probabilidade a priori da partição pela verossimilhança das cadeias em relação a esta partição, dividido pela probabilidade marginal das cadeias. Como as partições utilizam as mesmas cadeias e possuem a mesma probabilidade a priori, a comparação entre as partições é baseada apenas na verossimilhança das cadeias em relação à partição. O algoritmo tenta agrupar as duas cadeias mais próximas, segundo a distância simétrica de Kullback-Liebler. Cada linha da matriz de probabilidade de transição entre os estados corresponde à distribuição de probabilidade de um estado. A distância entre duas cadeias é igual ao somatório das distâncias entre as distribuições de probabilidade das duas cadeias para o mesmo estado, dividido pelo número total de estados. Outras medidas de distância, como o erro médio quadrático, também poderiam ser usadas. Para cada nova partição das cadeias, é calculada a probabilidade a posteriori. Caso este valor seja maior do que o melhor valor encontrado até o momento (melhor partição), aquele passa a ser considerado o melhor. Caso contrário, o algoritmo tenta agrupar as outras duas cadeias mais próximas. Se nenhuma associação entre cadeias resultar numa partição com probabilidade a posteriori maior do que da melhor partição, o algoritmo se encerra e fornece como resultado a melhor partição. Foram gerados conjuntos com 80 séries temporais de comprimento igual a 25(muito curta), 50(curta), 125(média) e 250(longa) unidades de tempo, a partir de 4 e 8 cadeias de Markov. Nas simulações onde o conjunto de séries foi gerado por 4 cadeias, o algoritmo também encontrou quatro grupos, e com exceção de uma série temporal de comprimento igual a 25, todas foram corretamente associadas às cadeias que as geraram. Nas simulações com séries geradas a partir de 8 cadeias onde cada cadeia gerou o mesmo número de séries,

o algoritmo também encontrou 8 grupos, mas 3 séries de comprimento igual a 25 foram associadas às cadeias erradas. Nas simulações com 80 séries geradas a partir de 8 cadeias onde as mesmas não geraram a mesma quantidade de séries, o algoritmo encontrou 4 grupos para o conjunto de séries de comprimento igual a 25, 7 grupos para os conjuntos de séries de comprimento igual a 50 e 125 e 8 grupos somente para o conjunto de séries de comprimento igual a 250. O algoritmo associou corretamente 63 séries de comprimento igual a 25, 76 de comprimento igual a 50, 77 de comprimento igual a 125 e 80 de comprimento igual a 250. Os resultados mostraram que este algoritmo é muito preciso nos casos em que cada cadeia de Markov gera a mesma quantidade de séries. Nas simulações com séries curtas, geradas a partir de cadeias de Markov bem parecidas, onde cada cadeia não gerou o mesmo número de séries, o algoritmo pode formar um grupo composto por séries geradas a partir de uma cadeia que gerou um número maior de séries e algumas séries geradas por uma cadeia similar.

A combinação de Algoritmos Genéticos com a técnica de agrupamento K-Means para agrupar séries temporais foi sugerida por (ZHANG et al., 2004). O número de séries a serem agrupadas é igual ao comprimento do cromossomo. Cada cromossomo representa uma partição das séries, de modo que o i-ésimo elemento dele represente o número do grupo ao qual a i-ésima série foi associada. O algoritmo do K-Means Evolucionário (E-K-Means) funciona da seguinte forma: a população inicial é criada aleatoriamente, calcula-se o valor da função de aptidão de cada cromossomo, que neste caso é igual ao erro médio quadrático(E), recalcula-se os novos centróides, uma nova população é gerada e são aplicados os seguintes operadores: elitismo, seleção, cruzamento e troca(substituta da mutação). Este processo é repetido a partir do cálculo da função de aptidão até que o critério de parada seja satisfeito. As melhores partições são as que obtiveram os menores valores de E. Como os algoritmos genéticos maximizam a função de aptidão, a mesma teve de ser definida como F = P - E, onde P é um número positivo maior que E. Logo, a maximização de F equivale à minimização de E. No processo de elitismo, o melhor cromossomo da iteração anterior é utilizado para substituir o pior cromossomo da iteração atual. O método de seleção utilizado é o da roleta. Neste método, os cromossomos são colocados em uma roleta e cada um ocupa uma fatia proporcional ao valor da sua função de aptidão. Depois, roda-se a roleta e o cromossomo em cuja fatia a roleta parar de girar será usado na próxima geração. No cruzamento, dois cromossomos de comprimento n escolhidos aleatoriamente trocam parte dos seus genes num único ponto de corte. Para cada par de cromossomos, é gerado um número aleatório entre 0 e 1. Se este número for

menor ou igual à probabilidade de cruzamento (P_c) , um número inteiro entre 0 e n-1 é gerado aleatoriamente e será usado como ponto de corte. As porções dos cromossomos à direita do ponto de corte são trocadas, gerando dois novos cromossomos. Para evitar que sejam criados cromossomos "sem sentido", é montada uma matriz com as distâncias entre os centróides dos dois cromossomos, onde d_{ij} é a distância entre o iésimo centróide do cromossomo 1 e o j-ésimo centróide do cromossomo 2. Um elemento do cromossomo 1, representado pelo grupo i só passará a ser representado por j, caso $d_{ij} = min(d_{i1}, d_{i2}, ..., d_{ij})$ e $j \neq [1, i-1]$. O operador troca muda os valores dos genes em duas posições do cromossomo de comprimento n, com uma probabilidade $fixa(P_m)$. Para cada cromossomo e para o i-ésimo elemento de cada cromossomo, ocorre o seguinte processo: um número entre 0 e 1 é gerado aleatoriamente e, se este número for menor que P_m , um número inteiro j entre 0 e n é gerado aleatoriamente. Para $i \neq j$, o valor do i-ésimo elemento é trocado com o valor do j-ésimo elemento. Caso contrário, o número j é gerado várias vezes até que $i \neq j$. O critério de parada é o número de gerações. Quatro séries temporais foram utilizadas para comparar o desempenho do E-K-Means com o dos Algoritmos Genéticos, da própria técnica K-Means e do KGA, que utiliza os operadores tradicionais dos Algoritmos Genéticos e a técnica K-Means. O algoritmo E-K-Means obteve os menores valores de E para as quatro séries. Comparado aos Algoritmos Genéticos e ao KGA, o algoritmo E-K-Means convergiu mais rápido. Tanto RAMONI et al. (2002) quanto ZHANG et al. (2004) estudaram formas diferentes e interessantes de agrupar séries temporais. Devido ao fato do Modelo de Confiabilidade utilizado nesta dissertação para calcular os índices de desempenho da usina eólica não ter sido preparado para uma entrada de dados multidimensional, estas idéias não puderam ser aproveitadas. Após todo o esforço computacional para agrupar as séries temporais, segundo algum dos dois artigos comentados, elas teriam de retornar para o espaço unidimensional para serem inseridas no Modelo. Sendo assim, optou-se por utilizar a técnica K-Means para agrupar as séries, visto que exige um esforço computacional menor. Em virtude das limitações, o agrupamento multidimensional é pouco explorado nesta dissertação.

MATTEUCCI (2004) também escreveu um resumo sobre agrupamento de dados, porém bem menos abrangente que o elaborado por (JAIN et al., 1999). Além de relatar possíveis objetivos do agrupamento de dados, aplicações em várias áreas, alguns problemas que podem surgir durante o processo e a questão da medida de distância a ser utilizada, o resumo descreve as seguintes técnicas: K-Means, Fuzzy C-Means, Hierárquico e Mistura de Gaussianas. Para cada técnica descrita, é mostrado

um exemplo. Embora o resumo não disserte sobre inúmeras técnicas nem se aprofunde muito no tema, ele é bastante prático e objetivo para os leigos em agrupamento de dados.

LEITE (2005) desenvolveu um modelo de confiabilidade para fazendas eólicas, considerando os estados operativos das turbinas e o comportamento do vento. Inicialmente, foi utilizada uma técnica de agrupamento conhecida como K-Means para reduzir a quantidade de estados de vento da série temporal. A série agrupada foi inserida no modelo de confiabilidade e representada por uma cadeia de Markov, através do cálculo das taxas de transição entre os estados de vento. A turbina foi modelada por um processo de Markov a dois estados: em operação e em falha, através das taxas de falha e de reparo. Os estados de geração foram extraídos da curva de potência da turbina fornecida pelo fabricante. A combinação das modelagens da turbina e do vento possibilitou o cálculo das probabilidades dos estados de geração. Finalmente, foram calculados os seguintes índices de confiabilidade: IWP (Potência eólica instalada), IWE (Energia eólica instalada), EAWE (Expectativa de energia eólica disponível no vento), EGWE (Expectativa de energia eólica gerada) e WGAF (Fator de disponibilidade de geração eólica). Os resultados reproduziram com sucesso o comportamento de todos os componentes presentes no modelo. Este trabalho utilizou os primeiros valores diferentes das séries de vento como centróides iniciais da técnica K-Means. Por exemplo, caso o objetivo fosse encontrar três grupos, os três primeiros valores diferentes da série eram escolhidos para centróides iniciais. E muito provável que estes três valores estivessem bem próximos. O ideal seria que os centróides iniciais fossem mais afastados. Como será visto no Capítulo 2, a técnica K-Means é muito sensível à inicialização, pois diferentes centróides iniciais podem gerar diferentes resultados. Nesta dissertação, serão mostrados outros tipos de inicialização mais aprimorados. Cabe ressaltar que esta dissertação é uma continuação do trabalho desenvolvido por (LEITE, 2005) que, juntamente com o survey elaborado por (JAIN et al., 1999), é considerada uma das referências mais importantes desta dissertação.

1.4 Contribuições do Trabalho

A melhoria da inicialização da técnica K-Means pode ser citada como uma das contribuições deste trabalho. A seleção dos "k" primeiros valores diferentes ou até mesmo a escolha aleatória de "k" realizações da série temporal para serem utilizados como centróides iniciais são exemplos de inicialização. Sabendo que a técnica em

questão é muito sensível aos valores iniciais, este trabalho propõe a utilização de outras inicializações mais refinadas que forneçam centróides finais mais bem localizados.

Outra contribuição deste trabalho seria a exploração de outras técnicas de agrupamento. Em (LEITE, 2005), apenas a técnica K-Means foi usada para agrupar os estados de vento da série temporal. Este trabalho emprega outras duas técnicas conhecidas: Fuzzy C-Means e o Mapa Auto-Organizável de Kohonen. A primeira técnica, assim como a técnica K-Means, tem como objetivo a minimização das distâncias intra-grupos, porém considera que cada observação pode ser associada a mais de um grupo, com diferentes graus de pertinência. A segunda técnica consiste em uma rede neural não-supervisionada, onde os neurônios competem entre si para ativar cada observação. O neurônio vencedor é aquele que apresentar a sinapse mais próxima do valor da observação.

Embora não seja demostrada nesta dissertação, a redução de esforço computacional nas simulações de Monte Carlo, que são utilizadas para avaliar a confiabilidade composta de sistemas de potência, também não deixa de ser uma contribuição do trabalho. Estas simulações estimam os índices de confiabilidade, através da simulação do comportamento estocástico do sistema (PEREIRA, BALU, 1992). Em geral, o problema pode ser dividido em três funções: amostragem dos estados do sistema, análise da adequação dos estados amostrados e cálculo dos índices de confiabilidade (BORGES, 2005). A análise da adequação de uma quantidade muito elevada de estados, considerando os estados de vento e os estados operativos da(s) turbina(s), requer um grande esforço computacional. Este pode sofrer uma redução signicativa através da diminuição da quantidade de estados de vento.

A tentativa de identificar um número de estados que melhor possa representar uma série de vento também pode ser considerada uma contribuição. Convém ressaltar que as conclusões acerca deste tema têm como base as técnicas exploradas e as séries de vento utilizadas nas simulações.

1.5 Estrutura

Este trabalho é dividido em cinco capítulos, incluindo este capítulo de introdução. Os capítulos são descritos a seguir.

O Capítulo 1 relata a motivação, o objetivo e as contribuições deste trabalho, além de fazer uma revisão bibliográfica de artigos sobre o comportamento do vento e o agrupamento de dados.

O Capítulo 2 trata das técnicas de agrupamento exploradas, descrevendo seus algoritmos, vantagens e desvantagens.

O Capítulo 3 mostra a modelagem do comportamento do vento, os cálculos dos índices de confiabilidade e um resumo das etapas menos relevantes do modelo de confiabilidade, que foi utilizado para analisar as técnicas de agrupamento exploradas.

O Capítulo 4 relata a forma como as simulações foram realizadas, as inicializações testadas e os valores atribuídos aos parâmetros.

No Capítulo 5 são mostrados os resultados obtidos nas simulações para os espaços de representação univariável e multivariável e o tempo gasto para obtenção dos mesmos.

No Capítulo 6 são listadas as conclusões do trabalho e uma proposta de trabalho futuro.

Capítulo 2

Técnicas de Agrupamento de Dados

As técnicas de agrupamento têm o objetivo de agrupar um conjunto de dados em um determinado número de grupos de modo que o grau de associação entre dados de um mesmo grupo seja alto e entre dados de grupos diferentes seja baixo. Possuem como característica a capacidade de identificar diferentes padrões num conjunto de dados, tornando possível a divisão destes dados em grupos similares.

Os dados podem ser classificados da seguinte forma (GOWDA, DIDAY, 1992):

• Quantitativos

Valores contínuos

Exemplo: velocidade do vento.

- Valores discretos

Exemplo: número de grupos.

- Valores de intervalo

Exemplo: duração de um evento.

• Qualitativos

- Nominais (Não possuem relação de ordem.)

Exemplo: direção do vento.

- Ordinais (Possuem relação de ordem.)

Exemplos: avaliações de temperatura ("quente" ou "frio").

Uma forma de avaliar a similaridade entre os dados é a utilização de uma medida de distância. A mais conhecida delas é a distância Euclidiana, apresentada pela equação (2.1).

$$d_2(x_i, x_j) = \left[\sum_{k=1}^{d} (x_{i,k} - x_{j,k})^2 \right]^{1/2}$$
(2.1)

onde d é a dimensionalidade dos dados x_i e x_j . A distância Euclidiana é um caso especial, onde p = 2, da métrica de Minkowski, mostrada na equação (2.2).

$$d_p(x_i, x_j) = \left[\sum_{k=1}^d \|x_{i,k} - x_{j,k}\|^p \right]^{1/p}$$
(2.2)

Outro caso especial da métrica de Minkowski é a métrica de Manhattan, onde p=1, que pode ser vista na equação (2.3).

$$d_1(x_i, x_j) = \sum_{k=1}^{d} ||x_{i,k} - x_{j,k}||$$
(2.3)

Estas medidas de distância são utilizadas para medir a proximidade entre dados quantitativos. Quando os dados a serem agrupados possuem variáveis quantitativas e qualitativas, pode-se utilizar uma medida de dissimilaridade para cada tipo de variável e a combinação de ambas para formar um único coeficiente (EVERITT et al., 2001).

Para que uma medida de distância seja considerada uma métrica, é necessário que ela apresente as seguintes propriedades para os vetores a, b e c quaisquer (DUDA $et\ al.,\ 2001$):

• Não-negatividade: $D(a, b) \ge 0$

• Reflexividade: D(a, b) = 0 se e somente se a = b

• Simetria: D(a,b) = D(b,a)

• Designaldade triangular: $D(a,b) + D(b,c) \ge D(a,c)$.

Os agrupamentos podem ser divididos em 2 tipos: hard clustering (Os dados são divididos em grupos) e soft clustering (Cada dado está associado a todos os grupos por um grau de pertinência). As técnicas que realizam hard clustering podem ser classificadas em cinco categorias: particionais, hierárquicas, baseadas em densidades, baseadas numa grade e baseadas num modelo (ZAÏANE, 1999). As técnicas particionais identificam a partição dos dados que minimiza uma função objetivo, a qual é responsável pelo cálculo das distâncias intra-grupos. Exemplos: K-Means, ISODATA, CLARANS (Clustering Algorithm based on Randomized Search). As técnicas hierárquicas produzem um dendograma, segundo um critério de união ou quebra de grupos, baseado na similaridade, onde cada nível corresponde a uma partição dos dados. Exemplos: AGNES (Agglomerative Nesting), DIANA (Divisive Analysis). As técnicas baseadas em densidades assumem que os dados a serem agrupados pertencem a distribuições de probabilidade. Cada distribuição representa um grupo. O objetivo é identificar quais são os parâmetros de cada distribuição. Muitos trabalhos consideram que estas distribuições são Gaussianas (JAIN et al., Exemplos: DBSCAN (Density Based Spatial Clustering of Applications 1999). with Noise), OPTICS (Ordering Points to Identify the Clustering Structure), EM (Expectation Maximization). As técnicas baseadas numa grade utilizam dados em grades de multi-resolução. Exemplos: STING (Statistical Information Grid approach), WaveCluster. Nas técnicas baseadas num modelo, um modelo é associado a cada grupo e o objetivo é encontrar o melhor ajuste do modelo para cada grupo. Exemplos: SOM (Self-Organizing Map), AutoClass.

Dentre as técnicas que realizam soft clustering, a mais conhecida é a Fuzzy C-Means. Esta técnica considera que os dados podem ser associados a mais de um grupo, através de graus de pertinência situados num intervalo entre 0 e 1. Os centróides são calculados a partir destes graus. A cada iteração, são atualizados os graus de pertinência e os centróides até que a diferença entre o valor atual da função objetivo e o valor da função objetivo da iteração anterior seja menor que um determinado valor de tolerância pré-estabelecido. Outras técnicas também podem ser citadas: Possibilistic C-Means, Fuzzy Possibilistic C-Means, Possibilistic Fuzzy C-Means e Fast Fuzzy Clustering Algorithm (ALMEIDA, SOUSA, 2006). Possibilistic C-Means propõe a adição de mais um termo à função objetivo da Fuzzy C-Means para driblar situações onde o somatório dos graus de pertinência de um dado não é igual a 1, como

na presença de outliers (KRISHNAPURAM, KELLER, 1993). Além de calcular os graus de pertinência e os centróides, Fuzzy Possibilistic C-Means também monta uma matriz de possibilidades com a mesma dimensão da matriz de pertinência, onde a possibilidade de que um dado seja associado a um determinado grupo é proporcional à possibilidade de que todos os outros dados sejam associados a esse mesmo grupo. O somatório das possibilidades de todos os dados para cada grupo é igual a 1. A função objetivo considera as pertinências e as possibilidades (PAL et al., 1997). Possibilistic Fuzzy C-Means propõe algumas alterações na função objetivo da Fuzzy Possibilistic C-Means, pois a restrição de que o somatório das possibilidades de todos os dados em relação a cada grupo seja igual a 1 produz valores irreais para grandes bases de dados. Esta técnica é menos sensível à presença de outliers (PAL et al., 2005). Fast Fuzzy Clustering Algorithm baseia-se no mapa auto-organizável de Kohonen (KOHONEN, 1990), sendo que o número de grupos não é conhecido a priori. Os dados são normalizados num intervalo entre 0 e 1 e os grupos são representados por funções de pertinência Gaussianas. O algoritmo processa uma entrada por vez. A primeira entrada define o primeiro grupo e a largura inicial deste grupo é igual a um valor previamente estabelecido. Para cada entrada, o algoritmo checa se esta apresenta um grau de pertinência em relação a algum grupo já existente que seja maior ou igual ao grau mínimo pré-estabelecido. Se for o caso, esta entrada é adicionada ao tal grupo e o centróide e o volume deste grupo são atualizados. Caso contrário, um novo grupo é criado (ŠINDELÁŘ, BABUŠKA, 2004).

Os seguintes passos compõem o processo de agrupamento de dados (JAIN, DUBES, 1988; JAIN *et al.*, 1999):

i. **Representação dos dados** (Opcionalmente inclui a extração e/ou seleção de variáveis)

Esta etapa envolve a escolha do número de grupos e das variáveis a serem utilizadas para o agrupamento, bem como a avaliação do tipo e escala de cada variável. Só devem ser utilizadas as variáveis julgadas importantes para a definição dos grupos. A extração de variáveis é o uso de uma ou mais transformações das variáveis disponíveis para gerar outras que serão utilizadas pelo algoritmo de agrupamento. A seleção de variáveis é o processo de identificação das variáveis mais importantes para o algoritmo de agrupamento. Tanto a seleção quanto a extração de variáveis podem ser empregadas juntas ou separadamente na fase inicial do processo de agrupamento.

ii. Definição de uma medida de proximidade

Geralmente, a distância entre os dados é calculada por uma função de distância. Há várias medidas de distância, como exemplificado anteriormente, cabendo ao usuário escolher qual tipo é o mais apropriado para a sua base de dados.

iii. Escolha da técnica

Esta fase compreende a seleção da técnica de agrupamento a ser utilizada e depende de alguns fatores, tais como: tipo de dados, objetivo do agrupamento, etc.

iv. Abstração dos resultados (Se necessário)

É a extração da nova representação dos dados; algo que descreva, de forma compacta, cada grupo obtido pela técnica. O centróide do grupo é uma forma de representação bastante utilizada (Figura (2.1)). Caso nenhum dado esteja no centro de massa e tenha sido pré-estabelecido que os grupos só podem ser representados por dados da amostra, a seleção do dado mais próximo ao centróide do grupo é uma opção. Outras alternativas de representação seriam: seleção dos dados mais "distantes (diferentes)" de cada grupo (Figura (2.1)), nós de uma árvore de decisão (Figura (2.2)) e expressões lógicas (Figura (2.2)) (MICHALSKI et al., 1981).

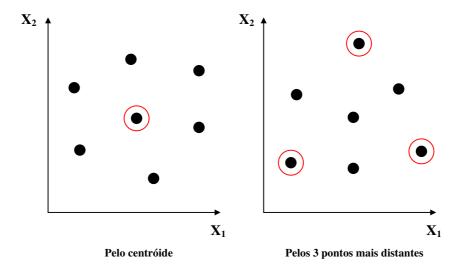


Figura 2.1: Representação dos grupos por pontos

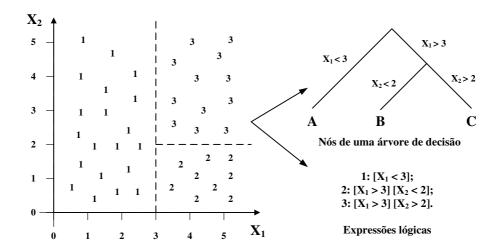


Figura 2.2: Representação dos grupos por uma árvore de decisão ou por expressões lógicas

v. Avaliação dos resultados (Se necessário)

Segundo (JAIN et al., 1999), há três formas de avaliar os resultados de um agrupamento. A avaliação externa utiliza a informação a priori sobre os dados para avaliar o agrupamento obtido. Por exemplo: os objetos A e B pertencem ao mesmo grupo e o objeto C a um grupo diferente. Este tipo de avaliação só pode ser empregada quando se tem algum conhecimento sobre os dados. A avaliação interna tenta verificar se o agrupamento encontrado se adequa aos dados. Na literatura, alguns índices são utilizados neste tipo de avaliação. A estatística modificada de Hubert relaciona a matriz das distâncias entre todos os dados com a matriz que define quais dados foram alocados em cada grupo. O índice de Davis-Bouldin é função da razão entre o somatórios das distâncias intragrupos e o somatório das distâncias entre os centróides (BEZDEK, PAL, 1998). A terceira forma de avaliar os resultados corresponde à comparação entre os agrupamentos obtidos por diferentes técnicas para o mesmo número de grupos, tomando como base os resultados de alguns índices, como os que foram citados acima (GRIRA et al., 2005).

Segundo (MATTEUCCI, 2004), há diversas finalidades para a realização de agrupamentos de dados. Descrever as características de cada grupo encontrado, agrupar dados segundo algum critério de similaridade e detectar a presença de dados estranhos (outliers), que podem ser oriundos de erros de medição, são exemplos de finalidades. Encontrar representantes para os grupos obtidos por um algoritmo de

agrupamento com o propósito de reduzir a quantidade de dados é a finalidade do agrupamento de dados nesta dissertação.

Alguns problemas podem ocorrer quando se utiliza uma técnica de agrupamento. Lidar com dados com muitas dimensões ou com uma grande base de dados pode ser problemático em virtude do tempo gasto nas simulações. Em alguns casos, não existe uma medida de distância "óbvia" que possa ser utilizada. Então, é necessário definir uma medida de distância, o que nem sempre é fácil, especialmente com dados contendo variáveis quantitativas e qualitativas (MATTEUCCI, 2004).

O agrupamento de dados tem sido aplicado em várias áreas, tais como (HARTIGAN, 1975; MATTEUCCI, 2004):

- Marketing: a partir de uma base de dados contendo características e registros das compras efetuadas por cada cliente, é possível identificar grupos de consumidores com comportamento similar.
- Biologia: classificação de plantas e animais, através de suas características.
- Medicina: classificação de doenças.
- Arqueologia e Antropologia: classificação de ferramentas, objetos funerários e esculturas pertencentes a uma mesma civilização.
- Bibliotecas: ordenação de livros.
- Seguros: identificação de grupos de possuidores de apólice de seguro de automóvel com alto risco e identificação de fraudes.
- Planejamento urbano: identificação de grupos de casas, de acordo com o tipo, preço e localização geográfica.
- Estudos de terremotos: identificação de zonas perigosas, através do agrupamento de epicentros de terremotos.
- WWW: classificação de documentos e identificação de grupos com padrões de acesso similares, através do agrupamento dos dados de weblog.

Neste trabalho, a proposta é utilizar técnicas para agrupar séries de vento com o objetivo de reduzir a quantidade de estados de vento das séries. Hoje em dia, há inúmeras técnicas de agrupamento, além das suas variantes. Mas, é muito provável que algumas técnicas não sejam as mais indicadas para solucionar o problema, considerando-se o esforço computacional e a qualidade dos agrupamentos em geral. A complexidade computacional do agrupamento hierárquico, por exemplo, não permite que ele seja aplicado em grandes bases de dados (XU, WUNSCH II, 2005). Segundo JAIN et al., as técnicas de agrupamento K-Means e o Mapa Auto-Organizável de Kohonen têm sido utilizadas para agrupar grandes bases de dados. Em (FUNG, 2001), o agrupamento hieráquico foi comparado às técnicas K-Means, Fuzzy C-Means e Mistura de Gaussianas, através de algumas bases de dados muito conhecidas. Ele apresentou a pior performance, devido a problemas de memória e à baixa qualidade do agrupamento obtido. Sendo assim, optou-se por explorar as seguintes técnicas: K-Means, Fuzzy C-Means e o Mapa Auto-Organizável de Kohonen.

2.1 K-Means (Hard Clustering)

A técnica K-Means é uma das técnicas de agrupamento mais simples e rápidas. A forma mais usual de inicialização desta técnica é a escolha de k realizações da série que se deseja agrupar para serem usadas como centróides iniciais, sendo k igual ao número de grupos desejado. Outras formas de inicialização serão comentadas mais adiante. Após a definição da localização destes centróides, cada dado da série é associado ao centróide mais próximo. Quando todos os dados já tiverem sido associados a algum centróide, estes são recalculados. Este procedimento que envolve associar os dados e recalcular os centróides é repetido inúmeras vezes até que os centróides obtidos sejam iguais aos da iteração anterior (NABNEY, 2002). Sua aplicação é recomendável para bases de dados numéricas onde os grupos sejam hiperesféricos (JAIN et al., 1999). A prova de convergência desta técnica é mostrada em (MACQUEEN, 1967).

Esta técnica minimiza a seguinte função objetivo:

$$J = \sum_{i=1}^{k} \sum_{i=1}^{n} ||x_i^j - c_j||^2$$
(2.4)

onde n é o número de realizações da série, k é o número de grupos e $||x_i^j - c_j||^2$ é a distância entre o dado x_i^j pertencente ao grupo j e o centróide deste mesmo grupo. Logo, o valor encontrado por (2.4) é o somatório das distâncias intra-grupos, ou seja, as distâncias entre os dados e os centróides dos seus respectivos grupos. A minimização desta função significa aumentar o grau de similaridade existente em cada grupo. Para uma distribuição fixa de dados, esta minimização promove, simultaneamente, a maximização do somatório das distâncias inter-grupos.

A parte mais importante desta técnica é a sua inicialização, isto é, a localização dos centróides iniciais, pois diferentes centróides irão gerar diferentes resultados. Isto pode ser observado no exemplo da Figura (2.3), onde é feito o agrupamento dos pontos A, B, C, D, E, F e G.

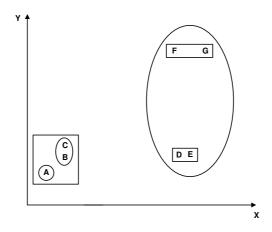


Figura 2.3: Exemplo de agrupamento do K-Means

Se os pontos A, B e C forem escolhidos para centróides iniciais, os grupos resultantes serão $\{A\}$, $\{B,C\}$ e $\{D,E,F,G\}$, os quais estão envolvidos pelas elipses. O valor encontrado pela função objetivo é bem maior para este agrupamento do que para o melhor agrupamento, cujos grupos são $\{A,B,C\}$, $\{D,E\}$ e $\{F,G\}$, envolvidos pelos retângulos. A melhor solução teria sido encontrada, caso os pontos A, D e F fossem escolhidos para centróides iniciais (JAIN et al., 1999).

O algoritmo segue os seguintes passos:

- i. Escolha dos centróides iniciais.
- ii. Associação de cada dado ao centróide mais próximo. Cada dado só pode ser associado a um centróide.
- iii. Atualização das posições dos centróides, através do cálculo da média dos dados associados a cada grupo.
- iv. Comparação entre os centróides desta iteração com os calculados na anterior. Caso sejam diferentes, retorna-se ao passo 2 e assim por diante até que não ocorra mais modificação da posição dos centróides.

As vantagens desta técnica são a sua simplicidade, que torna fácil a sua implementação, e a sua rapidez, que permite que esta técnica seja utilizada para

agrupar grandes bases de dados (JAIN et~al., 1999). A complexidade computacional (tempo) é igual a O(nkdt), onde n é o número de observações, k é o número de grupos, d é o número de variáveis e t é o número de iterações necessárias para a convergência do algoritmo (DUDA et~al., 2001).

Entre as desvantagens apresentadas pela técnica K-Means, existe a dependência do número de grupos escolhido. Como se trata de uma técnica de aprendizado não-supervisionado, não se sabe a priori qual é o melhor número de grupos (MATTEUCCI, 2004). A sensibilidade do algoritmo à inicialização, o que não permite assegurar a convergência para o mínimo global, é uma grande desvantagem. Caso os centróides iniciais tenham sido mal escolhidos, ele pode convergir para um mínimo local de pouca qualidade. Uma opção para driblar este problema é executar o algoritmo várias vezes com inicializações diferentes (JAIN et al., 1999). Ao fim do agrupamento, todos os dados estão associados a algum centróide em particular, porém, é possível que nenhum dado esteja associado a um determinado centróide. Uma alternativa seria excluir os grupos vazios. A técnica não reconhece a presença de outliers. Além disso, não é adequada quando os grupos são de diferentes tamanhos, densidades e formas, o que é exemplificado a seguir (VICTOR, 2006).

Exemplos:

• Grupos com diferentes tamanhos

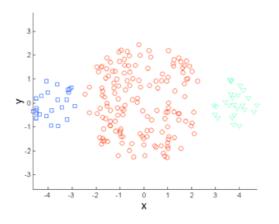


Figura 2.4: Dados Originais

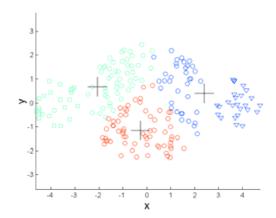


Figura 2.5: K-Means(3 Grupos)

• Grupos com diferentes densidades

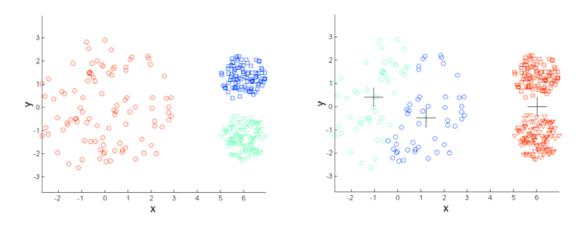


Figura 2.6: Dados Originais

Figura 2.7: K-Means(3 Grupos)

• Grupos com formas não-esféricas

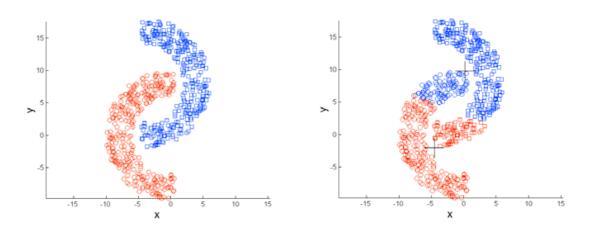


Figura 2.8: Dados Originais

Figura 2.9: K-Means(2 Grupos)

2.2 Fuzzy C-Means (Soft Clustering)

Nesta técnica, diferentemente da anterior, cada dado proveniente da série pode ser associado a mais de um grupo. Esta associação é feita através de uma matriz de pertinência, composta de valores entre 0 e 1, os quais correspondem ao grau de pertinência entre o dado e os centróides dos grupos. Desta forma, cada dado pode pertencer a vários grupos com diferentes graus de pertinência (BEZDEK, 1981). O exemplo da Figura (2.10) é bem explicativo.



Figura 2.10: Exemplo de agrupamento do Fuzzy C-Means

Os retângulos englobam os seguintes grupos: $H_1 = \{1, 2, 3, 4, 5\}$ e $H_2 = \{6, 7, 8, 9\}$. A técnica Fuzzy C-Means produz os grupos F_1 e F_2 , envolvidos pelas elipses. Estes grupos poderiam ser descritos da seguinte forma:

$$F_1 = \{(1;0,9), (2;0,8), (3;0,7), (4;0,6), (5;0,55), (6;0,2), (7;0,2), (8;0,0), (9;0,0)\}$$

$$F_2 = \{(1;0,0), (2;0,0), (3;0,0), (4;0,1), (5;0,15), (6;0,4), (7;0,35), (8;1,0), (9;0,9)\}$$

Nos pares (x; y) dos grupos F_1 e F_2 , o x corresponde ao dado agrupado e o y corresponde ao grau de pertinência do dado em relação ao grupo. Altos graus de pertinência indicam maior confiança na associação do dado ao grupo (JAIN $et\ al.$, 1999).

O algoritmo minimiza a seguinte função objetivo:

$$J = \sum_{i=1}^{n} \sum_{j=1}^{k} u_{ij}^{m} ||x_{i} - c_{j}||^{2}$$
(2.5)

onde m, denominado índice de fuzzyficação, é qualquer número real maior que 1, u_{ij} é o grau de pertinência de x_i em relação ao grupo j, c_j é o centróide do grupo j, $||x_i - c_j||^2$ é a distância entre o dado x_i e o centróide do grupo j, n é o número de realizações da série e k é o número de grupos. A função (2.5) calcula as distâncias entre todos os dados e cada um dos centróides. Em (GRÖLL, JÄKEL, 2005), é detalhada a prova de convergência desta técnica.

A técnica Fuzzy C-Means consiste em atualizar os graus de pertinência e os valores dos centróides, utilizando as seguintes equações:

$$u_{ij} = \frac{1}{\sum_{d=1}^{k} \left(\frac{\|x_i - c_j\|}{\|x_i - c_d\|}\right)^{\frac{2}{m-1}}}$$
(2.6)

$$c_j = \frac{\sum_{i=1}^n u_{ij}^m x_i}{\sum_{i=1}^n u_{ij}^m}$$
 (2.7)

Na equação (2.6), o objetivo é atribuir um grau de pertinência ao dado x_i em relação ao grupo j que seja proporcional ao seu grau de pertinência em relação aos demais grupos. Através desta equação, é possível perceber que conforme o valor de m se aproxima da unidade, mais o algoritmo se comporta como a técnica K-Means(HAMERLY, ELKAN, 2002). Isto pode ser melhor observado no seguinte exemplo:

$$Dado \ a \ ser \ agrupado = 1$$

$$Centr\'oides = \begin{bmatrix} 2 & 3 & 4 & 5 \end{bmatrix}$$

Para m=2, o grau de pertinência do dado em relação ao centróide igual a 2 é calculado pela equação (2.6):

$$u_{12} = \frac{1}{\left(\frac{\|1-2\|}{\|1-2\|}\right)^2 + \left(\frac{\|1-2\|}{\|1-3\|}\right)^2 + \left(\frac{\|1-2\|}{\|1-4\|}\right)^2 + \left(\frac{\|1-2\|}{\|1-5\|}\right)^2} = \frac{1}{1^2 + \frac{1}{2}^2 + \frac{1}{3}^2 + \frac{1}{4}^2} = 0,7035$$

Para m = 1, 1, também se utiliza a equação (2.6):

$$u_{12} = \frac{1}{\left(\frac{\|1-2\|}{\|1-2\|}\right)^{20} + \left(\frac{\|1-2\|}{\|1-3\|}\right)^{20} + \left(\frac{\|1-2\|}{\|1-4\|}\right)^{20} + \left(\frac{\|1-2\|}{\|1-5\|}\right)^{20}} = \frac{1}{1^{20} + \frac{1}{2}^{20} + \frac{1}{3}^{20} + \frac{1}{4}^{20}} = 1$$

Se o agrupamento tivesse sido realizado pela técnica K-Means, o dado teria sido associado ao grupo do centróide 2, pois é o mais próximo ao dado. Para m=2, a técnica Fuzzy C-Means atribuiu um grau alto de pertinência do dado em relação ao centróide 2. Ao utilizar um valor de m bem próximo à unidade, a técnica Fuzzy C-Means atribuiu o grau máximo de pertinência do dado em relação ao mesmo centróide, ou seja, tem o mesmo comportamento do método K-Means.

O algoritmo é composto pelos seguintes passos:

- i. Inicialização aleatória da matriz de pertinência.
- ii. Cálculo dos centróides através da equação (2.7).
- iii. Cálculo dos graus de pertinência através da equação (2.6).
- iv. Se $||J^{t+1} J^t|| < \epsilon$, então pare. Senão, retorne ao segundo passo. Quanto menor for o valor escolhido para a tolerância (ϵ) , maior será o esforço computacional exigido.

A técnica Fuzzy C-Means é aplicada em casos onde os dados estão próximos ao limite entre um ou mais grupos e, de preferência, que estes grupos sejam esféricos e com aproximadamente o mesmo tamanho (KUMAR, 2000). A complexidade computacional (tempo) é igual a $O(nk^2dt)$, onde n é o número de observações, k é o número de grupos, d é o número de variáveis e t é o número de iterações (HORE $et\ al.,\ 2007$).

A vantagem desta técnica reside na capacidade de realizar um soft clustering, ou seja, considerar que um dado pode ser associado a mais de um grupo. Como desvantagens, ela se assemelha à técnica K-Means, pois também depende do número escolhido de grupos e em virtude da sensibilidade do algoritmo às diferentes inicializações, a cada nova simulação de um mesmo número de grupos, podem ser encontrados centróides diferentes. Logo, pode convergir para um mínimo local. Mas, é melhor que a técnica K-Means neste quesito (JAIN et al., 1999). Também não lida bem com a presença de outliers (KUMAR, 2000).

Como a proposta desse trabalho é representar uma série de valores de velocidade de vento por uma quantidade menor de valores, não é interessante que um mesmo dado da série possa ser representado por mais de um valor. Sendo assim, o resultado final obtido sofre uma transformação, onde cada dado é considerado como pertencente ao grupo para o qual apresenta o maior grau de pertinência. Esta transformação é conhecida como defuzzyficação.

2.3 Mapa Auto-Organizável de Kohonen (*Hard Clustering*)

O Mapa Auto-Organizável de Kohonen é uma rede neural de uma camada baseada em aprendizado competitivo. Como pode ser visto no mapa de 6 neurônios da Figura (2.11), cada neurônio é conectado ao vetor de entrada, através das sinapses, representadas pelas setas (HAYKIN, 2001). O vetor sináptico de cada neurônio tem o comprimento e a dimensão do vetor de entrada, ou seja, para cada dado do vetor de entrada, há uma sinapse conectando ao neurônio.

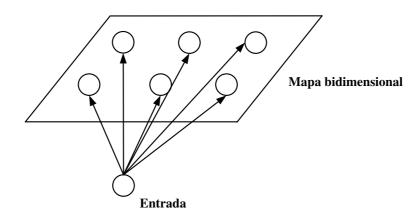
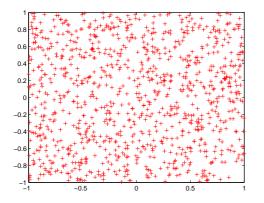



Figura 2.11: Conexões entre o vetor de entrada e os neurônios

O número de neurônios do mapa é igual ao número de grupos desejado. No entanto, no final da simulação, podem ser encontrados grupos vazios, ou seja, neurônios com os quais nenhum dado foi associado. Para ilustrar a técnica, 1.000 pontos bidimensionais foram gerados aleatoriamente e agrupados num mapa formado por 30 neurônios. A localização de cada ponto pode ser vista na Figura (2.12). As Figuras (2.13), (2.14) e (2.15) mostram o mapa após 10, 500 e 1.000 épocas, respectivamente. Durante o treinamento, os neurônios vão mudando de posição. Os mapas após 10 e 500 épocas são um pouco parecidos, mas, após 1.000 épocas, nota-se que houve um estreitamento do mapa.

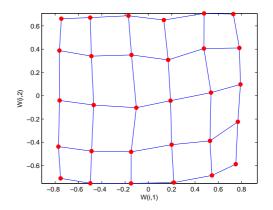
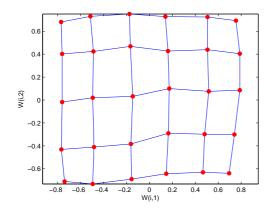



Figura 2.12: Distribuição dos 1000 pontos

Figura 2.13: Mapa de Kohonen Após 10 Épocas

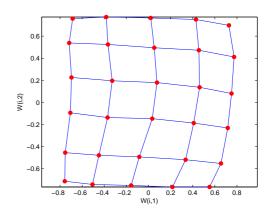


Figura 2.14: Mapa de Kohonen Após 500 Épocas

Figura 2.15: Mapa de Kohonen Após 1000 Épocas

O algoritmo de treinamento segue os seguintes passos (KOHONEN, 1990):

i. Padronização dos dados do vetor de entrada, a qual é exemplificada a seguir:

$$\begin{split} Vetor \ Y &= \begin{bmatrix} y_1 & y_2 & y_3 \end{bmatrix} \\ M\'edia \ do \ vetor \ Y &= \overline{y} = \frac{y_1 + y_2 + y_3}{3} \\ Desvio-padr\~ao \ do \ vetor \ Y &= s = \sqrt{\frac{1}{2} \left[(y_1 - \overline{y})^2 + (y_2 - \overline{y})^2 + (y_3 - \overline{y})^2 \right]} \\ Vetor \ Y \ padronizado &= \begin{bmatrix} \frac{y_1 - \overline{y}}{s} & \frac{y_2 - \overline{y}}{s} & \frac{y_3 - \overline{y}}{s} \end{bmatrix} \end{split}$$

ii. Inicialização aleatória dos pesos sinápticos da rede para cada neurônio em relação ao vetor de entrada.

$$w_j = [w_{j1}, w_{j2}, w_{j3}, \dots, w_{jn}]^T$$
, para $j = 1, 2, \dots, l$ (2.8)

onde n é o número de dados do vetor de entrada e l é o número de neurônios do mapa.

- iii. Um dado do vetor de entrada é apresentado à rede.
- iv. Nesta etapa, para o dado apresentado, os neurônios da rede calculam seus respectivos valores da seguinte função:

$$d_j = \sqrt[2]{\sum_{k=1}^d (x_k - w_{kj})^2}$$
 (2.9)

onde d_j é a distância Euclidiana do neurônio j, d é o número de variáveis do vetor de entrada, x_k é a k-ésima variável do dado apresentado x e w_{kj} é o peso sináptico da k-ésima variável do dado apresentado que é conectado ao neurônio j. O neurônio que obtiver o menor valor desta função será o vencedor.

- v. O neurônio vencedor excita uma vizinhança de neurônios (N_c) . Inicialmente, esta vizinhança engloba até o neurônio mais distante do vencedor. Conforme aumenta o número de épocas, o raio desta vizinhança vai diminuindo até atingir um valor igual a um, que corresponde aos vizinhos mais próximos.
- vi. Atualização do vetor de pesos sinápticos de cada neurônio, segundo a equação (2.10), porém somente serão atualizados os neurônios situados na vizinhança de excitação do neurônio vencedor.

$$w_{j}(t+1) = \begin{cases} w_{j}(t) + \eta(t)(x - w_{j}(t)) & \text{se } j \in N_{c}(t); \\ w_{j}(t) & \text{se } j \notin N_{c}(t). \end{cases}$$
(2.10)

onde t é a época, $w_j(t)$ é o vetor de pesos sinápticos na época t, $w_j(t+1)$ é o vetor de pesos sinápticos na época t+1, $\eta(t)$ é a taxa de aprendizado na época t, $N_c(t)$ é a vizinhança de neurônios excitados na época t e x é o dado apresentado.

vii. Retornar ao segundo passo até que todos os dados do vetor de entrada tenham sido apresentados. Incrementar o número de épocas. Repetir este processo a partir do segundo passo até terminar o número de épocas.

Uma outra forma de avaliar a competição entre os neurônios é através do produto interno entre o dado do vetor de entrada e o vetor de pesos sinápticos. Neste caso, o vetor de entrada teria de ser normalizado a módulo unitário antes de ser inserido no algoritmo. Este tipo de normalização é mostrado no seguinte exemplo:

$$\begin{aligned} &Vetor\ X = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \\ &M\'odulo\ do\ vetor\ X = |X| = \sqrt{x_1^2 + x_2^2 + x_3^2} \\ &Vetor\ X' = \begin{bmatrix} \frac{X}{|X|} & |X| \end{bmatrix} = \begin{bmatrix} \frac{x_1}{|X|} & \frac{x_2}{|X|} & \frac{x_3}{|X|} & |X| \end{bmatrix} \\ &M\'odulo\ do\ vetor\ X' = |X'| = \sqrt{\left(\frac{x_1}{|X|}\right)^2 + \left(\frac{x_2}{|X|}\right)^2 + \left(\frac{x_3}{|X|}\right)^2 + |X|^2} \\ &Vetor\ X\ normalizado = \frac{X'}{|X'|} = \begin{bmatrix} \frac{x_1}{|X||X'|} & \frac{x_2}{|X||X'|} & \frac{x_3}{|X||X'|} & \frac{|X|}{|X'|} \end{bmatrix} \end{aligned}$$

Esta rede neural artificial é aplicada para visualização da distribuição dos dados e quantização vetorial (KOHONEN, 1989). A complexidade computacional (tempo) é igual a O(nlt), onde n é o número de observações, l é o número de neurônios e t é o número de épocas (NOUR, MADEY, 1996). Na literatura, ainda não existe prova de convergência para esta técnica.

As vantagens do mapa de Kohonen são a capacidade de produzir um mapa bidimensional ou tridimensional como representação visual de um agrupamento multidimensional e o fato de conseguir trabalhar com grandes bases de dados (EVERITT et al., 2001; KOHONEN, 1989). Como desvantagens, podem ser citadas a sensibilidade à ordem de apresentação dos dados e o controle da convergência do método por vários parâmetros, tais como a taxa de aprendizado e a vizinhança do neurônio vencedor onde ocorre o aprendizado. Assim como as técnicas K-Means e Fuzzy C-Means, só funciona bem com bases de dados onde os grupos sejam hiperesféricos (EVERITT et al., 2001; JAIN et al., 1999; KOHONEN, 1989).

Capítulo 3

Disponibilidade de Geração de Usinas Eólicas

Para verificar a viabilidade da implantação de uma usina eólica numa determinada região, é necessário avaliar o seu potencial gerador. LEITE (2005) desenvolveu um Modelo de confiabilidade capaz de calcular a estimativa de energia que pode ser gerada, incluindo vários aspectos, como as taxas de falha e de reparo das turbinas, o comportamento do vento e a curva de potência da turbina.

O Modelo considera que todas as turbinas de uma usina eólica sofrem a mesma influência do vento. Embora existam efeitos que façam com que diferentes velocidades de vento cheguem às turbinas, os mesmos podem ser minimizados em um bom projeto de instalação.

Neste trabalho, o Modelo será utilizado para a avaliação da adequação das técnicas de agrupamento exploradas. O esquema da Figura (3.1) mostra como o Modelo será utilizado.

Figura 3.1: Esquema da utilização do Modelo

No Capítulo (2), foram descritas algumas técnicas de agrupamento. A série de vento agrupada, obtida por alguma técnica, será utilizada como entrada do Modelo, juntamente com outras informações, como o número de estados de vento existentes

na série agrupada e a duração do intervalo entre as medições de velocidade. De posse destes dados, o Modelo calcula os índices de confiabilidade, os quais são descritos mais adiante.

Para facilitar o entendimento, as etapas de solução do Modelo de confiabilidade mais relevantes para este trabalho serão repetidas nas seções a seguir. A descrição completa do Modelo pode ser encontrada em (LEITE, 2005).

3.1 Modelagem do comportamento do vento

Na primeira etapa do Modelo, são calculadas as taxas de transição entre os patamares de velocidade de vento, bem como a frequência e a probabilidade de ocorrência de cada patamar.

Para obtenção destes dados, é necessário modelar o comportamento do vento. Devido às suas características, o vento pode ser caraterizado por um processo estocástico, ou seja, um conjunto de variáveis aleatórias ordenadas em uma certa sequência (PAPOULIS, 1965). O índice do processo é o tempo e a variável aleatória é a velocidade do vento. O Modelo de Confiabilidade utilizado neste trabalho modelou o comportamento do vento por um processo estocástico conhecido como processo de Markov, onde a ocorrência de uma determinada velocidade de vento depende somente da velocidade ocorrida no instante anterior e as taxas de transição de uma velocidade para outra são constantes ao longo de todo o processo. Como a variável aleatória e o índice do processo são discretos, o processo é chamado de cadeia de Markov. A representação do comportamento do vento por uma cadeia de Markov é mostrada na Figura (3.2).

Os estados de vento estão representados em ordem crescente de velocidade e a transição do estado j-1 para o estado j é representada pela taxa λ_{j-1} $_j$.

As taxas de transição entre os patamares de vento podem ser definidas pela seguinte expressão:

$$\lambda_{ij} = \frac{N_{ij}}{D_i} \tag{3.1}$$

onde N_{ij} é o número de transições entre o estado i e o estado j e D_i é a duração do estado i, dada por:

$$D_i = \sum_{i=1}^{N_i} t_i \tag{3.2}$$

onde t_i é o intervalo de tempo entre as medições e N_i é a frequência do estado i, ou seja, o número de ocorrências deste estado.

A probabilidade de ocorrência do estado i é dada por:

$$P_i = \frac{D_i}{T} \tag{3.3}$$

onde T é o tempo total da série temporal de velocidade de vento.

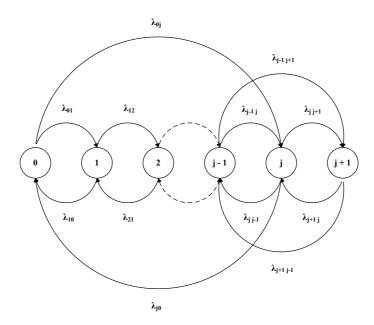


Figura 3.2: Cadeia de Markov para o comportamento do vento

3.2 Resumo das etapas restantes do Modelo

Na segunda etapa do Modelo, ocorre a montagem da matriz de intensidade de transição entre os estados das turbinas. Para a obtenção desta matriz, é necessário modelar a turbina eólica como um componente com taxas de falha e de reparo e com diferentes estados de geração.

Em períodos de velocidades de vento muito elevadas, as falhas podem ocorrer com mais frequência e as saídas forçadas tendem a ser de natureza mais grave, sobretudo

nas pás do rotor, ocasionando um tempo de reparo maior. Nestas situações, são utilizadas as taxas de emergência. As taxas de emergência de falha tendem a ser maiores e as taxas de emergência de reparo, menores.

A turbina eólica é modelada como um componente a dois estados: em operação e em falha. Para uma usina com N turbinas eólicas, o número de possíveis estados operativos é igual a 2^N . Quando a turbina está em operação, a potência gerada pode ser obtida pela curva de potência da mesma. Portanto, as informações necessárias para o modelo de geração estão contidas na curva de potência, fornecida pelo fabricante da turbina eólica, onde também estão contidas as informações sobre a velocidade nominal (v_n) , a velocidade de acionamento $(v_{cut\ in})$, a velocidade de corte $(v_{cut\ out})$ e a potência nominal (p_{nom}) . Um exemplo de curva de potência é mostrado na Figura (3.3), onde pode ser obtido o valor da potência de saída da turbina para cada velocidade de vento.

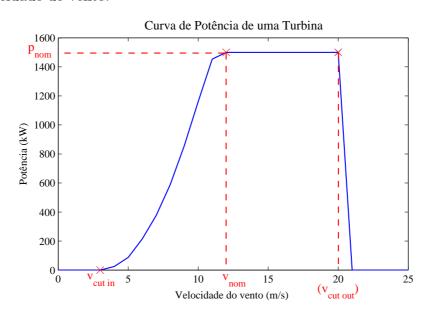


Figura 3.3: Curva de potência de uma turbina

Na terceira etapa do Modelo, é feita a montagem da matriz de intensidade de transição resultante da junção dos modelos da turbina e do vento. Esta junção pode ser representada por um diagrama de transição de estados. Para N turbinas e n estados de velocidade de vento, o número de estados resultante é dado pela expressão:

$$Estados da usina = 2^N * n (3.4)$$

Para uma única turbina com quatro estados de vento, o diagrama de transição de estados pode ser representado pela Figura (3.4).

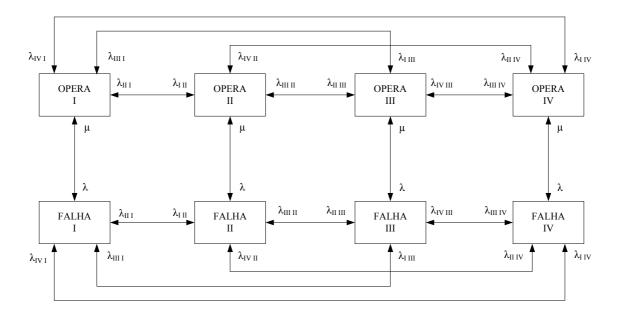


Figura 3.4: Diagrama de transição entre estados

A matriz de intensidade de transição é montada utilizando-se as taxas de falha e de reparo das turbinas e as taxas de transição entre os estados de vento.

Na quarta etapa do Modelo, são calculados os estados de geração da usina eólica, bem como a probabilidade de ocorrência de cada estado. O objetivo do Modelo é encontrar as probabilidades em regime permanente, também conhecidas como probabilidades estacionárias dos estados de geração da usina eólica, que são calculadas pela solução do seguinte sistema linear:

$$\underline{p}(t) A = 0 \tag{3.5}$$

onde $\underline{p}(t)$ é o vetor composto pelas probabilidades estacionárias de todos os estados de geração da usina e A é a matriz de intensidade de transição. Cada estado representa um valor de geração da usina, definido através da condição operativa da turbina e do estado de velocidade de vento.

Considerando-se que todas as turbinas são idênticas, ou seja, possuem a mesma característica de potência, a geração de cada estado da usina é determinada através da curva de potência. Dessa forma, a potência P_i de um estado i, cuja velocidade é v_i , é dada por:

$$P_i = N \acute{u}mero \ de \ turbinas \ em \ operação \ no \ estado \ i \ *P(v_i)$$
 (3.6)

onde $P(v_i)$ é a potência gerada pela turbina no estado de vento i, de acordo com sua curva de potência (LEITE, 2005).

3.2.1 Curva de Duração

Os estados de geração da usina e suas probabilidades de ocorrência calculados na quarta etapa do Modelo são utilizados na montagem da distribuição de probabilidade acumulada e, por conseguinte, da curva de duração. Esta é uma aproximação da curva formada pelos estados de geração e suas probabilidades acumuladas e mostra a porcentagem do tempo de permanência nos diferentes estados de geração (LEITE, 2005). A curva de duração é uma aproximação da distribuição de probabilidade acumulada e tende a coincidir com esta quanto maior for o número de estados representados. Um exemplo de curva de duração para 3 estados de vento é mostrado na Figura (3.5).

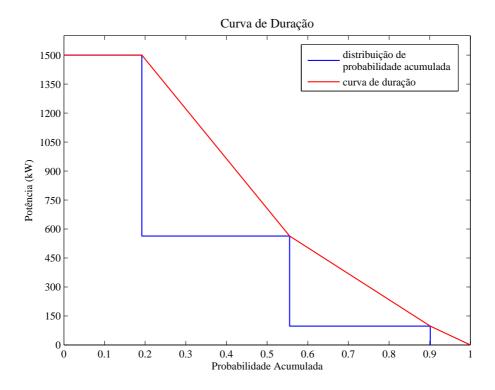


Figura 3.5: Exemplo de Curva de Duração para 3 Estados de Vento

Da Figura (3.5), pode-se extrair as seguintes informações:

- em 20% do tempo, a geração da usina foi igual a potência máxima da turbina;
- em 55% do tempo, a geração foi de, no mínimo, 550kW; e

• em 90% do tempo, a geração foi de, no mínimo, 100kW.

3.3 Cálculo dos índices

Na quinta e última etapa do Modelo, são calculados os índices de desempenho da usina eólica. Os resultados destes índices são utilizados para comparar a série temporal de vento com as séries agrupadas. Estes índices de confiabilidade foram definidos em (ALLAN, BILLINTON, 2000) e servem para avaliar a disponibilidade de geração da usina eólica.

O Modelo desenvolvido pode ser incorporado a métodos de avaliação da confiabilidade da geração (NH1) e confiabilidade composta (NH2). A seguir está uma descrição dos índices utilizados (LEITE, 2005):

- IWP (Installed Wind Power) potência eólica instalada. É a soma das potências nominais de todas as turbinas da usina eólica. Unidade: [MW]
- IWE (Installed Wind Energy) potência eólica instalada multiplicada pelo número de horas em um ano. Ela representa a energia que pode ser extraída em um ano. Unidade: [MWh]

$$IWE = IWP * 8760 \tag{3.7}$$

- EAWE (Expected Available Wind Energy) expectativa de energia eólica disponível no vento. Quantidade de energia que pode ser gerada em um ano sem considerar saídas de turbinas eólicas. Unidade: [MWh]
- EGWE (Expected Generated Wind Energy) expectativa de energia eólica gerada. Quantidade de energia que pode ser gerada em um ano, considerando-se as saídas forçadas das turbinas. Unidade: [MWh]
- WGAF (Wind Generation Availability Factor) fator de disponibilidade de geração eólica. Equivale ao fator de carga de usinas convencionais, mas considera-se também o efeito de operação das turbinas. Adimensional.

$$WGAF = \frac{EGWE}{IWE} \tag{3.8}$$

Além destes, pode-se utilizar o fator de capacidade FC da usina eólica, que não considera o efeito da operação da turbina, apenas a disponibilidade de vento:

$$FC = \frac{EAWE}{IWE} \tag{3.9}$$

Capítulo 4

Investigação do Desempenho das Técnicas de Agrupamento

Este capítulo destina-se a esclarecer como foi desenvolvido o trabalho. Nele, são mostrados os valores atribuídos aos parâmetros de cada técnica, tipos de inicialização utilizados, a avaliação do desempenho das técnicas exploradas para verificar quais seriam mais apropriadas para terem seus resultados inseridos no modelo de confiabilidade, etc. Por fim, são descritos os índices comparativos criados para melhor avaliar os resultados do modelo.

4.1 Agrupamento Univariável

4.1.1 K-Means

Devido à sensibilidade do K-Means à escolha dos centróides iniciais, foram testadas as seguintes formas de inicialização:

Modo aleatório

Neste tipo de inicialização, algumas realizações da série foram escolhidas aleatoriamente para serem usadas como centróides iniciais.

• Ordenação por realizações

Na Ordenação por realizações, os centróides iniciais foram calculados da seguinte forma:

i. Todos os valores da série foram ordenados de forma crescente.

- ii. A série ordenada foi dividida em várias subséries ordenadas com a mesma quantidade de realizações.
- iii. Finalmente, foi calculada a média de cada subsérie.

As médias encontradas foram utilizadas como centróides iniciais da simulação.

Exemplo:

$$S\acute{e}rie = \{12, 4; 11, 6; 11, 2; 10, 8; 10, 3; 10, 9; 12, 2; 11, 3; 9, 8; 9, 2; 7, 2; 7, 7\}$$

 $Quantidade\ de\ realizações=12$

Número desejado de grupos = 2

$$\textit{S\'erie ordenada} = \{7, 2; 7, 7; 9, 2; 9, 8; 10, 3; 10, 8; 10, 9; 11, 2; 11, 3; 11, 6; 12, 2; 12, 4\}$$

Subsérie
$$1 = \{7, 2, 7, 7, 9, 2, 9, 8, 10, 3, 10, 8\}$$

Subsérie
$$2 = \{10, 9; 11, 2; 11, 3; 11, 6; 12, 2; 12, 4\}$$

 $M\'edia\ da\ subs\'erie\ 1=9,2$

M'edia da subs'erie 2 = 11,6

 $Centr\'oides\ iniciais = \{9, 2; 11, 6\}$

Este exemplo pode ser visualizado nas Figuras (4.1) e (4.2).

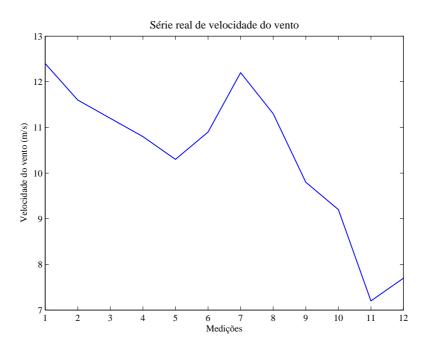


Figura 4.1: Série temporal

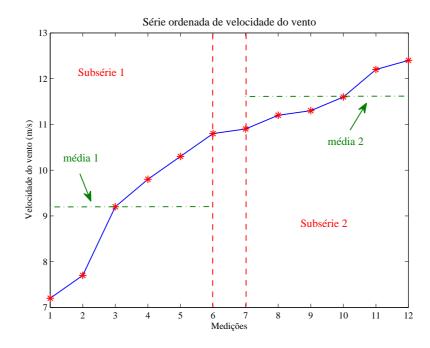


Figura 4.2: Série ordenada dividida em duas subséries com as suas respectivas médias

• Ordenação por valor

Na Ordenação por valor, os centróides iniciais foram calculados da seguinte forma:

- i. Todos os diferentes valores existentes na série foram identificados e utilizados para formar uma nova sequência. Em seguida, esta sequência foi ordenada de forma crescente.
- ii. A sequência obtida foi dividida em intervalos de mesma largura de valores.
- iii. Finalmente, foi calculada a média dos limites de cada intervalo.

As médias encontradas foram utilizadas como centróides iniciais da simulação.

Exemplo:

```
\begin{array}{l} \textit{S\'erie} = \{12, 4; 11, 6; 11, 2; 10, 8; 10, 3; 10, 9; 12, 2; 11, 3; 9, 8; 9, 2; 7, 2; 7, 7\} \\ \textit{Quantidade de realizaç\~oes} = 12 \\ \textit{N\'umero desejado de grupos} = 2 \\ \textit{S\'erie ordenada} = \{7, 2; 7, 7; 9, 2; 9, 8; 10, 3; 10, 8; 10, 9; 11, 2; 11, 3; 11, 6; 12, 2; 12, 4\} \\ \textit{Intervalo} \ 1 = \{7, 2; 9, 8\} \\ \textit{Intervalo} \ 2 = \{9, 8; 12, 4\} \end{array}
```

$$\label{eq:media} \begin{split} \textit{M\'edia do intervalo} &\ 1=8,5 \\ \\ \textit{M\'edia do intervalo} &\ 2=11,1 \\ \\ \textit{Centr\'oides iniciais} &= \{8,5;11,1\} \end{split}$$

Este exemplo pode ser visualizado nas Figuras (4.3) e (4.4).

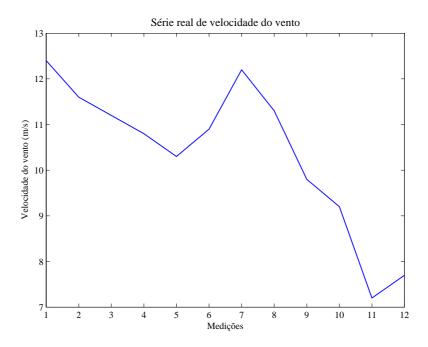


Figura 4.3: Série temporal

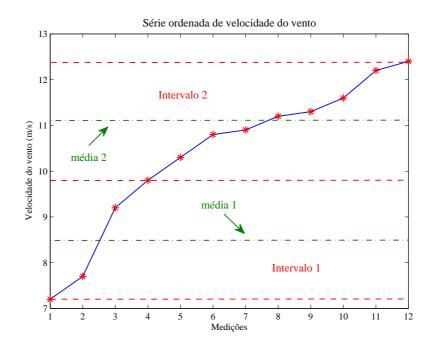


Figura 4.4: Série ordenada dividida em dois intervalos com as suas respectivas médias

As simulações de K-Means foram realizadas utilizando o programa Matlab 7.1, através da função *kmeans* que faz parte da toolbox Netlab¹. As distâncias entre os dados e os centróides foram calculadas através da métrica Euclidiana. Optou-se por excluir os centróides que, ao fim do agrupamento, não estivessem associados a nenhum dado.

4.1.2 Fuzzy C-Means

As simulações do Fuzzy C-Means foram realizadas pelo programa Matlab 7.1, através da função fcm que faz parte da Fuzzy Logic Toolbox do próprio programa. Foi utilizado um índice de fuzzyficação (m) igual a 2, por ser largamente reconhecido como um boa escolha (HATHAWAY, BEZDEK, 2001). Foram realizados alguns testes com valores de m bem próximos de 1, porém os valores dos centróides finais eram bem parecidos com os centróides finais encontrados por m=2, portanto, decidiu-se pelo último. A matriz de pertinência inicial foi gerada de forma aleatória pelo algoritmo em todos os agrupamentos.

Foi utilizado um valor de tolerância (ϵ) de 10^{-3} nas simulações com 3, 5, 7 e 8 grupos. Nas simulações com 25 e 36 grupos, optou-se por uma tolerância de 10^{-2} , em $\frac{1}{1}$ criada por Ian T. Nabney e Christopher M. Bishop, vide http://www.ncrg.aston.as.uk/netlab.

virtude da dificuldade de convergência.

4.1.3 Mapa Auto-Organizável de Kohonen

As simulações do Mapa Auto-Organizável de Kohonen foram realizadas pelo programa Matlab 7.1, através da função *newsom* que faz parte da Neural Network Toolbox do próprio programa. Em virtude dos dados utilizados serem unidimensionais, não foi realizado nenhum tipo de normalização.

Os melhores resultados do Mapa de Kohonen, segundo o critério do menor somatório das distâncias intra-grupos, foram obtidos com a seguinte configuração:

- Taxa de aprendizado da fase de ordenação=0,9
- Número de épocas da fase de ordenação=1000
- Taxa de aprendizado da fase de convergência=0,05
- Distância entre os vizinhos na fase de convergência=1
- Vizinhança com o formato de uma grade retangular
- Número de épocas do treinamento=2000

Foram realizadas outras simulações variando a taxa de aprendizado da fase de convergência e o número de épocas do treinamento. As simulações utilizaram taxas de aprendizado iguais a 0,01 e 0,05 e as seguintes quantidades de épocas: 1000, 2000 e 2500. A taxa de aprendizado e o número de épocas da fase de ordenação do algoritmo foram mantidos. O algoritmo levou horas para simular cada configuração, o que dificultou a realização de outros testes.

4.1.4 Avaliação das Técnicas de Agrupamento

4.1.4.1 Seleção das Técnicas de Agrupamento

Antes da aplicação no Modelo de Confiabilidade, foram feitos vários agrupamentos com as diferentes técnicas descritas neste trabalho para que se pudesse avaliar o desempenho das mesmas.

Para a escolha das técnicas de agrupamento cujos resultados seriam aplicados no Modelo, foram utilizados os valores de velocidade do vento de uma série do Nordeste do Brasil (LEITE, 2005).

Foram realizados os seguintes agrupamentos: 9, 16, 25, 36, 49, 81 e 100 grupos. A escolha de tais números teve o intuito de preservar a vizinhança topológica do Mapa Auto-Organizável de Kohonen, tornando os eixos comparáveis através de um mapa quadrado, ou seja, 3x3, no caso de 9 grupos, 4x4, para 16 grupos, e assim por diante.

Na Tabela (4.1), são mostrados os centróides finais obtidos pelas três técnicas para a Série Nordeste no caso de nove grupos.

Tabela 4.1: Centróides Finais da Série Nordeste

K-means inicializado por			Fuzzy C-Means	Mapa Auto-Organizável
Modo	Ordenação mais	Ordenação por		de Kohonen
aleatório	distância	valor		
2,685	2,778	2,778	2,825	4,245
4,399	4,491	4,621	4,495	5,503
5,577	5,566	5,908	5,593	6,195
6,641	6,442	7,173	6,633	7,041
7,677	7,330	8,479	7,733	7,550
8,867	8,435	9,769	8,945	8,089
10,289	9,755	11,088	10,304	9,117
11,916	11,370	12,543	11,846	10,186
13,956	13,610	14,287	13,946	12,215

Pode-se observar que os valores dos centróides finais do Mapa Auto-Organizável de Kohonen não estão tão bem distribuídos quanto nas outras técnicas.

O índice escolhido para definir quais técnicas teriam seus resultados inseridos no Modelo de Confiabilidade foi o somatório das distâncias intra-grupos. As técnicas que apresentassem os menores valores deste índice, demonstrando um grau maior de similaridade entre os dados agrupados, seriam selecionadas para o Modelo de Confiabilidade.

A Tabela (4.2) mostra que o Mapa Auto-Organizável de Kohonen apresentou um valor de somatório das distâncias intra-grupos bem maior que os das técnicas K-Means e Fuzzy C-Means, sendo assim, apenas estas foram escolhidas para o Modelo de Confiabilidade. Cabe ressaltar que, embora tenha sido mostrado apenas o exemplo dos nove grupos, a conclusão sobre o desempenho das técnicas foi a mesma para os demais agrupamentos.

Tabela 4.2: Somatório das Distâncias Intra-grupos da Série Nordeste

K-means inicializado por Modo aleatório		
K-means inicializado por Ordenação por realizações		
K-means inicializado por Ordenação por valor		
Fuzzy C-Means	8.593,1	
Mapa Auto-Organizável de Kohonen	20.969,0	

4.1.4.2 Agrupamento por Ordenação Direta

Com o intuito de explorar outras possibilidades de agrupamentos, decidiu-se testar o desempenho das inicializações por Ordenação diretamente no modelo e não mais sendo usadas para inicializar a técnica K-Means. Os agrupamentos obtidos por Ordenação foram realizados da seguinte forma:

• Ordenação por realizações

Após o cálculo dos centróides, como detalhado anteriormente, cada dado é associado ao centróide mais próximo. Citando como exemplo, a série temporal da Figura (4.1) seria agrupada do seguinte modo:

 $S\'{e}rie\ agrupada = \{11, 6; 11, 6; 11, 6; 11, 6; 9, 2; 11, 6; 11, 6; 11, 6; 9, 2; 9, 2; 9, 2; 9, 2\}$

A série agrupada por Ordenação por realizações para 2 grupos pode ser visualizada na Figura (4.5).

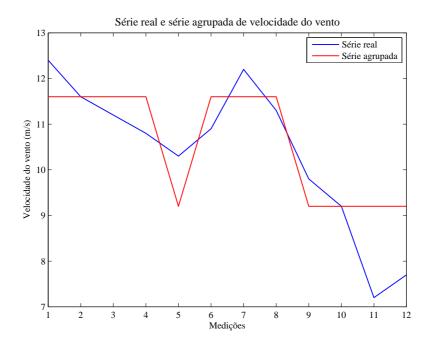


Figura 4.5: Série temporal e série agrupada

• Ordenação por valor

Após encontrar os centróides, conforme detalhado anteriormente, cada dado é associado ao centróide mais próximo. Como exemplo, a série temporal da Figura (4.3) seria agrupada da seguinte forma:

 $S\'{e}rie\ agrupada = \{11, 1; 11, 1; 11, 1; 11, 1; 11, 1; 11, 1; 11, 1; 11, 1; 8, 5; 8, 5; 8, 5; 8, 5\}$

A série agrupada por Ordenação por valor para 2 grupos pode ser visualizada na Figura (4.6).

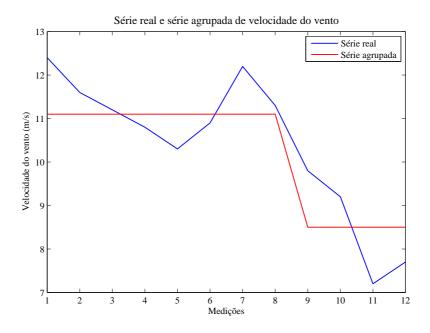


Figura 4.6: Série temporal e série agrupada

4.2 Agrupamento Multivariável

Até este momento, todas as simulações das técnicas foram feitas no espaço univariável, isto é, os valores de velocidade do vento da série são considerados como pontos a serem agrupados e ao final do agrupamento, cada dado da série passa a ser representado pelo valor do centróide do grupo ao qual pertence.

No agrupamento multivariável, além de agrupar a série, procura-se captar a dinâmica do vento num período de uma hora. Como os valores de velocidade de vento foram coletados em intervalos de 10 minutos, foi necessário dividir a série em várias sequências de 6 valores de vento. Estas sequências foram utilizadas como entrada do algoritmo de agrupamento. Logo, o resultado da simulação é a representação de cada sequência pelo centróide, de mesma dimensão, do grupo ao qual foi associada. Todas as simulações de agrupamento no espaço multivariável foram realizadas pela técnica K-Means. A inicialização foi feita da seguinte forma:

i. Dividiu-se a série de dados em sequências de seis valores de velocidade, sem superposição de dados. Caso o número de realizações da série não fosse divisível por 6, as últimas realizações da série, que não conseguissem formar uma sequência de 6 valores, eram descartadas. Uma série com 52.558 valores seria decomposta em 8.759 sequências de 6 valores e 1 sequência de apenas 4

valores de vento. Estes 4 valores seriam descartados e a matriz formada pelas sequências da série teria 8.759 linhas e 6 colunas, totalizando em 52.554 valores. Exemplo:

$$S\'{e}rie = \{7,4;6,2;6,3;6,4;6,5;6,1;6,1;5,5;5,0;4,2;4,5;4,7\}$$

$$Sequ\'{e}ncia\ 1 = \{7,4;6,2;6,3;6,4;6,5;6,1\}$$

$$Sequ\r{e}ncia\ 2 = \{6,1;5,5;5,0;4,2;4,5;4,7\}$$

A série temporal bem como a divisão em duas sequências podem ser visualizadas na Figura (4.7).

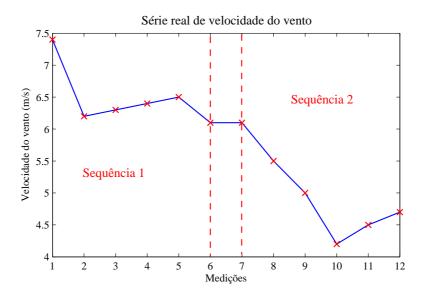


Figura 4.7: Série de vento dividida em duas sequências

ii. Depois, foi calculada a média de cada sequência. As médias das sequências 1 e 2 do exemplo anterior seriam calculadas do seguinte modo:

Média da sequência
$$1 = \frac{7,4+6,2+6,3+6,4+6,5+6,1}{6} = 6,5$$

Média da sequência $2 = \frac{6,1+5,5+5,0+4,2+4,5+4,7}{6} = 5,0$

iii. Os valores obtidos foram comparados aos centróides finais do agrupamento univariável para o mesmo número de grupos. As sequências cujas médias fossem iguais ou mais próximas dos centróides finais do agrupamento univariável foram escolhidas para centróides iniciais. A escolha dos centróides iniciais, tendo como base esta comparação, foi uma forma de inicializar o agrupamento multivariável com uma boa localização dos centróides, visto que as inicializações testadas no agrupamento univariável não poderiam ser utilizadas. Tomando

como exemplo uma série de 52.560 valores, dividida em 8.760 sequências de 6 valores. Caso o objetivo seja agrupar a série em 3 grupos, as 8.760 médias são comparadas aos 3 centróides finais do agrupamento univariável obtido pela técnica K-Means inicializada por Ordenação por realizações. As 3 sequências cujas médias estiverem mais próximas dos 3 centróides finais do agrupamento univariável são utilizadas como centróides iniciais.

No espaço multivariável, foram realizados os seguintes agrupamentos: 3, 4, 5 e 6 grupos. No entanto, o Modelo de Confiabilidade utilizado neste trabalho não foi preparado para uma entrada de dados multivariável. Logo, as sequências agrupadas precisam retornar ao espaço univariável para poderem ser inseridas no modelo. A mudança de espaço é mostrada no exemplo abaixo. A Tabela (4.3) contém os 3 centróides finais no espaço seis-dimensional obtidos pela técnica de agrupamento. Na série agrupada multivariável, cada sequência é representada pelo centróide do grupo ao qual foi associada. A mudança para o espaço univariável é realizada através da transformação da matriz da série agrupada multivariável em um vetor unidimensional, de modo que o último elemento de cada sequência seja seguido pelo primeiro elemento da sequência seguinte, e assim por diante. Sendo assim, a série agrupada univariável possui a mesma quantidade de elementos que a série agrupada multivariável, porém dispostos de outra maneira.

Tabela 4.3: Exemplo de Centróides Finais - 3 Grupos - Agrupamento Multivariável

5,262	5,230	5,220	5,214	5,227	5,263
7,970	7,972	7,999	8,016	7,995	7,975
11,401	11,441	11,455	11,457	11,442	11,403

```
5,220
                                                                                                           5,214
                                                                                                                          5, 227
                                                                                                                                         5,263
S\'{e}rie~agrupada~multivari\'{a}vel = \begin{bmatrix} 5,262 & 5,230 & 5,220 \\ \vdots & \vdots & \vdots \\ 7,970 & 7,972 & 7,999 \\ 7,970 & 7,972 & 7,999 \\ \vdots & \vdots & \vdots \\ 11,401 & 11,441 & 11,455 \end{bmatrix}
                                                                                                           5,214
                                                                                                                                         5,263
                                                                                                                          5, 227
                                                                                                           8,016
                                                                                                                          7,995
                                                                                                                                         7,975
                                                                                                           8,016
                                                                                                                          7,995
                                                                                                                                         7,975
                                                             11,401 \quad 11,441 \quad 11,455 \quad 11,457 \quad 11,442
                                                                                                                                        11,403
                                                                          11,441 11,455
                                                                                                        11, 457 11, 442 11, 403
```

 $S\'{e}rie\ agrupada\ univari\'{a}vel = [5, 262; 5, 230; 5, 220; 5, 214; 5, 227; 5, 263; 5, 262; 5, 230; 5, 220; 5, 214; 5, 227; 5, 263; \ldots; 7, 970; 7, 972; 7, 999; 8, 016; 7, 995; 7, 975; 7, 970; 7, 972; 7, 999; 8, 016; 7, 995; 7, 975; \ldots; 11, 401; 11, 441; 11, 455; 11, 457; 11, 442; 11, 403; 11, 401; 11, 441; 11, 455; 11, 457; 11, 442; 11, 403]$

Se, no espaço multivariável, cada centróide é composto de 6 valores de velocidade de vento, após a transformação para o espaço univariável, 3 grupos equivalem a 18 grupos, visto que a série agrupada univariável passa a ser representada por 18 estados de vento. O mesmo vale para 4, 5 e 6 grupos que equivalem, respectivamente, a 24, 30 e 36 grupos no espaço univariável.

4.3 Índices Comparativos

Para analisar os resultados obtidos nas simulações, foram criados os seguintes índices comparativos:

• Relação entre áreas

Os índices de relação entre áreas são calculados através da divisão da área abaixo da curva de duração pelo índice EGWE calculado pelo Modelo de Confiabilidade. Como já foi dito no Capítulo 4, a área sob a curva de duração é uma aproximação do próprio índice EGWE. Sendo assim, o objetivo deste índice adicional é verificar a porcentagem de erro desta aproximação. Os melhores índices são os que ficarem mais próximos da unidade. Conforme aumenta o número de grupos e de turbinas, a tendência é de que o erro diminua, pois também aumenta o número de estados de geração, o que torna a aproximação bem menos grosseira.

• Relação entre os índices EAWE

A relação entre os índices EAWE é calculada dividindo-se o índice EAWE da série agrupada pelo índice EAWE da série temporal sem agrupamento. Os resultados obtidos para um mesmo agrupamento são iguais para todas as quantidades de turbinas, pois, como o índice EAWE não considera as falhas das turbinas, ele pode ser calculado simplesmente multiplicando-se a potência total da série agrupada pelo número de turbinas da usina. Este índice adicional serve para avaliar o quão otimista ou pessimista é a estimativa de geração da usina obtida por cada agrupamento. Ele reflete a qualidade dos agrupamentos realizados pelas técnicas. Os melhores índices são os que apresentarem valores mais próximos da unidade.

• Relação entre os índices EGWE

Para se obter a relação entre os índices EGWE, deve-se dividir o índice EGWE da série agrupada pelo índice EGWE da série temporal sem agrupamento. Através deste índice adicional, é possível avaliar a qualidade da estimativa de geração da série agrupada, considerando-se as falhas das turbinas e os estados de vento. Assim como nos outros índices comparativos, os melhores valores são os mais próximos da unidade. Um bom agrupamento dos estados de vento provavelmente fornecerá bons índices.

Inicialmente, foram realizadas simulações com 9, 16, 25, 36, 49, 81 e 100 grupos no espaço univariável. Os resultados dos índices comparativos mostraram que a série temporal poderia ser bem representada por uma quantidade menor de estados de vento. Alguns índices comparativos ficaram muito próximos da unidade. Então, na tentativa de encontrar relações entre áreas e entre os índices EAWE e EGWE com diferenças próximas a 5% (nível de risco considerado aceitável na prática) foram definidos os seguintes agrupamentos para serem explorados: 3, 5, 7, 8, 25 e 36 grupos no espaço univariável e 3, 4, 5 e 6 grupos no espaço multivariável.

Capítulo 5

Resultados

5.1 Base de Dados

A base de dados é composta por três séries de velocidade de vento coletadas em localidades nas Regiões Nordeste, Sudeste e Sul do Brasil (LEITE, 2005), que podem ser visualizadas, respectivamente, nas Figuras (5.1), (5.2) e (5.3). As medições foram realizadas de uma altura de 50 metros em intervalos de 10 minutos num período de 1 ano.

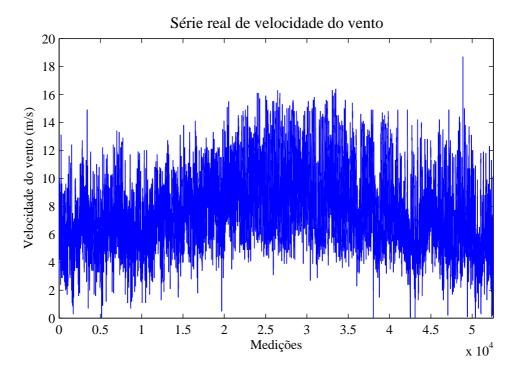


Figura 5.1: Série Nordeste

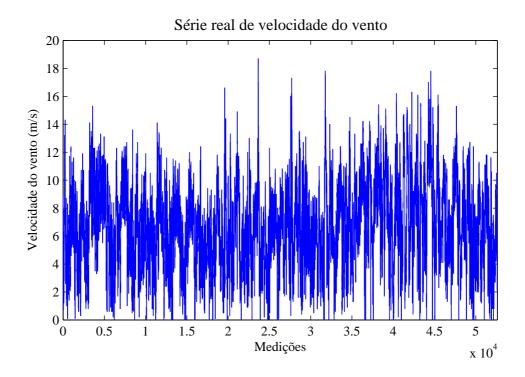


Figura 5.2: Série Sudeste

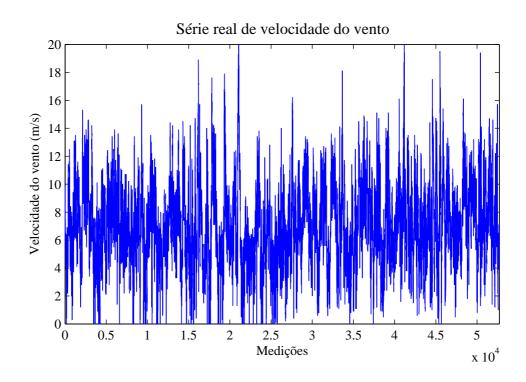


Figura 5.3: Série Sul

Os histogramas das séries Nordeste, Sudeste e Sul são mostrados, respectivamente, nas Figuras (5.4), (5.5) e (5.6).

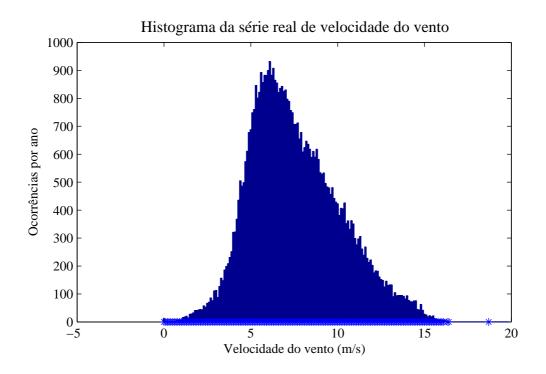


Figura 5.4: Histograma da Série Nordeste

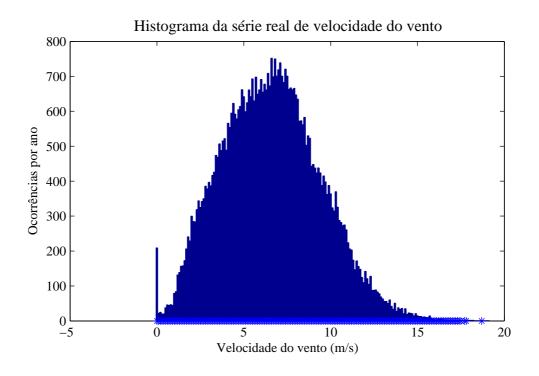


Figura 5.5: Histograma da Série Sudeste

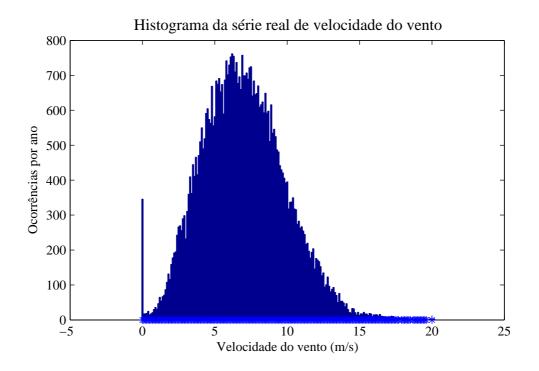


Figura 5.6: Histograma da Série Sul

Os dados estatísticos das séries de vento podem ser vistos na Tabela (5.1).

Tabela 5.1: Dados Estatísticos das Séries de Velocidade do Vento

Dados	Nordeste	Sudeste	Sul
Média	7,575	6,590	6,998
Desvio-Padrão	2,610	2,844	2,882
Variância	6,810	8,089	8,306
Mediana	7,200	6,500	6,900
Mínimo	0,000	0,000	0,000
Máximo	18,700	18,700	20,000
Número de Medições	52.558	52.611	52.704

5.2 Aplicação dos Resultados dos Agrupamentos no Modelo de Confiabilidade

A aplicação dos resultados dos agrupamentos no Modelo de Confiabilidade tem o objetivo de fornecer os seguintes índices de desempenho da usina: IWP, IWE, EAWE, EGWE e WGAF.

A curva de potência da turbina utilizada nas simulações foi mostrada na Figura (3.3) e seus dados podem ser vistos na Tabela (5.2). Os valores da curva podem ser vistos no Apêndice A.

Tabela 5.2: Dados da Turbina

Potência nominal (kW)	1500
Velocidade nominal (m/s)	12
Velocidade de acionamento (m/s)	3
Velocidade de corte (m/s)	20
Tipo de controle	pitch

As taxas de falha e de reparo usadas nas simulações foram sugeridas em (SAYAS, ALLAN, 1996).

Tabela 5.3: Taxas da Turbina

Taxas	Normal	Emergência
Taxa de falha	4	24
Taxa de reparo	90	24

5.2.1 Agrupamento Univariável

As simulações para as séries Nordeste, Sudeste e Sul foram realizadas com 3, 5, 7, 8, 25 e 36 grupos pelas seguintes técnicas:

- K-Means inicializada por Ordenação por realizações;
- K-Means inicializada por Ordenação por valor;
- Fuzzy C-Means;
- Ordenação por realizações;
- Ordenação por valor.

As Figuras (5.7), (5.8), (5.9), (5.10), (5.11), (5.12), (5.13), (5.14), (5.15), (5.16), (5.17), (5.18), (5.19), (5.20) e (5.21) mostram a distribuição dos centróides finais obtidos pelas 5 técnicas para as 3 séries. Os valores dos centróides finais obtidos nas simulações com 3, 5, 7 e 8 grupos, bem como algumas medidas de dispersão dos grupos encontrados, são mostrados no Apêndice B.

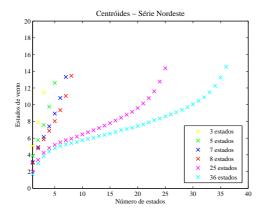
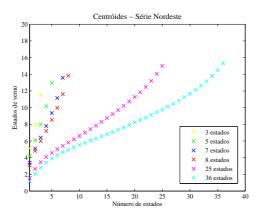



Figura 5.7: Série Nordeste - Centróides Finais - K-Means inicializada por Ordenação por realizações

Figura 5.8: Série Nordeste - Centróides Finais - K-Means inicializada por Ordenação por valor

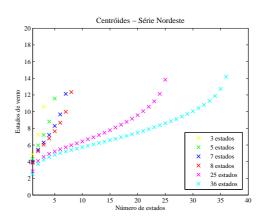


Figura 5.9: Série Nordeste - Centróides Finais - Fuzzy C-Means

Figura 5.10: Série Nordeste - Centróides Finais - Ordenação por realizações

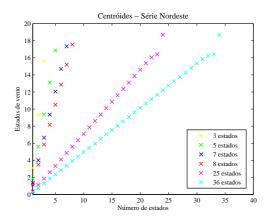


Figura 5.11: Série Nordeste - Centróides Finais - Ordenação por valor

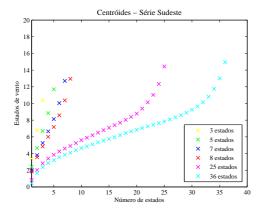
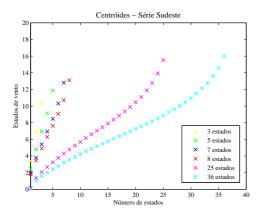



Figura 5.12: Série Sudeste - Centróides Finais - K-Means inicializada por Ordenação por realizações

Figura 5.13: Série Sudeste - Centróides Finais - K-Means inicializada por Ordenação por valor

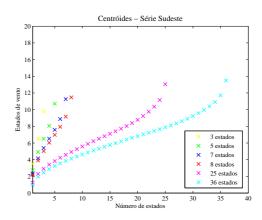


Figura 5.14: Série Sudeste - Centróides Finais - Fuzzy C-Means

Figura 5.15: Série Sudeste - Centróides Finais - Ordenação por realizações

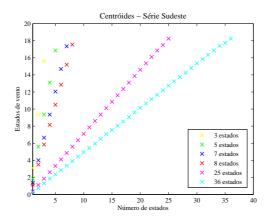


Figura 5.16: Série Sudeste - Centróides Finais - Ordenação por valor

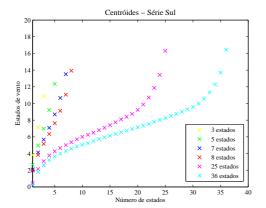
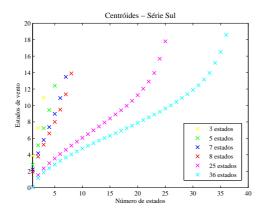



Figura 5.17: Série Sul - Centróides Finais
- K-Means inicializada por Ordenação por realizações

Figura 5.18: Série Sul - Centróides Finais - K-Means inicializada por Ordenação por valor

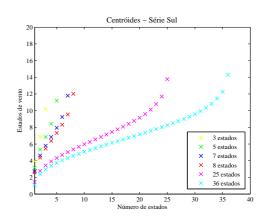


Figura 5.19: Série Sul - Centróides Finais - Fuzzy C-Means

Figura 5.20: Série Sul - Centróides Finais- Ordenação por realizações



Figura 5.21: Série Sul - Centróides Finais - Ordenação por valor

Os agrupamentos realizados pela técnica Ordenação por valor apresentaram os maiores centróides para as 3 séries (Figuras (5.11), (5.16) e (5.21)). Este resultado já era esperado devido à forma como os centróides são calculados nesta técnica, vide Capítulo 4. O cálculo dos centróides só leva em consideração os valores existentes na série temporal, não se importando com a frequência de ocorrência destes valores.

Os índices de desempenho com 1, 10, 20 e 30 turbinas obtidos pelo Modelo de Confiabilidade são mostrados no Apêndice C. Os gráficos com os índices comparativos Relação entre Áreas, Relação entre Índices EAWE e Relação entre Índices EGWE, que foram calculados a partir destes índices de desempenho, são exibidos a seguir. As tabelas contendo os valores dos índices comparativos são mostradas no Apêndice D.

5.2.1.1 Relação entre Áreas

Este índice tem o objetivo de avaliar a qualidade da aproximação da curva de duração em relação ao índice EGWE. Sendo assim, os melhores índices serão aqueles que estiverem mais próximos da unidade. Porém, serão considerados satisfatórios os agrupamentos cujos índices apresentarem por volta de 5% de erro em relação ao EGWE calculado pelo Modelo de Confiabilidade para aquele agrupamento.

As relações entre áreas obtidas pelas 5 técnicas para a Série Nordeste com 1, 10, 20 e 30 turbinas são mostradas nas Figuras (5.22), (5.23), (5.24) e (5.25), respectivamente. Pode-se observar que os índices tendem à unidade superiormente, conforme aumenta o número de grupos. Nas simulações com 1 e 10 turbinas, a técnica Ordenação por valor apresentou os maiores índices, ou seja, os maiores erros na aproximação. Os menores erros foram obtidos pela técnica Ordenação por realizações. Outra observação é a tendência à unidade dos índices, quando é aumentada a quantidade de turbinas. Nas simulações com 1 turbina, intui-se que o erro de 5% possa ser obtido entre 25 e 36 grupos pelas técnicas K-Means inicializada por Ordenação por realizações, Fuzzy C-Means e Ordenação por realizações. As técnicas K-Means inicializada por Ordenação por valor parecem precisar de pouco mais de 36 grupos para atingir este valor. Nas simulações com 10, 20 e 30 turbinas, quase todos os índices apresentaram um erro inferior a 5%.

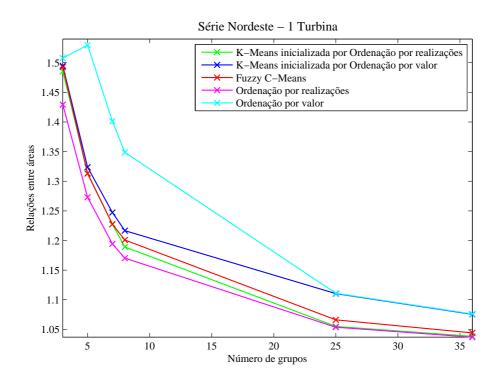


Figura 5.22: Relações entre Áreas da Série Nordeste - 1 Turbina

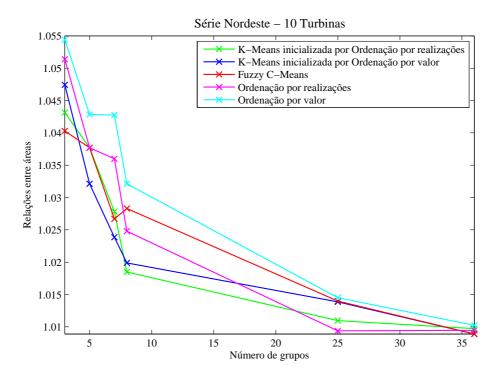


Figura 5.23: Relações entre Áreas da Série Nordeste - 10 Turbinas

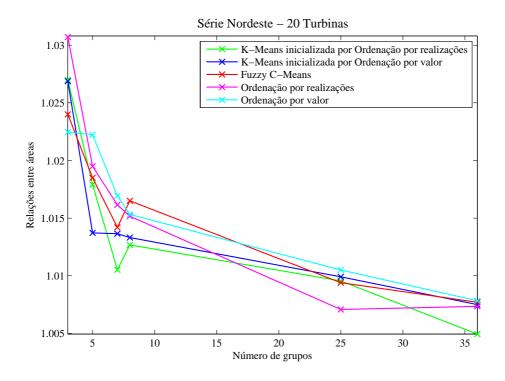


Figura 5.24: Relações entre Áreas da Série Nordeste - 20 Turbinas



Figura 5.25: Relações entre Áreas da Série Nordeste - 30 Turbinas

As Figuras (5.26), (5.27), (5.28) e (5.29) mostram as relações entre áreas obtidas pelas 5 técnicas para a Série Sudeste com 1, 10, 20 e 30 turbinas, respectivamente.

Assim como na Série Nordeste, também se observa a tendência dos índices à unidade, quando aumenta o número de grupos. A técnica Ordenação por valor apresentou os maiores erros nas simulações com 1 turbina e Ordenação por realizações apresentou os menores. O aumento da quantidade de turbinas também gerou um decaimento dos índices, tendendo à unidade. Nas simulações com 1 turbina, a técnica Ordenação por realizações foi a única que obteve um erro inferior a 5% com 36 grupos. As outras técnicas demonstraram necessitar de mais de 36 grupos para atingir este valor. Em quase todas as simulações com 10, 20 e 30 turbinas, foi encontrado um erro inferior a 5%.

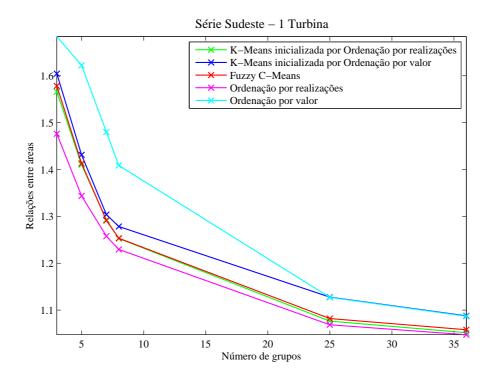


Figura 5.26: Relações entre Áreas da Série Sudeste - 1 Turbina

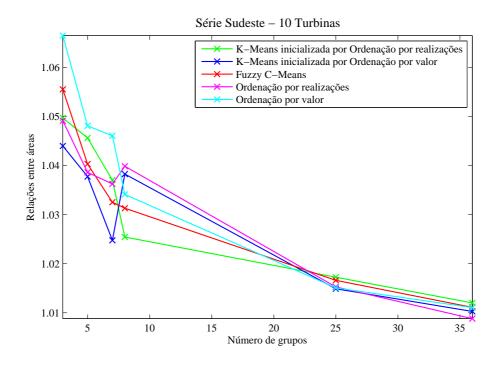


Figura 5.27: Relações entre Áreas da Série Sudeste - 10 Turbinas

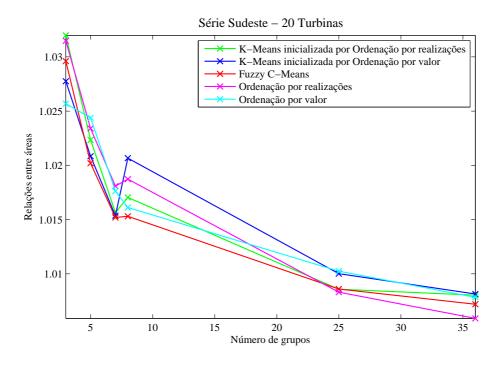


Figura 5.28: Relações entre Áreas da Série Sudeste - 20 Turbinas

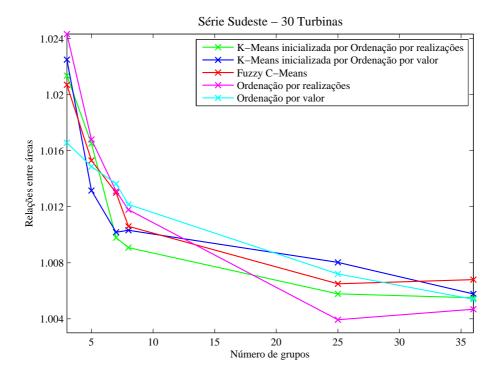


Figura 5.29: Relações entre Áreas da Série Sudeste - 30 Turbinas

Na Figura (5.30), que mostra a curva de duração no caso de 1 turbina, há apenas 4 estados de geração da usina (3 estados operando + 1 de falha), enquanto na Figura (5.31), que se refere ao caso de 10 turbinas, o número de estados de geração da usina sobe para 31 (3x10 operando + 1 de falha). Os estados de vento e a potência de saída da turbina para cada estado são mostrados na Tabela (5.4). As probabilidades de cada estado de geração para os casos de 1 e 10 turbinas podem ser vistas, respectivamente, nas Tabelas (5.5)e (5.6).

Tabela 5.4: Estados de vento e potências de saída da turbina obtidos pela Técnica K-Means inicializada por Ordenação por realizações para a Série Sudeste

Estados de vento (m/s)	Potências de saída da turbina (kW)		
3,4033	8,7067		
6,7840	339,0365		
10,3750	1.281,9996		

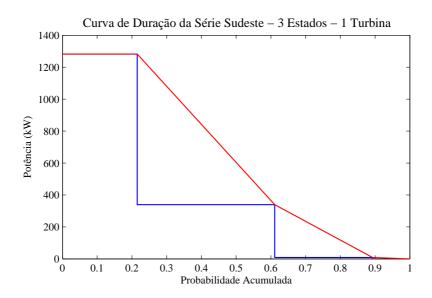


Figura 5.30: Curva de duração da Série Sudeste para 3 Estados de Vento Obtidos pela Técnica K-Means inicializada por Ordenação por realizações - 1 Turbina

Tabela 5.5: Estados de geração e suas probabilidades obtidos pela Técnica K-Means inicializada por Ordenação por realizações para a Série Sudeste - 1 Turbina

Estados de geração (kW)	Probabilidade	Probabilidade acumulada
1.281,9996	0,2153	0,2153
339,0365	0,3959	0,6112
8,7067	0,2817	0,8928
0,0000	0,1072	1,0000

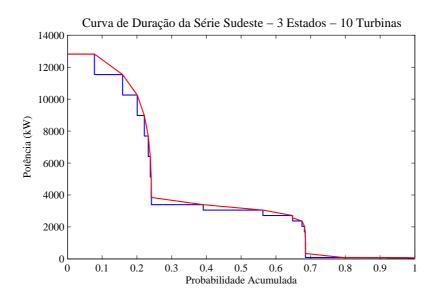


Figura 5.31: Curva de duração da Série Sudeste para 3 Estados de Vento Obtidos pela Técnica K-Means inicializada por Ordenação por realizações - 10 Turbinas

Tabela 5.6: Estados de geração e suas probabilidades obtidos pela Técnica K-Means inicializada por Ordenação por realizações para a Série Sudeste - 10 Turbinas

Estados de geração (kW)	Probabilidade	Probabilidade acumulada
12.819,9996	0,0778	0,0778
11.537,9964	0,0809	0,1588
10.255,9968	0,0420	0,2008
8.973,9972	0,0205	0,2213
7.691,9976	0,0112	0,2325
:	:	:
1.281,9996	6,9589E-06	0,6850
1.017,1095	1,8474E-04	0,6852
678,0730	4,0618E-05	0,6852
339,0365	4,3190E-06	0,6852
i i	:	;
17,4133	8,2284E-06	1,0000
8,7067	1,5293E-06	1,0000
0,0000	2,8117E-07	1,0000

Observando as Tabelas (5.5) e (5.6), é possível notar a drástica redução na probabilidade de não-geração da usina (estado de geração igual a zero), ocorrida após

o aumento do número de turbinas eólicas.

Quando há uma única turbina e esta falha, não haverá geração, mesmo que a velocidade do vento esteja dentro do limite operacional da turbina. Quando há mais turbinas, a probabilidade de não haver geração devido à falha de turbina diminui e a probabilidade de geração aumenta. Isto ocorre porque se uma ou duas turbinas falharem ao mesmo tempo, mas a velocidade do vento estiver dentro do limite operacional, haverá geração, pois outras turbinas estarão operando.

Devido ao grande número de estados de geração e da maior proximidade entre eles, a aproximação entre a área sob a curva de duração e o índice EGWE é menos grosseira na presença de mais turbinas, como pode ser observado na Figura (5.31).

As relações entre áreas obtidas pelas 5 técnicas para a Série Sul com 1, 10, 20 e 30 turbinas podem ser vistas nas Figuras (5.32), (5.33), (5.34) e (5.35). Assim como nas outras séries, observa-se que os índices tendem à unidade, conforme aumenta o número de grupos. Quando aumenta o número de turbinas, os índices também tendem à unidade. Novamente, a técnica Ordenação por valor encontrou os maiores índices nas simulações com 1 turbina e Ordenação por realizações obteve os menores erros. As técnicas K-Means inicializada por Ordenação por realizações e Ordenação por realizações encontraram um erro menor que 5% com 36 grupos, mas as outras técnicas aparentam precisar de mais de 36 grupos para obter este valor. Todas as simulações com 10, 20 e 30 turbinas apresentaram erro inferior a 5%, com exceção da simulação com 3 grupos e 10 turbinas realizada pela técnica K-Means inicializada por Ordenação por valor.

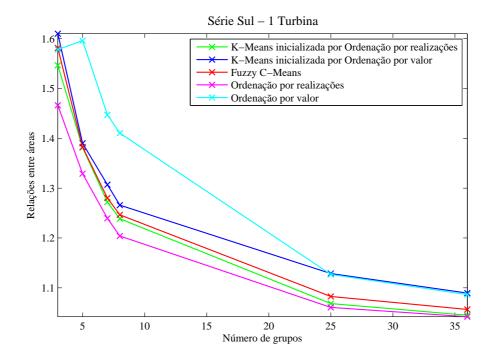


Figura 5.32: Relações entre Áreas da Série Sul - 1 Turbina

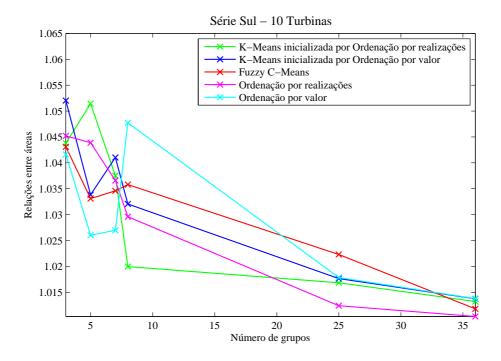


Figura 5.33: Relações entre Áreas da Série Sul - 10 Turbinas

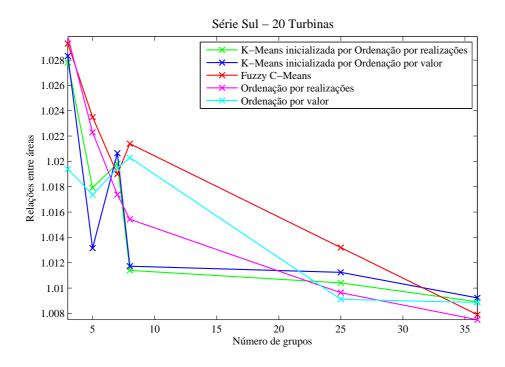


Figura 5.34: Relações entre Áreas da Série Sul - 20 Turbinas

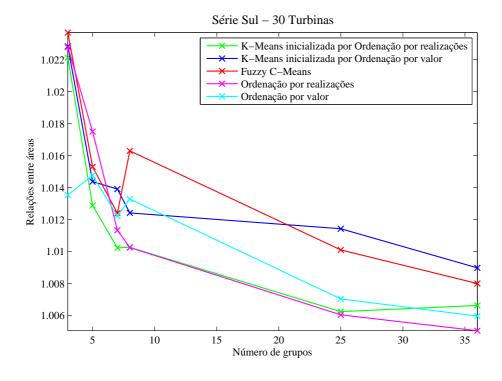


Figura 5.35: Relações entre Áreas da Série Sul - 30 Turbinas

Embora não tenha sido mostrado nos gráficos de Relação entre áreas, a relação entre a área sob a curva de duração e o índice EGWE quando todos os estados de vento estão presentes, apresenta uma taxa de erro inferior a 2%. Com o intuito de melhorar a

visualização do comportamento dos índices comparativos obtidos pelos agrupamentos, os índices comparativos obtidos a partir da série temporal sem agrupamento não foram mostrados nos gráficos. No entanto, estes valores são mostrados no Apêndice D.

Comparando-se as relações entre áreas obtidas pelas 5 técnicas, conclui-se que a técnica Ordenação por realizações encontrou os melhores índices, ou seja, os menores erros na maioria dos casos. As simulações com 10, 20 e 30 turbinas encontraram erros inferiores a 5% em boa parte dos casos. Em muitas simulações com 1 turbina, as Séries Nordeste, Sudeste e Sul necessitariam de mais de 36 grupos para obter tal erro. A técnica K-Means inicializada por Ordenação por realizações também apresentou bons resultados.

A razão para o melhor desempenho das técnicas K-Means inicializada por Ordenação por realizações e Ordenação por realizações pode residir nos erros absolutos das séries agrupadas. Os erros absolutos foram calculados da seguinte forma:

$$Erro\ absoluto = \sum_{i=1}^{n} \|x_i - y_i\| \tag{5.1}$$

onde n é o número de realizações da série temporal e $||x_i - y_i||$ é o módulo da diferença entre a velocidade x_i da série temporal e a velocidade y_i da série agrupada.

As Tabelas (5.7), (5.8) e (5.9) mostram, respectivamente, os erros absolutos das Séries Nordeste, Sudeste e Sul encontrados pelas 5 técnicas. Analisando os erros, é possível perceber que a técnica Ordenação por valor obteve os maiores erros em todas as simulações, com destaque para o caso de 3 grupos, onde a diferença para os erros obtidos pelas outras técnicas foi bem maior. A forma como os centróides foram distribuídos por esta técnica, em especial para poucos grupos, é a causa destes altos valores.

Tabela 5.7: Erro Absoluto da Série Nordeste

Agrupamentos	Técnicas de Agrupamento				
	K-Means inicializada por		Fuzzy C-Means	Ordenação por	Ordenação por
	Ordenação por Ordenação por			realizações	valor
	realizações	valor			
3	46.080	46.232	46.203	45.757	90.553
5	30.146	30.447	30.039	29.710	47.547
7	21.980	23.011	22.058	22.361	35.442
8	19.306	20.332	19.406	19.904	30.713
25	6.658	9.518	6.461	7.149	9.807
36	4.801	6.640	4.508	5.067	6.986

Tabela 5.8: Erro Absoluto da Série Sudeste

Agrupamentos	Técnicas de Agrupamento				
	K-Means inicializada por		Fuzzy C-Means	Ordenação por	Ordenação por
	Ordenação por Ordenação por			realizações	valor
	realizações	valor			
3	50.658	50.862	50.783	49.916	81.210
5	32.556	33.435	32.754	31.921	49.765
7	23.700	25.195	23.821	23.972	35.434
8	20.975	23.002	21.136	21.403	30.879
25	7.321	9.733	7.086	7.729	9.840
36	5.334	6.588	4.980	5.607	6.980

Tabela 5.9: Erro Absoluto da Série Sul

Agrupamentos	Técnicas de Agrupamento				
	K-Means inicializada por		Fuzzy C-Means	Ordenação por	Ordenação por
	Ordenação por Ordenação por			realizações	valor
	realizações	valor			
3	52.609	53.135	52.696	51.457	88.770
5	33.935	35.326	33.901	33.419	53.363
7	25.247	27.324	25.151	25.180	37.934
8	22.362	24.025	22.497	22.419	33.097
25	7.848	10.389	7.412	8.713	10.584
36	5.516	7.219	5.076	6.234	7.309

Observando as Tabelas (5.7), (5.8) e (5.9), pode-se notar que as técnicas K-Means inicializada por Ordenação por realizações, Fuzzy C-Means e Ordenação por realizações encontraram os menores erros absolutos. Por terem obtido erros absolutos menores, reflexo de um bom ajuste da posição dos centróides, estas técnicas apresentaram patamares de geração mais bem definidos e por isso encontraram as menores relações entre áreas.

5.2.1.2 Relação entre Índices EAWE

Através da relação entre índices EAWE, pode-se avaliar a qualidade da estimativa de geração da usina, considerando-se apenas a velocidade do vento, quando é realizado o agrupamento da série temporal. O índice EAWE dos agrupamentos é calculado a partir da série de vento agrupada, ou seja, cada valor da série temporal está sendo representado pelo centróide do grupo ao qual pertence. Através da curva da turbina, é possível identificar a potência de saída para cada centróide. Quanto mais próximo o índice estiver da unidade, melhor a qualidade da geração estimada, pois isto significa que a estimativa está próxima da geração da série temporal, onde todos os estados de vento estão presentes.

As relações entre índices EAWE para as Séries Nordeste, Sudeste e Sul obtidas pelas 5 técnicas são mostradas nas Figuras (5.36), (5.37) e (5.38), respectivamente.

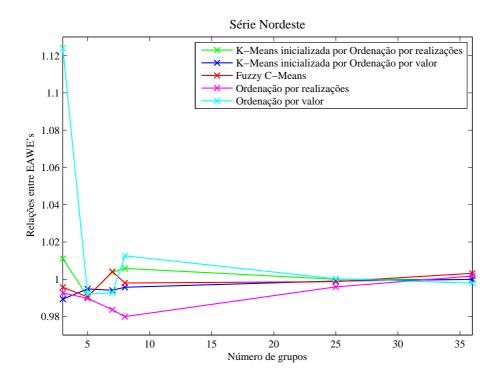


Figura 5.36: Relações entre Índices EAWE da Série Nordeste

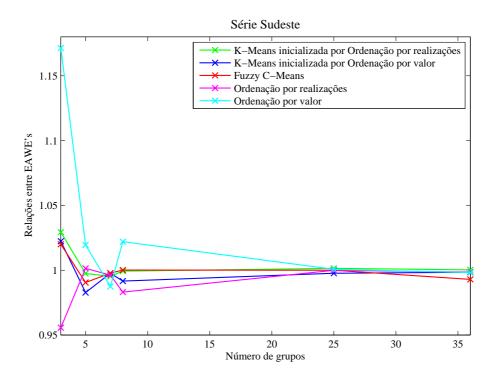


Figura 5.37: Relações entre Índices EAWE da Série Sudeste

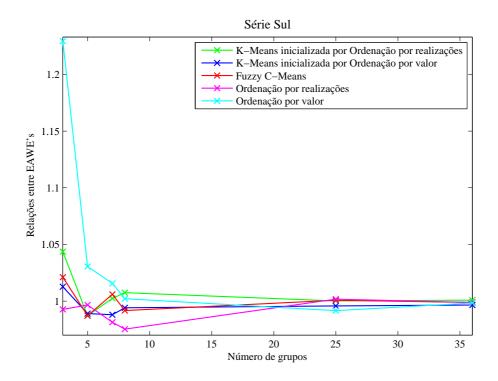


Figura 5.38: Relações entre Índices EAWE da Série Sul

Nas 5 técnicas, as piores estimativas de geração foram encontradas pelo agrupamento em 3 grupos, com destaque para a técnica Ordenação por valor, que obteve os maiores índices para este agrupamento. As técnicas K-Means inicializada por Ordenação por realizações e Fuzzy C-Means acharam os melhores índices na maioria dos agrupamentos. Todos os resultados estiveram dentro da faixa de 5%, com exceção das simulações com 3 grupos realizadas pela técnica Ordenação por valor que ultrapassaram 10%. As Figuras (5.36), (5.37) e (5.38) mostram que a aproximação da unidade não se dá de forma monotônica. Uma maneira de explicar isso seria através da observação dos valores dos centróides. Na Tabela (B.1) do Apêndice B, são mostrados os centróides finais da Série Nordeste para uma simulação com 3 grupos. Tomando como exemplo os centróides obtidos pela técnica K-Means inicializada por Ordenação por realizações, pode-se concluir que a técnica de agrupamento associou todos os valores da série temporal abaixo de 5 ao grupo cujo centróide é igual a 5,084. Quando foi realizada a simulação com 5 grupos, os valores abaixo de 5 da série temporal passaram a ter 2 centróides próximos, 3,901 e 5,782, aos quais poderiam ser associados. O centróide igual a 5,782 fornece uma potência de saída maior do que o centróide de 3,901. Alguns valores da série temporal que foram representados pelo centróide igual a 5,084 na simulação com 3 grupos, passaram a ser representados pelo

centróide igual a 3,901, que produz uma potência de saída inferior. Estas mudanças na representação de um valor da série temporal fazem com que ocorram as oscilações em torno do valor unitário.

Observando as Figuras (5.36), (5.37) e (5.38), percebe-se que o fato de uma determinada técnica ter obtido o menor erro absoluto, não necessariamente implica que ela terá a melhor relação entre os índices EAWE, pois o erro absoluto corresponde à diferença entre a série temporal e a série agrupada, ao passo que o índice está ligado às potências obtidas por cada estado de vento. Um bom exemplo é o agrupamento em 5 grupos da Série Nordeste. Na Tabela (5.7), que mostra os erros absolutos da Série Nordeste, nota-se que a técnica Ordenação por realizações encontrou o menor erro absoluto para este agrupamento. No entanto, na Figura (5.36), que contém as relações entre os índices EAWE, vê-se que a técnica K-Means inicializada por Ordenação por valor foi a que obteve um índice um pouco melhor que as outras técnicas, ou seja, mais próximo do valor unitário. Se uma determinada velocidade de vento da série temporal passa a ser representada por um valor menor após o agrupamento, ela consequentemente produzirá uma potência menor. O mesmo ocorre para valores maiores de velocidade que, por sua vez, produzirão potências maiores. Este tipo de informação não é traduzido pelo erro absoluto, pois este não diz se a velocidade foi superestimada ou subestimada pelo agrupamento. Contudo, um bom ajuste dos centróides ocasiona uma boa estimativa de geração, e consequentemente, uma boa relação entre os índices EAWE.

5.2.1.3 Relação entre Índices EGWE

A relação entre os índices EGWE serve para avaliar a estimativa de geração da usina, quando foi utilizada uma série de vento agrupada, considerando a velocidade do vento e o efeito das falhas das turbinas. Assim como nas relações entre os índices EAWE, os melhores índices serão os mais próximos do valor unitário. Mas, serão considerados satisfatórios os agrupamentos que tiverem obtido erros em torno de 5% em relação ao EGWE da série temporal de vento.

Nas Figuras (5.39), (5.40), (5.41) e (5.42) são mostradas as relações entre os índices EGWE obtidas pelas 5 técnicas para a Série Nordeste com 1, 10, 20 e 30 turbinas, respectivamente. Percebe-se que os índices tendem à unidade, conforme aumenta o número de grupos. A técnica Ordenação por valor sempre se aproxima da unidade superiormente. Isto ocorre em virtude dos centróides obtidos por esta

técnica serem maiores e, por conseguinte, fornecerem maiores potências de saída. A técnica Ordenação por valor é a única que quase não apresenta variação nos seus índices quando o número de turbinas é aumentado. As outras técnicas, em geral, apresentam uma tendência de decaimento dos índices, com exceção da técnica Fuzzy C-Means que em alguns momentos mostra crescimento e em outros, decaimento. Este comportamento da técnica Fuzzy C-Means requer maiores estudos. Para 1 turbina, um erro próximo a 5% pode ser obtido nas simulações de 3 ou 5 grupos. Para mais turbinas, índices maiores que 95%, indicando um erro menor que 5% em relação ao caso em que não houve agrupamento, só foram encontrados a partir das simulações com mais de 7 grupos na maioria das simulações. A técnica Ordenação por valor obteve o melhor desempenho, pois encontrou índices mais próximos da unidade. Em geral, os piores índices foram encontrados pela técnica Ordenação por realizações.

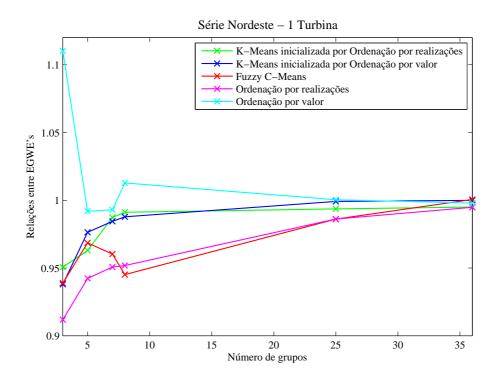


Figura 5.39: Relações entre Índices EGWE da Série Nordeste - 1 Turbina

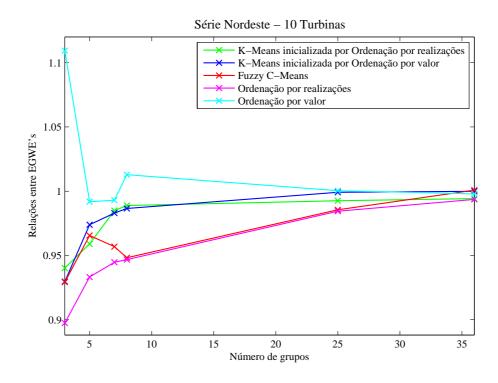


Figura 5.40: Relações entre Índices EGWE da Série Nordeste - 10 Turbinas

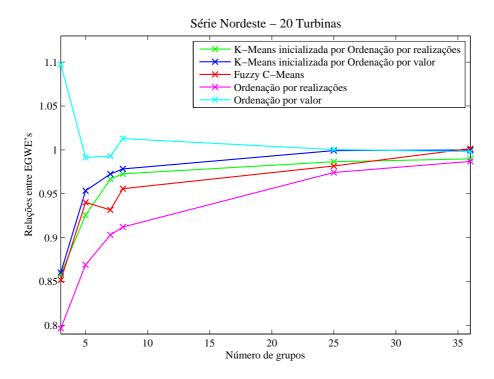


Figura 5.41: Relações entre Índices EGWE da Série Nordeste - 20 Turbinas

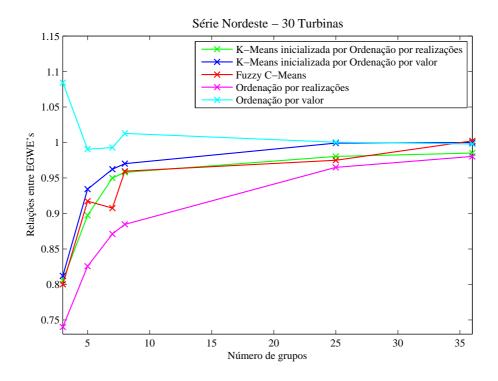


Figura 5.42: Relações entre Índices EGWE da Série Nordeste - 30 Turbinas

Nas relações entre os índices EGWE para a Série Sudeste com 1, 10, 20 e 30 turbinas mostradas nas Figuras (5.43), (5.44), (5.45) e (5.46), respectivamente, também se observa a aproximação da unidade pelos índices, conforme aumenta o número de grupos. A técnica Ordenação por valor sempre se aproxima de um limite supetior e quase não se percebe a variação dos índices quando aumenta a quantidade de turbinas. A tendência de decaimento dos índices em virtude do aumento da quantidade da turbinas também pode ser observada, com exceção da técnica Fuzzy C-Means, que ora apresenta decaimento, ora crescimento. Nas simulações com 1 turbina, um erro próximo a 5% pode ser obtido com 3 ou 5 grupos. A partir de 10 turbinas, este erro é encontrado nas simulações com 7 ou 8 grupos. As técnicas K-Means inicializada por Ordenação por valor e Ordenação valor apresentaram um melhor desempenho. Em grande parte das simulações, a técnica Ordenação por realizações encontrou os piores resultados.

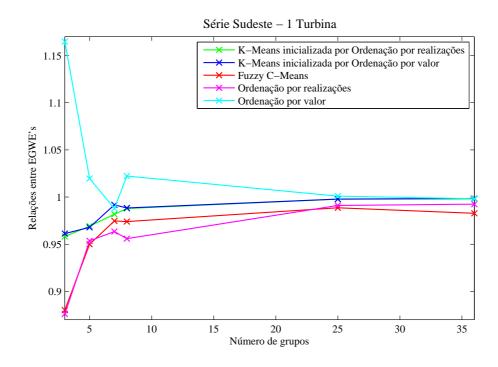


Figura 5.43: Relações entre Índices EGWE da Série Sudeste - 1 Turbina

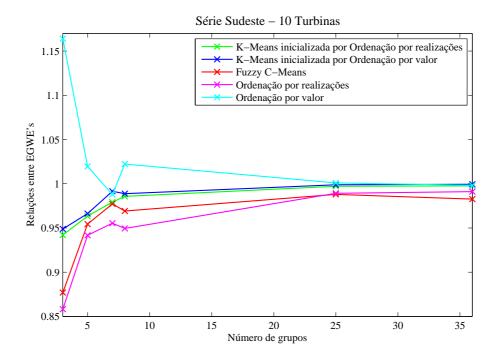


Figura 5.44: Relações entre Índices EGWE da Série Sudeste - 10 Turbinas

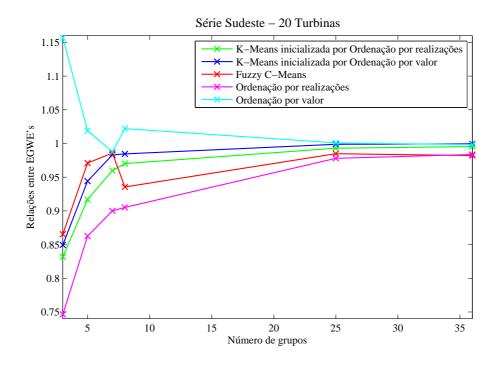


Figura 5.45: Relações entre Índices EGWE da Série Sudeste - 20 Turbinas

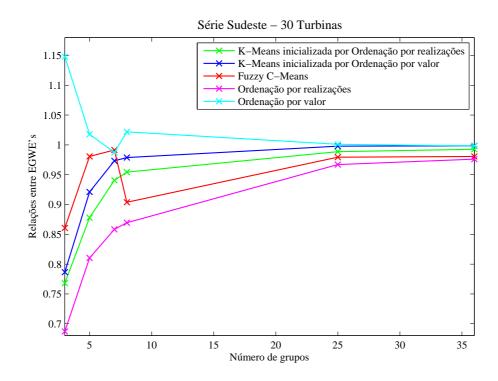


Figura 5.46: Relações entre Índices EGWE da Série Sudeste - 30 Turbinas

As Figuras (5.47), (5.48), (5.49) e (5.50) mostram as relações entre os índices EGWE obtidas pelas 5 técnicas para a Série Sul com 1, 10, 20 e 30 turbinas, respectivamente. Os índices tendem à unidade, conforme aumenta o número de

grupos. Assim como nas Séries Nordeste e Sudeste, a técnica Ordenação por valor tende à unidade vindo de um limite superior e a técnica Ordenação por realizações teve o pior desempenho na maioria das simulações. Mais uma vez, é observado o decaimento dos índices devido ao aumento da quantidade de turbinas, apenas a técnica Fuzzy C-Means apresentou tendências de decaimento e de crescimento. Para 1 turbina, pode-se obter um erro em torno de 5% nas simulações com 3 ou 5 grupos. Para mais turbinas, este erro é encontrado nas simulações com 7 ou 8 grupos. Em geral, as técnicas K-Means inicalizada por Ordenação por valor e Ordenação por valor obtiveram os melhores índices.



Figura 5.47: Relações entre Índices EGWE da Série Sul - 1 Turbina

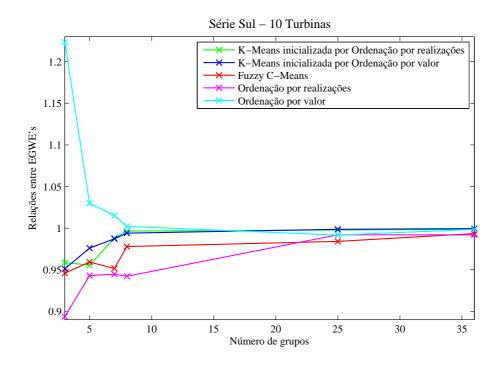


Figura 5.48: Relações entre Índices EGWE da Série Sul - 10 Turbinas

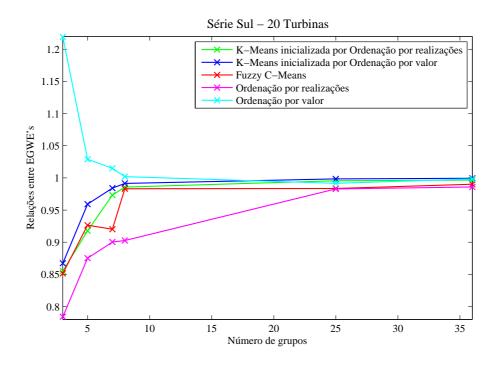


Figura 5.49: Relações entre Índices EGWE da Série Sul - 20 Turbinas

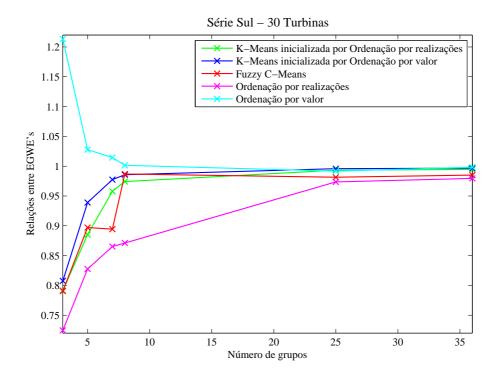


Figura 5.50: Relações entre Índices EGWE da Série Sul - 30 Turbinas

Enquanto a técnica K-Means inicializada por Ordenação por realizações encontrou erros próximos a 5% nas simulações de 7 e 8 grupos com 30 turbinas, a técnica Ordenação por valor obteve erros menores que 3% para os mesmos agrupamentos com o mesmo número de turbinas. Aliás, a técnica Ordenação por valor apresentou os melhores índices para as Séries Nordeste, Sudeste e Sul na maioria dos casos. Ao contrário das outras técnicas, apresentou muitos índices acima da unidade. O fato de ter encontrado índices maiores que a unidade em quase todas as simulações mostra que houve superestimação da geração da usina quando foram utilizados os estados de vento encontrados pela técnica Ordenação por valor.

O Modelo de Confiabilidade distribui as falhas uniformemente, mas como o valor da velocidade de vento em que ocorre a falha da turbina não é o mesmo para as três técnicas, a indisponibilidade de geração pode ser grande para uma técnica e pequena para outra.

É importante observar a influência das falhas nos agrupamentos obtidos pelas técnicas. Quando só foram consideradas as velocidades de vento, os índices obtidos pelas técnicas K-Means inicializada por Ordenação por realizações e Fuzzy C-Means foram melhores, mostrando que a geração estimada a partir dos estados de vento obtidos por tais técnicas foi mais próxima da geração da série temporal de vento.

Porém, quando as falhas das turbinas também passaram a ser consideradas, a técnica Ordenação por valor, que até então havia demonstrado um desempenho inferior às outras, foi a que obteve os melhores resultados, com destaque para as simulações de vinte e trinta turbinas, onde a maioria dos seus índices foi bem mais próxima da unidade. Convém ressaltar que as outras técnicas apresentaram uma queda maior nas relações entre os índices EGWE face o aumento da quantidade de turbinas apenas nas simulações com poucos grupos. Devido a este decaimento, o índice relação entre EGWE's foi o único que necessitou de um maior número de estados, conforme aumentava o número de turbinas, para encontrar um erro em torno de 5%. As simulações com 25 e 36 grupos para 30 turbinas obtiveram erros inferiores a 5%, indicando que para este índice a representação da série original por um baixo número de estados pode não ser a mais indicada.

5.2.2 Agrupamento Multivariável

No espaço multivariável, foram realizadas simulações com 3, 4, 5 e 6 grupos através da técnica K-Means. No Apêndice B, são mostrados os centróides finais e algumas medidas de dispersão. Os índices de desempenho calculados pelo Modelo de Confiabilidade para uma usina com 1, 10, 20 e 30 turbinas são mostrados no Apêndice C. As tabelas contendo os índices comparativos calculados a partir destes índices de desempenho podem ser vistas no Apêndice D. Os gráficos contendo os índices comparativos Relação entre Áreas, Relação entre Índices EAWE e Relação entre Índices EGWE são exibidos a seguir.

5.2.2.1 Relação entre Áreas

Nas Figuras (5.51), (5.52) e (5.53), onde são mostradas as relações entre áreas das Séries Nordeste, Sudeste e Sul obtidas pela técnica K-Means, pode-se notar que os índices tendem à unidade, conforme cresce o número de turbinas. Na Figura (5.51), os índices também tendem à unidade, quando aumenta o número de grupos. Assim como no agrupamento univariável, serão considerados satisfatórios os erros de aproximação em torno de 5%.

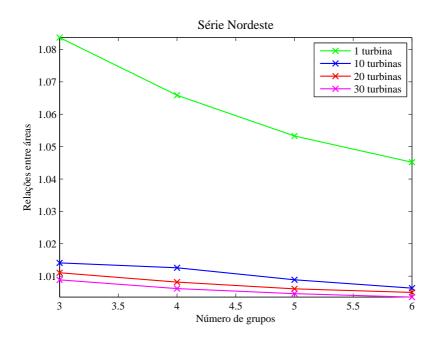


Figura 5.51: Relações entre Áreas da Série Nordeste - Multivariável

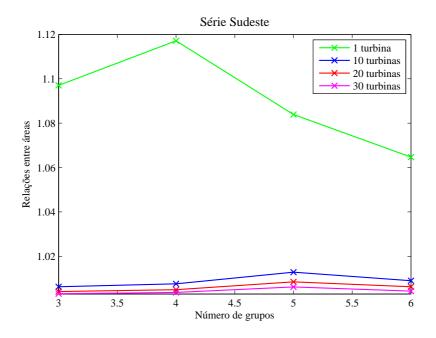


Figura 5.52: Relações entre Áreas da Série Sudeste - Multivariável

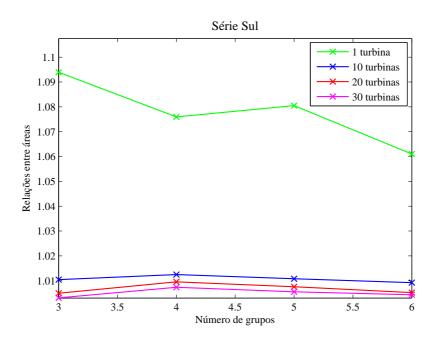


Figura 5.53: Relações entre Áreas da Série Sul - Multivariável

Todas as simulações com 10, 20 e 30 turbinas apresentaram erros inferiores a 5%. Nas simulações com 1 turbina, a Série Nordeste encontrou um erro próximo a 5% com 5 grupos, enquanto as Séries Sudeste e Sul mostraram precisar de mais de 6 grupos para atingir este erro.

Convém recordar que os agrupamentos multivariáveis em 3, 4, 5 e 6 grupos correspondem, respectivamente, a 18, 24, 30 e 36 valores de velocidade de vento, pois a série temporal foi dividida em várias sequências de 6 valores de velocidade, não havendo superposição, e só depois inserida no algoritmo de agrupamento. Após a realização do agrupamento, a série 6-dimensional teve que retornar ao espaço unidimensional para poder ser utilizada no Modelo de Confiabilidade.

Portanto, somente as simulações de 4 e 6 grupos do espaço multivariável podem ser utilizadas para comparar com os resultados obtidos no espaço univariável. Neste caso, as simulações de 4 e 6 grupos do espaço multivariável seriam comparadas com as simulações de 25 e 36 grupos do espaço univariável, respectivamente. Comparando-se as Figuras (5.51), (5.52) e (5.53) do agrupamento multivariável com as Figuras (5.22), (5.23), (5.24), (5.25), (5.26), (5.27), (5.28), (5.29), (5.32), (5.33), (5.34) e (5.35) do agrupamento univariável, é possível observar que o agrupamento univariável encontrou relações entre áreas mais próximas da unidade na maioria das simulações. Para a Série Nordeste, o agrupamento multivariável encontrou índices melhores nas simulações de 6 grupos com 10 e 30 turbinas. Para a Série Sudeste, as simulações de 4 grupos com

10, 20 e 30 turbinas e a de 6 grupos com 30 turbinas do multivariável encontraram índices mais próximos da unidade. Para a Série Sul, o agrupamento multivariável obteve os melhores índices nas simulações de 6 grupos com 10, 20 e 30 turbinas.

5.2.2.2 Relação entre Índices EAWE

As Figuras (5.54), (5.55) e (5.56) exibem as relações entre índices EAWE das Séries Nordeste, Sudeste e Sul, respectivamente, obtidas pela técnica K-Means. Os melhores índices serão os mais próximos da unidade. Todas as simulações apresentaram um erro inferior a 5%.

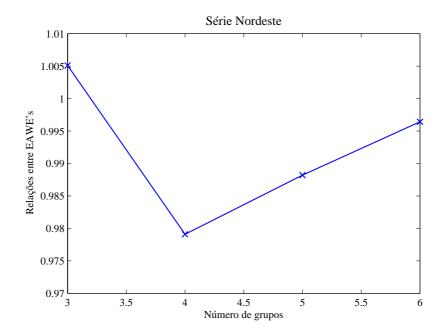


Figura 5.54: Relações entre Índices EAWE da Série Nordeste - Multivariável

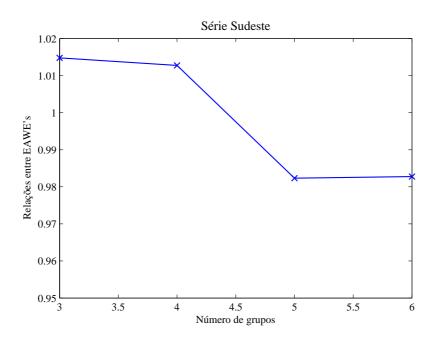


Figura 5.55: Relações entre Índices EAWE da Série Sudeste - Multivariável



Figura 5.56: Relações entre Índices EAWE da Série Sul - Multivariável

Ao comparar as Figuras (5.54), (5.55) e (5.56) do agrupamento multivariável com as Figuras (5.36), (5.37) e (5.38) do agrupamento univariável, percebe-se que as relações entre índices EAWE obtidas no espaço univariável são melhores todos os casos.

5.2.2.3 Relação entre Índices EGWE

As relações entre índices EGWE das Séries Nordeste, Sudeste e Sul obtidas pela técnica K-Means podem ser vistas, respectivamente, nas Figuras (5.57), (5.58) e (5.59). Os melhores índices serão os mais próximos do valor unitário.

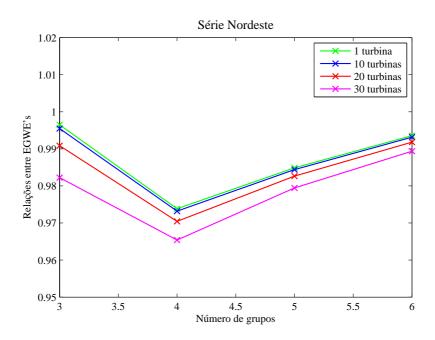


Figura 5.57: Relações entre Índices EGWE da Série Nordeste - Multivariável

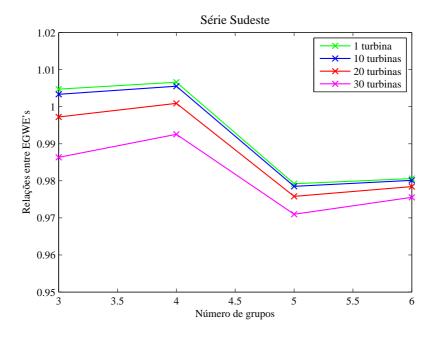


Figura 5.58: Relações entre Índices EGWE da Série Sudeste - Multivariável

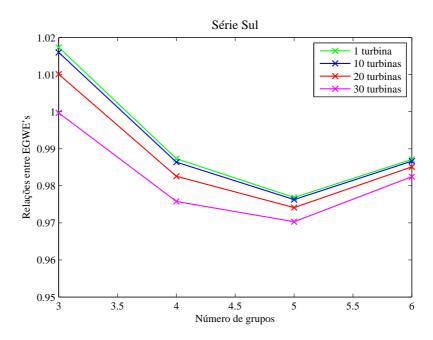


Figura 5.59: Relações entre Índices EGWE da Série Sul - Multivariável

Observando as Figuras (5.57), (5.58) e (5.59), é possível perceber uma tendência de decrescimento dos índices, conforme o número de turbinas é aumentado. Todas as simulações apresentaram índices com erros inferiores a 5% em relação ao EGWE da série original de vento.

Quando os índices das Figuras (5.57), (5.58) e (5.59) do agrupamento multivariável são comparados com os índices das Figuras (5.39), (5.40), (5.41), (5.42), (5.43), (5.44), (5.45), (5.46), (5.47), (5.48), (5.49) e (5.50) do agrupamento univariável, os resultados do univariável são melhores em todas as simulações, com exceção da Série Sudeste na simulação com 4 grupos e 20 turbinas do agrupamento multivariável onde o índice é igual ao da simulação com 25 grupos e 20 turbinas do agrupamento univariável.

5.3 Tempo de Simulação

A contagem do tempo de simulação é importante para que se possa fazer uma comparação entre o tempo gasto no Modelo quando todos os estados da série temporal estão presentes e o tempo gasto no Modelo quando é feito o agrupamento da série temporal.

Todas as simulações foram realizadas por um processador Pentium 4 2.66 GHz, 512MB de RAM.

Foi utilizado o comando profile do Matlab para medir o tempo gasto em cada

etapa do Modelo de Confiabilidade.

5.3.1 Agrupamento Univariável

Foi contabilizado o tempo gasto em todas as simulações com as séries Nordeste, Sudeste e Sul realizadas pelas 6 técnicas. No entanto, para evitar que a leitura se torne enfadonha, apenas serão mostradas as tabelas relacionadas à série Nordeste.

O tempo de simulação gasto para agrupar a série Nordeste e solucionar o Modelo de Confiabilidade é mostrado nas Tabelas (5.10), (5.11), (5.12), (5.13) e (5.14). Em todas as tabelas, o caso de 165 grupos corresponde à situação em que todos os estados de vento da série temporal estão presentes. Neste caso, o tempo gasto para agrupar se refere somente ao tempo necessário para a identificação dos 165 valores de velocidade existentes na série.

Tabela 5.10: Tempo de Simulação do K-Means inicializado por Ordenação por realizações para a Série Nordeste

Número de Turbinas	Grupos	Agrupamento	Solução do Modelo	Total
1	3	8,45	0,30	8,75
	5	13,13	0,34	13,47
	7	18,39	0,36	18,75
	8	21,42	0,39	21,81
	25	57,28	0,62	57,90
	36	84,78	0,80	85,58
	165	3,41	3,63	7,04
10	3	8,36	0,33	8,69
	5	12,84	0,34	13,18
	7	17,16	0,36	17,52
	8	21,50	0,39	21,89
	25	57,14	0,81	57,95
	36	80,17	1,00	81,17
	165	3,27	9,55	12,82
20	3	8,75	0,33	9,08
	5	12,73	0,34	13,07
	7	16,67	0,36	17,03
	8	21,13	0,45	21,58
	25	57,72	1,03	58,75
	36	79,09	1,72	80,81
	165	3,75	43,72	47,47
30	3	8,77	0,38	9,15
	5	13,16	0,39	13,55
	7	18,14	0,42	18,56
	8	20,94	0,47	21,41
	25	65,24	1,69	66,93
	36	77,47	3,08	80,55
	165	4,56	181,50	186,06

Tabela 5.11: Tempo de Simulação do K-Means inicializado por Ordenação por valor para a Série Nordeste

Número de Turbinas	Grupos	Agrupamento	Solução do Modelo	Total
1	3	9,80	0,31	10,11
	5	15,23	0,34	15,57
	7	17,47	0,36	17,83
	8	21,27	0,38	21,65
	25	61,11	0,61	61,72
	36	88,08	0,80	88,88
	165	3,41	3,63	7,04
10	3	8,63	0,30	8,93
	5	13,98	0,36	14,34
	7	18,72	0,39	19,11
	8	21,59	0,44	22,03
	25	55,06	0,67	55,73
	36	90,05	0,95	91,00
	165	3,27	9,55	12,82
20	3	9,77	0,31	10,08
	5	13,02	0,39	13,41
	7	17,70	0,41	18,11
	8	21,92	0,42	22,34
	25	58,03	0,92	58,95
	36	86,74	1,38	88,12
	165	3,75	43,72	47,47
30	3	9,00	0,35	9,35
	5	13,41	0,42	13,83
	7	18,36	0,44	18,80
	8	20,80	0,52	21,32
	25	60,69	1,42	62,11
	36	88,72	2,59	91,31
	165	4,56	181,50	186,06

Tabela 5.12: Tempo de Simulação do Fuzzy C-Means para a Série Nordeste

Número de Turbinas	Grupos	Agrupamento	Solução do Modelo	Total
1	3	4,73	0,31	5,04
	5	7,50	0,33	7,83
	7	13,29	0,34	13,63
	8	30,31	0,38	30,69
	25	200,82	0,64	201,46
	36	290,16	0,96	291,12
	165	3,41	3,63	7,04
10	3	4,85	0,30	5,15
	5	7,23	0,33	7,56
	7	12,88	0,39	13,27
	8	32,05	0,42	32,47
	25	196,45	0,83	197,28
	36	293,77	1,03	294,80
	165	3,27	9,55	12,82
20	3	5,01	0,33	5,34
	5	7,35	0,38	7,73
	7	13,95	0,42	14,37
	8	31,13	0,41	31,54
	25	199,24	1,03	200,27
	36	291,66	1,77	293,43
	165	3,75	43,72	47,47
30	3	4,57	0,31	4,88
	5	8,05	0,39	8,44
	7	13,55	0,44	13,99
	8	30,81	0,52	31,33
	25	198,56	1,80	200,36
	36	289,68	3,13	292,81
	165	4,56	181,50	186,06

Tabela 5.13: Tempo de Simulação da Ordenação por realizações para a Série Nordeste

Número de Turbinas	Grupos	Agrupamento	Solução do Modelo	Total
1	3	0,06	0,31	0,37
	5	0,11	0,34	0,45
	7	0,13	0,38	0,51
	8	0,14	0,47	0,61
	25	0,42	0,61	1,03
	36	0,53	0,86	1,39
	165	3,41	3,63	7,04
10	3	0,08	0,34	0,42
	5	0,10	0,36	0,46
	7	0,12	0,41	0,53
	8	0,13	0,47	0,60
	25	0,30	0,62	0,92
	36	0,46	0,85	1,31
	165	3,27	9,55	12,82
20	3	0,08	0,35	0,43
	5	0,09	0,41	0,50
	7	0,11	0,43	0,54
	8	0,13	0,51	0,64
	25	0,31	1,07	1,38
	36	0,48	1,51	1,99
	165	3,75	43,72	47,47
30	3	0,06	0,36	0,42
	5	0,11	0,43	0,54
	7	0,13	0,47	0,60
	8	0,16	0,54	0,70
	25	0,36	1,69	2,05
	36	0,52	3,17	3,69
	165	4,56	181,50	186,06

Tabela 5.14: Tempo de Simulação da Ordenação por valor para a Série Nordeste

Número de Turbinas	Grupos	Agrupamento	Solução do Modelo	Total
1	3	0,71	0,30	1,01
	5	0,73	0,31	1,04
	7	0,74	0,37	1,11
	8	0,80	0,38	1,18
	25	1,03	0,59	1,62
	36	1,27	0,77	2,04
	165	3,41	3,63	7,04
10	3	0,70	0,34	1,04
	5	0,72	0,36	1,08
	7	0,75	0,37	1,12
	8	0,78	0,39	1,17
	25	1,03	0,69	1,72
	36	1,19	0,89	2,08
	165	3,27	9,55	12,82
20	3	0,70	0,33	1,03
	5	0,73	0,38	1,11
	7	0,77	0,39	1,16
	8	0,78	0,47	1,25
	25	1,02	0,94	1,96
	36	1,20	1,53	2,73
	165	3,75	43,72	47,47
30	3	0,97	0,33	1,30
	5	0,70	0,36	1,06
	7	0,77	0,42	1,19
	8	0,77	0,48	1,25
	25	1,09	1,38	2,47
	36	1,23	2,47	3,70
	165	4,56	181,50	186,06

Observando-se as Tabelas (5.10), (5.11), (5.12), (5.13) e (5.14), pode-se perceber que quanto maior o número de grupos, maior é o tempo gasto na fase do agrupamento e na fase de solução do Modelo. Quando o número de grupos é próximo, a diferença do tempo gasto na solução do modelo é bem pequena, sendo que nas Tabelas (5.13) e (5.14), isto também se verifica na fase do agrupamento.

O tempo gasto para solucionar o modelo é praticamente igual nas 5 tabelas. Logo, o fator de diferenciação é o tempo gasto no agrupamento. Em todos os agrupamentos realizados pela técnica Ordenação por realizações (Tabela (5.13)), o tempo gasto para agrupar a série foi menor que o tempo gasto para solucionar o Modelo. Para as outras técnicas (Tabelas (5.10), (5.11), (5.12) e (5.14)), ocorreu o contrário, o tempo gasto para solucionar o Modelo foi menor que o tempo gasto na fase do agrupamento, com exceção da técnica Ordenação por valor nas simulações de 36 grupos com 20 turbinas e de 25 e 36 grupos com 30 turbinas.

O tempo gasto nas simulações de Ordenação por realizações e Ordenação por valor se mostrou vantajoso em todos os casos, pois o tempo total gasto em todos os agrupamentos para 1, 10, 20 e 30 turbinas foi menor que o tempo total gasto caso todos os estados de vento estivessem presentes.

No caso de uma única turbina, o agrupamento pela técnica K-Means não foi vantajoso, pois o tempo gasto para o menor número de grupos foi ainda maior que o tempo gasto caso todos os estados de velocidade de vento da série temporal estivessem presentes. Quanto à técnica Fuzzy C-Means, apenas a simulação de 3 grupos foi realizada num tempo menor que quando não houve agrupamento. No caso de 10 turbinas, as simulações de 3 e 5 grupos realizadas pela técnica Fuzzy C-Means e somente as de 3 grupos da técnica K-Means se mostraram vantajosas. Para 20 turbinas, os agrupamentos de 3, 5, 7 e 8 grupos realizados pelas técnicas K-Means e Fuzzy C-Means foram compensadores. Todos os agrupamentos realizados pela técnica K-Means inicializada por Ordenação por realizações se mostraram vantajosos para uma usina com 30 turbinas. O mesmo não foi verificado para a técnica Fuzzy C-Means, pois as simulações com 25 e 36 grupos precisaram de mais tempo do que a série temporal sem agrupamento.

A técnica Fuzzy C-Means se mostrou mais rápida que a técnica K-Means para os casos de 3, 5 e 7 grupos, visto que gastou menos tempo que esta para realizar os agrupamentos. Contudo, nos outros casos, a técnica K-Means se mostrou mais rápida.

O menor tempo total gasto para agrupar a série e solucionar o modelo foi obtido pela Ordenação por realizações.

5.3.2 Agrupamento Multivariável

A Tabela (5.15) mostra o tempo gasto para agrupar a Série Nordeste através da Técnica K-Means e solucionar o Modelo de Confiabilidade.

Assim como nas Tabelas (5.10), (5.12) e (5.14) do agrupamento univariável, a coluna de 165 grupos da Tabela (5.15) do agrupamento multivariável corresponde ao caso em que não houve agrupamento da série temporal. Logo, os valores da coluna de 165 grupos da Tabela (5.15) são iguais aos da coluna de 165 grupos das Tabelas (5.10), (5.12) e (5.14).

Tabela 5.15: Tempo de Simulação do K-Means para a Série Nordeste - Multivariável

Número de Turbinas	Grupos	Agrupamento	Solução do Modelo	Total
1	3	62,41	0,52	62,93
	4	64,17	0,58	64,75
	5	67,16	0,67	67,83
	6	67,38	0,95	68,33
	165	3,41	3,63	7,04
10	3	62,64	0,58	63,22
	4	64,25	0,69	64,94
	5	65,13	0,81	65,94
	6	68,97	0,97	69,94
	165	3,27	9,55	12,82
20	3	63,83	0,70	64,53
	4	63,92	0,94	64,86
	5	66,88	1,30	68,18
	6	67,92	1,69	69,61
	165	3,75	43,72	47,47
30	3	62,47	1,00	63,47
	4	63,08	1,52	64,60
	5	63,51	2,14	65,65
	6	64,16	3,19	67,35
	165	4,56	181,50	186,06

Analisando a Tabela (5.15), percebe-se que o aumento da quantidade de grupos implica no aumento do tempo gasto no agrupamento bem como na solução do modelo. O aumento do número de turbinas também ocasiona um aumento no tempo necessário para solução do modelo.

Sob o ponto de vista do tempo de simulação, o agrupamento da série temporal só se torna interessante para uma usina eólica com 30 turbinas, pois com 1, 10 e 20 turbinas, o tempo total gasto para realizar o agrupamento da série temporal e

solucionar o modelo é maior do que o tempo total quando não houve agrupamento, ou seja, os 165 estados de vento estão presentes.

5.4 Síntese dos Resultados

Uma das contribuições desta dissertação é a tentativa de encontrar um número de estados que melhor possa representar uma série de vento. Para ajudar a identificar este possível número, foram criados 3 índices comparativos e os resultados destes índices que apresentassem erros próximos a 5% foram considerados aceitáveis. Devido à grande quantidade de resultados, foram criadas algumas tabelas com os números de estados que obtiveram erros próximos a 5% e com o tempo gasto para solucionar o Modelo para estes agrupamentos somente da série Nordeste, visto que a ordem de grandeza dos resultados das 3 séries é a mesma. As Tabelas (5.16), (5.17) e (5.18) mostram o número de estados necessários por técnica com 1, 10, 20 e 30 turbinas para os índices relação entre áreas, relação entre EAWE's e relação entre EGWE's, respectivamente. Na Tabela (5.16), observa-se que a partir de 10 turbinas para todas as técnicas, são necessários apenas 3 estados de vento. Com 1 turbina, são necessários 25 ou mais grupos. Quase todas as técnicas precisaram de 3 estados para obter um erro próximo a 5% na Tabela (5.17), com exceção da técnica Ordenação por valor que precisou de 5 estados para todas as quantidades de turbinas. Na verdade, os erros encontrados na relação entre EAWE's em quase todas as simulações foram inferiores a 5%, com exceção da técnica Ordenação por valor para 3 grupos, onde o erro ultrapassou os 10% superiormente. Na Tabela (5.18), as técnicas Fuzzy C-Means e Ordenação por valor foram as únicas que precisaram da mesma quantidade de estados independentemente do número de turbinas. As outras técnicas necessitaram de mais estados conforme aumentava o número de turbinas. A técnica Ordenação por realizações mostrou precisar de mais estados do que as outras técnicas nas simulações com 20 e 30 turbinas.

Através de uma comparação entre as curvas de duração para vários agrupamentos e a curva de duração da série original, LEITE (2005) observou que as séries de vento foram bem representadas por 80 estados com apenas 1 turbina. Nesta dissertação, a análise da quantidade de estados necessários teve como base os índices comparativos: relação entre áreas, relação entre EAWE's e relação entre EGWE's. Generalizando as Tabelas (5.16), (5.17) e (5.18), pode-se dizer que, segundo o índice relação entre áreas, uma série de vento seria bem representada por algo em torno de 36 estados de vento.

Para o índice relação entre EAWE's, 5 estados de vento seriam suficientes. O índice relação entre EGWE's precisaria de 8 a 25 estados de vento. Caso a análise de LEITE (2005) tivesse se baseado no índice relação entre áreas com uma margem de 5% de erro, algo entre 36 e 80 estados de vento seria suficiente para o caso de 1 turbina. Por sua vez, os índices relação entre EAWE's e relação entre EGWE's precisariam de apenas 3 estados de vento para a mesma quantidade de turbinas.

Tabela 5.16: Número de Estados da Série Nordeste - Relação entre Áreas

Número	Técnicas de Agrupamento					
de	K-Means inicializada por		Fuzzy C-Means	Ordenação por	Ordenação por	
Turbinas	Ordenação por Ordenação por			realizações	valor	
	realizações	valor				
1	25	mais de 36	entre 25 e 36	25	mais de 36	
10	3	3	3	3	3	
20	3	3	3	3	3	
30	3	3	3	3	3	

Tabela 5.17: Número de Estados da Série Nordeste - Relação entre EAWE's

Número	Técnicas de Agrupamento					
de	K-Means inicializada por		Fuzzy C-Means	Ordenação por	Ordenação por	
Turbinas	Ordenação por Ordenação por			realizações	valor	
	realizações	valor				
1	3	3	3	3	5	
10	3	3	3	3	5	
20	3	3	3	3	5	
30	3	3	3	3	5	

Tabela 5.18: Número de Estados da Série Nordeste - Relação entre EGWE's

Número	Técnicas de Agrupamento					
de	K-Means inicializada por		Fuzzy C-Means	Ordenação por	Ordenação por	
Turbinas	Ordenação por Ordenação por			realizações	valor	
	realizações	valor				
1	3	entre 3 e 5	8	7	5	
10	5	entre 3 e 5	8	8	5	
20	entre 5 e 7	5	8	entre 8 e 25	5	
30	7	entre 5 e 7	8	entre 8 e 25	5	

Nas Tabelas (5.19), (5.20) e (5.21), são mostrados o tempo necessário para solucionar o Modelo dos agrupamentos das Tabelas (5.16), (5.17) e (5.18), respectivamente. Observando as tabelas, percebe-se que o tempo gasto para solucionar o Modelo destes agrupamentos é menor do que o tempo gasto com a série original, o

que torna bastante interessante o agrupamento das séries de vento. O tempo gasto para solucionar o Modelo a partir da série original é mostrado nas Tabelas (5.10), (5.11), (5.12), (5.13) e (5.14). Quanto maior a quantidade de turbinas, maior é a diferença entre o tempo de solução do Modelo da série original e da série agrupada.

Tabela 5.19: Tempo Necessário da Série Nordeste - Relação entre Áreas

Número	Técnicas de Agrupamento					
de	K-Means inicializada por		Fuzzy C-Means	Ordenação por	Ordenação por	
Turbinas	Ordenação por Ordenação por			realizações	valor	
	realizações	valor				
1	0,62	mais de 0,80	entre 0,64 e 0,96	0,61	mais de 0,77	
10	0,33	0,30	0,30	0,34	0,34	
20	0,33	0,31	0,33	0,35	0,33	
30	0,38	0,35	0,31	0,36	0,33	

Tabela 5.20: Tempo Necessário da Série Nordeste - Relação entre EAWE's

Número	Técnicas de Agrupamento					
de	K-Means inicializada por		Fuzzy C-Means	Ordenação por	Ordenação por	
Turbinas	Ordenação por	Ordenação por		realizações	valor	
	realizações	valor				
1	0,30	0,31	0,31	0,31	0,31	
10	0,33	0,30	0,30	0,34	0,36	
20	0,33	0,31	0,33	0,35	0,38	
30	0,38	0,35	0,31	0,36	0,36	

Tabela 5.21: Tempo Necessário da Série Nordeste - Relação entre EGWE's

Número	Técnicas de Agrupamento					
de	K-Means inicializada por		Fuzzy C-Means	Ordenação por	Ordenação por	
Turbinas	Ordenação por Ordenação por			realizações	valor	
	realizações	valor				
1	0,30	entre $0,31$ e $0,34$	0,38	0,38	0,31	
10	0,34	entre $0,30$ e $0,36$	0,42	0,47	0,36	
20	entre $0,34$ e $0,36$	0,39	0,41	entre 0,51 e 1,07	0,38	
30	0,42	entre $0,42$ e $0,44$	0,52	entre 0,54 e 1,69	0,36	

Capítulo 6

Conclusões e Trabalhos Futuros

Este trabalho apresentou algumas técnicas de agrupamento para diminuir a quantidade de estados de vento, preservando a representatividade da série temporal. O objetivo era reduzir o esforço computacional exigido em estudos de confiabilidade. Além de técnicas conhecidas como K-Means, Fuzzy C-Means e o Mapa Auto-Organizável de Kohonen, também foram testados alguns métodos que envolvem a ordenação dos valores de velocidade da série e a posterior divisão em grupos, segundo largura de valores ou quantidade de ocorrências. De acordo com os testes realizados, apenas o Mapa Auto-Organizável de Kohonen não se mostrou apto para a redução de estados de vento, pois o somatório das distâncias intra-grupos e o tempo gasto para agrupar a série foram bem maiores que das outras técnicas. Portanto, apenas as séries agrupadas pelas técnicas K-Means inicializada por Ordenação, Fuzzy C-Means, Ordenação por realizações e Ordenação por valor foram inseridas no Modelo de Confiabilidade. O agrupamento foi realizado de 2 formas: univariável e multivariável. No agrupamento univariável, a série no seu formato original, unidimensional, é inserida no algoritmo de agrupamento. No agrupamento multivariável, a série original foi dividida em várias sequências de 6 valores, equivalente a 1 hora, e a matriz formada por estas sequências foi utilizada como entrada da técnica. A partir das séries agrupadas, o Modelo calculou os seguintes índices de desempenho: IWP, IWE, EAWE, EGWE e WGAF. Com o intuito de avaliar a qualidade dos agrupamentos, foram criados alguns índices comparativos: Relação entre Áreas, Relação entre Índices EAWE e Relação entre Índices EGWE. Os erros em torno de 5% foram considerados satisfatórios.

Em geral, as técnicas apresentaram bons resultados. Em virtude do tempo gasto para agrupar as séries em 25 e 36 grupos, a técnica Fuzzy C-Means talvez não seja muito adequada para simulações com muitos grupos. As inicializações testadas no

algoritmo da técnica K-Means produziram bons centróides. Os resultados do índice EAWE para as séries agrupadas foram próximos da unidade, apresentando erros inferiores a 5% em todas as simulações. Isto mostra que os centróides foram bem calculados pelas técnicas e por isso produziram uma estimativa de geração próxima da série original. Contudo, baseando-se no esforço computacional e na qualidade dos índices comparativos, pode-se afirmar que a técnica Ordenação por valor é a mais indicada para agrupar séries de vento.

O agrupamento multivariável não se mostrou muito compensador, pois na maioria das vezes, seus índices comparativos foram piores que os obtidos pelo agrupamento univariável. É bem provável que os agrupamentos no espaço multivariável fossem melhor aproveitados caso o Modelo de Confiabilidade utilizado estivesse preparado para uma entrada de dados multidimensional.

Tendo como base as Séries Nordeste, Sudeste e Sul utilizadas nas simulações, o tempo gasto nas mesmas e os resultados dos índices comparativos, pode-se afirmar que o agrupamento das velocidades do vento é vantajoso. Analisando os resultados, foi possível perceber que as séries de vento poderiam ser bem representadas por algo em torno de 36 estados de vento, segundo o índice relação entre áreas. Os erros encontrados pelo índice relação entre EAWE's foram inferiores a 5% em mais de 90% das simulações. De acordo com este índice, 5 estados de vento seriam suficientes. O índice relação entre EGWE's necessitaria de 8 a 25 estados de vento. Convém lembrar que as séries Nordeste, Sudeste e Sul são formadas, respectivamente, por 165, 179 e 196 valores diferentes de velocidade de vento que se repetem num período de um ano. Na pior hipótese, a série poderia ser representada por menos de 1/3 da quantidade de estados da série original, o que já reduziria bastante o esforço computacional nos estudos de confiabilidade. Para uma mesma série de vento, múltiplas análises de confiabilidade (variando taxas de falha e reparo, tipo de turbina, etc) não requerem um novo agrupamento. Nestes casos, o benefício computacional de utilizar técnicas de agrupamento será sensível.

Na avaliação da confiabilidade baseada em Simulação Monte Carlo, onde centenas de milhares de casos são simulados, a redução do tempo de simulação devido ao agrupamento dos estados do vento será enorme, tendo em vista que o agrupamento é realizado apenas uma vez. Para séries com um número maior de valores diferentes de velocidade de vento, é possível que as quantidades de estados citadas anteriormente sejam insuficientes para uma boa representação.

Uma proposta de trabalho promissora seria a utilização de algoritmos

evolucionários para encontrar os estados de geração de um sistema de potência composto por fontes convencionais e não-convencionais de energia que mais contribuem para os seguintes índices de confiabilidade: LOLE (Número esperado de horas de déficit de potência - [horas/semana]), LOLF (Frequência de perda de carga - [ocorrências/semana]) e EENS (Valor esperado de energia não-suprida - [MWh]). WANG et al. (2007) avaliaram a confiabilidade de um sistema formado por fontes convencionais de energia e turbinas eólicas, através de uma técnica conhecida como binary particle swarm algorithm(BPSO)(KENNEDY, EBERHART, 1997). A técnica citada é uma variante da particle swarm optimization(KENNEDY, EBERHART, 1995), a qual é baseada no movimento de organismos como os pássaros, os peixes, etc. Os melhores resultados, e muito próximos, foram obtidos pelo BPSO e pelos algoritmos genéticos(SRINIVAS, PATNAIK, 1994). As simulações de Monte Carlo(PEREIRA, BALU, 1992) encontraram os piores resultados.

Apêndice A

Curva da Turbina

Tabela A.1: Curva de potência da turbina

Velocidade (m/s)	Potência (kW)				
0	0				
1	0				
2	0				
3	0				
4	25				
5	87				
6	214				
7	377				
8	589				
9	855				
10	1162				
11	1453				
12	1500				
13	1500				
14	1500				
15	1500				
16	1500				
17	1500				
18	1500				
19	1500				
20	1500				
21	0				
22	0				
23	0				
24	0				
25	0				
26	0				
27	0				
28	0				
29	0				
30	0				

Apêndice B

Centróides Finais

Nas Tabelas (B.2), (B.4), (B.6), (B.8), (B.10), (B.12), (B.14), (B.16), (B.18), (B.20), (B.22), (B.24), (B.26), (B.28), (B.30), (B.32), (B.34), (B.36), (B.38), (B.40), (B.42), (B.44), (B.46) e (B.48), os campos *Intra* e *Maior* correspondem, respectivamente, ao somatório das distâncias entre todos os elementos do grupo e o centróide do mesmo e à maior distância entre um elemento do grupo e o centróide deste mesmo grupo.

B.1 Agrupamento Univariável

B.1.1 Série Nordeste

Tabela B.1: Centróides Finais da Série Nordeste - 3 Estados de vento

Estados		Té	cnicas de Agrupan	nento	
de vento	K-Means inic	ializada por	Fuzzy C-Means	Ordenação por	Ordenação por
	Ordenação por Ordenação por			realizações	valor
	realizações	valor			
1	5,084	5,253	5,118	4,903	3,100
2	7,887	8,177	7,951	7,238	9,350
3	11,452	11,678	11,555	10,584	15,600

Tabela B.2: Dispersão da Série Nordeste - 3 Estados de vento

Estados				Téc	cnicas de A	A grupam	ento			
de vento	K-N	Aeans ini	cializada p	oor	Fuzzy C	-Means	Ordenag	ção por	Ordenaç	ão por
	Ordena	ção por	Ordenag	rdenação por		realizações		valor		
	realiza	ações	val	or			l			
	Intra	Maior	Intra	Maior	Intra	Maior	Intra	Maior	Intra	Maior
1	22.203,5	25,852	27.345,1	27,589	23.858,9	26,196	16.334,8	24,039	82.765,0	9,610
2	17.583,3	2,935	16.649,9	2,968	17.341,3	3,058	15.158,9	2,762	102.673,8	9,303
3	22.440,0	52,540	18.218,8	49,306	20.905,2	51,046	36.917,8	65,866	11.954,0	9,610

Tabela B.3: Centróides Finais da Série Nordeste - 5 Estados de vento

Estados		Técnicas de Agrupamento										
de vento	K-Means inic	ializada por	Fuzzy C-Means	Ordenação por	Ordenação por							
	Ordenação por Ordenação por			realizações	valor							
	realizações valor											
1	3,901	4,245	4,199	4,330	1,850							
2	5,782	6,285	6,067	5,959	5,600							
3	7,583	8,333	7,974	7,211	9,350							
4	9,758	10,498	10,169	8,807	13,100							
5	12,605	13,159	12,969	11,569	16,850							

Tabela B.4: Dispersão da Série Nordeste - 5 Estados de vento

Estados				Té	cnicas de	Agrupan	nento			
de vento	K-Means inicializada por			Fuzzy C	C-Means	Ordena	ção por	Ordenação por		
	Ordenação por Ordenação por				realiza	ações	val	or		
	realiz	ações	va	lor						
	Intra	Maior	Intra	Maior	Intra	Maior	Intra	Maior	Intra	Maior
1	5.147,7	15,218	7.874,3	18,016	7.132,6	17,628	7.370,0	18,750	3.539,3	3,423
2	3.836,1	0,779	6.324,1	1,030	4.730,1	0,871	2.022,4	0,576	25.163,4	3,240
3	4.721,4	1,033	4.661,5	1,138	4.426,5	1,053	2.090,6	0,623	22.914,1	3,423
4	5.576,9	1,802	3.837,0	1,694	4.872,1	1,773	4.437,3	1,672	6.319,3	3,240
5	7.047,9	37,147	3.542,6	30,704	4.836,1	32,845	16.471,6	50,847	412,0	3,423

Tabela B.5: Centróides Finais da Série Nordeste - 7 Estados de vento

Estados		Té	cnicas de Agrupan	nento	
de vento	K-Means inic	ializada por	Fuzzy C-Means	Ordenação por	Ordenação por
	Ordenação por Ordenação por			realizações	valor
	realizações	valor			
1	3,148	3,337	3,398	3,998	1,350
2	4,914	5,259	5,097	5,437	4,000
3	6,144	6,816	6,409	6,299	6,650
4	7,410	8,416	7,803	7,203	9,350
5	8,944	10,044	9,353	8,290	12,050
6	10,811	11,762	11,153	9,667	14,700
7	13,317	13,887	13,578	12,131	17,350

Tabela B.6: Dispersão da Série Nordeste - 7 Estados de vento

Estados				Téc	nicas de	Agrupam	ento			
de vento	K-N	K-Means inicializada por			Fuzzy C	C-Means	Ordena	ção por	Ordenação por	
	Ordena	ção por	Ordena	ção por			realiz	ações	val	or
	realiz	ações	va	lor						
	Intra	Maior	Intra	Maior	Intra	Maior	Intra	Maior	Intra	Maior
1	1.935,3	9,908	2.503,7	11,133	2.517,4	11,544	4.818,1	15,983	464,1	1,823
2	1.556,3	0,663	3.184,1	0,920	1.783,5	0,636	922,6	0,406	6.672,8	1,690
3	1.229,8	0,309	2.752,3	0,615	1.951,3	0,478	518,6	0,161	12.541,7	1,823
4	1.650,7	0,476	2.057,6	0,614	1.552,4	0,485	641,2	0,247	8.001,3	1,823
5	2.198,8	0,733	1.684,2	0,734	2.015,9	0,717	908,1	0,372	3.172,6	1,563
6	2.675,1	1,415	1.156,4	1,078	2.070,9	1,315	2.677,3	1,284	830,1	1,690
7	2.837,0	28,982	1.114,1	23,169	2.031,0	26,231	9.492,9	43,154	16,5	1,823

Tabela B.7: Centróides Finais da Série Nordeste - 8 Estados de vento

Estados		Té	cnicas de Agrupan	nento	
de vento	K-Means inic	ializada por	Fuzzy C-Means	Ordenação por	Ordenação por
	Ordenação por Ordenação por			realizações	valor
	realizações	valor			
1	3,045	3,045	3,119	3,872	1,150
2	4,766	4,883	4,810	5,262	3,500
3	5,860	6,289	6,006	6,035	5,850
4	6,887	7,716	7,209	6,793	8,150
5	8,031	9,109	8,544	7,645	10,500
6	9,345	10,547	9,980	8,675	12,850
7	11,051	12,128	11,606	9,983	15,200
8	13,461	14,107	13,825	12,339	17,550

Tabela B.8: Dispersão da Série Nordeste - 8 Estados de vento

Estados				Téc	nicas de .	Agrupam	ento			
de vento	K-N	Ieans ini	cializada	por	Fuzzy C	C-Means	Ordena	ção por	Ordenação por	
	Ordena	ção por	Ordena	ção por			realiz	ações	va	lor
	realiz	ações	va	lor						
	Intra	Maior	Intra	Maior	Intra	Maior	Intra	Maior	Intra	Maior
1	1.674,0	9,272	1.674,0	9,272	1.688,7	9,729	3.968,3	14,989	290,4	1,323
2	1.180,5	0,586	1.815,4	0,780	1.474,7	0,657	853,7	0,438	2.608,2	1,210
3	712,1	0,211	2.398,5	0,506	1.237,7	0,353	369,0	0,133	7.612,1	1,323
4	887,0	0,263	1.587,5	0,467	1.084,1	0,349	362,6	0,166	7.576,2	1,323
5	934,5	0,324	1.192,0	0,478	1.347,0	0,430	419,1	0,207	3.733,2	1,210
6	1.377,4	0,570	987,6	0,567	1.171,4	0,519	836,0	0,391	1.712,0	1,323
7	2.137,4	1,319	871,1	0,945	1.458,3	1,197	2.133,9	1,249	375,0	1,210
8	2.288,1	27,452	722,1	21,092	1.275,1	23,761	7.437,7	40,463	2,6	1,323

B.1.2 Série Sudeste

Tabela B.9: Centróides Finais da Série Sudeste - 3 Estados de vento

Estados		Técnicas de Agrupamento									
de vento	K-Means inic	ializada por	Fuzzy C-Means	Ordenação por	Ordenação por						
	Ordenação por Ordenação por			realizações	valor						
	realizações valor										
1	3,403 3,587		3,392	3,501	3,100						
2	6,784	7,043	6,853	6,505	9,350						
3	10,375	10,608	10,425	9,765	15,600						

Tabela B.10: Dispersão da Série Sudeste - 3 Estados de vento

Estados		Técnicas de Agrupamento										
de vento	K-Means inicializada por			Fuzzy C	-Means	Ordenag	ção por	Ordena	ção por			
	Ordenação por		Ordenag	ção por			realizações		valor			
	realiza	ações	val	or								
	Intra	Maior	Intra	Maior	Intra	Maior	Intra	Maior	Intra	Maior		
1	22.845,8	11,583	28.341,1	12,869	24.594,4	11,508	23.003,8	12,257	76.899,1	9,610		
2	22.521,2	2,945	21.982,2	3,086	22.326,6	3,052	16.509,7	2,545	84.438,5	9,303		
3	28.748,2	69,306	23.772,9	65,484	27.104,9	68,479	38.103,0	79,843	6.289,1	9,610		

Tabela B.11: Centróides Finais da Série Sudeste - 5 Estados de vento

Estados		Técnicas de Agrupamento										
de vento	K-Means inic	ializada por	Fuzzy C-Means	Ordenação por	Ordenação por							
	Ordenação por Ordenação por			realizações	valor							
	realizações valor											
1	2,405	2,677	2,431	2,739	1,850							
2	4,653	5,143	4,793	4,922	5,600							
3	6,707	7,359	6,952	6,512	9,350							
4	8,846	9,679	9,122	8,064	13,100							
5	11,696	12,531	11,872	10,713	16,850							

Tabela B.12: Dispersão da Série Sudeste - 5 Estados de vento

Estados				Té	cnicas de	Agrupan	nento			
de vento	K-N	Ieans ini	cializada	por	Fuzzy C	C-Means	Ordenação por		Ordenação por	
	Ordena	Ordenação por		ação por		realizações		valor		
	realizações		va	valor						
	Intra	Maior	Intra	Maior	Intra	Maior	Intra	Maior	Intra	Maior
1	5.821,7	5,781	8.788,6	7,169	6.520,3	5,909	8.123,8	7,504	11.503,4	3,423
2	4.436,9	1,109	6.194,4	1,307	5.190,3	1,194	3.492,3	1,044	26.738,3	3,240
3	5.239,5	1,014	6.520,5	1,303	5.943,6	1,106	1.930,4	0,507	20.563,8	3,423
4	6.108,8	1,834	5.104,6	2,020	5.105,8	1,632	4.486,9	1,529	3.527,2	3,240
5	9.544,1	49,057	4.517,8	38,057	8.097,6	46,626	18.141,2	63,792	259,5	3,423

Tabela B.13: Centróides Finais da Série Sudeste - 7 Estados de vento

Estados		Té	cnicas de Agrupan	nento	
de vento	K-Means inic	ializada por	Fuzzy C-Means	Ordenação por	Ordenação por
	Ordenação por	Ordenação por		realizações	valor
	realizações valor				
1	1,998	2,265	1,965	2,334	1,350
2	3,812	4,407	3,803	4,164	4,000
3	5,264	6,216	5,396	5,399	6,650
4	6,658	7,807	6,938	6,516	9,350
5	8,134	9,438	8,472	7,585	12,050
6	10,044 11,185		10,311	8,874	14,700
7	12,708	13,662	12,807	11,259	17,350

Tabela B.14: Dispersão da Série Sudeste - 7 Estados de vento

Estados				Té	cnicas de	Agrupan	nento			
de vento	K-N	Ieans ini	cializada	por	Fuzzy C	C-Means	Ordena	ção por	ão por Ordenação	
	Ordena	ção por	Ordena	ção por			realiza	ações	val	or
	realizações		valor							
	Intra	Maior	Intra	Maior	Intra	Maior	Intra	Maior	Intra	Maior
1	2.960,1	3,993	4.651,3	5,129	2.635,7	3,862	4.288,3	5,449	2.884,0	1,823
2	1.669,9	0,659	3.697,3	1,015	1.978,5	0,815	1.585,4	0,747	8.376,2	1,690
3	1.439,6	0,441	2.810,5	0,666	2.172,1	0,633	938,1	0,359	10.996,4	1,823
4	1.569,9	0,433	2.130,7	0,629	2.326,3	0,580	766,8	0,266	7.007,7	1,823
5	2.350,6	0,749	1.683,5	0,743	1.807,3	0,685	964,9	0,378	2.092,5	1,563
6	3.052,1	1,578	1.356,5	1,477	2.395,6	1,415	2.548,5	1,269	411,5	1,690
7	3.808,7	35,901	1.441,3	25,379	3.250,5	34,729	11.403,9	55,366	32,4	1,823

Tabela B.15: Centróides Finais da Série Sudeste - 8 Estados de vento

Estados		Té	cnicas de Agrupan	nento	
de vento	K-Means inic	ializada por	Fuzzy C-Means	Ordenação por	Ordenação por
	Ordenação por	Ordenação por		realizações	valor
	realizações valor				
1	1,859 2,067		1,807	2,190	1,150
2	3,554	3,554 4,074		3,906	3,500
3	4,859	5,818	4,912	5,033	5,850
4	6,002	7,383	6,298	6,039	8,150
5	7,188	8,845	7,626	6,980	10,500
6	8,582 10,362		9,052	7,940	12,850
7	10,371	10,371 12,064		9,169	15,200
8	12,962	14,361	13,099	11,462	17,550

Tabela B.16: Dispersão da Série Sudeste - 8 Estados de vento

Estados				Téc	nicas de .	Agrupam	ento			
de vento	K-N	Ieans ini	cializada	por	Fuzzy (C-Means	Ordenação por		Ordenação por	
	Ordenação por		Ordena	ção por			realiz	ações	valor	
	realizações		va	valor						
	Intra	Maior	Intra	Maior	Intra	Maior	Intra	Maior	Intra	Maior
1	2.314,0	3,456	3.331,3	4,271	2.047,4	3,264	3.420,2	4,797	1.968,1	1,323
2	1.277,4	0,568	2.935,6	0,949	1.238,8	0,593	1.205,5	0,649	4.716,7	1,210
3	887,5	0,313	2.721,5	0,669	1.727,0	0,506	694,2	0,284	6.762,5	1,323
4	744,3	0,252	1.911,3	0,514	1.268,2	0,362	553,0	0,213	6.686,9	1,323
5	1.273,3	0,375	1.349,6	0,570	1.490,0	0,455	434,2	0,177	2.899,3	1,210
6	1.772,5	0,670	978,6	0,702	1.290,4	0,560	697,9	0,313	947,5	1,323
7	2.280,7	1,511	659,6	1,292	1.512,5	1,209	2.351,2	1,279	162,8	1,210
8	2.969,0	32,925	643,4	18,825	2.510,8	31,374	9.352,1	52,390	20,9	1,323

B.1.3 Série Sul

Tabela B.17: Centróides Finais da Série Sul - 3 Estados de vento

Estados		Té	cnicas de Agrupan	nento	
de vento	K-Means inic	ializada por	Fuzzy C-Means	Ordenação por	Ordenação por
	Ordenação por Ordenação por			realizações	valor
	realizações valor				
1	3,827	4,084	3,879	3,934	3,350
2	7,143 7,538		7,253	6,855	10,000
3	10,852	11,275	10,951	10,206	16,650

Tabela B.18: Dispersão da Série Sul - 3 Estados de vento

Estados				Téo	cnicas de A	Agrupam	ento			
de vento	K-N	K-Means inicializada por				-Means	Ordena	ção por	Ordenaç	ão por
	Ordenag	Ordenação por Ordenação por				realiza	ações	valo	or	
	realiza	realizações valor								
	Intra	Maior	Intra	Maior	Intra	Maior	Intra	Maior	Intra	Maior
1	25.321,1	14,642	33.099,5	16,676	27.137,8	15,043	24.107,4	15,475	92.623,4	11,223
2	23.107,2	3,089	24.321,3	3,466	24.819,0	3,411	18.091,1	2,706	100.710,0	10,890
3	35.006,6	83,683	26.068,5	76,123	31.222,5	81,877	45.242,4	95,928	5.207,8	11,223

Tabela B.19: Centróides Finais da Série Sul - 5 Estados de vento

Estados		Té	cnicas de Agrupan	nento	
de vento	K-Means inic	ializada por	Fuzzy C-Means	Ordenação por	Ordenação por
	Ordenação por Ordenação por			realizações	valor
	realizações valor				
1	2,674 3,130		2,804	3,172	2,000
2	4,965	5,694	5,151	5,343	6,000
3	6,978	7,942	7,248	6,847	10,000
4	9,215 10,270		9,450	8,434	14,000
5	12,358	13,336	12,406	11,196	18,000

Tabela B.20: Dispersão da Série Sul - 5 Estados de vento

Estados				Téc	nicas de A	grupame	ento			
de vento	K-N	Ieans ini	cializada p	oor	Fuzzy C	-Means	Ordenação por		Ordenação por	
	Ordenação por		Ordenação por		1		realizações		valor	
	realizações		valor							
	Intra	Maior	Intra	Maior	Intra	Maior	Intra	Maior	Intra	Maior
1	6.858,8	7,153	11.736,1	9,794	7.543,6	7,864	10.203,2	10,062	13.821,0	4,000
2	4.577,6	1,133	7.474,7	1,425	5.489,2	1,324	3.332,1	1,087	33.688,4	4,000
3	5.402,8	1,045	6.432,3	1,341	6.041,6	1,106	2.439,5	0,568	20.489,0	4,000
4	7.189,4	2,204	5.015,5	2,342	6.061,0	2,102	5.370,5	1,866	3.645,6	4,000
5	12.036,2	58,406	6.015,4	44,409	10.722,8	57,676	22.033,0	77,514	326,8	4,000

Tabela B.21: Centróides Finais da Série Sul - 7 Estados de vento

Estados		Té	cnicas de Agrupan	nento	
de vento	K-Means inic	ializada por	Fuzzy C-Means	Ordenação por	Ordenação por
	Ordenação por	Ordenação por		realizações	valor
	realizações valor				
1	2,104	2,522	2,224	2,747	1,450
2	4,131	4,772	4,175	4,623	4,300
3	5,674	6,642	5,817	5,794	7,150
4	7,093	8,409	7,369	6,845	10,000
5	8,691	10,193	8,985	7,944	12,850
6	10,661 12,274		10,900	9,241	15,700
7	13,513	15,540	13,478	11,793	18,550

Tabela B.22: Dispersão da Série Sul - 7 Estados de vento

Estados				Té	cnicas de	Agrupan	nento			
de vento	K-N	Ieans ini	cializada	por	Fuzzy C	C-Means	Ordena	ção por	Ordenação por	
	Ordena	ção por	Ordenação por				realiza	ações	val	or
	realizações		valor							
	Intra	Maior	Intra	Maior	Intra	Maior	Intra	Maior	Intra	Maior
1	3.366,1	4,428	5.697,3	6,360	3.426,0	4,944	6.011,7	7,546	3.136,7	2,103
2	2.327,3	0,866	4.302,0	1,149	2.344,9	0,951	1.983,0	0,851	10.075,2	1,960
3	1.579,7	0,454	3.501,9	0,735	2.362,6	0,667	784,9	0,256	12.452,5	1,823
4	1.928,1	0,501	2.842,0	0,794	2.278,2	0,591	581,2	0,207	8.163,9	1,960
5	2.639,2	0,826	1.921,6	1,015	2.442,0	0,837	948,1	0,309	2.080,4	1,823
6	3.027,1	1,793	1.758,0	2,644	2.169,0	1,441	3.242,8	1,586	318,0	1,960
7	5.321,5	42,083	1.182,6	19,893	4.998,2	42,541	14.520,1	67,351	69,2	2,103

Tabela B.23: Centróides Finais da Série Sul - 8 Estados de vento

Estados		Té	cnicas de Agrupan	nento	
de vento	K-Means inic	ializada por	Fuzzy C-Means	Ordenação por	Ordenação por
	Ordenação por	Ordenação por		realizações	valor
	realizações valor				
1	1,963	2,282	1,973	2,591	1,250
2	3,844	4,442	3,773	4,374	3,750
3	5,165	6,161	5,230	5,453	6,250
4	6,345	7,677	6,601	6,384	8,750
5	7,632	9,179	8,009	7,315	11,250
6	9,126	10,849	9,500	8,315	13,750
7	11,062 12,764		11,352	9,535	16,250
8	13,929	15,916	13,894	12,019	18,750

Tabela B.24: Dispersão da Série Sul - 8 Estados de vento

Estados		Técnicas de Agrupamento								
de vento	K-N	Ieans ini	cializada	por	Fuzzy C	C-Means	Ordena	ção por	Ordenação por	
	Ordena	ção por	Ordena	ção por			realiza	ações	valor	
	realiz	ações	va	lor	i					
	Intra	Maior	Intra	Maior	Intra	Maior	Intra	Maior	Intra	Maior
1	2.798,6	3,854	4.227,4	5,207	2.542,0	3,893	4.941,0	6,714	2.124,5	1,563
2	1.430,0	0,713	3.480,0	1,086	1.694,1	0,763	1.545,2	0,764	5.915,7	1,563
3	885,3	0,320	2.327,7	0,580	1.473,0	0,448	551,7	0,205	9.072,4	1,563
4	1.030,8	0,309	1.835,7	0,522	1.656,3	0,489	424,9	0,173	6.821,8	1,563
5	1.506,3	0,447	1.670,3	0,673	1.483,8	0,477	576,8	0,235	2.981,6	1,563
6	2.005,7	0,764	1.229,9	0,905	1.763,3	0,810	708,9	0,342	712,6	1,563
7	2.567,8	1,791	992,2	2,361	1.737,0	1,557	2.267,4	1,357	145,2	1,563
8	3.979,3	36,853	834,6	16,680	3.562,1	37,287	12.651,5	63,700	30,9	1,563

B.2 Agrupamento Multivariável

B.2.1 Série Nordeste

Tabela B.25: Centróides Finais da Série Nordeste - Multivariável - 3 Estados de vento

Estados	Técnica K-Means						
de vento							
1	5,262	5,230	5,220	5,214	5,227	5,263	
2	7,970	7,972	7,999	8,016	7,995	7,975	
3	11,401	11,441	11,455	11,457	11,442	11,403	

Tabela B.26: Dispersão da Série Nordeste - Multivariável - 3 Estados de vento

Estados	Técnica K-Means			
de vento	Intra	Maior		
1	28.589,4	157,488		
2	23.659,6	71,290		
3	24.308,1	133,764		

Tabela B.27: Centróides Finais da Série Nordeste - Multivariável - 4 Estados de vento

Estados	Técnica K-Means						
de vento							
1	4,753	4,704	4,688	4,687	4,709	4,777	
2	6,828	6,829	6,843	6,852	6,846	6,827	
3	9,239	9,242	9,266	9,276	9,247	9,233	
4	12,216	12,278	12,298	12,288	12,272	12,200	

Tabela B.28: Dispersão da Série Nordeste - Multivariável - 4 Estados de vento

Estados	Técnica K-Means			
de vento	Intra	Maior		
1	15.359,2	127,394		
2	13.715,6	61,529		
3	13.651,9	57,658		
4	11.173,0	91,114		

Tabela B.29: Centróides Finais da Série Nordeste - Multivariável - 5 Estados de vento

Estados	Técnica K-Means						
de vento							
1	4,323	4,258	4,242	4,244	4,286	4,364	
2	6,150	6,150	6,149	6,147	6,133	6,135	
3	7,999	7,997	8,027	8,043	8,025	8,007	
4	10,127	10,137	10,150	10,162	10,158	10,131	
5	12,828	12,905	12,932	12,914	12,873	12,803	

Tabela B.30: Dispersão da Série Nordeste - Multivariável - 5 Estados de vento

Estados	Técnica K-Means			
de vento	Intra	Maior		
1	9.171,1	104,566		
2	9.574,2	63,006		
3	9.427,8	53,276		
4	8.406,4	50,068		
5	5.682,1	83,053		

Tabela B.31: Centróides Finais da Série Nordeste - Multivariável - 6 Estados de vento

Estados	Técnica K-Means						
de vento							
1	3,829	3,728	3,676	3,676	3,737	3,848	
2	5,487	5,474	5,475	5,468	5,470	5,497	
3	6,957	6,964	6,983	6,998	6,990	6,977	
4	8,693	8,686	8,718	8,727	8,692	8,658	
5	10,626	10,652	10,657	10,671	10,675	10,650	
6	13,162	13,237	13,263	13,239	13,184	13,116	

Tabela B.32: Dispersão da Série Nordeste - Multivariável - 6 Estados de vento

Estados	Técnica K-Means			
de vento	Intra	Maior		
1	4.839,6	79,385		
2	6.132,7	39,952		
3	7.332,8	62,107		
4	7.164,4	53,588		
5	5.984,4	38,091		
6	3.795,9	84,146		

B.2.2 Série Sudeste

Tabela B.33: Centróides Finais da Série Sudeste - Multivariável - 3 Estados de vento

Estados	Técnica K-Means							
de vento								
1	3,628	3,578	3,555	3,566	3,583	3,616		
2	6,922	6,939	6,937	6,945	6,933	6,935		
3	10,390	10,447	10,461	10,467	10,428	10,402		

Tabela B.34: Dispersão da Série Sudeste - Multivariável - 3 Estados de vento

Estados	Técnica K-Means				
de vento	Intra	Maior			
1	30.075,3	77,236			
2	28.407,5	138,502			
3	28.896,0	264,674			

Tabela B.35: Centróides Finais da Série Sudeste - Multivariável - 4 Estados de vento

Estados	Técnica K-Means						
de vento							
1	2,904	2,857	2,842	2,843	2,863	2,910	
2	5,497	5,474	5,465	5,493	5,478	5,495	
3	7,963	7,990	7,986	7,980	7,972	7,963	
4	11,014	11,089	11,102	11,110	11,074	11,038	

Tabela B.36: Dispersão da Série Sudeste - Multivariável - 4 Estados de vento

Estados	Técnica K-Means			
de vento	Intra	Maior		
1	12.564,1	49,411		
2	14.648,9	43,718		
3	15.764,5	138,007		
4	17.197,0	216,617		

Tabela B.37: Centróides Finais da Série Sudeste - Multivariável - 5 Estados de vento

Estados	Técnica K-Means					
de vento						
1	2,622	2,574	2,553	2,549	2,591	2,645
2	4,906	4,861	4,844	4,875	4,861	4,878
3	6,946	6,975	6,979	6,985	6,972	6,980
4	9,100	9,133	9,132	9,121	9,106	9,081
5	11,797	11,882	11,900	11,921	11,863	11,821

Tabela B.38: Dispersão da Série Sudeste - Multivariável - 5 Estados de vento

Estados	Técnica K-Means			
de vento	Intra	Maior		
1	8.588,7	40,969		
2	9.460,7	46,058		
3	10.359,3	138,534		
4	8.987,5	52,709		
5	8.948,9	163,719		

Tabela B.39: Centróides Finais da Série Sudeste - Multivariável - 6 Estados de vento

Estados	Técnica K-Means						
de vento							
1	2,397	2,340	2,316	2,318	2,368	2,429	
2	4,440	4,393	4,366	4,385	4,377	4,391	
3	6,159	6,160	6,168	6,189	6,162	6,179	
4	7,868	7,901	7,894	7,890	7,897	7,885	
5	9,869	9,914	9,935	9,926	9,895	9,874	
6	12,450	12,554	12,559	12,593	12,511	12,469	

Tabela B.40: Dispersão da Série Sudeste - Multivariável - 6 Estados de vento

Estados	Técnica K-Means			
de vento	Intra	Maior		
1	6.180,2	42,158		
2	6.731,9	44,632		
3	6.853,2	54,728		
4	7.219,2	137,884		
5	5.954,3	77,766		
6	5.026,5	125,547		

B.2.3 Série Sul

Tabela B.41: Centróides Finais da Série Sul - Multivariável - 3 Estados de vento

Estados	Técnica K-Means					
de vento						
1	4,054	4,005	3,995	3,994	4,008	4,041
2	7,305	7,314	7,328	7,319	7,305	7,291
3	10,870	10,920	10,964	10,936	10,925	10,903

Tabela B.42: Dispersão da Série Sul - Multivariável - 3 Estados de vento

Estados	Técnica K-Means		
de vento	Intra	Maior	
1	32.442,3	96,783	
2	29.266,9	89,576	
3	34.979,7	411,887	

Tabela B.43: Centróides Finais da Série Sul - Multivariável - 4 Estados de vento

Estados	Técnica K-Means					
de vento						
1	3,378	3,318	3,302	3,297	3,318	3,349
2	5,995	5,981	5,984	5,981	5,984	5,994
3	8,488	8,511	8,535	8,523	8,494	8,478
4	11,651	11,716	11,769	11,734	11,730	11,696

Tabela B.44: Dispersão da Série Sul - Multivariável - 4 Estados de vento

Estados	Técnica K-Means			
de vento	Intra	Maior		
1	15.755,5	66,420		
2	15.155,9	75,651		
3	15.832,4	112,735		
4	20.217,7	336,688		

Tabela B.45: Centróides Finais da Série Sul - Multivariável - 5 Estados de vento

Estados	Técnica K-Means					
de vento						
1	2,872	2,807	2,784	2,757	2,783	2,836
2	5,164	5,135	5,128	5,140	5,144	5,157
3	7,267	7,274	7,288	7,291	7,280	7,265
4	9,517	9,556	9,587	9,553	9,534	9,517
5	12,505	12,571	12,654	12,612	12,590	12,559

Tabela B.46: Dispersão da Série Sul - Multivariável - 5 Estados de vento

Estados	Técnica K-Means			
de vento	Intra	Maior		
1	8.782,4	67,093		
2	9.827,6	56,350		
3	11.490,2	90,228		
4	10.572,3	99,957		
5	11.029,1	263,587		

Tabela B.47: Centróides Finais da Série Sul - Multivariável - 6 Estados de vento

Estados	Técnica K-Means					
de vento						
1	2,658	2,587	2,545	2,520	2,552	2,618
2	4,737	4,698	4,702	4,714	4,720	4,735
3	6,515	6,514	6,521	6,511	6,508	6,500
4	8,257	8,284	8,307	8,301	8,273	8,263
5	10,238	10,271	10,311	10,287	10,286	10,247
6	13,007	13,088	13,150	13,100	13,068	13,053

Tabela B.48: Dispersão da Série Sul - Multivariável - 6 Estados de vento

Estados	Técnica K-Means	
de vento	Intra	Maior
1	6.625,9	39,951
2	6.915,4	63,279
3	7.168,3	76,536
4	7.516,8	83,488
5	6.557,1	98,304
6	7.834,2	225,799

Apêndice C

Índices de Desempenho Obtidos pelo Modelo

Em todas as tabelas de índices de desempenho das Séries Nordeste, Sudeste e Sul, o índice IWP está em MW, os índices IWE, EAWE e EGWE estão em MWh e o índice WGAF é adimensional. A última coluna de todas as tabelas corresponde ao caso em que todos os estados de vento da série temporal estão presentes.

C.1 Agrupamento Univariável

C.1.1 Série Nordeste

Tabela C.1: Índices de Desempenho da Série Nordeste com 1 Turbina Obtidos pela Técnica K-Means inicializada por Ordenação por realizações

Índices		Número de estados de velocidade do vento								
	3	3 5 7 8 25 36 165								
IWP	0,0015	0,0015	0,0015	0,0015	0,0015	0,0015	0,0015			
IWE	13,1395	13,1395	13,1395	13,1395	13,1395	13,1395	13,1395			
EAWE	5,1253	5,0219	5,0884	5,0987	5,0690	5,0687	5,0691			
EGWE	4,6112	4,6715	4,7895	4,8080	4,8200	4,8268	4,8508			
WGAF	0,3509	0,3555	0,3645	0,3659	0,3668	0,3674	0,3692			

Tabela C.2: Índices de Desempenho da Série Nordeste com 10 Turbinas Obtidos pela Técnica K-Means inicializada por Ordenação por realizações

Índices		Número de estados de velocidade do vento									
	3	5	7	8	25	36	165				
IWP	0,0150	0,0150	0,0150	0,0150	0,0150	0,0150	0,0150				
IWE	131,3950	131,3950	131,3950	131,3950	131,3950	131,3950	131,3950				
EAWE	51,2525	50,2194	50,8839	50,9866	50,6900	50,6866	50,6908				
EGWE	45,6085	46,5191	47,7751	47,9677	48,1486	48,2280	48,5081				
WGAF	0,3471	0,3540	0,3636	0,3651	0,3664	0,3670	0,3692				

Tabela C.3: Índices de Desempenho da Série Nordeste com 20 Turbinas Obtidos pela Técnica K-Means inicializada por Ordenação por realizações

Índices		Número de estados de velocidade do vento									
	3	3 5 7 8 25 36 165									
IWP	0,0300	0,0300	0,0300	0,0300	0,0300	0,0300	0,0300				
IWE	262,7900	262,7900	262,7900	262,7900	262,7900	262,7900	262,7900				
EAWE	102,5050	100,4387	101,7678	101,9731	101,3801	101,3732	101,3817				
EGWE	83,2607	89,8052	93,7815	94,3677	95,7009	96,0134	97,0161				
WGAF	0,3168	0,3417	0,3569	0,3591	0,3642	0,3654	0,3692				

Tabela C.4: Índices de Desempenho da Série Nordeste com 30 Turbinas Obtidos pela Técnica K-Means inicializada por Ordenação por realizações

Índices		Número de estados de velocidade do vento									
	3	5	7	8	25	36	165				
IWP	0,0450	0,0450	0,0450	0,0450	0,0450	0,0450	0,0450				
IWE	394,1850	394,1850	394,1850	394,1850	394,1850	394,1850	394,1850				
EAWE	153,7575	150,6581	152,6517	152,9597	152,0701	152,0598	152,0725				
EGWE	117,1952	130,5999	138,2407	139,4017	142,6693	143,3453	145,5235				
WGAF	0,2973	0,3313	0,3507	0,3536	0,3619	0,3636	0,3692				

Tabela C.5: Índices de Desempenho da Série Nordeste com 1 Turbina Obtidos pela Técnica K-Means inicializada por Ordenação por valor

Índices		Número de estados de velocidade do vento									
	3	5	7	8	25	36	165				
IWP	0,0015	0,0015	0,0015	0,0015	0,0015	0,0015	0,0015				
IWE	13,1395	13,1395	13,1395	13,1395	13,1395	13,1395	13,1395				
EAWE	5,0150	5,0426	5,0391	5,0472	5,0642	5,0686	5,0691				
EGWE	4,5501	4,7364	4,7754	4,7918	4,8468	4,8505	4,8508				
WGAF	0,3463	0,3605	0,3634	0,3647	0,3689	0,3691	0,3692				

Tabela C.6: Índices de Desempenho da Série Nordeste com 10 Turbinas Obtidos pela Técnica K-Means inicializada por Ordenação por valor

Índices		Número de estados de velocidade do vento									
	3	3 5 7 8 25 36 165									
IWP	0,0150	0,0150	0,0150	0,0150	0,0150	0,0150	0,0150				
IWE	131,3950	131,3950	131,3950	131,3950	131,3950	131,3950	131,3950				
EAWE	50,1486	50,4241	50,3894	50,4700	50,6402	50,6839	50,6908				
EGWE	45,0982	47,2409	47,6816	47,8572	48,4666	48,5032	48,5081				
WGAF	0,3432	0,3595	0,3629	0,3642	0,3689	0,3691	0,3692				

Tabela C.7: Índices de Desempenho da Série Nordeste com 20 Turbinas Obtidos pela Técnica K-Means inicializada por Ordenação por valor

Índices		Número de estados de velocidade do vento									
	3	5	7	8	25	36	165				
IWP	0,0300	0,0300	0,0300	0,0300	0,0300	0,0300	0,0300				
IWE	262,7900	262,7900	262,7900	262,7900	262,7900	262,7900	262,7900				
EAWE	100,2972	100,8482	100,7787	100,9400	101,2805	101,3679	101,3817				
EGWE	83,4574	92,4932	94,3477	94,9068	96,9329	97,0062	97,0161				
WGAF	0,3176	0,3520	0,3590	0,3612	0,3689	0,3691	0,3692				

Tabela C.8: Índices de Desempenho da Série Nordeste com 30 Turbinas Obtidos pela Técnica K-Means inicializada por Ordenação por valor

Índices		Número de estados de velocidade do vento									
	3	5	7	8	25	36	165				
IWP	0,0450	0,0450	0,0450	0,0450	0,0450	0,0450	0,0450				
IWE	394,1850	394,1850	394,1850	394,1850	394,1850	394,1850	394,1850				
EAWE	150,4515	151,2781	151,1738	151,4158	151,9265	152,0576	152,0725				
EGWE	118,1731	135,9562	140,0358	141,1806	145,4043	145,5143	145,5235				
WGAF	0,2998	0,3449	0,3552	0,3581	0,3689	0,3691	0,3692				

Tabela C.9: Índices de Desempenho da Série Nordeste com 1 Turbina Obtidos pela Técnica Fuzzy C-Means

Índices		Número de estados de velocidade do vento									
	3	3 5 7 8 25 36 165									
IWP	0,0015	0,0015	0,0015	0,0015	0,0015	0,0015	0,0015				
IWE	13,1395	13,1395	13,1395	13,1395	13,1395	13,1395	13,1395				
EAWE	5,0473	5,0211	5,0898	5,0587	5,0627	5,0855	5,0691				
EGWE	4,5547	4,6986	4,6584	4,5852	4,7836	4,8537	4,8508				
WGAF	0,3466	0,3576	0,3545	0,3489	0,3641	0,3694	0,3692				

Tabela C.10: Índices de Desempenho da Série Nordeste com 10 Turbinas Obtidos pela Técnica Fuzzy C-Means

Índices		Número de estados de velocidade do vento									
	3	5	7	8	25	36	165				
IWP	0,0150	0,0150	0,0150	0,0150	0,0150	0,0150	0,0150				
IWE	131,3950	131,3950	131,3950	131,3950	131,3950	131,3950	131,3950				
EAWE	50,4727	50,2111	50,8978	50,5875	50,6270	50,8550	50,6908				
EGWE	45,0804	46,8355	46,4159	45,9957	47,8054	48,5472	48,5081				
WGAF	0,3431	0,3564	0,3532	0,3500	0,3638	0,3695	0,3692				

Tabela C.11: Índices de Desempenho da Série Nordeste com 20 Turbinas Obtidos pela Técnica Fuzzy C-Means

Índices		Número de estados de velocidade do vento									
	3	5	7	8	25	36	165				
IWP	0,0300	0,0300	0,0300	0,0300	0,0300	0,0300	0,0300				
IWE	262,7900	262,7900	262,7900	262,7900	262,7900	262,7900	262,7900				
EAWE	100,9453	100,4223	101,7957	101,1750	101,2540	101,7100	101,3817				
EGWE	82,6209	91,2048	90,3715	92,7224	95,2307	97,1585	97,0161				
WGAF	0,3144	0,3471	0,3439	0,3528	0,3624	0,3697	0,3692				

Tabela C.12: Índices de Desempenho da Série Nordeste com 30 Turbinas Obtidos pela Técnica Fuzzy C-Means

Índices		Número de estados de velocidade do vento									
	3	3 5 7 8 25 36 165									
IWP	0,0450	0,0450	0,0450	0,0450	0,0450	0,0450	0,0450				
IWE	394,1850	394,1850	394,1850	394,1850	394,1850	394,1850	394,1850				
EAWE	151,4180	150,6334	152,6935	151,7625	151,8810	152,5651	152,0725				
EGWE	116,4536	133,4958	132,0713	139,6297	141,8665	145,8372	145,5235				
WGAF	0,2954	0,3386	0,3350	0,3542	0,3599	0,3700	0,3692				

Tabela C.13: Índices de Desempenho da Série Nordeste com 1 Turbina Obtidos pela Técnica Ordenação por realizações

Índices		Número de estados de velocidade do vento									
	3	5	7	8	25	36	165				
IWP	0,0015	0,0015	0,0015	0,0015	0,0015	0,0015	0,0015				
IWE	13,1395	13,1395	13,1395	13,1395	13,1395	13,1395	13,1395				
EAWE	5,0314	5,0173	4,9861	4,9674	5,0482	5,0777	5,0691				
EGWE	4,4237	4,5710	4,6119	4,6174	4,7838	4,8258	4,8508				
WGAF	0,3367	0,3479	0,3510	0,3514	0,3641	0,3673	0,3692				

Tabela C.14: Índices de Desempenho da Série Nordeste com 10 Turbinas Obtidos pela Técnica Ordenação por realizações

Índices		Número de estados de velocidade do vento									
	3	5	7	8	25	36	165				
IWP	0,0150	0,0150	0,0150	0,0150	0,0150	0,0150	0,0150				
IWE	131,3950	131,3950	131,3950	131,3950	131,3950	131,3950	131,3950				
EAWE	50,3145	50,1727	49,8615	49,6736	50,4822	50,7773	50,6908				
EGWE	43,5322	45,2672	45,8259	45,9253	47,7520	48,1989	48,5081				
WGAF	0,3313	0,3445	0,3488	0,3495	0,3634	0,3668	0,3692				

Tabela C.15: Índices de Desempenho da Série Nordeste com 20 Turbinas Obtidos pela Técnica Ordenação por realizações

Índices		Número de estados de velocidade do vento									
	3	3 5 7 8 25 36 165									
IWP	0,0300	0,0300	0,0300	0,0300	0,0300	0,0300	0,0300				
IWE	262,7900	262,7900	262,7900	262,7900	262,7900	262,7900	262,7900				
EAWE	100,6290	100,3453	99,7229	99,3472	100,9644	101,5547	101,3817				
EGWE	77,2630	84,3043	87,5994	88,4861	94,5149	95,7379	97,0161				
WGAF	0,2940	0,3208	0,3333	0,3367	0,3597	0,3643	0,3692				

Tabela C.16: Índices de Desempenho da Série Nordeste com 30 Turbinas Obtidos pela Técnica Ordenação por realizações

Índices		Número de estados de velocidade do vento									
	3	3 5 7 8 25 36 165									
IWP	0,0450	0,0450	0,0450	0,0450	0,0450	0,0450	0,0450				
IWE	394,1850	394,1850	394,1850	394,1850	394,1850	394,1850	394,1850				
EAWE	150,9434	150,5180	149,5844	149,0208	151,4466	152,3320	152,0725				
EGWE	107,7002	120,1418	126,7636	128,7312	140,4253	142,6623	145,5235				
WGAF	0,2732	0,3048	0,3216	0,3266	0,3562	0,3619	0,3692				

Tabela C.17: Índices de Desempenho da Série Nordeste com 1 Turbina Obtidos pela Técnica Ordenação por valor

Índices		Número de estados de velocidade do vento									
	3	5	7	8	25	36	165				
IWP	0,0015	0,0015	0,0015	0,0015	0,0015	0,0015	0,0015				
IWE	13,1395	13,1395	13,1395	13,1395	13,1395	13,1395	13,1395				
EAWE	5,6977	5,0299	5,0318	5,1329	5,0701	5,0584	5,0691				
EGWE	5,3860	4,8116	4,8167	4,9131	4,8528	4,8407	4,8508				
WGAF	0,4099	0,3662	0,3666	0,3739	0,3693	0,3684	0,3692				

Tabela C.18: Índices de Desempenho da Série Nordeste com 10 Turbinas Obtidos pela Técnica Ordenação por valor

Índices		Número de estados de velocidade do vento									
	3	3 5 7 8 25 36 165									
IWP	0,0150	0,0150	0,0150	0,0150	0,0150	0,0150	0,0150				
IWE	131,3950	131,3950	131,3950	131,3950	131,3950	131,3950	131,3950				
EAWE	56,9772	50,2986	50,3178	51,3293	50,7013	50,5842	50,6908				
EGWE	53,8136	48,1129	48,1672	49,1305	48,5277	48,4071	48,5081				
WGAF	0,4096	0,3662	0,3666	0,3739	0,3693	0,3684	0,3692				

Tabela C.19: Índices de Desempenho da Série Nordeste com 20 Turbinas Obtidos pela Técnica Ordenação por valor

Índices		Número de estados de velocidade do vento									
	3	5	7	8	25	36	165				
IWP	0,0300	0,0300	0,0300	0,0300	0,0300	0,0300	0,0300				
IWE	262,7900	262,7900	262,7900	262,7900	262,7900	262,7900	262,7900				
EAWE	113,9544	100,5971	100,6355	102,6585	101,4026	101,1683	101,3817				
EGWE	106,4762	96,1747	96,3318	98,2606	97,0553	96,8141	97,0161				
WGAF	0,4052	0,3660	0,3666	0,3739	0,3693	0,3684	0,3692				

Tabela C.20: Índices de Desempenho da Série Nordeste com 30 Turbinas Obtidos pela Técnica Ordenação por valor

Índices		Número de estados de velocidade do vento									
	3	3 5 7 8 25 36 165									
IWP	0,0450	0,0450	0,0450	0,0450	0,0450	0,0450	0,0450				
IWE	394,1850	394,1850	394,1850	394,1850	394,1850	394,1850	394,1850				
EAWE	170,9316	150,8957	150,9533	153,9878	152,1039	151,7525	152,0725				
EGWE	157,7742	144,1293	144,4898	147,3897	145,5823	145,2205	145,5235				
WGAF	0,4003	0,3656	0,3666	0,3739	0,3693	0,3684	0,3692				

C.1.2 Série Sudeste

Tabela C.21: Índices de Desempenho da Série Sudeste com 1 Turbina Obtidos pela Técnica K-Means inicializada por Ordenação por realizações

Índices		Número de estados de velocidade do vento									
	3	5	7	8	25	36	179				
IWP	0,0015	0,0015	0,0015	0,0015	0,0015	0,0015	0,0015				
IWE	13,1528	13,1528	13,1528	13,1528	13,1528	13,1528	13,1528				
EAWE	4,0639	3,9383	3,9293	3,9453	3,9536	3,9489	3,9481				
EGWE	3,6186	3,6595	3,7072	3,7307	3,7680	3,7689	3,7764				
WGAF	0,2751	0,2782	0,2819	0,2836	0,2865	0,2865	0,2871				

Tabela C.22: Índices de Desempenho da Série Sudeste com 10 Turbinas Obtidos pela Técnica K-Means inicializada por Ordenação por realizações

Índices		Número de estados de velocidade do vento									
	3	5	7	8	25	36	179				
IWP	0,0150	0,0150	0,0150	0,0150	0,0150	0,0150	0,0150				
IWE	131,5275	131,5275	131,5275	131,5275	131,5275	131,5275	131,5275				
EAWE	40,6391	39,3831	39,2930	39,4526	39,5359	39,4894	39,4805				
EGWE	35,5752	36,3839	36,9777	37,2278	37,6535	37,6730	37,7635				
WGAF	0,2705	0,2766	0,2811	0,2830	0,2863	0,2864	0,2871				

Tabela C.23: Índices de Desempenho da Série Sudeste com 20 Turbinas Obtidos pela Técnica K-Means inicializada por Ordenação por realizações

Índices		Número de estados de velocidade do vento									
	3	5	7	8	25	36	179				
IWP	0,0300	0,0300	0,0300	0,0300	0,0300	0,0300	0,0300				
IWE	263,0550	263,0550	263,0550	263,0550	263,0550	263,0550	263,0550				
EAWE	81,2781	78,7662	78,5859	78,9052	79,0718	78,9789	78,9610				
EGWE	62,8165	69,2554	72,4921	73,2779	75,0028	75,1750	75,5267				
WGAF	0,2388	0,2633	0,2756	0,2786	0,2851	0,2858	0,2871				

Tabela C.24: Índices de Desempenho da Série Sudeste com 30 Turbinas Obtidos pela Técnica K-Means inicializada por Ordenação por realizações

Índices		Número de estados de velocidade do vento									
	3	3 5 7 8 25 36 179									
IWP	0,0450	0,0450	0,0450	0,0450	0,0450	0,0450	0,0450				
IWE	394,5825	394,5825	394,5825	394,5825	394,5825	394,5825	394,5825				
EAWE	121,9172	118,1494	117,8789	118,3578	118,6077	118,4683	118,4415				
EGWE	87,0142	99,4614	106,5551	108,1207	111,9959	112,4515	113,2895				
WGAF	0,2205	0,2521	0,2700	0,2740	0,2838	0,2850	0,2871				

Tabela C.25: Índices de Desempenho da Série Sudeste com 1 Turbina Obtidos pela Técnica K-Means inicializada por Ordenação por valor

Índices		Número de estados de velocidade do vento									
	3	5	7	8	25	36	179				
IWP	0,0015	0,0015	0,0015	0,0015	0,0015	0,0015	0,0015				
IWE	13,1528	13,1528	13,1528	13,1528	13,1528	13,1528	13,1528				
EAWE	4,0363	3,8800	3,9386	3,9150	3,9387	3,9418	3,9481				
EGWE	3,6302	3,6549	3,7450	3,7328	3,7683	3,7707	3,7764				
WGAF	0,2763	0,2781	0,2850	0,2841	0,2868	0,2870	0,2871				

Tabela C.26: Índices de Desempenho da Série Sudeste com 10 Turbinas Obtidos pela Técnica K-Means inicializada por Ordenação por valor

Índices		Número de estados de velocidade do vento									
	3	5	7	8	25	36	179				
IWP	0,0150	0,0150	0,0150	0,0150	0,0150	0,0150	0,0150				
IWE	131,5275	131,5275	131,5275	131,5275	131,5275	131,5275	131,5275				
EAWE	40,4021	38,8376	39,4244	39,1880	39,4255	39,4559	39,4805				
EGWE	35,8337	36,4893	37,4435	37,3410	37,7191	37,7439	37,7635				
WGAF	0,2724	0,2774	0,2847	0,2839	0,2868	0,2870	0,2871				

Tabela C.27: Índices de Desempenho da Série Sudeste com 20 Turbinas Obtidos pela Técnica K-Means inicializada por Ordenação por valor

Índices		Número de estados de velocidade do vento									
	3	3 5 7 8 25 36 179									
IWP	0,0300	0,0300	0,0300	0,0300	0,0300	0,0300	0,0300				
IWE	263,0550	263,0550	263,0550	263,0550	263,0550	263,0550	263,0550				
EAWE	80,8042	77,6751	78,8488	78,3759	78,8510	78,9118	78,9610				
EGWE	64,1585	71,3139	74,2551	74,3632	75,4379	75,4877	75,5267				
WGAF	0,2439	0,2711	0,2823	0,2827	0,2868	0,2870	0,2871				

Tabela C.28: Índices de Desempenho da Série Sudeste com 30 Turbinas Obtidos pela Técnica K-Means inicializada por Ordenação por valor

Índices		Número de estados de velocidade do vento									
	3	5	7	8	25	36	179				
IWP	0,0450	0,0450	0,0450	0,0450	0,0450	0,0450	0,0450				
IWE	394,5825	394,5825	394,5825	394,5825	394,5825	394,5825	394,5825				
EAWE	121,0888	116,3997	118,1586	117,4499	118,1619	118,2529	118,4415				
EGWE	89,1081	104,3495	110,2505	110,8767	113,0466	113,1211	113,2895				
WGAF	0,2260	0,2647	0,2797	0,2813	0,2868	0,2870	0,2871				

Tabela C.29: Índices de Desempenho da Série Sudeste com 1 Turbina Obtidos pela Técnica Fuzzy C-Means

Índices		Número de estados de velocidade do vento									
	3	5	7	8	25	36	179				
IWP	0,0015	0,0015	0,0015	0,0015	0,0015	0,0015	0,0015				
IWE	13,1528	13,1528	13,1528	13,1528	13,1528	13,1528	13,1528				
EAWE	4,0268	3,9106	3,9390	3,9485	3,9479	3,9202	3,9481				
EGWE	3,3235	3,5877	3,6810	3,6782	3,7334	3,7112	3,7764				
WGAF	0,2529	0,2730	0,2801	0,2799	0,2841	0,2824	0,2871				

Tabela C.30: Índices de Desempenho da Série Sudeste com 10 Turbinas Obtidos pela Técnica Fuzzy C-Means

Índices		Número de estados de velocidade do vento									
	3	3 5 7 8 25 36 179									
IWP	0,0150	0,0150	0,0150	0,0150	0,0150	0,0150	0,0150				
IWE	131,5275	131,5275	131,5275	131,5275	131,5275	131,5275	131,5275				
EAWE	40,2684	39,1065	39,3904	39,4846	39,4789	39,2019	39,4805				
EGWE	33,1174	36,0412	36,9041	36,5995	37,3087	37,1102	37,7635				
WGAF	0,2520	0,2743	0,2809	0,2785	0,2839	0,2824	0,2871				

Tabela C.31: Índices de Desempenho da Série Sudeste com 20 Turbinas Obtidos pela Técnica Fuzzy C-Means

Índices		Número de estados de velocidade do vento									
	3	5	7	8	25	36	179				
IWP	0,0300	0,0300	0,0300	0,0300	0,0300	0,0300	0,0300				
IWE	263,0550	263,0550	263,0550	263,0550	263,0550	263,0550	263,0550				
EAWE	80,5368	78,2129	78,7808	78,9692	78,9579	78,4037	78,9610				
EGWE	65,3635	73,3384	74,4557	70,6574	74,3775	74,1767	75,5267				
WGAF	0,2487	0,2791	0,2833	0,2689	0,2830	0,2823	0,2871				

Tabela C.32: Índices de Desempenho da Série Sudeste com 30 Turbinas Obtidos pela Técnica Fuzzy C-Means

Índices		Número de estados de velocidade do vento									
	3	5	7	8	25	36	179				
IWP	0,0450	0,0450	0,0450	0,0450	0,0450	0,0450	0,0450				
IWE	394,5825	394,5825	394,5825	394,5825	394,5825	394,5825	394,5825				
EAWE	120,8052	117,3194	118,1712	118,4539	118,4368	117,6056	118,4415				
EGWE	97,4979	111,1009	112,3274	102,3784	110,9567	111,0833	113,2895				
WGAF	0,2473	0,2818	0,2850	0,2597	0,2815	0,2818	0,2871				

Tabela C.33: Índices de Desempenho da Série Sudeste com 1 Turbina Obtidos pela Técnica Ordenação por realizações

Índices		Número de estados de velocidade do vento									
	3	3 5 7 8 25 36 179									
IWP	0,0015	0,0015	0,0015	0,0015	0,0015	0,0015	0,0015				
IWE	13,1528	13,1528	13,1528	13,1528	13,1528	13,1528	13,1528				
EAWE	3,7730	3,9536	3,9329	3,8812	3,9476	3,9422	3,9481				
EGWE	3,3083	3,6010	3,6382	3,6098	3,7427	3,7478	3,7764				
WGAF	0,2515	0,2738	0,2766	0,2745	0,2846	0,2849	0,2871				

Tabela C.34: Índices de Desempenho da Série Sudeste com 10 Turbinas Obtidos pela Técnica Ordenação por realizações

Índices		Número de estados de velocidade do vento									
	3	5	7	8	25	36	179				
IWP	0,0150	0,0150	0,0150	0,0150	0,0150	0,0150	0,0150				
IWE	131,5275	131,5275	131,5275	131,5275	131,5275	131,5275	131,5275				
EAWE	37,7299	39,5356	39,3293	38,8120	39,4760	39,4224	39,4805				
EGWE	32,4074	35,5637	36,0782	35,8558	37,3534	37,4278	37,7635				
WGAF	0,2464	0,2704	0,2743	0,2726	0,2840	0,2846	0,2871				

Tabela C.35: Índices de Desempenho da Série Sudeste com 20 Turbinas Obtidos pela Técnica Ordenação por realizações

Índices		Número de estados de velocidade do vento									
	3	5	7	8	25	36	179				
IWP	0,0300	0,0300	0,0300	0,0300	0,0300	0,0300	0,0300				
IWE	263,0550	263,0550	263,0550	263,0550	263,0550	263,0550	263,0550				
EAWE	75,4598	79,0712	78,6586	77,6239	78,9521	78,8448	78,9610				
EGWE	56,3769	65,1493	67,9781	68,3662	73,8604	74,2934	75,5267				
WGAF	0,2143	0,2477	0,2584	0,2599	0,2808	0,2824	0,2871				

Tabela C.36: Índices de Desempenho da Série Sudeste com 30 Turbinas Obtidos pela Técnica Ordenação por realizações

Índices		Número de estados de velocidade do vento									
	3	3 5 7 8 25 36 179									
IWP	0,0450	0,0450	0,0450	0,0450	0,0450	0,0450	0,0450				
IWE	394,5825	394,5825	394,5825	394,5825	394,5825	394,5825	394,5825				
EAWE	113,1897	118,6068	117,9879	116,4359	118,4281	118,2672	118,4415				
EGWE	77,8442	91,8174	97,2255	98,5064	109,5487	110,5841	113,2895				
WGAF	0,1973	0,2327	0,2464	0,2496	0,2776	0,2803	0,2871				

Tabela C.37: Índices de Desempenho da Série Sudeste com 1 Turbina Obtidos pela Técnica Ordenação por valor

Índices		Número de estados de velocidade do vento									
	3	5	7	8	25	36	179				
IWP	0,0015	0,0015	0,0015	0,0015	0,0015	0,0015	0,0015				
IWE	13,1528	13,1528	13,1528	13,1528	13,1528	13,1528	13,1528				
EAWE	4,6247	4,0249	3,8984	4,0347	3,9508	3,9407	3,9481				
EGWE	4,3986	3,8506	3,7307	3,8603	3,7798	3,7697	3,7764				
WGAF	0,3344	0,2928	0,2836	0,2935	0,2874	0,2866	0,2871				

Tabela C.38: Índices de Desempenho da Série Sudeste com 10 Turbinas Obtidos pela Técnica Ordenação por valor

Índices		Número de estados de velocidade do vento									
	3	5	7	8	25	36	179				
IWP	0,0150	0,0150	0,0150	0,0150	0,0150	0,0150	0,0150				
IWE	131,5275	131,5275	131,5275	131,5275	131,5275	131,5275	131,5275				
EAWE	46,2467	40,2494	38,9841	40,3474	39,5085	39,4074	39,4805				
EGWE	43,9630	38,5030	37,3054	38,6026	37,7984	37,6974	37,7635				
WGAF	0,3342	0,2927	0,2836	0,2935	0,2874	0,2866	0,2871				

Tabela C.39: Índices de Desempenho da Série Sudeste com 20 Turbinas Obtidos pela Técnica Ordenação por valor

Índices		Número de estados de velocidade do vento									
	3	3 5 7 8 25 36 179									
IWP	0,0300	0,0300	0,0300	0,0300	0,0300	0,0300	0,0300				
IWE	263,0550	263,0550	263,0550	263,0550	263,0550	263,0550	263,0550				
EAWE	92,4935	80,4988	77,9683	80,6949	79,0169	78,8148	78,9610				
EGWE	87,3854	76,9515	74,5971	77,1955	75,5966	75,3946	75,5267				
WGAF	0,3322	0,2925	0,2836	0,2935	0,2874	0,2866	0,2871				

Tabela C.40: Índices de Desempenho da Série Sudeste com 30 Turbinas Obtidos pela Técnica Ordenação por valor

Índices		Número de estados de velocidade do vento									
	3	3 5 7 8 25 36 179									
IWP	0,0450	0,0450	0,0450	0,0450	0,0450	0,0450	0,0450				
IWE	394,5825	394,5825	394,5825	394,5825	394,5825	394,5825	394,5825				
EAWE	138,7402	120,7482	116,9524	121,0423	118,5254	118,2222	118,4415				
EGWE	130,0535	115,3019	111,8600	115,7685	113,3943	113,0913	113,2895				
WGAF	0,3296	0,2922	0,2835	0,2934	0,2874	0,2866	0,2871				

C.1.3 Série Sul

Tabela C.41: Índices de Desempenho da Série Sul com 1 Turbina Obtidos pela Técnica K-Means inicializada por Ordenação por realizações

Índices		Número de estados de velocidade do vento								
	3	5	7	8	25	36	196			
IWP	0,0015	0,0015	0,0015	0,0015	0,0015	0,0015	0,0015			
IWE	13,1760	13,1760	13,1760	13,1760	13,1760	13,1760	13,1760			
EAWE	4,6387	4,3872	4,4555	4,4777	4,4453	4,4484	4,4447			
EGWE	4,1352	4,0839	4,2114	4,2449	4,2461	4,2496	4,2542			
WGAF	0,3138	0,3099	0,3196	0,3222	0,3223	0,3225	0,3229			

Tabela C.42: Índices de Desempenho da Série Sul com 10 Turbinas Obtidos pela Técnica K-Means inicializada por Ordenação por realizações

Índices		Número de estados de velocidade do vento								
	3	3 5 7 8 25 36 196								
IWP	0,0150	0,0150	0,0150	0,0150	0,0150	0,0150	0,0150			
IWE	131,7600	131,7600	131,7600	131,7600	131,7600	131,7600	131,7600			
EAWE	46,3867	43,8719	44,5548	44,7772	44,4531	44,4841	44,4467			
EGWE	40,7844	40,6490	42,0334	42,3888	42,4446	42,4809	42,5421			
WGAF	0,3095	0,3085	0,3190	0,3217	0,3221	0,3224	0,3229			

Tabela C.43: Índices de Desempenho da Série Sul com 20 Turbinas Obtidos pela Técnica K-Means inicializada por Ordenação por realizações

Índices		Número de estados de velocidade do vento									
	3	3 5 7 8 25 36 196									
IWP	0,0300	0,0300	0,0300	0,0300	0,0300	0,0300	0,0300				
IWE	263,5200	263,5200	263,5200	263,5200	263,5200	263,5200	263,5200				
EAWE	92,7735	87,7437	89,1096	89,5544	88,9062	88,9682	88,8934				
EGWE	72,7728	78,0859	82,8155	83,8755	84,7047	84,7969	85,0836				
WGAF	0,2762	0,2963	0,3143	0,3183	0,3214	0,3218	0,3229				

Tabela C.44: Índices de Desempenho da Série Sul com 30 Turbinas Obtidos pela Técnica K-Means inicializada por Ordenação por realizações

Índices		Número de estados de velocidade do vento									
	3	5	7	8	25	36	196				
IWP	0,0450	0,0450	0,0450	0,0450	0,0450	0,0450	0,0450				
IWE	395,2800	395,2800	395,2800	395,2800	395,2800	395,2800	395,2800				
EAWE	139,1602	131,6156	133,6644	134,3316	133,3593	133,4522	133,3402				
EGWE	100,9986	112,9757	122,2532	124,3369	126,7602	126,9258	127,6235				
WGAF	0,2555	0,2858	0,3093	0,3146	0,3207	0,3211	0,3229				

Tabela C.45: Índices de Desempenho da Série Sul com 1 Turbina Obtidos pela Técnica K-Means inicializada por Ordenação por valor

Índices		Número de estados de velocidade do vento								
	3	3 5 7 8 25 36 196								
IWP	0,0015	0,0015	0,0015	0,0015	0,0015	0,0015	0,0015			
IWE	13,1760	13,1760	13,1760	13,1760	13,1760	13,1760	13,1760			
EAWE	4,5011	4,3960	4,3914	4,4184	4,4259	4,4295	4,4447			
EGWE	4,0777	4,1489	4,1898	4,2185	4,2365	4,2402	4,2542			
WGAF	0,3103	0,3157	0,3189	0,3210	0,3224	0,3227	0,3229			

Tabela C.46: Índices de Desempenho da Série Sul com 10 Turbinas Obtidos pela Técnica K-Means inicializada por Ordenação por valor

Índices		Número de estados de velocidade do vento									
	3	5	7	8	25	36	196				
IWP	0,0150	0,0150	0,0150	0,0150	0,0150	0,0150	0,0150				
IWE	131,7600	131,7600	131,7600	131,7600	131,7600	131,7600	131,7600				
EAWE	45,1340	44,0809	44,0347	44,3052	44,3807	44,4164	44,4467				
EGWE	40,4625	41,5211	41,9955	42,2849	42,4810	42,5180	42,5421				
WGAF	0,3071	0,3151	0,3187	0,3209	0,3224	0,3227	0,3229				

Tabela C.47: Índices de Desempenho da Série Sul com 20 Turbinas Obtidos pela Técnica K-Means inicializada por Ordenação por valor

Índices		Número de estados de velocidade do vento									
	3	3 5 7 8 25 36 196									
IWP	0,0300	0,0300	0,0300	0,0300	0,0300	0,0300	0,0300				
IWE	263,5200	263,5200	263,5200	263,5200	263,5200	263,5200	263,5200				
EAWE	90,2680	88,1618	88,0694	88,6104	88,7613	88,8328	88,8934				
EGWE	73,7936	81,6114	83,7264	84,3530	84,9587	85,0337	85,0836				
WGAF	0,2800	0,3097	0,3177	0,3201	0,3224	0,3227	0,3229				

Tabela C.48: Índices de Desempenho da Série Sul com 30 Turbinas Obtidos pela Técnica K-Means inicializada por Ordenação por valor

Índices		Número de estados de velocidade do vento									
	3	3 5 7 8 25 36 196									
IWP	0,0450	0,0450	0,0450	0,0450	0,0450	0,0450	0,0450				
IWE	395,2800	395,2800	395,2800	395,2800	395,2800	395,2800	395,2800				
EAWE	135,0321	131,8814	131,7432	132,5525	132,7782	132,8851	133,3402				
EGWE	103,0669	119,8408	124,7421	125,7880	127,0813	127,1962	127,6235				
WGAF	0,2615	0,3040	0,3164	0,3191	0,3224	0,3227	0,3229				

Tabela C.49: Índices de Desempenho da Série Sul com 1 Turbina Obtidos pela Técnica Fuzzy C-Means

Índices		Número de estados de velocidade do vento									
	3	5	7	8	25	36	196				
IWP	0,0015	0,0015	0,0015	0,0015	0,0015	0,0015	0,0015				
IWE	13,1760	13,1760	13,1760	13,1760	13,1760	13,1760	13,1760				
EAWE	4,5385	4,3879	4,4715	4,4077	4,4481	4,4395	4,4447				
EGWE	4,0740	4,0977	4,0691	4,1542	4,1861	4,2295	4,2542				
WGAF	0,3100	0,3119	0,3097	0,3162	0,3186	0,3219	0,3229				

Tabela C.50: Índices de Desempenho da Série Sul com 10 Turbinas Obtidos pela Técnica Fuzzy C-Means

Índices		Número de estados de velocidade do vento									
	3	5	7	8	25	36	196				
IWP	0,0150	0,0150	0,0150	0,0150	0,0150	0,0150	0,0150				
IWE	131,7600	131,7600	131,7600	131,7600	131,7600	131,7600	131,7600				
EAWE	45,3849	43,8788	44,7148	44,0770	44,4807	44,3953	44,4467				
EGWE	40,2408	40,8127	40,4787	41,6029	41,8646	42,2668	42,5421				
WGAF	0,3062	0,3106	0,3081	0,3166	0,3186	0,3217	0,3229				

Tabela C.51: Índices de Desempenho da Série Sul com 20 Turbinas Obtidos pela Técnica Fuzzy C-Means

Índices		Número de estados de velocidade do vento									
	3	3 5 7 8 25 36 196									
IWP	0,0300	0,0300	0,0300	0,0300	0,0300	0,0300	0,0300				
IWE	263,5200	263,5200	263,5200	263,5200	263,5200	263,5200	263,5200				
EAWE	90,7698	87,7577	89,4295	88,1539	88,9613	88,7906	88,8934				
EGWE	72,4464	78,8230	78,3021	83,6432	83,6772	84,2526	85,0836				
WGAF	0,2757	0,2999	0,2980	0,3183	0,3184	0,3206	0,3229				

Tabela C.52: Índices de Desempenho da Série Sul com 30 Turbinas Obtidos pela Técnica Fuzzy C-Means

Índices		Número de estados de velocidade do vento									
	3	5	7	8	25	36	196				
IWP	0,0450	0,0450	0,0450	0,0450	0,0450	0,0450	0,0450				
IWE	395,2800	395,2800	395,2800	395,2800	395,2800	395,2800	395,2800				
EAWE	136,1547	131,6365	134,1443	132,2309	133,4420	133,1859	133,3402				
EGWE	100,8726	114,4968	114,1474	125,9549	125,2593	125,7177	127,6235				
WGAF	0,2559	0,2905	0,2896	0,3195	0,3178	0,3189	0,3229				

Tabela C.53: Índices de Desempenho da Série Sul com 1 Turbina Obtidos pela Técnica Ordenação por realizações

Índices		Número de estados de velocidade do vento									
	3	5	7	8	25	36	196				
IWP	0,0015	0,0015	0,0015	0,0015	0,0015	0,0015	0,0015				
IWE	13,1760	13,1760	13,1760	13,1760	13,1760	13,1760	13,1760				
EAWE	4,4124	4,4296	4,3618	4,3350	4,4525	4,4394	4,4447				
EGWE	3,8724	4,0514	4,0449	4,0327	4,2265	4,2246	4,2542				
WGAF	0,2939	0,3075	0,3070	0,3061	0,3208	0,3206	0,3229				

Tabela C.54: Índices de Desempenho da Série Sul com 10 Turbinas Obtidos pela Técnica Ordenação por realizações

Índices		Número de estados de velocidade do vento									
	3	3 5 7 8 25 36 196									
IWP	0,0150	0,0150	0,0150	0,0150	0,0150	0,0150	0,0150				
IWE	131,7600	131,7600	131,7600	131,7600	131,7600	131,7600	131,7600				
EAWE	44,1235	44,2955	43,6178	43,3500	44,5250	44,3941	44,4467				
EGWE	38,0217	40,1165	40,1847	40,0821	42,1983	42,2001	42,5421				
WGAF	0,2886	0,3045	0,3050	0,3042	0,3203	0,3203	0,3229				

Tabela C.55: Índices de Desempenho da Série Sul com 20 Turbinas Obtidos pela Técnica Ordenação por realizações

Índices		Número de estados de velocidade do vento									
	3	5	7	8	25	36	196				
IWP	0,0300	0,0300	0,0300	0,0300	0,0300	0,0300	0,0300				
IWE	263,5200	263,5200	263,5200	263,5200	263,5200	263,5200	263,5200				
EAWE	88,2471	88,5911	87,2357	86,7000	89,0501	88,7881	88,8934				
EGWE	66,7271	74,4653	76,6031	76,8075	83,6213	83,8819	85,0836				
WGAF	0,2532	0,2826	0,2907	0,2915	0,3173	0,3183	0,3229				

Tabela C.56: Índices de Desempenho da Série Sul com 30 Turbinas Obtidos pela Técnica Ordenação por realizações

Índices		Número de estados de velocidade do vento									
	3	5	7	8	25	36	196				
IWP	0,0450	0,0450	0,0450	0,0450	0,0450	0,0450	0,0450				
IWE	395,2800	395,2800	395,2800	395,2800	395,2800	395,2800	395,2800				
EAWE	132,3706	132,8866	130,8535	130,0501	133,5751	133,1822	133,3402				
EGWE	92,4680	105,6237	110,4225	111,1757	124,2454	125,0039	127,6235				
WGAF	0,2339	0,2672	0,2794	0,2813	0,3143	0,3162	0,3229				

Tabela C.57: Índices de Desempenho da Série Sul com 1 Turbina Obtidos pela Técnica Ordenação por valor

Índices		Número de estados de velocidade do vento									
	3	3 5 7 8 25 36 196									
IWP	0,0015	0,0015	0,0015	0,0015	0,0015	0,0015	0,0015				
IWE	13,1760	13,1760	13,1760	13,1760	13,1760	13,1760	13,1760				
EAWE	5,4642	4,5803	4,5141	4,4541	4,4074	4,4372	4,4447				
EGWE	5,2064	4,3811	4,3192	4,2632	4,2188	4,2476	4,2542				
WGAF	0,3951	0,3325	0,3278	0,3236	0,3202	0,3224	0,3229				

Tabela C.58: Índices de Desempenho da Série Sul com 10 Turbinas Obtidos pela Técnica Ordenação por valor

Índices		Número de estados de velocidade do vento									
	3	5	7	8	25	36	196				
IWP	0,0150	0,0150	0,0150	0,0150	0,0150	0,0150	0,0150				
IWE	131,7600	131,7600	131,7600	131,7600	131,7600	131,7600	131,7600				
EAWE	54,6418	45,8026	45,1413	44,5405	44,0738	44,3720	44,4467				
EGWE	52,0484	43,8071	43,1899	42,6308	42,1873	42,4755	42,5421				
WGAF	0,3950	0,3325	0,3278	0,3235	0,3202	0,3224	0,3229				

Tabela C.59: Índices de Desempenho da Série Sul com 20 Turbinas Obtidos pela Técnica Ordenação por valor

Índices		Número de estados de velocidade do vento									
	3	5	7	8	25	36	196				
IWP	0,0300	0,0300	0,0300	0,0300	0,0300	0,0300	0,0300				
IWE	263,5200	263,5200	263,5200	263,5200	263,5200	263,5200	263,5200				
EAWE	109,2836	91,6051	90,2826	89,0810	88,1476	88,7440	88,8934				
EGWE	103,7273	87,5447	86,3536	85,2427	84,3713	84,9487	85,0836				
WGAF	0,3936	0,3322	0,3277	0,3235	0,3202	0,3224	0,3229				

Tabela C.60: Índices de Desempenho da Série Sul com 30 Turbinas Obtidos pela Técnica Ordenação por valor

Índices		Número de estados de velocidade do vento									
	3	5	7	8	25	36	196				
IWP	0,0450	0,0450	0,0450	0,0450	0,0450	0,0450	0,0450				
IWE	395,2800	395,2800	395,2800	395,2800	395,2800	395,2800	395,2800				
EAWE	163,9254	137,4077	135,4239	133,6215	132,2215	133,1159	133,3402				
EGWE	154,8301	131,1648	129,4674	127,8198	126,5484	127,4171	127,6235				
WGAF	0,3917	0,3318	0,3275	0,3234	0,3201	0,3223	0,3229				

C.2 Agrupamento Multivariável

C.2.1 Série Nordeste

Tabela C.61: Índices de Desempenho da Série Nordeste com 1 Turbina Obtidos pela Técnica K-Means - Multivariável

Índices	Número de estados de velocidade do vento								
	3	3 4 5 6 165							
IWP	0,0015	0,0015	0,0015	0,0015	0,0015				
IWE	13,1385	13,1385	13,1385	13,1385	13,1395				
EAWE	5,0949	4,9631	5,0093	5,0509	5,0691				
EGWE	4,8338	4,7240	4,7775	4,8195	4,8508				
WGAF	0,3679	0,3596	0,3636	0,3668	0,3692				

Tabela C.62: Índices de Desempenho da Série Nordeste com 10 Turbinas Obtidos pela Técnica K-Means - Multivariável

Índices	Número de estados de velocidade do vento					
	3	4	5	6	165	
IWP	0,0150	0,0150	0,0150	0,0150	0,0150	
IWE	131,3850	131,3850	131,3850	131,3850	131,3950	
EAWE	50,9491	49,6309	50,0933	50,5095	50,6908	
EGWE	48,2893	47,2078	47,7519	48,1766	48,5081	
WGAF	0,3675	0,3593	0,3635	0,3667	0,3692	

Tabela C.63: Índices de Desempenho da Série Nordeste com 20 Turbinas Obtidos pela Técnica K-Means - Multivariável

Índices	Númer	Número de estados de velocidade do vento					
	3	4	5	6	165		
IWP	0,0300	0,0300	0,0300	0,0300	0,0300		
IWE	262,7700	262,7700	262,7700	262,7700	262,7900		
EAWE	101,8983	99,2618	100,1865	101,0190	101,3817		
EGWE	96,1274	94,1486	95,3319	96,2205	97,0161		
WGAF	0,3658	0,3583	0,3628	0,3662	0,3692		

Tabela C.64: Índices de Desempenho da Série Nordeste com 30 Turbinas Obtidos pela Técnica K-Means - Multivariável

Índices	Número de estados de velocidade do vento					
	3	4	5	6	165	
IWP	0,0450	0,0450	0,0450	0,0450	0,0450	
IWE	394,1550	394,1550	394,1550	394,1550	394,1850	
EAWE	152,8474	148,8927	150,2798	151,5285	152,0725	
EGWE	142,9391	140,4897	142,5330	143,9752	145,5235	
WGAF	0,3626	0,3564	0,3616	0,3653	0,3692	

C.2.2 Série Sudeste

Tabela C.65: Índices de Desempenho da Série Sudeste com 1 Turbina Obtidos pela Técnica K-Means - Multivariável

Índices	Número	Número de estados de velocidade do vento						
	3	3 4 5 6 179						
IWP	0,0015	0,0015	0,0015	0,0015	0,0015			
IWE	13,1520	13,1520	13,1520	13,1520	13,1528			
EAWE	4,0064	3,9983	3,8783	3,8800	3,9481			
EGWE	3,7942	3,8013	3,6979	3,7031	3,7764			
WGAF	0,2885	0,2890	0,2812	0,2816	0,2871			

Tabela C.66: Índices de Desempenho da Série Sudeste com 10 Turbinas Obtidos pela Técnica K-Means - Multivariável

Índices	Númer	Número de estados de velocidade do vento				
	3	4	5	6	179	
IWP	0,0150	0,0150	0,0150	0,0150	0,0150	
IWE	131,5200	131,5200	131,5200	131,5200	131,5275	
EAWE	40,0641	39,9834	38,7832	38,8001	39,4805	
EGWE	37,8894	37,9721	36,9522	37,0130	37,7635	
WGAF	0,2881	0,2887	0,2810	0,2814	0,2871	

Tabela C.67: Índices de Desempenho da Série Sudeste com 20 Turbinas Obtidos pela Técnica K-Means - Multivariável

Índices	Número de estados de velocidade do vento					
	3	4	5	6	179	
IWP	0,0300	0,0300	0,0300	0,0300	0,0300	
IWE	263,0400	263,0400	263,0400	263,0400	263,0550	
EAWE	80,1281	79,9668	77,5664	77,6001	78,9610	
EGWE	75,3176	75,5953	73,7003	73,8993	75,5267	
WGAF	0,2863	0,2874	0,2802	0,2809	0,2871	

Tabela C.68: Índices de Desempenho da Série Sudeste com 30 Turbinas Obtidos pela Técnica K-Means - Multivariável

Índices	Número de estados de velocidade do vento					
	3	4	5	6	179	
IWP	0,0450	0,0450	0,0450	0,0450	0,0450	
IWE	394,5600	394,5600	394,5600	394,5600	394,5825	
EAWE	120,1922	119,9502	116,3496	116,4002	118,4415	
EGWE	111,7435	112,4459	110,0048	110,5197	113,2895	
WGAF	0,2832	0,2850	0,2788	0,2801	0,2871	

C.2.3 Série Sul

Tabela C.69: Índices de Desempenho da Série Sul com 1 Turbina Obtidos pela Técnica K-Means - Multivariável

Índices	Número de estados de velocidade do vento							
	3	3 4 5 6 196						
IWP	0,0015	0,0015	0,0015	0,0015	0,0015			
IWE	13,1760	13,1760	13,1760	13,1760	13,1760			
EAWE	4,5696	4,4156	4,3602	4,4008	4,4447			
EGWE	4,3281	4,2003	4,1558	4,1994	4,2542			
WGAF	0,3285	0,3188	0,3154	0,3187	0,3229			

Tabela C.70: Índices de Desempenho da Série Sul com 10 Turbinas Obtidos pela Técnica K-Means - Multivariável

Índices	Número de estados de velocidade do vento								
	3	3 4 5 6 196							
IWP	0,0150	0,0150	0,0150	0,0150	0,0150				
IWE	131,7600	131,7600	131,7600	131,7600	131,7600				
EAWE	45,6964	44,1563	43,6018	44,0075	44,4467				
EGWE	43,2222	41,9633	41,5337	41,9745	42,5421				
WGAF	0,3280	0,3185	0,3152	0,3186	0,3229				

Tabela C.71: Índices de Desempenho da Série Sul com 20 Turbinas Obtidos pela Técnica K-Means - Multivariável

Índices	Númer	Número de estados de velocidade do vento					
	3	4	5	6	196		
IWP	0,0300	0,0300	0,0300	0,0300	0,0300		
IWE	263,5200	263,5200	263,5200	263,5200	263,5200		
EAWE	91,3927	88,3125	87,2036	88,0151	88,8934		
EGWE	85,9428	83,6012	82,8832	83,8180	85,0836		
WGAF	0,3261	0,3172	0,3145	0,3181	0,3229		

Tabela C.72: Índices de Desempenho da Série Sul com 30 Turbinas Obtidos pela Técnica K-Means - Multivariável

Índices	Número de estados de velocidade do vento							
	3	3 4 5 6 196						
IWP	0,0450	0,0450	0,0450	0,0450	0,0450			
IWE	395,2800	395,2800	395,2800	395,2800	395,2800			
EAWE	137,0891	132,4688	130,8054	132,0226	133,3402			
EGWE	127,5832	124,5341	123,8352	125,3840	127,6235			
WGAF	0,3228	0,3151	0,3133	0,3172	0,3229			

Apêndice D

Índices Comparativos

D.1 Agrupamento Univariável

D.1.1 Relação entre Áreas

Tabela D.1: Relações entre Áreas da Série Nordeste Obtidas pela Técnica K-Means inicializada por Ordenação por realizações

Agrupamentos	Quantidade de turbinas			
	1	10	20	30
3	1,4857	1,0432	1,0270	1,0187
5	1,3135	1,0377	1,0179	1,0101
7	1,2273	1,0278	1,0105	1,0119
8	1,1891	1,0185	1,0127	1,0085
25	1,0551	1,0110	1,0096	1,0063
36	1,0384	1,0097	1,0049	1,0052
165	1,0145	1,0031	1,0016	1,0012

Tabela D.2: Relações entre Áreas da Série Nordeste Obtidas pela Técnica K-Means inicializada por Ordenação por valor

Agrupamentos	Quantidade de turbinas			
	1	10	20	30
3	1,4947	1,0474	1,0269	1,0171
5	1,3237	1,0321	1,0137	1,0103
7	1,2473	1,0239	1,0137	1,0096
8	1,2166	1,0199	1,0133	1,0104
25	1,1104	1,0139	1,0099	1,0067
36	1,0755	1,0089	1,0075	1,0057
165	1,0145	1,0031	1,0016	1,0012

Tabela D.3: Relações entre Áreas da Série Nordeste Obtidas pela Técnica Fuzzy C-Means

Agrupamentos	Quantidade de turbinas			
	1	10	20	30
3	1,4928	1,0403	1,0240	1,0188
5	1,3129	1,0377	1,0185	1,0090
7	1,2276	1,0267	1,0142	1,0088
8	1,2009	1,0283	1,0165	1,0131
25	1,0662	1,0140	1,0094	1,0069
36	1,0441	1,0089	1,0077	1,0055
165	1,0145	1,0031	1,0016	1,0012

Tabela D.4: Relações entre Áreas da Série Nordeste Obtidas pela Técnica Ordenação por realizações

Agrupamentos	Quantidade de turbinas			
	1	10	20	30
3	1,4292	1,0514	1,0307	1,0211
5	1,2730	1,0377	1,0195	1,0127
7	1,1944	1,0360	1,0162	1,0108
8	1,1703	1,0248	1,0152	1,0104
25	1,0537	1,0094	1,0071	1,0058
36	1,0370	1,0095	1,0073	1,0048
165	1,0145	1,0031	1,0016	1,0012

Tabela D.5: Relações entre Áreas da Série Nordeste Obtidas pela Técnica Ordenação por valor

Agrupamentos	Quantidade de turbinas			
	1	10	20	30
3	1,5079	1,0544	1,0225	1,0147
5	1,5297	1,0428	1,0222	1,0139
7	1,4014	1,0428	1,0169	1,0133
8	1,3486	1,0321	1,0153	1,0120
25	1,1111	1,0145	1,0105	1,0074
36	1,0761	1,0102	1,0078	1,0055
165	1,0145	1,0031	1,0016	1,0012

Tabela D.6: Relações entre Áreas da Série Sudeste Obtidas pela Técnica K-Means inicializada por Ordenação por realizações

Agrupamentos	Quantidade de turbinas			
	1	10	20	30
3	1,5661	1,0497	1,0320	1,0214
5	1,4104	1,0456	1,0223	1,0165
7	1,2926	1,0370	1,0157	1,0098
8	1,2528	1,0254	1,0170	1,0091
25	1,0765	1,0172	1,0086	1,0058
36	1,0518	1,0120	1,0080	1,0055
179	1,0166	1,0031	1,0016	1,0012

Tabela D.7: Relações entre Áreas da Série Sudeste Obtidas pela Técnica K-Means inicializada por Ordenação por valor

Agrupamentos	Quantidade de turbinas			
	1	10	20	30
3	1,6046	1,0440	1,0278	1,0225
5	1,4314	1,0377	1,0208	1,0132
7	1,3039	1,0247	1,0154	1,0102
8	1,2784	1,0382	1,0207	1,0103
25	1,1277	1,0149	1,0100	1,0080
36	1,0878	1,0103	1,0081	1,0058
179	1,0166	1,0031	1,0016	1,0012

Tabela D.8: Relações entre Áreas da Série Sudeste Obtidas pela Técnica Fuzzy C-Means

Agrupamentos	Quantidade de turbinas			
	1	10	20	30
3	1,5785	1,0555	1,0296	1,0207
5	1,4132	1,0403	1,0202	1,0153
7	1,2911	1,0325	1,0152	1,0130
8	1,2534	1,0313	1,0153	1,0106
25	1,0820	1,0166	1,0086	1,0065
36	1,0581	1,0111	1,0072	1,0068
179	1,0166	1,0031	1,0016	1,0012

Tabela D.9: Relações entre Áreas da Série Sudeste Obtidas pela Técnica Ordenação por realizações

Agrupamentos	Quantidade de turbinas			
	1	10	20	30
3	1,4763	1,0491	1,0315	1,0243
5	1,3437	1,0386	1,0234	1,0168
7	1,2578	1,0362	1,0181	1,0131
8	1,2294	1,0398	1,0187	1,0118
25	1,0687	1,0153	1,0083	1,0039
36	1,0476	1,0088	1,0059	1,0047
179	1,0166	1,0031	1,0016	1,0012

Tabela D.10: Relações entre Áreas da Série Sudeste Obtidas pela Técnica Ordenação por valor

Agrupamentos	Quantidade de turbinas			
	1	10	20	30
3	1,6839	1,0664	1,0257	1,0166
5	1,6225	1,0481	1,0244	1,0149
7	1,4799	1,0461	1,0176	1,0136
8	1,4085	1,0341	1,0161	1,0122
25	1,1271	1,0151	1,0102	1,0072
36	1,0868	1,0110	1,0078	1,0054
179	1,0166	1,0031	1,0016	1,0012

Tabela D.11: Relações entre Áreas da Série Sul Obtidas pela Técnica K-Means inicializada por Ordenação por realizações

Agrupamentos	Quantidade de turbinas			
	1	10	20	30
3	1,5465	1,0438	1,0278	1,0221
5	1,3814	1,0514	1,0179	1,0129
7	1,2720	1,0375	1,0198	1,0102
8	1,2385	1,0200	1,0114	1,0103
25	1,0685	1,0168	1,0104	1,0062
36	1,0451	1,0132	1,0089	1,0066
196	1,0154	1,0031	1,0016	1,0012

Tabela D.12: Relações entre Áreas da Série Sul Obtidas pela Técnica K-Means inicializada por Ordenação por valor

Agrupamentos	Quantidade de turbinas			
	1	10	20	30
3	1,6098	1,0520	1,0283	1,0228
5	1,3901	1,0338	1,0132	1,0144
7	1,3069	1,0410	1,0207	1,0139
8	1,2659	1,0320	1,0117	1,0124
25	1,1286	1,0176	1,0112	1,0114
36	1,0895	1,0138	1,0092	1,0090
196	1,0154	1,0031	1,0016	1,0012

Tabela D.13: Relações entre Áreas da Série Sul Obtidas pela Técnica Fuzzy C-Means

Agrupamentos	Quantidade de turbinas			
	1	10	20	30
3	1,5810	1,0431	1,0293	1,0237
5	1,3823	1,0331	1,0235	1,0153
7	1,2801	1,0346	1,0190	1,0124
8	1,2464	1,0358	1,0214	1,0163
25	1,0826	1,0223	1,0132	1,0101
36	1,0566	1,0118	1,0079	1,0080
196	1,0154	1,0031	1,0016	1,0012

Tabela D.14: Relações entre Áreas da Série Sul Obtidas pela Técnica Ordenação por realizações

Agrupamentos	Quantidade de turbinas			
	1	10	20	30
3	1,4661	1,0452	1,0298	1,0228
5	1,3290	1,0439	1,0223	1,0175
7	1,2395	1,0366	1,0174	1,0113
8	1,2039	1,0296	1,0154	1,0103
25	1,0607	1,0124	1,0096	1,0060
36	1,0421	1,0103	1,0075	1,0050
196	1,0154	1,0031	1,0016	1,0012

Tabela D.15: Relações entre Áreas da Série Sul Obtidas pela Técnica Ordenação por valor

Agrupamentos	Quantidade de turbinas			
	1	10	20	30
3	1,5779	1,0416	1,0194	1,0135
5	1,5959	1,0260	1,0174	1,0148
7	1,4469	1,0270	1,0195	1,0122
8	1,4104	1,0477	1,0203	1,0133
25	1,1268	1,0179	1,0091	1,0070
36	1,0865	1,0138	1,0089	1,0060
196	1,0154	1,0031	1,0016	1,0012

D.1.2 Relação entre Índices EAWE

Tabela D.16: Relações entre Índices EAWE da Série Nordeste

Agrupamentos	Técnicas de Agrupamento					
	K-Means inicializada por		Fuzzy C-Means	Ordenação por	Ordenação por	
	Ordenação por	Ordenação por		realizações	valor	
	realizações	valor				
3	1,0111	0,9893	0,9957	0,9926	1,1240	
5	0,9907	0,9948	0,9905	0,9898	0,9923	
7	1,0038	0,9941	1,0041	0,9836	0,9926	
8	1,0058	0,9957	0,9980	0,9799	1,0126	
25	1,0000	0,9990	0,9987	0,9959	1,0002	
36	0,9999	0,9999	1,0032	1,0017	0,9979	
165	1,0000	1,0000	1,0000	1,0000	1,0000	

Tabela D.17: Relações entre Índices EAWE da Série Sudeste

Agrupamentos	Técnicas de Agrupamento				
	K-Means inic	ializada por	Fuzzy C-Means	Ordenação por	Ordenação por
	Ordenação por	Ordenação por		realizações	valor
	realizações	valor			
3	1,0293	1,0224	1,0200	0,9557	1,1714
5	0,9975	0,9828	0,9905	1,0014	1,0195
7	0,9952	0,9976	0,9977	0,9962	0,9874
8	0,9993	0,9916	1,0001	0,9831	1,0220
25	1,0014	0,9976	1,0000	0,9999	1,0007
36	1,0002	0,9984	0,9929	0,9985	0,9981
179	1,0000	1,0000	1,0000	1,0000	1,0000

Tabela D.18: Relações entre Índices EAWE da Série Sul

Agrupamentos	Técnicas de Agrupamento					
	K-Means inicializada por		Fuzzy C-Means	Ordenação por	Ordenação por	
	Ordenação por	Ordenação por		realizações	valor	
	realizações	valor				
3	1,0436	1,0127	1,0211	0,9927	1,2294	
5	0,9871	0,9891	0,9872	0,9966	1,0305	
7	1,0024	0,9880	1,0060	0,9814	1,0156	
8	1,0074	0,9941	0,9917	0,9753	1,0021	
25	1,0001	0,9958	1,0008	1,0018	0,9916	
36	1,0008	0,9966	0,9988	0,9988	0,9983	
196	1,0000	1,0000	1,0000	1,0000	1,0000	

D.1.3 Relação entre Índices EGWE

Tabela D.19: Relações entre Índices EGWE da Série Nordeste Obtidas pela Técnica K-Means inicializada por Ordenação por realizações

Agrupamentos	Quantidade de turbinas			
	1	10	20	30
3	0,9506	0,9402	0,8582	0,8053
5	0,9630	0,9590	0,9257	0,8974
7	0,9874	0,9849	0,9667	0,9500
8	0,9912	0,9889	0,9727	0,9579
25	0,9937	0,9926	0,9864	0,9804
36	0,9950	0,9942	0,9897	0,9850
165	1,0000	1,0000	1,0000	1,0000

Tabela D.20: Relações entre Índices EGWE da Série Nordeste Obtidas pela Técnica K-Means inicializada por Ordenação por valor

Agrupamentos	Quantidade de turbinas			
	1	10	20	30
3	0,9380	0,9297	0,8602	0,8121
5	0,9764	0,9739	0,9534	0,9343
7	0,9844	0,9830	0,9725	0,9623
8	0,9878	0,9866	0,9783	0,9702
25	0,9992	0,9991	0,9991	0,9992
36	0,9999	0,9999	0,9999	0,9999
165	1,0000	1,0000	1,0000	1,0000

Tabela D.21: Relações entre Índices EGWE da Série Nordeste Obtidas pela Técnica Fuzzy C-Means

Agrupamentos	Quantidade de turbinas			
	1	10	20	30
3	0,9389	0,9293	0,8516	0,8002
5	0,9686	0,9655	0,9401	0,9173
7	0,9603	0,9569	0,9315	0,9076
8	0,9452	0,9482	0,9557	0,9595
25	0,9861	0,9855	0,9816	0,9749
36	1,0006	1,0008	1,0015	1,0022
165	1,0000	1,0000	1,0000	1,0000

Tabela D.22: Relações entre Índices EGWE da Série Nordeste Obtidas pela Técnica Ordenação por realizações

Agrupamentos	Quantidade de turbinas			
	1	10	20	30
3	0,9119	0,8974	0,7964	0,7401
5	0,9423	0,9332	0,8690	0,8256
7	0,9507	0,9447	0,9029	0,8711
8	0,9519	0,9468	0,9121	0,8846
25	0,9862	0,9844	0,9742	0,9650
36	0,9949	0,9936	0,9868	0,9803
165	1,0000	1,0000	1,0000	1,0000

Tabela D.23: Relações entre Índices EGWE da Série Nordeste Obtidas pela Técnica Ordenação por Valor

Agrupamentos	Quantidade de turbinas			
	1	10	20	30
3	1,1103	1,1094	1,0975	1,0842
5	0,9919	0,9919	0,9913	0,9904
7	0,9930	0,9930	0,9929	0,9929
8	1,0128	1,0128	1,0128	1,0128
25	1,0004	1,0004	1,0004	1,0004
36	0,9979	0,9979	0,9979	0,9979
165	1,0000	1,0000	1,0000	1,0000

Tabela D.24: Relações entre Índices EGWE da Série Sudeste Obtidas pela Técnica K-Means inicializada por Ordenação por realizações

Agrupamentos	Quantidade de turbinas			
	1	10	20	30
3	0,9582	0,9421	0,8317	0,7681
5	0,9691	0,9635	0,9170	0,8779
7	0,9817	0,9792	0,9598	0,9406
8	0,9879	0,9858	0,9702	0,9544
25	0,9978	0,9971	0,9931	0,9886
36	0,9980	0,9976	0,9953	0,9926
179	1,0000	1,0000	1,0000	1,0000

Tabela D.25: Relações entre Índices EGWE da Série Sudeste Obtidas pela Técnica K-Means inicializada por Ordenação por valor

Agrupamentos	Quantidade de turbinas			
	1	10	20	30
3	0,9613	0,9489	0,8495	0,7866
5	0,9678	0,9663	0,9442	0,9211
7	0,9917	0,9915	0,9832	0,9732
8	0,9885	0,9888	0,9846	0,9787
25	0,9979	0,9988	0,9988	0,9979
36	0,9985	0,9995	0,9995	0,9985
179	1,0000	1,0000	1,0000	1,0000

Tabela D.26: Relações entre Índices EGWE da Série Sudeste Obtidas pela Técnica Fuzzy C-Means

Agrupamentos	Quantidade de turbinas			
	1	10	20	30
3	0,8801	0,8770	0,8654	0,8606
5	0,9500	0,9544	0,9710	0,9807
7	0,9747	0,9772	0,9858	0,9915
8	0,9740	0,9692	0,9355	0,9037
25	0,9886	0,9880	0,9848	0,9794
36	0,9828	0,9827	0,9821	0,9805
179	1,0000	1,0000	1,0000	1,0000

Tabela D.27: Relações entre Índices EGWE da Série Sudeste Obtidas pela Técnica Ordenação por realizações

Agrupamentos	Quantidade de turbinas			
	1	10	20	30
3	0,8760	0,8582	0,7464	0,6871
5	0,9536	0,9417	0,8626	0,8105
7	0,9634	0,9554	0,9001	0,8582
8	0,9559	0,9495	0,9052	0,8695
25	0,9911	0,9891	0,9779	0,9670
36	0,9924	0,9911	0,9837	0,9761
179	1,0000	1,0000	1,0000	1,0000

Tabela D.28: Relações entre Índices EGWE da Série Sudeste Obtidas pela Técnica Ordenação por Valor

Agrupamentos	Quantidade de turbinas			
	1	10	20	30
3	1,1648	1,1642	1,1570	1,1480
5	1,0197	1,0196	1,0189	1,0178
7	0,9879	0,9879	0,9877	0,9874
8	1,0222	1,0222	1,0221	1,0219
25	1,0009	1,0009	1,0009	1,0009
36	0,9983	0,9983	0,9983	0,9983
179	1,0000	1,0000	1,0000	1,0000

Tabela D.29: Relações entre Índices EGWE da Série Sul Obtidas pela Técnica K-Means inicializada por Ordenação por realizações

Agrupamentos	Quantidade de turbinas			
	1	10	20	30
3	0,9720	0,9587	0,8553	0,7914
5	0,9600	0,9555	0,9178	0,8852
7	0,9899	0,9880	0,9733	0,9579
8	0,9978	0,9964	0,9858	0,9742
25	0,9981	0,9977	0,9955	0,9932
36	0,9989	0,9986	0,9966	0,9945
196	1,0000	1,0000	1,0000	1,0000

Tabela D.30: Relações entre Índices EGWE da Série Sul Obtidas pela Técnica K-Means inicializada por Ordenação por valor

Agrupamentos	Quantidade de turbinas			
	1	10	20	30
3	0,9585	0,9511	0,8673	0,8076
5	0,9752	0,9760	0,9592	0,9390
7	0,9849	0,9871	0,9840	0,9774
8	0,9916	0,9940	0,9914	0,9856
25	0,9958	0,9986	0,9985	0,9958
36	0,9967	0,9994	0,9994	0,9967
196	1,0000	1,0000	1,0000	1,0000

Tabela D.31: Relações entre Índices EGWE da Série Sul Obtidas pela Técnica Fuzzy C-Means

Agrupamentos	Quantidade de turbinas			
	1	10	20	30
3	0,9576	0,9459	0,8515	0,7904
5	0,9632	0,9593	0,9264	0,8971
7	0,9565	0,9515	0,9203	0,8944
8	0,9765	0,9779	0,9831	0,9869
25	0,9840	0,9841	0,9835	0,9815
36	0,9942	0,9935	0,9902	0,9851
196	1,0000	1,0000	1,0000	1,0000

Tabela D.32: Relações entre Índices EGWE da Série Sul Obtidas pela Técnica Ordenação por realizações

Agrupamentos	Quantidade de turbinas			
	1	10	20	30
3	0,9102	0,8937	0,7843	0,7245
5	0,9523	0,9430	0,8752	0,8276
7	0,9508	0,9446	0,9003	0,8652
8	0,9479	0,9422	0,9027	0,8711
25	0,9935	0,9919	0,9828	0,9735
36	0,9930	0,9920	0,9859	0,9795
196	1,0000	1,0000	1,0000	1,0000

Tabela D.33: Relações entre Índices EGWE da Série Sul Obtidas pela Técnica Ordenação por Valor

Agrupamentos	Quantidade de turbinas			
	1	10	20	30
3	1,2238	1,2235	1,2191	1,2132
5	1,0298	1,0297	1,0289	1,0277
7	1,0153	1,0152	1,0149	1,0144
8	1,0021	1,0021	1,0019	1,0015
25	0,9917	0,9917	0,9916	0,9916
36	0,9984	0,9984	0,9984	0,9984
196	1,0000	1,0000	1,0000	1,0000

D.2 Agrupamento Multivariável

D.2.1 Relação entre Áreas

Tabela D.34: Relações entre Áreas da Série Nordeste Obtidas pela Técnica K-Means - Multivariável

Agrupamentos	Quantidade de turbinas			
	1	10	20	30
3	1,0837	1,0141	1,0110	1,0089
4	1,0658	1,0126	1,0082	1,0062
5	1,0533	1,0089	1,0061	1,0046
6	1,0452	1,0063	1,0050	1,0035
165	1,0145	1,0031	1,0016	1,0012

Tabela D.35: Relações entre Áreas da Série Sudeste Obtidas pela Técnica K-Means - Multivariável

Agrupamentos	Quantidade de turbinas			
	1	10	20	30
3	1,0970	1,0063	1,0041	1,0032
4	1,1171	1,0076	1,0049	1,0037
5	1,0839	1,0128	1,0085	1,0062
6	1,0647	1,0090	1,0063	1,0043
179	1,0166	1,0031	1,0016	1,0012

Tabela D.36: Relações entre Áreas da Série Sul Obtidas pela Técnica K-Means - Multivariável

Agrupamentos	Quantidade de turbinas			
	1	10	20	30
3	1,0939	1,0104	1,0050	1,0031
4	1,0759	1,0125	1,0095	1,0073
5	1,0805	1,0108	1,0076	1,0055
6	1,0610	1,0092	1,0052	1,0043
196	1,0154	1,0031	1,0016	1,0012

D.2.2 Relação entre Índices EAWE

Tabela D.37: Relações entre Índices EAWE Obtidas pela Técnica K-Means - Multivariável

Agrupamentos	Séries de vento			
	Nordeste	Sudeste	Sul	
3	1,0051	1,0148	1,0281	
4	0,9791	1,0127	0,9935	
5	0,9882	0,9823	0,9810	
6	0,9964	0,9828	0,9901	
Todos os estados	1,0000	1,0000	1,0000	

D.2.3 Relação entre Índices EGWE

Tabela D.38: Relações entre Índices EGWE da Série Nordeste Obtidas pela Técnica K-Means - Multivariável

Agrupamentos	Quantidade de turbinas			
	1	10	20	30
3	0,9965	0,9955	0,9908	0,9822
4	0,9739	0,9732	0,9704	0,9654
5	0,9849	0,9844	0,9826	0,9794
6	0,9936	0,9932	0,9918	0,9894
165	1,0000	1,0000	1,0000	1,0000

Tabela D.39: Relações entre Índices EGWE da Série Sudeste Obtidas pela Técnica K-Means - Multivariável

Agrupamentos	Quantidade de turbinas			
	1	10	20	30
3	1,0047	1,0033	0,9972	0,9864
4	1,0066	1,0055	1,0009	0,9926
5	0,9792	0,9785	0,9758	0,9710
6	0,9806	0,9801	0,9785	0,9756
179	1,0000	1,0000	1,0000	1,0000

Tabela D.40: Relações entre Índices EGWE da Série Sul Obtidas pela Técnica K-Means - Multivariável

Agrupamentos	Quantidade de turbinas			
	1	10	20	30
3	1,0174	1,0160	1,0101	0,9997
4	0,9873	0,9864	0,9826	0,9758
5	0,9769	0,9763	0,9741	0,9703
6	0,9871	0,9867	0,9851	0,9825
196	1,0000	1,0000	1,0000	1,0000

Referências Bibliográficas

- Agência Nacional de Energia Elétrica, 2005, Atlas de Energia Elétrica do Brasil, Brasília.
- ALDABÓ, R., 2002, Energia Eólica, Artliber Editora.
- ALLAN, R., BILLINTON, R., 2000, "Probabilistic Assessment of Power Systems", Proceedings of the IEEE, v. 88, n. 2 (Feb), pp. 140–162.
- ALMEIDA, R. J., SOUSA, J. M. C., 2006, "Comparison of fuzzy clustering algorithms for classification", 2006 International Symposium on Evolving Fuzzy Systems, (Sep), pp. 112–117.
- AMARANTE, O. A. C., BROWNER, M., ZACK, J. et al., 2001, Atlas do Potencial Eólico Brasileiro, Ministério de Minas e Energia, Brasília.
- BEZDEK, J. C., 1981, Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Pub Corp.
- BEZDEK, J. C., PAL, N. R., 1998, "Some New Indexes of Cluster Validity", *IEEE Transactions on Systems, Man and Cybernetics Part B: Cybernetics*, v. 28, n. 3 (Jun), pp. 301–315.
- BILLINTON, R., CHEN, H., GHAJAR, R., 1996, "A Sequential Simulation Technique for Adequacy Evaluation of Generating Systems Including Wind Energy", *IEEE Transactions on Energy Conversion*, v. 11, n. 4 (Dec), pp. 728–734.
- BORGES, C. L. T., 2005, Confiabilidade de Sistemas de Potência Parte II, PEE-COPPE/UFRJ.
- COROTIS, R. B., SIGI, A. B., KLEIN, J., 1978, "Probability Models of Wind Velocity Magnitude and Persistence", *Solar Energy*, v. 20, n. 6, pp. 483–493.

- DUDA, R. O., HART, P. E., STORK, D.G., 2001, *Pattern Classification*, John Wiley & Sons, Inc.
- EVERITT, B. S., LANDAU, S., LEESE, M., 2001, *Cluster Analysis*, Oxford University Press, Inc.
- FUNG, G., 2001, A Comprehensive Overview of Basic Clustering Algorithms.

 Disponível em: http://pages.cs.wisc.edu/~gfung/clustering.pdf.
- GOWDA, K. C., DIDAY, E., 1992, "Symbolic clustering using a new dissimilarity measure", *IEEE Transactions on Systems, Man and Cybernetics*, v. 22, n. 2 (Mar-Apr), pp. 368–378.
- GRIRA, N., CRUCIANU, M., BOUJEMAA, N., 2005, Unsupervised and Semisupervised Clustering: a Brief Survey. In: A Review of Machine Learning Techniques for Processing Multimedia Content, MUSCLE European Network of Excellence (6th Framework Programme), Paris, France.
- GRÖLL, L., JÄKEL, J., 2005, "A New Convergence Proof of Fuzzy C-Means", *IEEE Transactions on Fuzzy Systems*, v. 13, n. 5 (Oct), pp. 717–720.
- HAMERLY, G., ELKAN, C., 2002, "Alternatives to the k-means algorithm that find better clusterings", Conference on Information and Knowledge Management, (Nov), pp. 600–607.
- HARTIGAN, J. A., 1975, Clustering Algorithms, John Wiley & Sons, Inc.
- HATHAWAY, R. J., BEZDEK, J. C., 2001, "Fuzzy c-means clustering of incomplete data", *IEEE Transactions on Systems, Man and Cybernetics Part B*, v. 31, n. 5 (Oct), pp. 735–744.
- HAYKIN, S., 2001, Redes Neurais: princípios e prática, Bookman.
- HORE, P., HALL, L. O., GOLDGOF, D. B., 2007, "Single Pass Fuzzy C Means", IEEE International Conference on Fuzzy Systems, (Jul), pp. 1–7.
- JAIN, A. K., DUBES, R. C., 1988, Algorithms for Clustering Data, Prentice-Hall, Inc.
- JAIN, A. K., MURTY, M. N., FLYNN, P. J., 1999, "Data clustering: a review", *ACM Computing Surveys*, v. 31, n. 3 (Sep), pp. 264–323.

- KENNEDY, J., EBERHART, R. C., 1995, "Particle swarm optimization", *Proceedings* of the IEEE International Conference on Neural Networks, v. 4, (Nov-Dec), pp. 1942–1948.
- KENNEDY, J., EBERHART, R. C., 1997, "A Discrete Binary Version of the Particle Swarm Optimization", *International Conference on Systems, Man and Cybernetics*, v. 5, (Oct), pp. 4104–4108.
- KOHONEN, T., 1989, "Self-Organization and Associative Memory". In: Springer information sciences series, Springer-Verlag, New York.
- KOHONEN, T., 1990, "The Self-Organizing Map", *Proceedings of the IEEE*, v. 78, n. 9 (Sep), pp. 1464–1480.
- KRISHNAPURAM, R., KELLER, J. M., 1993, "A Possibilistic Approach to Clustering", *IEEE Transactions on Fuzzy Systems*, v. 1, n. 2 (May), pp. 98–110.
- KUMAR, V., 2000, An Introduction to Cluster Analysis for Data Mining, Computer Science Department, University of Minnesota, USA.
- LEITE, A. P., 2005, Modelagem de Fazendas Eólicas para Estudos de Confiabilidade, Dissertação de M.Sc., COPPE/UFRJ, Rio de Janeiro, RJ, Brasil.
- LEITE, A. P., BORGES, C. L. T., FALCÃO, D. M., 2006, "Probabilistic Wind Farms Generation Model for Reliability Studies Applied to Brazilian Sites", *IEEE Transactions on Power Systems*, v. 21, n. 4 (Nov), pp. 1493–1501.
- MACQUEEN, J., 1967, "Some methods for classification and analysis of multivariate observations". In: *Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability*, pp. 281–297.
- MATTEUCCI, M., 2004, A Tutorial on Clustering Algorithms. Disponível em: http://www.home.dei.polimi.it/upload/matteucc/Clustering/tutorial_html.
- MICHALSKI, R. S., STEPP, R. E., DIDAY, E., 1981, "A recent advance in data analysis: Clustering objects into classes characterized by conjunctive concepts".
 In: KANAL, L. N., ROSENFELD, A. (eds), Progress in Pattern Recognition Volume 1, Amsterdam, Netherlands, North-Holland Publishing Company.
- NABNEY, I. T., 2002, Netlab: Algorithms for Pattern Recognition, Springer.

- NOUR, M. A., MADEY, G. R., 1996, "Heuristic and optimization approaches to extending the Kohonen self organizing algorithm", *European Journal of Operational Research 93*, pp. 428–448.
- PAL, N. R., PAL, K., BEZDEK, J. C., 1997, "A Mixed c-Means Clustering Model", Proceedings of the Sixth IEEE International Conference on Fuzzy Systems, v. 1, (Jul), pp. 11–21.
- PAL, N. R., PAL, K., KELLER, J. M. et al., 2005, "A Possibilistic Fuzzy c-Means Clustering Algorithm", *IEEE Transactions on Fuzzy Systems*, v. 13, n. 4 (Aug), pp. 517–530.
- PAPOULIS, A., 1965, *Probability, Random Variables and Stochastic Processes*, McGraw-Hill, New York.
- PEREIRA, M. V. F., BALU, N. J., 1992, "Composite Generation/Transmission Reliability Evaluation", *Proceedings of the IEEE*, v. 80, n. 4 (Apr), pp. 470–491.
- PORTO, L., 2007, Energias Renováveis, Ministério de Minas e Energia, Brasil.
- RAMONI, M., SEBASTIANI, P., COHEN, P., 2002, "Bayesian Clustering by Dynamics", *Machine Learning*, v. 47, n. 1 (Apr), pp. 91–121.
- REIS, L. B., SILVEIRA, S., 2000, Energia Elétrica para o Desenvolvimento Sustentável, Editora da Universidade de São Paulo.
- SAYAS, F. C., ALLAN, R. N., 1996, "Generation Availability Assessment of Wind Farms", *IEE Proceedings Generation, Transmission & Distribution*, v. 143, n. 5 (Sep), pp. 507–518.
- ŠINDELÁŘ, R., BABUŠKA, R., 2004, "Input Selection for Nonlinear Regression Models", *IEEE Transactions on Fuzzy Systems*, v. 12, n. 5 (Oct), pp. 688–696.
- SINGH, C., KIM, Y., 1988, "An Efficient Technique for Reliability Analysis of Power Systems Including Time Dependent Sources", *IEEE Transactions on Power Systems*, v. 3, n. 3 (Aug), pp. 1090–1096.
- SRINIVAS, M., PATNAIK, L. M., 1994, "Genetic algorithms: a survey", *IEEE Computer Society*, v. 27, n. 6 (Jun), pp. 17–26.

- THOMANN, G. C., BARFIELD, M. J., 1988, "The Time Variation of Wind Speeds and Wind Farm Power Output in Kansas", *IEEE Transactions on Energy Conversion*, v. 3, n. 1 (Mar), pp. 44–49.
- VICTOR, J., 2006, *Clustering*, Departamento de Engenharia Informática, Instituto Politécnico de Leiria, PT.
- WANG, L., SINGH, C., TAN, K. C., 2007, "Reliability Evaluation of Power-Generating Systems Including Time-dependent Sources Based on Binary Particle Swarm Optimization", *IEEE Congress on Evolutionary Computation*, (Sep), pp. 3346–3352.
- XU, R., WUNSCH II, D., 2005, "Survey of Clustering Algorithms", *IEEE Transactions on Neural Networks*, v. 16, n. 3 (May), pp. 645–678.
- ZAÏANE, O. R., 1999, "Data Clustering". In: Principles of Knowledge Discovery in Databases, chapter 8, University of Alberta.
- ZHANG, H., HO, T.-B., LIN, M.-S., 2004, "An Evolutionary K-Means Algorithm for Clustering Time Series Data", IEEE Proceedings of the Third International Conference on Machine Learning and Cybernetics, v. 2, pp. 1282–1287.